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Abstract: What does it mean to align an assessment to the domain of interest? In this 
paper, we analyze teachers’ performance on the Learning Mathematics for Teaching 
assessment of Proportional Reasoning. Using a mixture Rasch model, we analyze their 
performance on the entire assessment, then on two different subsets of items from the 
original assessment. We consider the affordances of different conceptualizations of the 
domain and consider the implications of the domain definition on the claims we can make 
about teacher performance. We use a single assessment to illustrate the differences in 
results that can arise based on the ways in which the domain of interest is conceptualized. 
Suggestions for test development are provided. 

 
Keywords: assessment development, teacher knowledge assessment 
 
 

Introduction 

While test performance is generally reported as if the score assigned a participant 
were the goal of the assessment, the actual interest is the inferences that can be made 
about a learner based on that score. It is critical to ensure an assessment is measuring 
what it is intended to measure if such inferences are to be accurate. Thus, assessments 
must be written in a way that allows accurate inferences to be drawn. If we are to make 
claims about quantities of or changes in participants’ knowledge, alignment between the 
content and the underlying assumptions of the domain is critical. Further, if instruction is 
to be impacted in positive ways by assessment data, we need to ensure that scores 
accurately report knowledge of the intended construct. Thus, defining the construct one is 
interested in measuring is vital to the assessment process. 

One particularly complex domain from a measurement perspective is that of 
teacher knowledge. This is complex because teacher knowledge is multidimensional. The 
specialized knowledge teachers need for teaching (SKT) necessarily includes content 
knowledge, pedagogical knowledge, and understandings of how students learn (e.g., Ball, 
Thames, & Phelps, 2008; Baumert et al., 2010; Manizade & Mason, 2011; Shulman, 
1986; Silverman & Thompson, 2008). Measuring such knowledge requires adherence to 
a set of beliefs about the specific construct and how it is best tested, for example, using a 
paper-based assessment or using feedback in a video-based open-response system (e.g., 
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Kersting, Givvin, Sotelo, & Stigler, 2010). Despite the challenges of this complex 
knowledge domain, if we care about whether a teacher has the knowledge necessary to 
support student learning, assessments need to be written to address the domain. 

In the case of SKT, we are faced with not only the complexity of the domain, but 
also the ambiguity of what it means in practical terms for a teacher to have or exhibit 
particular kinds of knowledge. In our work on proportional reasoning, we have chosen to 
focus on how teachers understand the mathematics of proportions rather than on their 
pedagogical understandings related to teaching such content. However, we also 
acknowledge that teachers need to be able to use the content in the process of teaching, 
thus our interest in assessment focuses on the knowledge teachers need as it is situated in 
tasks that ask teachers to make sense of student thinking, analyze multiple approaches to 
problems, or other authentic teaching activities. Fully defining the SKT in which we are 
interested is outside the domain of this article. However, we rely heavily on the work of 
Lamon (2007) and Lobato and Ellis (2010) in our definition. For example, we know that 
teachers need to have the ability to conceptually connect the two values in a ratio and to 
understand that a third, abstractable quantity results from that connection (e.g., Lobato & 
Ellis, 2010). Teachers also need to understand the multiplicative relationships inherent in 
proportional relationships (e.g., the constant of proportionality is the multiplicative 
relationship of one value in the ratio to another). And, they need to understand that this 
corresponds to the unit rate.  Further, we assert that teachers should understand how 
proportional reasoning connects to other areas of mathematics such as fractions and 
geometric similarity (Lamon, 2007; Pitta-Pantazi & Christou, 2011). We rely on research 
on teacher knowledge that shows that teachers struggle to use unit rate when faced with 
values less than one (Harel & Behr, 1995; Post, Harel, Behr, & Lesh, 1988). And, we 
know from a series of small studies (e.g., Riley, 2010; Son, 2010) that teachers tend to 
rely on cross-multiplication, which seems to obscure the breadth of knowledge they may 
have about proportional relationships.  

