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ABSTRACT: This article revisits an integral of radical trigonometric functions. It presents several
methods of integration where the integrand takes the form

√
1± sinx or

√
1± cosx. The integral has

applications in Calculus where it appears as the length of cardioid represented in polar coordinates.
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Introduction

This article revisits an integral where the integrand takes the form of radical trigonometric functions.
A general form of radical trigonometric integrands in the context of this article refers to

√
a± b sinx or√

a± b cosx, for a, b > 0. The integral of these functions is expressed in terms of elliptic integral and
are available in mathematical handbooks and tables of integrals. For example, the latter integral is given
in Section 2.5 (see 2.576) of a famous mathematical handbook by Gradstyen and Ryzhik [GR]. For a
particular case of a = b, after removing the constant factor, the integrand reduces to radical trigonometric
functions

√
1± sinx or

√
1± cosx. Interestingly, it seems that explicit expressions for the integral of these

functions have not been specifically listed in any tables of integrals and handbooks, including, but not
limited to, [AS, BSM, GR, Tab, Mat, PC, SLL]. The focus of this article is to consider the special case
when a = 1 = b, where several techniques of integration are discussed in a more detail. To the best of
our knowledge, this is the first time when such a compilation for particular integrands is presented.

The motivation of this article springs from an encounter from one of the coauthors’ in teaching Calcu-
lus 2 course during the Spring 2014 semester in Nazarbayev University, Astana, Kazakhstan. Particularly,
the content of this article is related to the topic on the integral calculus of polar curves, and one of the
examples is calculating the length of a cardioid. We adopt the Calculus textbook written by Anton,
Bivens and Davis [ABD] where the polar curves are discussed in Section 10.3. Another recommended
textbook reading for this course is the one written by Stewart [Ste2]. An example [Example 4, Section
10.4, page 692] from the latter textbook mentions that finding the length of cardioid r = 1 + sin θ can
be evaluated by multiplying both the numerator and the denominator of the integrand by

√
2− 2 sin θ

or alternatively, using the Computer Algebra System (CAS). Yet, evaluating this integral by hand is
apparently not so obvious to many students since they have to do further manipulation on the obtained
expression. The screenshot of the example from Stewart’s textbook has been excerpted and displayed in
Figure 1.

Figure 1: An example from a textbook on calculating the length of cardioid r = (1 + sin θ) where the
calculation details are omitted.

After rationalizing the numerator and implementing the Pythagorean trigonometric identity, the nu-
merator simplifies to

√
cos2 θ = | cos θ|, but it has to be in absolute value form, instead of simply cos θ.

This is a common mistake found among students since they may forget or tend to ignore the absolute
value sign. From an instructor’s perspective, it is imperative to remind the students to be aware of this
fact. Referring to Bloom’s taxonomy of learning domains [Blo], the educational activity of this learning
process is the cognitive domain. The process covers knowledge, comprehension and application. In this
example, students possess the knowledge that any value of the square root must be non-negative and an
absolute value of any quantity is always non-negative too. A comprehension of these facts is essential
to conclude (application of knowledge) that the square root of a quantity squared is indeed equal to the
absolute value of that quantity.

Referring to the revised Bloom taxonomy [AKB], a connection between learning activities and learn-
ing objectives can further be established. The knowledge dimension covers the factual and conceptual
aspects. In this context, students must know the definition of an absolute value and be able to make an
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interrelationship between the property of a square root and the absolute value. The cognitive dimension
includes remember, understand, apply aspects. Possessing the knowledge of absolute value, it is crucial
to investigate whether the students can retrieve this knowledge from their memory, whether they under-
stand why absolute value has to be non-negative and whether they are able to simplify and conclude that√

cos2 θ = | cos θ|.
Another educational aspect of the integral involving radical trigonometric functions is related to the

synthesis skill of cognitive domain in Bloom’s taxonomy. In the revised Bloom’s taxonomy, the educational
content involves factual and conceptual aspects of the knowledge dimension, where students attempt to
make interrelationships among the basic elements of trigonometric functions. The cognitive process
dimension covers remember, understand, apply and analyze aspects. When this example is posed to the
classroom for the students to work on, it turns out that some excellent students come up with different
techniques by manipulating the integrand expression. This shows that different students approach the
problem distinctly, they attempt to integrate with the method which is most convenient to them. For
instance, for some students, the technique of trigonometric substitution is a more comfortable approach,
others implement a variable shift method to solve the problem successfully. Thus, there are several ways
by which students can approach the problem.

