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Dividing a pizza into equal parts  –  an easy job? 
 

Hans Humenberger
1
 

University of Vienna, Austria 

 

Abstract Theoretically seen dividing a pizza equally is not an easy task. For instance, with a 

normal knife (straight cuts) one has to hit the center so that the cut is a diameter. But there are 

alternatives (also for dividing equally between more than two persons) which have strong connections to 

elementary geometry and to integral calculus. This paper deals with these alternatives elucidating the so 

called “pizza theorem”.  

 

Strictly speaking dividing a pizza into equal parts is not as easy as it may seem at first glance. 

Even if it is to be shared only between two people and the pizza is circularly shaped. After all, one has to 

hit the center so that the cutting line is the precise diameter. Cutting the pizza into roughly equal pieces 

will not be a problem at all in real life. There will normally be no conflict over who gets which piece. 

But what if the pieces are to be completely exact? Of course, such considerations are more theoretical 

than practical in nature, but they may provide useful mathematical and didactical input for teaching 

mathematics at different levels. In fact, in mathematics important questions are not always practical, but 

in some cases only theoretical. 

 

1   The phenomenon of equally dividing a pizza (“pizza theorem”) 
 

There is a possibility using a pizza knife consisting of 

four straight blades with “center” P (P divides every blade into 

two parts, adjacent blades always have an angle of 45°)  to carry 

out in reality a division of a pizza that is also theoretically 

exact. One can imagine this knife as a special cutter (the center 

P is put anywhere on the pizza) pressed with power onto the 

circular pizza so that afterwards there will be eight pieces (Fig. 

1). The shape of these pieces is very similar to sectors of a 

circle but they are not really ones (except in the case that P hits 

the center of the circle), however we will call them “sectors” for 

simplicity reasons.  

If the first person takes every second “sector” (e. g. the 

white ones in Fig. 1) and the second person the remaining ones 

(grey in the figure) then the pizza has been equally divided! A 

realization of the division process with a real pizza and a 

specially prepared “pizza knife” (cutter) can be seen in Fig. 2. 

                                                 
1 hans.humenberbger@univie.ac.at 

Fig.  1: Cutter on a pizza – schematically  
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This is probably surprising and does not fit in some sense to the symmetry conditions of the 

circle, hardly anybody would guess this intuitively. On the contrary, formulated as a question most 

people would negate that this procedure leads to a really equal (also theoretically) division. Nowadays 

with DGS (“Dynamic Geometry Software”) one can see the corresponding phenomena: Every DGS can 

measure areas and add up these measures (the areas are not real sectors but they can be separated in 

triangles and circular segments and these types of areas can easily be measured). One could produce a 

corresponding applet that works in that way (when moving P the area sums of the grey and white 

“sectors” respectively remain unchanged). Using hands on methods one can see this by cutting a circular 

piece of carton in the described way and weighing all the white and grey pieces at a time.  

 

Remark: Kroll/Jäger 2010 propose to formulate this problem for teaching purposes as a story of 

distribution of an estate. I don’t think that this is a good idea because this formulation leads away from 

the mathematical problem and sounds rather artificially (treetops as circles etc.). On page 101 one can 

read (translated): “Nobody should be bothered by the fact that the problem is not realistic; students are 

not either.” Even if this should be correct (I really doubt that!) I consider this as quite problematic, 

formulations like this can easily lead to wrong and in some way “dangerous” beliefs about applied 

mathematics.  

The problem of finding corresponding proofs – meant as a problem to be solved individually by 

students at school – is surely too difficult. But nevertheless this phenomenon has something fascinating 

and motivating to deal with it more intensively. What could a concrete teaching unit look like in which 

this phenomenon is dealt with? In which grade could this be done? Below we give answers to these 

questions. 

Firstly we give mathematical analyses of our topic in two ways, on the one hand using 

elementary geometry and calculus on the other. Hereby we also deal with some references. 

 

  

Fig.  2a: Cutter on a pizza – in reality Fig. 2b: Pizza after division  
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2   Elementary geometry 
 

2.1 Presentations following S. Wagon and others 

 

The following reference is somehow striking (at 

least if one is not familiar with this phenomenon). In the 

very short article of Carter/Wagon 1994 (1/2 page!) one 

can see a “proof without words”, just a picture (Fig. 3), 

no explanations. 