Considering only the domain of proportional reasoning for teachers, one could 
take a number of approaches to measuring different aspects of SKT. In this study, we 
considered one assessment’s approach to measuring the construct of proportional 
reasoning knowledge for teaching through the lens of our emerging definition. By 
undertaking this effort, we were able to further define the domain of SKT for 
proportional reasoning and to consider valid measurement of that domain. We relied on 
an approach that searched for latent classes in the data and what those latent classes 
might reveal about the nature of teachers’ knowledge. In this setting, latent classes are 
statistically determined groupings of participants who shared particular aspects of 
patterns in their responses to the assessment items. We suspected that the data available 
for this study might contain latent classes given results from previous research by Izsák, 
Orrill, Cohen, & Brown (2010) on teachers’ understanding of rational numbers. That 
research indicated that in a similar assessment, a two-class model fit the data better than 
the one-class model.  
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Mixture Rasch Model 
For this analysis, we used the mixture Rasch model (described below) as a means 

of further examining the data provided through Item-Response Theory (IRT) by an 
assessment of teacher knowledge. The standard Rasch model is useful for tests that are 
designed to assess single categories of knowledge. With respect to measures of teachers’ 
proportional reasoning, the standard model constrains the information about a teacher to a 
single estimate of proportional reasoning. As such, the standard model will not detect 
differences in the ways that examinees respond to individual items on the test. The Rasch 
model assumes that all examinees are drawn from a single population. When it is 
suspected that this may not be the case, such as when different groups of teachers have 
different patterns of responding to the items, then a mixture Rasch model (Rost, 1990, 
1997) may be more useful.  

The mixture Rasch examines patterns in responses to the assessment items that 
allow participants to be placed into latent classes. Latent classes are not determined a 
priori nor are they typically determined by more apparent commonalities such as ability, 
gender, or race. Members in a latent class are homogeneous on the characteristic that 
caused the latent class to form. Previous research with mixture IRT models in general, of 
which the mixture Rasch model is one example, has demonstrated that these models can 
address whether or not examinees exhibit the same response characteristics or whether 
there are groups of examinees that are latent and can only be identified by examining 
homogeneities in their response patterns. The groups are termed latent since they are not 
immediately visible simply by examining their responses. Observable characteristics like 
gender, height, and ethnicity are considered manifest. In contrast, characteristics such as 
differences in use of cognitive strategies for answering test items are considered latent 
until subsequent analysis can make them manifest. Previous research, for example, has 
found that latent classes of students that differ in their use of cognitive strategies for 
answering test questions can be detected (Bolt, Cohen, & Wollack, 2001; Embretson & 
Reise, 2000; Mislevy & Verhelst, 1990; Rost, 1990, 1997).  

In a recent study of fraction knowledge that used the mixture Rasch analysis, we 
found that teachers in one latent class attended to the referent unit more than those in the 
other class (Izsák et al., 2010). These fine-grained understandings are important for 
mapping a domain of knowledge that teachers should have and for understanding what 
learning means within the domain. For example, we saw that teachers sometimes 
transitioned between latent classes following an intervention, albeit without exhibiting 
growth in their test scores. Similarly, some had significant changes in test scores without 
changing latent classes (e.g., Izsák, Jacobson, de Araujo, & Orrill, 2012). In our previous 
work, the latent classes were found to align with aspects of knowledge that are critical for 
meaningful understanding of fractions. We assert, therefore, that understanding latent 
class membership can provide important insights into the nature of teacher knowledge 
that ability scores alone cannot. 
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Methods 
Sample 

For the purposes of this analysis, we used the same dataset for all three analyses, 
but included different subsets of items for each version. While determining the latent 
class membership, item difficulty, and ability scores relied on the combined datasets (25 
teachers from our sample plus 351 teachers from the LMT-PR sample), the analysis of 
the latent classes relied solely on an analysis of the 25 teachers participating in a larger 
study in which this work is situated. The 351 teachers in the national sample included 
teachers in grades 4-8 (Hill, 2008). The 25 teachers we analyzed in depth here were all 
teachers in grades 6-8. These 25 participants represented a convenience sample of 
practicing mathematics teachers drawn from across three states. They represented an 
array of schools including public, private, and charter schools situated in urban, suburban, 
and rural settings. Because the data are presented and analyzed in aggregated form 
throughout this study, we have not provided in-depth information about each teacher in 
the study. 
Instrument 

The instrument of interest was the Learning Mathematics for Teaching form for 
Proportional Reasoning (LMT-PR: Learning Mathematics for Teaching, 2007), which 
included 73 unique items. Consistent with all LMT assessments, the LMT-PR seeks to 
measure a particular construct known as mathematical knowledge for teaching (MKT; 
Ball, et al., 2008). MKT emphasizes the use of knowledge in and for teaching rather than 
focusing on the broader body of knowledge teachers may have developed (Ball et al., 
2008). Items on the LMT were designed to measure common content knowledge (CCK; 
math knowledge used outside of teaching) and specialized content knowledge (SCK; 
math knowledge specifically used in teaching) (Hill, 2008). The assessment was not 
created using a systematic conceptualization of the domain of proportional reasoning.  
Rather, the development team was opportunistic, using items that captured MKT across 
an array of topics with some breadth and an array of mathematical tasks of teaching 
(Thames, personal communication). The item development team aligned items to the 
Principles and Standards for School Mathematics (NCTM, 2000). The LMT-PR form 
included a wide range of questions including those asking teachers to solve proportions, 
to select harder or easier examples for students, to explain particular proportions ideas to 
students, to interpret a variety of graphs, and to determine whether given situations were 
directly/inversely proportional. As with other LMT forms, LMT-PR included questions 
that asked teachers to make sense of students’ work, to interpret representations, and to 
select items appropriate for their students. It is the need for this array of understandings 
that makes the construct of teacher knowledge unique and challenging to measure. 

