
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

Undergraduate Theses and Professional Papers 

2015 

Developing Microbial Biomarkers to Non-invasively Assess Health Developing Microbial Biomarkers to Non-invasively Assess Health 

in Wild Elk (Cervus canadensis) Populations in Wild Elk (Cervus canadensis) Populations 

Samuel B. Pannoni 
University of Montana - Missoula, sam.pannoni@umontana.edu 

Follow this and additional works at: https://scholarworks.umt.edu/utpp 

 Part of the Bioinformatics Commons, Environmental Microbiology and Microbial Ecology Commons, 

Genetics Commons, Genomics Commons, Molecular Biology Commons, Molecular Genetics Commons, 

Other Animal Sciences Commons, Other Genetics and Genomics Commons, and the Other Nutrition 

Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Pannoni, Samuel B., "Developing Microbial Biomarkers to Non-invasively Assess Health in Wild Elk 
(Cervus canadensis) Populations" (2015). Undergraduate Theses and Professional Papers. 66. 
https://scholarworks.umt.edu/utpp/66 

This Thesis is brought to you for free and open access by ScholarWorks at University of Montana. It has been 
accepted for inclusion in Undergraduate Theses and Professional Papers by an authorized administrator of 
ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Montana

https://core.ac.uk/display/267567377?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umt.edu/
https://scholarworks.umt.edu/utpp
https://scholarworks.umt.edu/utpp?utm_source=scholarworks.umt.edu%2Futpp%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=scholarworks.umt.edu%2Futpp%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/50?utm_source=scholarworks.umt.edu%2Futpp%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/29?utm_source=scholarworks.umt.edu%2Futpp%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/30?utm_source=scholarworks.umt.edu%2Futpp%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/5?utm_source=scholarworks.umt.edu%2Futpp%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/31?utm_source=scholarworks.umt.edu%2Futpp%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/82?utm_source=scholarworks.umt.edu%2Futpp%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/32?utm_source=scholarworks.umt.edu%2Futpp%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/101?utm_source=scholarworks.umt.edu%2Futpp%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/101?utm_source=scholarworks.umt.edu%2Futpp%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/utpp/66?utm_source=scholarworks.umt.edu%2Futpp%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


Developing	
  Microbial	
  Biomarkers	
  to	
  Non-­‐invasively	
  Assess	
  	
  

Health	
  in	
  Wild	
  Elk	
  (Cervus	
  canadensis)	
  Populations	
  

	
  

By	
  

SAMUEL	
  B.	
  PANNONI	
  

	
  

Undergraduate	
  Thesis	
  

Presented	
  in	
  partial	
  fulfillment	
  of	
  the	
  requirements	
  
for	
  the	
  degree	
  of	
  	
  

	
  
Bachelor	
  of	
  Science	
  
in	
  Wildlife	
  Biology	
  

	
  
The	
  University	
  of	
  Montana	
  

Missoula,	
  MT	
  
	
  

May	
  2015	
  
	
  

Approved	
  by:	
  
	
  

Professor	
  Mark	
  Hebblewhite	
  
College	
  of	
  Forestry	
  and	
  Conservation	
  

	
  
Professor	
  William	
  E.	
  Holben	
  
Division	
  of	
  Biological	
  Sciences	
  

	
  
Professor	
  Jeffrey	
  M.	
  Good	
  

Division	
  of	
  Biological	
  Sciences	
  
	
  
	
  
	
  

	
   	
  



	
   	
   Pannoni	
  

2	
  

	
  
ABSTRACT	
  
	
  
Pannoni,	
  Samuel	
  B.,	
  B.A.,	
  May	
  2015	
   	
   	
  
	
   Wildlife	
  Biology	
  
	
  
Developing	
  Microbial	
  Biomarkers	
  to	
  Non-­‐invasively	
  Assess	
  	
  
Health	
  in	
  Wild	
  Elk	
  (Cervus	
  elephus)	
  Populations	
  
	
  
Faculty	
  Mentor:	
  	
  Mark	
  Hebblewhite	
  
	
  
Second	
  Faculty	
  Reader:	
  	
  William	
  Holben	
  
	
  
Third	
  Faculty	
  Reader:	
  Jeffery	
  Good	
  
	
  