This picture shows (autonomously one would 

hardly come to similar results) that there seems to be not 

only equality of area sums but also that the grey and 

white areas can be dissected into pairwise congruent 

figures (equidecomposability). That means using the 

same “puzzle pieces” one can build up the white and the 

grey area. This is even more surprising than the mere equality of the area sums. The above mentioned 

word “striking” refers to two aspects: (1) The equidecomposability, in other words the possibility of 

puzzle pieces. (2) Is the corresponding proof really so easy that it is not necessary to use a single word of 

explanation?  

Using corresponding letters (capital letters and small ones) for the areas Carter/Wagon indicate 

that the corresponding areas are congruent. But interpreting the picture itself (ideas behind, thoughts, 

reasoning, etc.) is not so easy. How can we find words? What happens in Fig. 3? How does the 

dissection emerge, how is the figure built up (construction)? Which lines are presumed to be parallel or 

equally long? Which angles are presumed? In the end: why are areas with corresponding letters 

congruent? The congruencies , , ,A a B b C c D d≅ ≅ ≅ ≅  are easy to explain: In these cases probably a 

reflection took place on the horizontal and vertical diameter (not drawn in the figure); g is the reflection 

of G (with the common border as the axis of symmetry). But why do the other congruencies hold 

( , , )E e F f H h≅ ≅ ≅ ? Relations that need not to be communicated in a mathematics journal (“proof 

without words”) are from another point of view not self-evident. There is still a wide range of possible 

interpretations, how can the structure of reasoning for the congruencies be built up? The picture itself 

does not say how the authors thought, how the figure arose in their mind. Before I got to know other 

figures concerning our topic (see below) I gave this problem to student teachers in a geometry course: 

analyzing the above “proof without words”. Some of the students came to important (partial) results but 

nobody could give a really correct and consistent analysis. 

Such an analysis can be given in several ways (focusing either on the idea of congruence or on 

geometric transformations) but it is not easy for student teachers to establish detailed and precise 

reasoning. Viewers of Fig. 3 mostly don’t see arguments for the congruencies , ,E e F f H h≅ ≅ ≅  at a 

glance, so the title “proof without words” may seem to be not so appropriate (even for mathematics 

students at university). 

A very similar version of the above Carter/Wagon dissection is given in 

Kohnhauser/Velleman/Wagon 1996, p. 118 (Fig. 4), the pieces h and H are half as big as in Fig. 3. But 

the crucial difference to Fig. 3 is given by the fact that in Fig. 4 there is a highly symmetric octagon 

PQRSTUV indicated which is very helpful for establishing a possible proof. The “genesis” of this 

octagon can be thought like this: The rectangle PSTW (its center is the center M of the circle) is rotated 

Fig.   3: Dissection following Carter and Wagon 1994 
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by 90° (center M) and the rotated points Q, R, U, V 

must lie on the “45° lines” through P and W (why?). 

The octagon PQRSTUVW is mapped onto itself under 

the 90° rotation with center M, and this can be a crucial 

hint when looking for some reasons for the mentioned 

congruencies. In my opinion it is more justified to call 

Fig. 4 a “proof without words” than Fig. 3 (here the 

octagon is missing and therefore viewers have no hint 

concerning the important 90° rotational symmetry).  

The congruencies , , , ,A a B b C c D d≅ ≅ ≅ ≅

G g≅  can be explained in a similar way as above 

(reflections). For the other congruencies one could 

argue using the highly symmetric octagon as follows: 

Because of the octagon symmetry (e. g. the sloped 

diagonals are of course “45° lines”) we can reason for 

H h≅  (isosceles and rectangular triangles with the shorter octagon side as hypotenuse; in Fig. 3 the 

congruence H h≅  is also apparent but how should one prove it?) The congruence F f≅  could be 

proved like this: When rotating the octagon and f by 90− °  (rotation center M) the octagon maps onto 

itself and f maps onto F (why?), and therefore f and F are congruent (analogous: E e≅ ). Due to the 

octagon one probably sees more easily (and can give reasons for it) that f F�  and e E�  under the 

mentioned rotation. Using Fig. 4 I have no experiences up to now how successful mathematics students 

are in explaining this “proof without words” but I suppose the success rate is higher than using Fig. 3. 