We selected the LMT-PR both because it measures the content in which we are 
interested and because it situates many of the tasks in the work that teachers do, as 
described above. Our analysis was meant to highlight the importance of aligning 
constructs of interest to assessments and should not be interpreted as detracting from the 
important role the LMT has played in the assessment of teacher knowledge. The LMT 
has been one of the most widely used assessments of teacher knowledge and has been 
used as the basis for important research showing the alignment between teacher 
knowledge and student performance on standardized assessments (e.g., Hill, Rowan, & 
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Ball, 2005). Further, the LMT paved the way for the increasingly rich discussion of the 
construct of teacher knowledge in mathematics. 

Table 1. Items included in each version of the LMT-PR in this analysis. 

 LMT-PR 73 LMT-PR 60 LMT-PR 54 

Items Removed 
from full version of 
LMT-PR 

All items included 3a-c 
10 

15 
24a-d 

32a-d 

3a-c 
5 

8 
10 

12a, 12d 
14b 

15 
18 

24a-d 
32a-d 

 

As shown in Table 1, each version of the LMT used in this study was created 
from the full assessment. Version 1 (LMT-PR 73) for this analysis considered all 73 
items in the LMT-PR1. The second analysis (LMT-PR 60) removed 13 items that did not 
specifically measure proportional reasoning concepts. These items included several that 
asked teachers to interpret nonlinear graphs (see Figure 1 for an example). While these 
items featured covariational reasoning, they measured mathematics outside our construct 
of interest. If we wanted to carefully measure the domain to make inferences about 
teachers’ proportional reasoning as we conceptualized it, then including items that did not 
specifically address proportional reasoning could create noise in the analysis.  

 

  

                                                
1 While the LMT is logically organized into sets of questions that appear to be 

testlets, in our past experience, those related questions have not had interdependent 
responses like testlets should. Participant responses on related questions appeared to be 
independent. Thus, it is appropriate to treat every item as a stand-alone item rather than 
considering them as testlets for the purposes of this analysis. 
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Ms. Reese and Mr. Ward celebrate student success by allowing students to eat small bags 
of popcorn at the end of the day. Describe what has happened over the course of the last 
six days in each of their classes. 

 
 

Figure 1. A task stem similar to those removed to create LMT-PR 60 for this 
study. (Note that actual LMT items are secure.) 

For the third version, which included 54 items, we worked from LMT-PR 60 and 
removed those items reviewers suspected would lead to errors in measurement of the 
proportional reasoning domain based on our interpretation of the specialized knowledge 
teachers need for this domain. In particular, we were concerned with items that would 
lead to the right answers using incorrect reasoning or incorrect answers for reasons other 
than limitations in understanding. 

One example of such an item was the single item from the LMT-PR for which we 
had item response interview data from a previous study. In that study, we asked 13 
middle school teachers to think aloud on an item that asked them to explain why the 
cross-multiplication algorithm works. In our analysis of those interviews, we found that 
about half of the participants who answered the item incorrectly actually understood the 
intended correct answer as being the most mathematically precise. However, they chose a 
different response driven by their interpretation of the mathematics through the eyes of a 
teacher, even though the question did not necessarily ask them to. That is, they chose the 
less accurate answer because it more precisely reflected the way they would teach 
students about cross multiplication. This becomes particularly relevant to the discussion 
of our construct because the LMT team viewed this item as working appropriately 
because their definition of MKT is tightly tied to the ways in which teachers use their 
knowledge to teach (Thames, personal communication). Thus, the item would be seen as 
operating appropriately from the perspective that the teachers were not applying the most 
appropriate understandings in their teaching situations. However, from our perspective, 
which is grounded in knowledge in pieces (diSessa 1988; 2006), we assert that teachers 
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may have a number of knowledge resources that are connected in ways that cause them to 
be invoked in some situations, but perhaps not in others. Working from this perspective, 
we interpreted items like the cross multiplication item as not working because we saw 
evidence that some teachers understood the mathematics of interest, but did not invoke 
that mathematics in expected ways in the situation presented in the item. By not using 
their understanding in expected ways, the participants appeared not to have the 
understanding, but based on their explanation, that is not an accurate assumption. 