The composition of the intestinal bacterial community (intestinal microbiome) of 
mammals is associated with changes in diet, stress, disease and physical condition of the 
animal. The relationship between health and the microbiome has been extensively 
demonstrated in studies of humans and mice; this provides strong support for its potential 
utility in wildlife. When managing elk (Cervus canadensis), federal and state agencies 
currently must rely on invasive sampling and coarse demographic data on which to base 
their decisions. By developing microbiome-based biomarkers that vary as a function of 
elk body condition and disease (i.e. microbial biomarkers), we hope to provide managers 
with the ability to monitor direct impacts from environmental stressors on individual 
animals and the herd. This approach, once established, represents a low cost, non-
invasive sampling method based simply on fecal pellet collection in the field and 
intestinal microbiome analysis in the lab. Montana Fish, Wildlife and Parks collected the 
scat and linked body condition metrics from four GPS collared populations in Montana in 
winter 2014, using helicopter teams and invasive sampling methods. We analyzed 111 
individual wild elk fecal microbiomes using Illumina MiSeq sequencing of partial 16S-
rRNA gene amplicons. Using the QIIME pipeline and a floating search feature selection 
algorithm (SFFS) with linear discriminate analysis (LDA) and leave-one-out cross 
validation (CV) we were able to elucidate informative patterns in bacterial taxa presence 
and abundance by comparing them to various measured body conditions and geographic 
locations of elk sampled. Microbial biomarkers provide potential for managers to 
routinely obtain fine scale non-invasive health metrics from scat samples obtained in the 
field for species of concern. 
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INTRODUCTION 

Western landscapes are home to charismatic game species that are managed under 

sustainable yield mandates to provide for their public use and enjoyment [4]. When 

managing game animals (or threatened and endangered species for that matter), federal 

and state agencies currently must rely on invasive sampling for reliable health data [5]. 

Managers and biologists often use diverse data sampling methods paired with population 

models to inform wildlife management actions across large habitat ranges in order to 

ensure this maximum sustainable yield. These population models traditionally 

incorporate recruitment, survival, emigration, and immigration estimates for multiple age 

classes. More recent models have been evolving in complexity to include environmental 

variations and the stochasticity affecting these parameters, and have therefore become 

more accurate [6]. However, our limited understanding and ability to measure how local 

environmental effects influence individual animals (e.g. their survival and reproduction) 

has caused this source of uncertainty to remain largely undefined in wildlife population 

modeling, leading to poor predictive power, even when using well informed models. 

 We have begun to develop a new, non-invasive data source that captures feedback 

from environmental-host condition, called the fecal microbiome. This has value in itself 

for informing relative health of populations and proximate health of environments. 

Although not specifically tested here, this data source could characterize and reduce the 

uncertainty around stress sources we currently conclude to be random or stochastic, 

which plagues current population modeling approaches. This “truthing” could be 

accomplished by directly monitoring individual animal health, including disease 

presence/absence and effects, and body condition, based on microbial biomarkers within 

fecal pellets across wide geographic areas. This parameter can then be more generally 

integrated into better estimates of survival and recruitment parameters that are 

ubiquitously found in population models. As the relationships between environmental-

animal-microbiome feedbacks are established, the microbiome could function as a proxy 

for assessing species-specific environmental needs and monitoring goal-oriented habitat 

improvements. Further understanding the connection between environment and animal 

health, and predicting its effects using microbiome data can help resolve some of the 
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general shortcomings inherent in current population modeling and provide more 

information to wildlife managers. 

 The composition of the intestinal microbiome of mammals is associated with 

changes in diet, stress, disease and physical condition of the animal [1].  These 

characteristics make microbiomes ideal for generally informing animal condition. As 

such, the relationship between host health and the microbiome has been extensively 

demonstrated in studies of humans and mice [2, 3]. This prior wealth of research provides 

strong support for applying these microbiome characteristics as a monitoring tool for 

wildlife management. 

 One recent exploration into elk (C. canadensis) rumen bacterial communities 

provided support for a “core microbiome” shared by elk [7], but this research did not 

focus on useful patterns of variation in bacterial taxa at scales of taxonomic resolution 

finer than phylum-level. We utilize the potential of Genera level resolution to inform 

correlates of environmental stress acting on the host animal. Our development of 16S 

small subunit rRNA gene-based (hereafter 16S-based) microbial biomarkers in elk shows 

promise for using an individual’s microbiome composition to distinguish between and 

predict states of health as it does in humans and mice. 