For many Calculus instructors, however, the interest in integration techniques has waned. With the
introduction of CAS, many of them now give only cursory attention to such techniques. Nevertheless,
the methods of integration covered in this article are still interesting from educational perspective. They
provide a valuable pedagogical tool to assist and improve the students’ learning skills, which are beneficial
to both the instructors and the students themselves alike. In particular, by introducing several methods
during class sessions, the techniques covered in this article become useful in the sense that it does not
only expose the students to various techniques of integration but also makes them review and strengthen
their knowledge of trigonometry and trigonometric functions. As can be observed later, this article recalls
some important properties of trigonometric functions of sine, cosine and tangent as well as a significant
application of trigonometric substitution in solving particular types of integration.

This article is organized as follows. The following section covers the integral of radical sine function√
1± sinx. Section 2 briefly covers the integral of radical cosine function

√
1± cosx. Several techniques

of integration are covered and more detailed derivations are discussed in Section 1, including rational-
izing numerator, combining trigonometric identities, twice trigonometric substitutions and variable shift
methods. All of these methods require some variations of integrating absolute value function, which will
be presented accordingly in the corresponding subsections. Section 3 presents an application where the
integrals of radical sine and cosine functions appear, particularly in calculating the length of a cardioid.
The final section draws conclusions and provides remark to our discussion.

1 Integral of radical sine function

This section deals with the integral of a radical sine function where the integrand takes the form√
1± sinx. There are a number of methods to obtain the result, and four techniques are covered in

this section. The first method is by rationalizing the numerator. From here, one may depart either to use
the Pythagorean identity or to employ a trigonometric substitution. The second method is by combining
several trigonometric identities. We observe that double-angle formula and the identity relating sinx and
tanx/2 follow different paths of calculation and yet arrive at identical expression. The third technique
is by implementing trigonometric substitutions two times, mainly using tangent function. Finally, the
fourth technique is conducted by shifting the variable by π/2. Two options can be developed from this
path, where both of them alter the integral from radical sine function into radical cosine function. The
four methods covered in this section are summarized in the following tree diagram.

1.1 Rationalizing numerator

The following integral will be used in this subsection. Let f be a function which has at most one root on
each interval on which it is defined, and F an antiderivative of f , i.e. F ′(x) = f(x), then∫

|f(x)|√
F (x)

dx = −2 sgn[f(x)]
√
F (x) + C (1.1)
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where sgn(x) is the sign function, which takes the values −1, 0 or 1 when x is negative, zero or positive,
respectively.

Integration techniques

Variable shift

x = π/2 − y

x = y − π/2

Twice trigonometric
substitutions

Combining identities

sinx and tan(x/2)

Double-angle formula

Rationalizing numerator

Trigonometric substitution

Pythagorean identity

Pythagorean identity

Let I be an indefinite integral of the radical sine function I =

∫ √
1± sinx dx, then rationalizing the nu-

merator by multiplying both the numerator and the denominator with
√

1∓ sinx, applying the Pythagorean
trigonometric identity and utilizing the definition of the absolute value, it yields:

I =

∫ √
1± sinx ·

√
1∓ sinx√
1∓ sinx

dx =

∫ √
1− sin2 x√
1∓ sinx

dx =

∫ √
cos2 x√

1∓ sinx
dx

=

∫
| cosx|√
1∓ sinx

dx = −2 sgn(cosx)
√

1∓ sinx+ C

where the last expression is readily obtained by implementing (1.1).