Based on our understanding and experiences working with teachers around 
proportional reasoning, we removed six potentially problematic items to create the 54-
item version of the assessment. 

Data Analysis 
As mentioned above, data analysis was done using a mixture Rasch model (Rost, 

1990, 1997). In the standard Rasch model (e.g., Hambleton & Swaminathan, 1985; Lord, 
1980), item responses are typically scored dichotomously (e.g., 1 for a correct response 
and 0 for an incorrect response). The resulting data are then used to estimate parameters 
that describe ability for each examinee (

€ 

θ j ) and difficulty for each item (𝑏!).  Ability 
( jθ ) describes the amount of proportional reasoning knowledge possessed by person j. 
The scale for the model is centered at 0, and if 

€ 

θ j  = 0, then person j is assumed to have 
the average amount of knowledge of proportional reasoning.  The difficulty of the item, 
𝑏!, is expressed on the same scale as ability.  The standard form of the Rasch model is 
given as 

 

€ 

Pi(θ j ) =
exp(θ j − bi)
1+ exp(θ j − bi)

  (1) 

The item difficulty, 

€ 

bi, indicates the point on the scale at which persons with 
ability equal to the item difficulty have a 50-50 chance of answering that item correctly. 
Items that are more difficult have higher difficulty parameter estimates. Similarly, items 
that are easier have lower difficulty parameter estimates. As an example, for item 1a 
(Figure 1), the item difficulty score is -2.26 for Class 1; therefore, someone whose ability 
is -2.26 has a 50% likelihood of answering the question correctly. In contrast, item 8 
shows that a member of Class 2 to have a 50% chance of answering the item correctly, 
the participant would have to have an ability score of 2.736. 

In our study, we used the mixture Rasch model (Rost, 1990) as estimated using a 
Markov chain Monte Carlo algorithm as implemented in the computer software 
WinBUGS (Spiegelhalter, Thomas, Best and Lunn, 2003).  The mixture Rasch model can 
be given as 

𝑃! Ɵ! =  
exp (Ɵ!" − 𝑏!")

1+  exp (Ɵ!" − 𝑏!")
 

where the subscript g is used to indicate latent class.  In this equation, it can be 
seen that ability for person j and the difficulty for item i differ depending on the latent 
class. 
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For each item, the mixture Rasch model estimated a separate item difficulty for 
each latent class, a separate probability of belonging in each latent class, and a separate 
ability estimate for each examinee.  To determine the number of latent classes, we used 
the BIC (Bayesian Information Coefficient, Schwartz, 1973). This is a standard approach 
to determining fit for mixture IRT Models (Li, Cohen, Kim & Cho, 2009).   

It is a well-known caution that that a statistical result does not necessarily indicate 
a meaningful result. In latent class analysis, for example, researchers have found that 
spurious latent classes may be found (Alexeev, Templin, & Cohen, 2011). In this study, 
the three different solutions detected in the different mixture Rasch model analyses were 
each composed of different test content and thus had different interpretations. Given that 
the mixture Rasch model was of the same family as the Rasch model used to originally 
calibrate the LMT items, that the latent classes detected in this study had a meaningful 
interpretation based on the membership of the different classes and that there were 
differences in performance on the content by members of each class on the different tests, 
it seems reasonable to infer that the latent classes were not spurious. Further, the classes 
we found had a clear meaning based on the membership of the classes and the differential 
responses of each latent class to the questions on the test. The membership of latent 
classes changed when the content of the test changed, which is consistent with the 
assumptions underlying latent class analyses. Finally, the responses offered by the 
members of the latent classes were helpful in determining how to characterize the 
different classes and the differences in performance on each of the test questions were 
useful in helping to characterize latent classes.   

Once latent classes had been identified, we undertook analysis of the latent 
classes by considering those places where item difficulties varied significantly by class as 
well as those places where members of the lower-scoring class found items to be easier 
than those of the higher-scoring class. As shown in Figure 2, item difficulties were 
reported in standard deviation units, with easier items showing lower scores. Analyzing 
these items for trends in the knowledge used helps us better understand what makes the 
knowledge of the members of one class different from that of the other class.  In our 
previous research (Izsák et al., 2010) we found that having item interview data 
substantially enhanced our ability to discriminate between classes.  However, interview 
data were not available for the present study.  
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Figure 2. Plots of item difficulties for Class 1 and Class 2 in our analysis of LMT-
PR. Overall, Class 2 scores are higher, but note there are items Class 1 members found 
easier. 