 

HYPOTHESES 

H1 - Consistent Health Utility Hypothesis: Microbiome composition can be used to 

accurately predict and cluster between different states of elk health (e.g. as described by 

measured body-fat) in all individuals regardless of source population. 

 - If aspects of elk fecal microbiomes are associated with individual body condition 

at high taxonomic resolution, then consistent presence and abundance (or for that matter 

absence) of specific bacterial taxa in fecal pellets will reliably predict states of body-fat 

in individuals regardless of location or population (presence of a strong overriding 

signal for the health biomarker). 

 

H2 – Population-Specific Health Utility Hypothesis: Aspects of elk intestinal 

microbiome diversity that predict health (and other metrics) will be driven by population-

specific factors (strong local effect for the health biomarker). 
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 - If elk biomarkers are driven by population-specific genetic factors, then 

biomarker signals of health will be strongest for individual populations and when 

different populations are combined and features are selected, the signal strength will 

suffer (as measured by CV accuracy and LDA). 

 

H3 – Microbiome Biogeography Hypothesis: Aspects of the elk intestinal microbiome 

will be predictive of an individual’s location, indicating biogeographic influence. 

 - If aspects of elk microbiome composition are driven by local factors such as 

food type, quality and availability, which will be manifested at the level of location (i.e. 

host biogeography), the microbiome will be more homogenous within social groups and 

less homogenous between spatially isolated groups (causing clear LDA clustering and 

high CV accuracy). 

 

METHODS 

Durable Equipment 

This project was supported by existing laboratory infrastructure of the Holben Lab in the 

Health Sciences Building at the University of Montana including all of the durable 

equipment needed for preparing samples for sequencing.  

 

Sample Collection:  

For our study, we received fecal pellet samples from wild Montana elk of known physical 

condition. Collection of scat samples, body condition metrics and GIS collaring of elk 

were conducted in February 2014 by an ongoing collaboration developed with Dr. Kelly 

Proffitt and Montana Fish, Wildlife and Parks (MTFWP). This sampling event used 

currently available and accepted invasive methods for wildlife immobilization, 

measurements of digesta-free body fat, sex classification, age, and thyroid screening [5]. 

Linked invasive health metrics and non-invasive fecal pellet collection (collected outside 

the body following expulsion by the animal) were gathered from individual elk from four 

populations across Montana including the Bitterroot Mountains, Sapphire Mountains, 

hunting district 311(Black’s Ford) and the Tobacco Root Mountains. A small subset of 
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these data (including data from all male individuals), contained incomplete additional 

metadata and therefore were only used in a subset of microbial-host comparisons. 

 

Sample Preparation and Sequencing 

We obtained next generation sequencing (NGS) data from 16S rRNA gene amplicons 

focusing on the V4 & V5 variable regions in the rRNA gene using a generally conserved 

16/18S-specific barcoded primer set and PCR to classify the taxa present in fecal 

samples. The barcoded primer sequences used were 536F for forward and 907R for 

reverse priming [8]. Once amplified, the samples were gel purified using the QIAGEN 

Gel Purification kit (QIAGEN, Germantown, MD) following the manufacturer’s 

recommended protocol for downstream direct sequencing. This gel purification step 

separates any 18S eukaryotic DNA amplicons or potential PCR artifacts produced by the 

generality of the PCR primer set, isolating and purifying the desired 16S bacterial 

amplicons for sequencing. Illumina MiSeq 300 bp paired-end sequencing of 16S 

amplicon libraries was conducted on all sampled individuals from the 4 populations (111 

elk). 