Trigonometric substitution

A similar solution can also be obtained using the trigonometric substitution of u = sinx. Differentiating
with respect to u, we get dx = du/ cosx = du/(±

√
1− u2), where the positive and negative signs are

related to the sign of cosx. Thus for u = sinx 6= ±1

I =

∫ √
1± u du
±
√

1− u2
=

∫
du

±
√

1∓ u
= ∓2

√
1∓ u+ C

= ∓2
√

1∓ sinx+ C = −2 sgn(cosx)
√

1∓ sinx+ C.

1.2 Combining identities

A general, explicit form of an integral involving an absolute value of a function will be used in this
section. Let f be a function which has at most one root on each interval on which it is defined, and F an
antiderivative of f that is zero at each root of f (such an antiderivative exists if and only if the condition
on f is satisfied), then ∫

|f(x)| dx = sgn[f(x)]F (x) + C, (1.2)

where sgn(x) is the sign function defined previously.

Double-angle formula

We manipulate the integrand by combining the Pythagorean trigonometric identity and the double-angle
formula. Using the Pythagorean trigonometric identity, writing 1 = cos2(x/2) + sin2(x/2) and using the
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double-angle formula for sinx: sinx = 2 sin(x/2) cos(x/2), the integral of the radical sine becomes

I =

∫ √
cos2

x

2
± 2 cos

x

2
sin

x

2
+ sin2 x

2
dx =

∫ √(
cos

x

2
± sin

x

2

)2
dx

=

∫ ∣∣∣cos
x

2
± sin

x

2

∣∣∣ dx = 2 sgn
(

cos
x

2
± sin

x

2

)(
sin

x

2
∓ cos

x

2

)
+ C

where the last expression is quickly obtained after implementing (1.2).

Identity relating sinx and tan(x/2)

A similar result will also be obtained if one employs another trigonometric identity that relates sinx and
tan(x/2). Using the double-angle formula for sinx at the numerator and the Pythagorean trigonometric
identity at the denominator, dividing both sides by cos2(x/2), we obtain

sinx =
2 sin(x/2) cos(x/2)

cos2(x/2) + sin2(x/2)
=

2 sin(x/2) cos(x/2)
cos2(x/2)

1 + sin2(x/2)
cos2(x/2)

=
2 tan(x/2)

1 + tan2(x/2)
.

Thus, the integral of the radical sine function I turns to

I =

∫ √
1± 2 tanx/2

1 + tan2 x/2
dx =

∫ √
1 + tan2 x/2± 2 tanx/2

1 + tan2 x/2
dx

=

∫ √
(1± tanx/2)2

sec2 x/2
dx =

∫ ∣∣∣∣1± tanx/2

secx/2

∣∣∣∣ dx
=

∫ ∣∣∣cos
x

2
± sin

x

2

∣∣∣ dx = 2 sgn
(

cos
x

2
± sin

x

2

)(
sin

x

2
∓ cos

x

2

)
+ C.

1.3 Twice trigonometric substitutions

A similar expression of the solution as that of the previous section can also be obtained by the trigono-
metric substitution u = tanx/2. This implies dx = 2 du/(1 + u2) and writing sinx = 2 sin(x/2) cos(x/2)
the integral of the radical sine function becomes

I =

∫ √
1± 2u

1 + u2
2du

1 + u2
= 2

∫
|1± u| du

(1 + u2)3/2

= 2 sgn(1± u)

(∫
du

(1 + u2)3/2
±
∫

u du

(1 + u2)3/2

)
.

Employ another trigonometric substitution u = tan y and v = 1+u2 for the first and the second integrals,
respectively. Thus,

I = 2 sgn(1± u)

(∫
sec2 y dy

(1 + tan2 y)3/2
± 1

2

∫
dv

v3/2

)
= 2 sgn(1± u)

(∫
sec2 y dy

sec3 y
∓ v−1/2

)
= 2 sgn(1± u)

(∫
1

sec y
dy ∓ 1√

v

)
= 2 sgn(1± u)

(∫
cos y dy ∓ 1√

1 + u2

)
= 2 sgn(1± u)

(
sin y ∓ 1√

1 + u2

)
+ C = 2 sgn(1± u) sgn

(
1√

1 + u2

)(
u∓ 1√
1 + u2

)
+ C

= 2 sgn
(

1± tan
x

2

)
sgn

(
cos

x

2

)
cos

x

2

(
tan

x

2
∓ 1
)