In our initial analysis of the LMT-PR data from the combined dataset, we noted 
that the higher scoring of these classes seemed to find items focused on using cross-
multiplication and other algorithms to be easier than their counterparts in the lower-
scoring class. However, members of the lower-scoring class found items focused on 
understanding proportions and reasoning about them in a number of ways to be easier 
than those in the higher-scoring class. That is, the members of the higher-scoring class 
did better on items that allowed algorithmic thinking rather than solely focusing on 
reasoning about proportional relationships. These results suggested that the assessment 
itself may privilege teachers who are more facile with algorithms despite the field-wide 
emphasis on the importance of being able to reason about proportions (e.g., Lamon, 
2007; Lobato & Ellis, 2010; NCTM, 2000). This finding raised interesting questions 
about the nature of the LMT-PR and what it might be measuring. This, in turn, led us to 
subsequent analyses focused primarily on 25 participants from whom we have collected 
completed LMT-PR forms, a prompted interview relying on a think-aloud protocol, and a 
face-to-face clinical interview. In the current study, we present our findings of the 
analysis of subsets of items on the LMT based on the performance of these 25 
participants.  

Results 
Our aim in conducting this analysis was to consider the implications of construct 

definition on inferences that can be made about teachers’ knowledge. Specifically, we 
sought to use this case as an illustration of the importance of mapping an assessment to 
the construct of interest. In this results section, we present the findings of our analysis of 
each of the three LMT-PR versions, relying on our analysis of the sample of 25 teachers. 
We follow with a discussion of two key issues: the impact of the definition of the domain 
on the overall ability scores of participants and the need to constrain assessments to 
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robust understandings of the mathematics of interest. In the Conclusions section, we 
highlight approaches that may support better assessment creation. 

Ability Scores 
Consistent with our position outlined at the outset, determining the construct to be 

measured is important for making claims. As shown in Table 2, removing the items that 
did not fit our definition of proportional reasoning led to a significant increase—where 
significance is defined as 0.3 or greater—in the scores of three participants (12%). By 
removing the items that did not measure proportional reasoning and those that were 
determined to be problematic (LMT-PR 54), seven of the 25 participants (28%) had 
significant increases in their ability scores. This changed the nature of our interpretations 
of these teachers’ knowledge. This was particularly important for Bridgette, Kelly, and 
Kathleen who were all within one standard deviation of the mean at the outset, but ended 
well over one standard deviation above the mean. Interestingly, all of the significant 
changes in scores were increases rather than decreases.  

Table 2. Ability scores of the 25 participants on the three versions of LMT-PR. Each 
ability column shows the participants’ abilities along a single continuum. Scores are 
reported as logits. All names are pseudonyms. 

 
Name 

Ability  
LMT-PR 73 

Ability  
LMT-PR 60 

Ability  
LMT-PR 54 

          
1 Autumn 1.03 1.17 1.30 
2 David 0.72 0.58 0.76 
3 Alan 1.88 2.20 2.74 
4 Ella 2.56 2.55 3.01 
5 Mike 2.12 1.90 1.97 
6 Bridgette 0.50 0.68 0.86 
7 Allison 1.03 0.97 1.07 
8 Larissa 2.12 2.20 2.51 
9 Tori 0.87 0.87 0.97 
10 Matt 0.87 0.77 1.07 
11 Greg 2.73 2.75 2.74 
12 Meagan 0.65 0.68 0.86 
13 Brianna 0.15 0.22 0.36 
14 Felicia 1.88 1.76 1.97 
15 Eileen 1.47 1.51 1.55 
16 Kelly 0.50 0.97 1.19 
17 Todd 1.57 1.51 1.68 
18 Kathleen 0.80 0.97 1.30 
19 Patricia 1.67 1.76 1.82 
20 Robyn 1.67 1.63 1.82 
21 Peter -0.84 -0.83 -0.58 
22 Nancy 2.73 2.55 2.74 
23 Diana 2.26 2.20 2.31 
24 Christine -0.34 -0.30 -0.48 
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25 Heather 2.40 2.99 3.34 
 

Table 3. Participants’ abilities for each version of the LMT-PR. The Ability scores 
reported here are for each latent class, but have been scaled to be comparable across 
latent classes.  