 

Sequence analysis: 

The MiSeq sequence reads were filtered for quality and combined using Fastq-join with a 

minimum overlap of 6 bp [9]. Average pairwise alignments exceeded 80 bp for all 

forward and reverse combined reads making this minimum redundant. The QIIME 

pipeline, which combines many bioinformatics tools into a single package, was used to 

produce a table of OTUs to the genus level for downstream analysis [10]. Within the 

QIIME pipeline, Uclust [11] was selected for its open-reference OTU picking process 

where reads are clustered against a reference 16S sequence collection (in this case the 

Greengenes database) [12], and any reads which do not hit the reference sequence 

collection will be subsequently clustered de novo. This sequence classification process 

also uses UCHIME to detect chimeric 16S sequences (which were discarded) before 

proceeding [13]. An OTU matrix was produced at this step containing counts 

corresponding to the number of times each OTU was present in each sample. QIIME 

produces an OTU table in the form of a biological observation matrix file (BIOM), which 
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is an attempt to provide file format consistency across the comparative “omics” realm, 

and was adopted here to support compatibility with future projects [14]. After the BIOM 

file was produced, the RDP II Ribosomal Database Project [15] was used to assign 

taxonomy to the OTU table at the genus level [16]. A new genus-level OTU table was 

produced at this stage including the RDP II taxonomy values (Sab scores). To obtain β-

diversity plots, a multiple sequence alignment was made using Pynast [17] and a 

phylogenetic tree built using FastTree2 [18]. With these files, MacQIIME [19] was 

utilized to produce α-diversity plots based on the Chao-1 metric [20] as well as principle 

coordinate analysis (PCoA) plots of beta-diversity using Emperor [21] from the updated 

taxonomy table. 

 

Feature Selection and Cross Validation: 

Metagenomic and 16S studies produce large amounts of data because of the need to 

sample microbial communities as deeply and completely as possible, but not all taxa have 

predictive power during statistical analysis for determining health or disease states of the 

host. We used a form of the Sequential Forward Floating Search algorithm (SFFS) to 

select for informative genera from the elk microbiome [22]. This algorithm selects a 

subset of genera from the total pool of those present using a heuristic or sub-optimal 

method that maintains (or minimally reduces) the performance of the complete data set. 

The complete data matrix would have been intractable to analyze and contains “noisy” 

genera that obscured the biological patterns present. SFFS avoids nesting issues where 

taxa or features are falsely fixed early in the selection process (an issue with other feature 

selection methods which results in reduced performance [23]). By allowing all features 

(genera) to be added or subtracted as the algorithm progresses (essentially “floating” the 

selections) features are allowed to interact to produce dynamic and unbiased performance 

results not dependent on starting conditions. The SFFS algorithm employed herein uses 

J3 scores, a form of scatter matrices that rewards close clustering within groups and 

rewards increased distance between groups of data points using Euclidean distances in 

multidimensional space.  SFFS was developed in collaboration with colleagues in the 

Computer Science Department at UM (Spaulding, et al., manuscript in preparation [24]). 

Using the SFFS algorithm, we selected a feature number that provided the optimal 
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performance in the model while avoiding potential over-fitting by comparing the cross 

validation (CV) performance differences between multiple numbers of features [24, 26]. 

We visualized this relationship with box plots and linear discriminant analysis (LDA)[25] 

(Figure 1) to choose the optimal number of features (genera) for the visualizations 

presented later in this work.  

The LDA was performed with CV, which uses a leave-one-out method of training 

and testing to reduce over-fitting the model to the training data set as part of the SFFS 

[23, 25]. This method removes a sample from the training data, builds the model with 

remaining samples then tries to predict the classification of the removed sample. This 

leave-one-out method is iterated over all samples or “folds”. A performance percentage is 

then calculated from the CV by summing the number of CV events (usually equal to the 

number of samples) in the denominator and summing the successful classification events 

in the numerator (e.g. 25/26 = 96.15% such that # of successful/total # of cross validation 

attempts = percent correct). The intent is that training the model in this way will allow it 

to function on future data sets of similar character with very little optimization necessary, 

potentially producing an optimized model for determining these states blindly from non- 

invasive scat samples without the current accompanying metadata necessary for this work 

to develop and validate the approach. 