+ C

= 2 sgn
(

cos
x

2
± sin

x

2

)(
sin

x

2
∓ cos

x

2

)
+ C.
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1.4 Variable shift

The following integrals of the absolute value of trigonometric functions sinαx and cosαx, α 6= 0, will be
used in this subsection, where bxc denotes the floor function:

∫
|sinαx| dx =

2

α

⌊αx
π

⌋
− 1

α
cos
(
αx−

⌊αx
π

⌋
π
)

+ C (1.3)∫
|cosαx| dx =

2

α

⌊
αx

π
+

1

2

⌋
+

1

α
sin

(
αx−

⌊
αx

π
+

1

2

⌋
π

)
+ C. (1.4)

Variable shift x = y − π/2

Applying this variable shift, the integral I becomes

I =

∫ √
1± sin(y − π/2) dy =

∫ √
1∓ cos y dy

=


∫ √

2 sin2 y/2 dy, for − sign (+ sign original I)∫ √
2 cos2 y/2 dy, for + sign (− sign original I)

=


√

2

∫
|sin y/2| dy, for − sign (+ sign original I)

√
2

∫
|cos y/2| dy, for + sign (− sign original I)

=

{
−2
√

2 sgn(sin y/2) cos(y/2) + C, for − sign (+ sign original I)

2
√

2 sgn(cos y/2) sin(y/2) + C, for + sign (− sign original I)

=

{
−2
√

2 sgn
[
sin
(
x
2 + π

4

)]
cos
(
x
2 −

π
4

)
+ C, for − sign (+ sign original I)

2
√

2 sgn
[
cos
(
x
2 + π

4

)]
sin
(
x
2 + π

4

)
+ C, for + sign (− sign original I)

= −2
√

2 sgn
[
sin
(x

2
± π

4

)]
cos
(x

2
± π

4

)
+ C

where the last three expressions are readily obtained by implementing (1.2), returning back the original
variable and combining results corresponding to the positive and negative signs into a single expression,
respectively. Alternatively, implementing (1.3), we obtain the integral for

√
1 + sinx:

I1 = 4
√

2
⌊ y

2π

⌋
− 2
√

2 cos
(y

2
−
⌊ y

2π

⌋
π
)

+ C

= 4
√

2

⌊
x

2π
+

1

4

⌋
− 2
√

2 cos

(
x

2
+
π

4
−
⌊
x

2π
+

1

4

⌋
π

)
+ C.

Implementing (1.4), we obtain the integral for
√

1− sinx:

I2 = 4
√

2

⌊
y

2π
+

1

2

⌋
+ 2
√

2 sin

(
y

2
−
⌊
y

2π
+

1

2

⌋
π

)
+ C

= 4
√

2

⌊
x

2π
+

3

4

⌋
+ 2
√

2 sin

(
x

2
+
π

4
−
⌊
x

2π
+

3

4

⌋
π

)
+ C

where subscripts 1 and 2 correspond to the positive and negative signs in the original integral I, respec-
tively.
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Variable shift x = π/2− y

Applying this variable shift, the integral I becomes

I = −
∫ √

1± sin(π/2− y) dy = −
∫ √

1± cos y dy

=


−
√

2

∫
|cos y/2| dy, for + sign

−
√

2

∫
|sin y/2| dy, for − sign

=

{
−2
√

2 sgn(cos y/2) sin(y/2) + C, for + sign

2
√

2 sgn(sin y/2) cos(y/2) + C, for − sign

=

{
2
√

2 sgn
[
cos
(
x
2 −

π
4

)]
sin
(
x
2 −

π
4

)
+ C, for + sign

−2
√

2 sgn
[
sin
(
x
2 −

π
4

)]
cos
(
x
2 −

π
4

)
+ C, for − sign

= 2
√

2 sgn
[
cos
(x

2
∓ π

4

)]
sin
(x

2
∓ π

4

)
+ C

where the last three expressions are readily obtained by implementing (1.2), returning back the origi-
nal variable and combining two results into a single expression, respectively. Alternatively, implement-
ing (1.4), we obtain the integral for