 
Name 

Mixture 
Ability 
LMT-
PR 73 

Class 
LMT-
PR 73 

Mixture 
Ability 
LMT-
PR 60 

Class 
LMT-
PR 60 

Mixture 
Ability 
LMT-PR 
54 

Class 
LMT-
PR 54 

                
1 Autumn 1.12 2.00 1.13 1.00 1.26 1.00 
2 David 0.80 2.00 0.61 1.00 0.77 1.00 
3 Alan 1.91 2.00 1.95 1.00 2.60 2.00 
4 Ella 2.53 2.00 2.26 2.00 2.80 2.00 
5 Mike 2.16 2.00 1.72 2.00 1.85 1.00 
6 Bridgette 0.58 2.00 0.70 1.00 0.85 1.00 
7 Allison 1.10 2.00 0.84 2.00 1.05 2.00 
8 Larissa 2.15 2.00 1.96 1.00 2.40 2.00 
9 Tori 0.98 2.00 0.85 1.00 0.96 1.00 
10 Matt 0.96 2.00 0.77 1.00 1.05 1.00 
11 Greg 2.66 2.00 2.38 1.00 2.57 2.00 
12 Meagan 0.78 1.00 0.70 1.00 0.87 1.00 
13 Brianna 0.34 1.00 0.30 1.00 0.43 1.00 
14 Felicia 1.94 2.00 1.62 1.00 1.90 2.00 
15 Eileen 1.54 2.00 1.41 1.00 1.49 1.00 
16 Kelly 0.59 2.00 0.94 1.00 1.16 1.00 
17 Todd 1.62 2.00 1.42 1.00 1.60 1.00 
18 Kathleen 0.88 2.00 0.95 1.00 1.25 1.00 
19 Patricia 1.74 2.00 1.61 1.00 1.75 2.00 
20 Robyn 1.73 2.00 1.49 1.00 1.73 2.00 
21 Peter -0.56 1.00 -0.63 1.00 -0.45 1.00 
22 Nancy 2.65 2.00 2.28 2.00 2.56 2.00 
23 Diana 2.27 2.00 1.95 1.00 2.19 2.00 
24 Christine -0.13 1.00 -0.16 1.00 -0.34 1.00 
25 Heather 2.39 1.00 2.60 2.00 3.02 2.00 

 

Latent Class Combined with Ability Scores 
When we added latent class membership to the analysis, we were able to see that 

these three versions yielded different results (Table 3). In essence, they measured the 
construct differently. First, for each of the three versions, Class 2 was the higher scoring 
class (Table 4). This was true despite the fact that on LMT-PR 60 80% of the participants 
were in Class 1 whereas in LMT-PR 73 80% of the participants were in Class 2. While 
we initially suspected that the computer may have switched labels in the analysis (which 
does happen), our analysis of the responses from the members of these classes suggested 
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that was not the case. In LMT-PR 73, our analysis showed that for the 25 participants, 
membership in Class 1 indicated more facility with ratio tables and combining ratios, 
which includes knowing that it is okay to add ratios to each other. Class 1 teachers also 
found easier those items that asked them to explain why particular relationships did or did 
not work as proportions (e.g., using scale factor, equivalence, division, or additive 
reasoning as rationales). Class 1 teachers found determining particular instances of 
inverse proportion to be easier than Class 2 teachers and they were better at setting up 
proportions for simple word problems (e.g., if two tickets cost $5, how much do 10 
tickets cost). In contrast, Class 2 was better at items that involved algorithms, including 
those using unit rate, scale factors, and cross multiplication. They found complex 
equations to be easier to set-up and verify (e.g., situations in which two people cut grass 
at different rates and one needs to set up an equation to determine how long it will take to 
mow a particular number of lawns) as well as showing more flexibility in acceptable 
proportion set-ups (e.g., lbs/lbs, $/lbs, and $/$ are all acceptable). If the class labels had 
just been flipped, the groupings described for LMT-PR 73 could be reversed for LMT-PR 
60, however, that was not the case. Instead, for LMT-PR 60, Class 1 seemed to be 
identified through items that involved explanations of why a situation is proportional, 
much like Class 1 for LMT-PR 73. In addition, Class 1 for LMT-PR 60 was better able to 
identify numbers that would make problems easier or harder for students, to identify 
situations in which additive reasoning was being improperly used, and to correctly 
interpret a variety of ways to solve proportions without a standard algorithm or equation. 
In contrast, Class 2 found easier those items that asked them to identify situations that 
were related in ways that were not proportional (e.g., linear relationships), those that 
asked them to model complex situations, and those that asked them to use scale factor 
reasoning for within measure space scale factors (e.g., given $3/17 liters = $5/x liters, one 
can divide $5 by $3 to see how many times larger 5 is than 3. Then multiply that result by 
17 to determine x).  