 

 



	
   	
   Pannoni	
  

9	
  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Box plots of cross validation (CV) accuracies (y-axis) with standard error whiskers from 4 types 
of CV approaches, selecting between 5 and 30 dimensions (x-axis) using female elk microbiome data 
combined from 3 populations in Montana stratified by body-fat. The green line indicates inside CV 
performance approach; the yellow line is inside CV performance for a reduced OTU matrix; the blue line is 
feature selection (SFFS) conducted outside of CV; and the red line is the performance for the LDA plots 
(one of which is presented later). This plot helps determine the optimal number of features to balance 
accuracy and reduce over-fitting of the algorithm, which in this case is 21 dimensions. This figure was 
produced in R using the FSSF package (Spaulding et al., personal communication).	
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RESULTS & DISCUSSION 

 

Hypothesis 1: Consistent Health Utility 

 
 

 A clear pattern in microbiome compositional differences as a function of body fat 

content was observed for individual elk across populations as indicated by the low level 

of overlap between groupings (Figure 2). This supports the Consistent Health Utility 

Hypothesis and shows that comparative microbiome compositional analysis represents a 

useful noninvasive monitoring tool that informs individual animal health status. This was 

supported by leave-one-out CV. The moderate CV accuracy (55.56% reported, where 

20% would be random), supports that our model is useful, but also suggests that our CV 

method may be suboptimal for the continuous (as opposed to discrete) structure of the 

body-fat data. Unlike biogeography data, which can accurately be represented as discrete 

variables, the gradient of microbiome characteristics that describe body-fat overlap near 

the imposed categorical cut-off points in the LDA. The leave-one-out CV approach 

attempts to fit and test this gradient against discrete body-fat categories, which leads to 

the appearance of reduced model accuracy because body fat content is a continuous 

Figure 2. LDA ordination plot of elk 
microbiome samples from Sapphire (open 
circles); Black’s Ford (squares); and 
Tobacco Root (triangles) populations as a 
function of body-fat. Colored circles 
represent elk of different body-fat 
percentage categories as indicated. Ellipses 
depict 1 standard deviation in the data and 
black circles are the centroid of each 
cluster. LDA was cross validated with the 
leave-one-out method producing 55.56% 
model accuracy. Reduced OTU data 
performed best at 21 dimensions when 
clustering between elk body conditions. 
Bitterroot population omitted from feature 
selection due to lack of body-fat data. 
Figure produced in R using the FSSF 
package (in development). 
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variable. We expect an improvement in CV performance of the health-biomarker method 

once it is appropriately refined to validate continuous variables. 

 

Hypothesis 2: Population Specific Health Utility 

 
 

 

 

 

 

 

 

Sapp.	
  +	
  Black’s	
  Ford	
  (15	
  genera)	
  Black’s	
  Ford	
  (6	
  genera)	
  

Tobacco	
  Root	
  (11	
  genera)	
   Sapphire	
  (14	
  genera)	
  

Figure 3. LDA ordination plots of female elk microbiomes clustered by body-fat from 3 separate 
populations in Montana, Black’s Ford (upper left); Tobacco Root (lower left); Sapphire (lower 
right); and a plot of Sapphire and Black’s Ford populations combined (upper right). Colored circles 
represent different body-fat measurements as indicated; colored ellipses depict 1 standard deviation 
in the data; and black circles are the centroid of each cluster. Black arrowed lines indicate increasing 
progression of body fat content. Produced using view cross-validation (CV) with leave-one-out 
method resulting in 59.09% accuracy for Black’s Ford, 23.53% accuracy for Tobacco Root, 43.75% 
accuracy for Sapphire and 56.36% model accuracy for combined Sapphire and Black’s Ford. Figure 
produced in R using the FSSF package (Spaulding et al. in development). Reduced OTU data 
performed best at 6, 11, 14 and 15 dimensions when clustering between elk body conditions for the 
4 plots. Figure produced in R using the FSSF package (in development).	
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 Using single elk populations to identify microbiome genera (bacteria) that 

correlate fecal microbiome composition with animal body-fat percentage yielded LDA 

results that seemed to be driven by the amount of data available to make such 

correlations. Data sets with strong representation in all body-fat groups clustered well 

using this feature selection followed by LDA approach. By contrast, data sets 

impoverished by low numbers of individuals performed poorly in CV and LDA. When 

the two populations that performed best (Black’s Ford, CV 59.09% and Sapphire, CV 