√
1 + sinx:

I1 = −4
√

2

⌊
y

2π
+

1

2

⌋
− 2
√

2 sin

(
y

2
−
⌊
y

2π
+

1

2

⌋
π

)
+ C

= −4
√

2

⌊
3

4
− x

2π

⌋
+ 2
√

2 sin

(
x

2
− π

4
+

⌊
3

4
− x

2π

⌋
π

)
+ C

= 4
√

2

⌈
x

2π
− 3

4

⌉
+ 2
√

2 sin

(
x

2
− π

4
−
⌈
x

2π
− 3

4

⌉
π

)
+ C

where dxe is the ceiling function and the relationship between the floor and the ceiling functions are
utilized to obtain the last expression, i.e. bxc+ d−xe = 0. Implementing (1.3), we obtain the integral for√

1− sinx:

I2 = −4
√

2
⌊ y

2π

⌋
+ 2
√

2 cos
(y

2
−
⌊ y

2π

⌋
π
)

+ C

= −4
√

2

⌊
1

4
− x

2π

⌋
+ 2
√

2 cos

(
x

2
− π

4
+

⌊
1

4
− x

2π

⌋
π

)
+ C

= 4
√

2

⌈
x

2π
− 1

4

⌉
+ 2
√

2 cos

(
x

2
− π

4
−
⌈
x

2π
− 1

4

⌉
π

)
+ C

where the subscripts 1 and 2 correspond to the positive and negative signs in the expressions of I,
respectively.

2 Integral of radical cosine function

This section compiles a number of techniques to integrate the radical cosine function in the form
√

1± cosx. Let J be an indefinite integral of radical cosine function J =

∫ √
1± cosx dx. Since the

derivations are similar to the ones in Section 1, only the final results will be presented. Employing the
variable shift method either by x = π/2 − y or x = y − π/2 will alter the cosine function into the sine
function and vice versa. Thanks to this redundancy, the coverage of this technique will be omitted in
this section. The integration techniques presented in this section basically can also be summarized with
a similar tree diagram presented in Section 1.

2.1 Rationalizing numerator

Implementing two techniques of rationalizing numerator and by trigonometric substitution u = cosx, we
obtain a similar result to the one in the previous section:

J = −2 sgn(sinx)
√

1∓ cosx+ C.
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2.2 Combining identities

This technique deals with combining the Pythagorean trigonometric identity with the double-angle for-
mula and the identity of cosx and tan(x/2). The double-angle formula used here is cosx = cos2(x/2)−
sin2(x/2). The identity of cosx in terms of tan(x/2) reads

cosx =
1− tan2(x/2)

1 + tan2(x/2)
.

Employing these identities the integral J now reads

J =

{
2
√

2 sgn [cos(x/2)] sin(x/2) + C, for + sign

−2
√

2 sgn [sin(x/2)] cos(x/2) + C, for − sign.
(2.1)

2.3 Twice trigonometric substitutions

Employing the substitution u = tan(x/2), we have

J =


∫

2
√

2 du

(1 + u2)3/2
= sgn

(
1√

1 + u2

)
2
√

2u√
1 + u2

+ C, for + sign∫
2
√

2|u| du
(1 + u2)3/2

= sgn

(
u√

1 + u2

)
−2
√

2√
1 + u2

+ C, for − sign.

After returning to the initial variable x, identical expressions with the ones in (2.1) will be obtained.

3 Application: Cardioid

The integral discussed above appears as calculation of the arc length of a cardioid. The length of cardioids
r = a(1± sin θ), a > 0 is given by

L = a
√

2

∫ 2π

0

√
1± sin θ dθ.

The sketches of the cardioids are presented in Figure 2. The properties of the curve have been investigated
in a classical paper by Yates more than half a century ago [Yat2]. The author also compiled a handbook
on many kinds of curves, including cardioid, and discussed their properties [Yat1]. Another approach
of calculating an area of cardioid and other shapes of closed curves is presented using the surveyor’s
method [Bra]. A road-wheel relationship by rolling a cardioid wheel on an inverted cycloid is discussed
in [HW].