Class 1 and Class 2 meant different things in these analyses despite Class 2 
including 80% of the participants in LMT-PR 73 and Class 1 including 80% in LMT-PR 
60. In short, while it was clear that the class separations were unique to each version, the 
latent classes did not clearly organize the teachers in ways that might help us make 
inferences beyond whether the teacher was likely to be comfortable with algorithms. 

Table 4. Mean logit scale scores for each latent class for each version of LMT-PR 

 LMT-PR 73 LMT-PR 60 LMT-PR 54 

Class 1 mean 0.565 
n=20 

1.096 
n=5 

.909 
n=14 

Class 2 mean 1.595 
n=5 

1.939 
n=20 

2.233 
n=11 

 

More interesting was LMT-PR 54 because more teachers scored significantly 
higher on it and because it seemed to separate the teachers into latent classes in ways that 
might be more useful for measuring our construct given the more balanced distribution of 
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teachers between the classes. Closer examination of LMT-PR 54 class membership 
highlighted more mathematical sensitivity in the separation of classes. Whereas LMT-
PR73 and LMT-PR 60 both had clear separations, one of the clear distinguishing features 
between classes was that one class found using algorithms and algebraic approaches 
(such as modeling equations) to be easier than the other class. In LMT-PR 54, that 
distinction disappeared, which suggested that the privileging of algorithmic reasoning 
might have been mediated in this version of the assessment. Instead, we saw finer-
grained and more conceptually grounded mathematical ideas separating the classes. For 
example, Class 1 found items that relied on scale factors determined by the within 
measure space relationship to be easier, whereas Class 2 found items related to scale 
factors determined between measure space to be easier (e.g., given $3/17 liters = $5/x 
liters, one can divide 17 liters by $3 to determine the constant relationship, then multiply 
5 by that value to answer for x). While both classes found particular items involving the 
combination of ratios to be easy, Class 2 seemed more able to both break down ratios, 
combine ratios, and to make sense of the ratio table representation. Class 2 found items 
that focused on why one cannot use addition to maintain equivalent ratios to be easier 
than Class 1. However, Class 1 was still better able to select explanations for why 
particular relationships did or did not work as proportions (e.g., using scale factor, 
equivalence, division, or additive reasoning as rationales). This was the one set of 
questions that Class1 consistently found easier across all versions. Class 1 in LMT-PR 54 
also found the identification of easier or harder numbers (e.g., which set of numbers 
would make this problem harder for students to solve?) to be easier than Class 2 did. 
Interestingly, in LMT-PR 54, we see that Class 1 participants had an easier time with 
percentages as they related to proportions (for example, a sale price of 40% off is not the 
same as taking an additional 10% off of a 30% off price). This suggests that Class 1 
might be more sensitive to questions grounded in the work of teaching (e.g., making 
pedagogical decisions) versus the work of solving problems. 

In summary, LMT-PR 73 and LMT-PR 60 were more consistent with our initial 
analyses of LMT results. The class membership indicated that the higher scoring class 
was the one that found algorithms easier. It was not until we used the most narrowed 
form—the form that included only the 54 items related to proportional reasoning and 
removed items that seemed potentially problematic—that we were able to see differences 
in how participants reasoned about and with proportions and we were able to start seeing 
some separation tied to pedagogical concerns. This suggests that an assessment more 
focused on the construct of interest may yield more sensitive results. 

Discussion 
In this paper, we used the case of the LMT-PR to highlight the importance of 

aligning the construct of interest to the assessment being used. Our analysis was aided by 
the use of psychometric models that allow us to vary from the unidimensional analysis to 
which traditional IRT scores are constrained. This allowed us to look at the same 
participants’ performance on different versions of the same assessment.  

Our findings indicated that the version of the assessment that was most tailored to 
our definition of the construct yielded clearer information about teachers’ understandings 
of proportional reasoning and the higher overall scores for our participants than the less 
focused versions. Given the emergence of high stakes testing for teacher hiring and 
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evaluation, being able to make clear, strong claims about teacher understanding is critical. 
For over one-quarter of the 25 participants in this study, scores varied significantly 
according to the particular items included in the assessment raising questions about what 
the versions of the assessment tell us about individual teacher knowledge. In contrast, at 
the group level (which is what the LMT is designed to measure) there was less variation 
in means. The group mean for the 25 participants on LMT-PR 73 was 1.39 and LMT-PR 
54 was 1.49. We speculate that some of the limitation in variation is due to the overall 
skewing of our scores. The 25 participants we worked with were mathematically stronger 
than the national sample used to create the scale on which the scores were based.  