 
2.2 Presentations following P. Gallin 

 

In Gallin 2011, p. 12 one can find a striking 

and very simple proof in which very many parts are 

needed and therefore this proof may seem a bit 

confusing at first glance. But one should not be 

“scared” by the huge number of pieces although it 

may take a while to fully understand the simplicity 

and brilliancy of the ideas behind. The corresponding 

figure (Fig. 5) could really be a “proof without 

words” even from the perspective of students, e.g. 

with the following text: P and the four “blades” are 

reflected on the point M, on the two coordinate axes, 

and on the angle bisectors of the coordinate system 

so that the reflected points yield an octagon (drawn 

thickly
2
). Now the outer and the inner part of this 

octagon may be considered separately and the 

equality of the area sums of the colored and white pieces respectively can be seen almost directly (even 

the dissection into pairwise congruent pieces). 

                                                 
2 Due to these reflections a very high degree of symmetry is established – this we have neither in the initial 
situation nor in Fig. 3 and 4. 

Fig.   4: Dissection – including an octagon 

Fig.  5: Dissection following P. Gallin 
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“Solution”: Outer parts: Due to symmetry reasons (these need not be explained further in this 

situation) one finds congruent pieces in the colored and in the white area: In each area 2 pieces a and e; 

4 pieces b, c, d, and g; 6 pieces f and x. Hence outside of the octagon the area equality is clear. Inner 

parts: The hatched trapezoid belongs to the white area and is congruent to the adjacent colored one and 

also the other parts within the octagon are easily recognized as consisting of congruent pieces (one mall 

trapezoid and four small triangles).  

The octagon of Fig. 5 is in particular the same as in Fig. 4. The ingenious idea of P. Gallin is to 

do the reflections not only with P but also with the four blades of the cutter. This leads to a highly 

symmetric configuration in a situation that is in its origin (Fig. 1) not symmetric at all, Gallin has 

reached the highest possible level of symmetry by his method. The prize for that is a huge number of 

lines and area pieces but one can interpret the resulting figure in an easy way due to its symmetry. The 

congruencies of all the area pieces a (or b etc.) become completely evident, further reasoning for them is 

not needed. This feeling one does not have looking on Fig. 3 (and still in a weaker form with Fig. 4).  

In the paper of P. Gallin (2011, p. 14f) there is also another proof (with elementary geometry) for 

the phenomenon of the equal area sums.  

By the way, not only the area is divided equally also the boundary of the pizza, nobody needs to 

eat more of the perhaps pretty dry boundary which is often not so in favor because it tastes sometimes 

like ordinary bread. Also for this phenomenon (pizza boundary, arc length) there is a elementary proof 

(cf. Gallin 2011, p. 13f) that the sum of the four arc lengths of the colored pieces is equal with the 

corresponding sum of the white ones.  

One can easily show that – having chords with a constant angle α  – the sum of the arc lengths is 

also constant (in particular independent of the position of the intersection point P and the special 

position of the chords). The sum of the arc lengths only depends on the angle α  (cf. Fig. 6a): 

� � � �
1 1 1 1 2 2 2 2AC B D A C B D+ = + . 

           
 Fig.  6a: Equal sum of arc lengths Fig.  6b: Pairwise parallel chords 
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A crucial idea is here: It suffices to show this for 2P M=  and pairwise parallel chords (see Fig. 

6b): � � � �' ' ' 'A C B D AC BD+ = + . It will turn out that the lengthening and the shortening in the 

transformations � �' 'AC A C→  and � �' 'BD B D→  are cancelling each other, and therefore in the end we 

have no change in the sum of the arc lengths.  We have:  

� � � �' ' ' 'A C AC CC AA= + −  

� � � �' ' ' 'B D BD BB DD= + −  

and because of � �' 'AA BB=  and � �' 'CC DD=  (this is clear due to the symmetry of the circle) we get by 

summation: � � � �' ' ' 'A C B D AC BD+ = + . Also the value of the sum is easy to see in the case that both 

chords pass through the center M, the value is 2 rα  (α  in radian measure).  

 

Remarks:  

• Considering the area one needs for constancy all four parts (sectors), in other words two “double 

sectors”; considering the arc lengths one needs for constancy only two sectors (one “double sector”).  