Cardioid finds various applications in fractals, complex analysis, plant physiology and engineering.
In fractals, it appears in Douady cauliflower, which is a decoration formed via numerous small cardioids
of the Mandelbrot set [PRÁ, RPÁ]. In plant physiology, the seed shape of Arabidopsis (rock cress) can
be modelled using cardioid [CMA]. The model based on the comparison of the outline of the seed’s
longitudinal section with a transformed cardioid, where the horizontal axis is scaled by a factor equal to
the Golden Ratio. An envelope of rays either reflected or refracted from the surface, known as caustic,
from a cup of coffee or milk exhibits the shape of a cardioid [Cau]. In the field of electronics and electrical
engineering, a cardioid directional pattern in a microphone provides a relatively wide pick-up zone [MH].

It is stated but not shown in a Calculus textbook authored by Stewart [Ste1, Ste2] that one can
calculate this integral using the techniques described in this article or by technology, amongst others, are
Integral Calculator [Cal], Sage [Sag], Symbolab [Sym] and Wolfram Alpha [Wol]. The author uses the
cardioid r = 1 + sin θ as an example, as shown in Figure 1 mentioned earlier in the introduction of this
article. In general, evaluating a definite integral involving an absolute value, one must find the zeros of
the function in the absolute value and divide the range of integration into pieces by toggling the sign
within each of the intervals.

3.1 Rationalizing numerator

Since cos θ ≥ 0 for 0 ≤ θ ≤ π/2 and 3π/2 ≤ θ ≤ 2π and cos θ < 0 for π/2 < θ < 3π/2, we need to split the
integral into three intervals. See the top panel of Figure 3. Thus, using the result from Subsection 1.1,
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r = a(1 + sin θ)

a−a

2a

x

y

r = a(1− sin θ)
a−a

−2a

x

y

Figure 2: Sketches of cardioids r = a(1 + sin θ) (left) and r = a(1− sin θ) (right), a > 0.

the length of the cardioids r = a(1± sin θ) is given by

L = a
√

2

∫ 2π

0

| cos θ|√
1∓ sin θ

dθ

= a
√

2

(∫ π/2

0

cos θ√
1∓ sin θ

dθ −
∫ 3π/2

π/2

cos θ√
1∓ sin θ

dθ +

∫ 2π

3π/2

cos θ√
1∓ sin θ

dθ

)

= 2a
√

2

(
∓
√

1∓ sin θ
∣∣∣π/2
0
±
√

1∓ sin θ
∣∣∣3π/2
π/2
∓
√

1∓ sin θ
∣∣∣2π
3π/2

)
= 8a.

| cos θ|

θ
π/2 3π/2

1

| cos θ/2 + sin θ/2|

θ
3π/2

1

| cos θ/2− sin θ/2|

θ
π/2

1

Figure 3: Plots of | cos θ| (top panel), |cos(θ/2) + sin(θ/2)| (middle panel) and |cos(θ/2)− sin(θ/2)| (bot-
tom panel) for 0 ≤ θ ≤ 2π with the indicated zeros.

3.2 Twice trigonometric substitutions

We know that (see the middle panel of Figure 3)

cos
θ

2
+ sin

θ

2
=
√

2 cos

(
θ

2
− π

4

){
≥ 0, for 0 ≤ θ ≤ 3π/2
< 0, for 3π/2 < θ ≤ 2π
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Thus, implementing this method, the length of the cardioid r = a(1 + sin θ) reads

L = a
√

2

∫ 2π

0

∣∣∣∣cos
θ

2
+ sin

θ

2

∣∣∣∣ dθ
= a

√
2

(∫ 3π/2

0

(
cos

θ

2
+ sin

θ

2

)
dθ −

∫ 2π

3π/2

(
cos

θ

2
+ sin

θ

2

)
dθ

)

= 2a
√

2

(
sin

θ

2
− cos

θ

2

∣∣∣∣3π/2
0

−
(

sin
θ

2
− cos

θ

2

)∣∣∣∣2π
3π/2

)
= 8a.