In our analysis, we presented evidence that considering the assessment items’ 
alignment to the construct of interest matters to the outcomes of that assessment and the 
inferences that can be made. The claims we can make about the participants changed 
based on the items considered, and the guidance provided by an analysis of a particular 
set of items could lead to potentially different implications for further learning 
opportunities for these participants.  
Importance of Aligning Assessments to the Defined the Construct  

This study demonstrated that aligning an assessment as closely as possible to the 
defined construct can lead to significantly different interpretations of teachers’ 
knowledge than those assessments that are less aligned. Thus, it is important for 
assessments to be as well aligned to the construct as possible. The LMT-PR was created 
with the NCTM standards at its heart (Hill, 2008), however, those standards allowed a 
broad interpretation of the domain of proportional reasoning, which led to item 
development that spanned a variety of topics. This led to both limits in the number of 
items focused on key proportional ideas and the number of items focused on the 
mathematics to which proportions are connected. For example, there are no questions 
linking proportions to slope and only two questions that link proportions to similarity. 
There are also no questions that ask teachers about the definition of a ratio and how that 
definition might be the same as or different from a fraction. This is a limitation in the 
LMT-PR’s alignment to our construct of interest. 

Of course, alignment also relies on robust definitions of the construct to be 
measured. This is problematic in domains like teacher knowledge where the constructs 
are not yet well defined. It is also difficult when using existing assessments that may not 
fit a construct as tightly as necessary. 

Our approach of constraining a pre-existing assessment to key mathematical ideas 
related to the construct yielded more useful information for guiding subsequent 
instruction and/or making claims about participants’ understandings. LMT-PR 54, the 
version most aligned with our conception of the specialized knowledge teachers should 
have of mathematics, yielded information at a finer grain size than the less focused 
versions. In general, it seems that Class 1 found pedagogically focused questions easier 
(such as selecting easier or harder numbers), whereas Class 2 had more facility with 
manipulating equivalent ratios. This information is at a fine-enough grain size to help a 
professional developer plan subsequent instruction.  

Additional work would need to be done to translate the findings of this study into 
a format that would support instructional decision-making for professional development. 
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But, we assert that the analysis presented here suggests there is promise in using latent 
class measures, combined with using focused assessments, to provide results that can 
provide the basis for instructional decision making.   
Limitations 

As with all studies, this one has a number of limitations. Here we present three 
major limitations. First, the national dataset included a number of 4th and 5th grade 
teachers for whom proportional reasoning is not in the content they teach. This may have 
led to very different results for the latent class analysis than if the teachers had all been 
from middle school. Further, our findings are limited by our lack of interview data with 
members of the latent classes. We could make stronger claims and, perhaps, find more 
similarities and differences between the latent classes were we able to hear why the 
teachers selected particular responses. Finally, we were limited in that the definition of 
the construct measured in the LMT is different from our own definition. This study 
sought to find the best fit between our construct definition and that LMT-PR, but that is 
still not as well aligned to our definition as if we had developed an assessment ourselves. 

Conclusion 
Clearly, the development of assessments for measuring teacher knowledge is an 

area in need of much more consideration (Orrill & Cohen, in press). In the domain of 
proportional reasoning, for example, additional work is needed to define the specific 
construct of interest: the knowledge teachers should reasonably be expected to know.  

Test developers and users could ensure alignment between their construct of 
interest and the assessment using one of many available techniques that rely on mapping 
the assessment to the domain of interest.  For example, the construct of proportional 
reasoning as we defined it and the assessment used may have been achieved through 
reliance on systematic identification of the subconstructs of interest and intentional 
spread of items across the subconstructs (e.g., Izsák et al., 2010).  

Another approach to mapping the domain would be through the use of a Q-matrix, 
which provides a confirmatory approach to measuring a domain. Q-matrices, critical for 
cognitive diagnostic models (e.g., Izsák & Templin, in press), require the research team 
to identify the subconstructs to be measured and indicate which of those subconstructs 
each item addresses. This allows tracking of all of the subconstructs intended to be 
measured, thus ensuring not only that the relevant subconstructs are being measured but 
also that they are being paired in multiple ways so that one idea does not obstruct the 
other. For example, if we are interested in the use of representations and the teachers’ 
understandings of combining ratios, we would not want all of the combining ratios tasks 
to include ratio tables because that representation may be unfamiliar to teachers, thus 
masking the participants’ actual knowledge of combining ratios. 

In the end, careful consideration of the alignment of the assessment to the 
construct is important for making claims of validity. Given the widespread move toward 
using assessments of teacher knowledge for high stakes decision-making, this becomes 
even more important. The study presented here shows that the same teachers have the 
perception of more knowledge or less simply based on the items included in the analysis.  
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