43.75%) were combined (Figure 3, upper right plot), the accuracy seemed to approach an 

average (CV 56.36%), with Sapphire increasing from 43.75% individually to the 

combined score of 56.36% and Black’s Ford individual score decreasing in accuracy 

from 59.09%. This could indicate a balancing effect from strong population specific 

drivers within Black’s Ford interacting with weaker Sapphire biomarkers. Or more 

simply, this could indicate a need for more evenly represented body-fat groups in our 

data sparse populations when building the algorithm. Further analysis and larger sample 

sizes will be needed to test this possibility. Although these populations performed 

variably we are excited to test this method with more data as its potential to distinguish 

population specific markers is still worthy of development. The population specific 

biomarker results suggest that larger future cohort data with more evenly represented data 

categories will be more useful in building the predictive algorithms, an important step 

before our approach can be expanded to classify individuals in populations with 

unbalanced data categories.  
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Hypothesis 3: Microbiome Biogeography 

 

 

 

Figure 5. Box plots of cross validation (CV) accuracies (y-axis) with standard error whiskers from 4 types of CV 
approaches, selecting between 5 and 30 dimensions (x-axis) using female elk microbiome data combined from 4 
populations in Montana to correlate with geographical origin. The green line indicates inside CV performance 
approach; the yellow line is inside CV performance for a reduced OTU matrix; the blue line is feature selection 
(SFFS) conducted outside of CV; and the red line is the performance for the LDA plots. This multiple plot helps 
determine the optimal number of features to balance accuracy and reduce over-fitting of the algorithm (the 20 
feature LDA model was selected from the report above). Figure produced in R using the SFFS package (Spaulding 
et al. in development).	
  

Figure 4. LDA ordination plot of female elk 
microbiome samples from 4 populations in 
Montana as a function of geographic location. 
Colored circles represent different populations as 
indicated; colored ellipses depict 1 standard 
deviation of the data in each cluster; and black 
circles are the centroid of each cluster. This 
visualization was produced using cross-validation 
(CV) with leave-one-out method producing 
82.73% model accuracy. 20 features were 
selected. Figure produced in R using the SFFS 
package (Spaulding et al. in development). 
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 The bacterial genera selected in the biogeographical analysis show strong support 

for a population-specific microbiome based on geographical location, as suggested by the 

location-based clustering analysis in the LDA and high CV accuracy (Figure 4). This 

result is congruent with patterns of biogeographically mediated microbiomes seen in a 

prior study of the wild European house mouse and has implications for future biomarker 

use [27]. The strength of the relationship between biogeography and the microbiome is 

also supported by the box and whisker plots (Figure 5), since accuracy values remain 

high across all dimensions suggesting that all or most predictive genera selected vary 

according to geographic location.  

 How the strong effect of physical location interacts with more variable and 

transient dynamics like health needs further testing. We believe the microbiome is 

complex enough to contain microbes that respond in complex ways to correlates both 

strong and weak allowing us to separate through feature selection those genera of 

importance.  

 

CONCLUSION/ SIGNIFICANCE 

Elk intestinal microbiome composition analysis has been shown to represent microbial 

biomarkers for health and biogeography. If this general approach can be further 

developed and extrapolated across populations and landscapes with high precision, it will 

provide a powerful tool to non-invasively monitor disturbance on the landscape (both 

observable and cryptic) via observable effects on the health of indicator animal 

populations. This would allow managers to use this technique as an early warning system 

for demographic responses to environmental pressures in elk. With this approach, we will 

begin to fill important gaps in our knowledge of elk ecology by providing difficult to 

measure impacts of environment and disease acting on individuals along with general 

insight into microbial populations within ungulates. In the future, integrating the use of 

population genetics and microbial biomarkers from the same sample source can produce 

a holistic management solution for current and long-term trends while maintaining a low 

sampling effort and minimal animal handling. 

 The overarching goal of this research is to establish this approach for identifying 

microbial biomarkers within the fecal microbiome and the bioinformatics techniques used 
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for their analysis and more broadly apply it to the management and conservation of other 

wildlife species (including non-mammals) which will allow federally designated 

threatened and endangered species to be studied with no perturbation. Microbial 

biomarkers represent a cheaper, less invasive alternative for acquiring information on 

wildlife populations. This research provides the foundation for expanded microbiome 

biomarker research and development across a diverse range of wildlife species for deep 

monitoring and conservation, potentially providing insights and novel solutions to current 

wildlife management issues. 
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