Similarly, splitting the integral at θ = π/2, we also obtain the length L = 8a corresponding to the cardioid
r = a(1 − sin θ). See the bottom panel of Figure 3 to observe that the zero of cos(θ/2) − sin(θ/2) for
0 ≤ θ ≤ 2π is at π/2.

3.3 Variable shift

These integrals involve the absolute value functions | cos(y/2)| and | sin(y/2)|, for which in the original
variable θ, both functions are non-negative for 0 ≤ θ ≤ 3π/2 and negative for 3π/2 < θ < 2π. Thus, the
length of the cardioid r = a(1 + sin θ) reads

L = 2a

∫ 2π

0

∣∣∣∣sin(θ2 +
π

4

)∣∣∣∣ dθ
= 2a

(∫ 3π/2

0

sin

(
θ

2
+
π

4

)
dθ −

∫ 2π

3π/2

sin

(
θ

2
+
π

4

)
dθ

)

= 4a

(
− cos

(
θ

2
+
π

4

)∣∣∣∣3π/2
0

+ cos

(
θ

2
+
π

4

)∣∣∣∣2π
3π/2

)
= 8a

or

L = 2a

∫ 2π

0

∣∣∣∣cos

(
π

4
− θ

2

)∣∣∣∣ dθ
= 2a

(∫ 3π/2

0

cos

(
π

4
− θ

2

)
dθ −

∫ 2π

3π/2

cos

(
π

4
− θ

2

)
dθ

)

= 4a

(
− sin

(
π

4
− θ

2

)∣∣∣∣3π/2
0

+ sin

(
π

4
− θ

2

)∣∣∣∣2π
3π/2

)
= 8a.

Employing a similar technique, identical result of L = 8a is also obtained for the corresponding cardioid
r = a(1− sin θ).

An expression r = a(1 ± cos θ), a > 0 produces cardioids too. When comparing this expression
with the one with sine term, the effect is a 90-degree rotation, either clockwise (for the same sign) or
counterclockwise (for the opposite sign), of the corresponding cardioids with the sine term. The sketch
of the corresponding cardioid is presented in Figure 4. The length of cardioids r = a(1± cos θ), a > 0 is
given by

L = a
√

2

∫ 2π

0

√
1± cos θ dθ.

Using similar techniques discussed in Section 2, one can find that the length of these cardioids is also 8a.

A number of Calculus textbooks use this type of cardioid as an example for calculating its length.
For instance, Anton et al. [ABD] uses the cardioid r = 1 + cos θ. After some manipulations, one needs to
integrate | cos(θ/2)| from θ = 0 to θ = 2π. Although general readers will attempt to split the boundary
integrations at θ = π, the authors explain that since the cardioid is symmetry about the polar axis,
the integral from θ = π to θ = 2π is equal to the one from θ = 0 to θ = π. Thus, the integral can
be calculated by twice integrating from θ = 0 to θ = π of the positive integrand cos(θ/2) (without the
absolute value). Calculus’ Thomas textbook [TWH] adopts the cardioid r = 1 − cos θ. The integrand
reduces to | sin(θ/2)|. Fortunately, sin(θ/2) ≥ 0 for 0 ≤ θ ≤ 2π and thus by removing the absolute value
and evaluating the integral, one can quickly obtain the length of the cardioid.
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r = a(1 + cos θ)
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−a
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r = a(1− cos θ)

a
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Figure 4: Sketches of cardioids r = a(1 + cos θ) (left) and r = a(1− cos θ) (right), a > 0.

4 Conclusion and Remark

This article presents the integral with radical sine and cosine functions where its application appears in
the length of a cardioid. It turns out that several techniques of integration exist to solve the problem,
which is interesting from the perspective of teaching and learning mathematics. Despite the current trend
of using CAS, the collection of integration techniques presented in this article is a valuable pedagogical
tool. To the best of our knowledge, this is the first time such a compilation for this particular type of
integrands is presented. We are convinced that this article contains useful educational contents that will
be beneficial for both instructors and students alike. We also consider our contribution as a complement
to existing Calculus textbooks which discuss a topic on calculating the length of a polar curve, particularly
cardioid.
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