• An alternative way of reasoning we give below with calculus.  

 

2.3  An important lemma of elementary geometry and a plausibility consideration 

 

In the focus of the considerations above we had the phenomenon that the four colored “sectors” 

and the four white ones can be divided into pairwise congruent pieces (equidecomposability), this is 

more than the mere equality of the area measures. In the following we concentrate on the equality of the 

area measures using a completely different approach which is building a bridge to the next chapter 

(calculus). 

 

Lemma: For every orthogonal pair of chords in a circle 

(segments a, b, c, d – see Fig: 7) following equation holds (r is the 

radius of the circle): 2 2 2 2 2(2 )a b c d r+ + + =  

 

For this lemma there are several possibilities for proving it, a 

typical case for problem solving. A short and illustrative “proof 

without words” is given in Nelsen 2004. 

 

This lemma plays an important role on the one hand in the 

following argumentation with plausibility (not a rigid proof) and on 

the other when we use methods of integral calculus (see below). 

 

 

Fig.  7: Orthogonal chords 
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Plausibility consideration
3
 

If two perpendicular blades of a “pizza knife” 

(intersection point P) are rotated (center P) by a small 

angle ϕ∆  then the area between the initial and the 

new position (grey in Fig. 8) is approximately  

           

( )2 2 2 21
(1)

2
A a b c dϕ≈ ∆ + + +

                 
Explanation: We consider each of the four pieces as a 

real sector of a circle with angle ϕ∆  and the radii a, b, 

c, and d. The area of a sector with radius r and angle 

ϕ∆  is given by ( ) 2/ 2 / 2 / 2b r r r rϕ ϕ⋅ = ⋅∆ ⋅ = ⋅ ∆ . 

 

Here in this argumentation with plausibility we 

don’t go into details why the approximate relation (1) 

also holds exactly (see “integral calculus” below), but 

one can see immediately: the real sectors with the 

radii a and d are a bit too big, the ones with the radii b and c a bit too small, therefore the approximation 

(1) will be rather accurate.   

 

According to the above lemma 2 2 2 2 2(2 )a b c d r+ + + =  is constant and hence the area of the 

grey parts (Fig. 8) is proportional to the angle of rotation because the factor / 2ϕ∆  is independent of 

the position of P and of the initial position of the two perpendicular blades. When we think of this 

rotation with ϕ∆  carried out many times we get the same proportionality, therefore there is no need to 

keep ϕ∆  small, it will work with any rotation angle ϕ . This proportionality can and should be affirmed 

with DGS. Such empirical results and findings with DGS of course cannot replace mathematical proofs 

but within arguments of plausibility they surely are a kind of affirmation that one is on the right way (if 

wanted one may look for a more rigid proof afterwards e.g. with integral calculus, see below). Hence the 

area of two perpendicular “double sectors” (as for instance the grey parts in Fig. 1 with / 4ϕ π= ) is 
2 2(1/ 2) (2 ) 2A r rϕ ϕ= ⋅ ⋅ = ⋅ , with  / 4ϕ π=  we get finally 2 / 2A r π= , that means that the grey parts 

together make exactly half the circle area. 

 

Due to the mentioned proportionality (in some sense this is the mathematical core of this topic)  

we immediately get the following generalization: If the 90° quadrants are not only divided into two 

equal
4
 parts of 45°  – like above – but into say three 30° parts (in sum then we have 12 “sectors”) then 

we may say with the same argumentation: With such a division one can divide a pizza equally between 

three persons, each person takes every third “sector”. Again each person gets, in sum, two perpendicular 

pairs of opposite “sectors” (“double sectors”), the only difference: with an angle 30° instead of 45° (Fig. 

9a: the first person gets the white double sectors, the second person gets the grey ones and the third 

person the black).        

                                                 
3 I want to thank my friend and former colleague B. Schuppar (TU Dortmund, Germany) for useful hints. 
4 The “equality” is meant concerning angles. 

Fig.  8: Rotating further by ϕ∆  
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The same procedure would 

work if we had n parts in every 

quadrant (in sum 4n parts), we would 

then have an equal division between n 

persons.  

When we have an even 

number of “sectors” in each quadrant 

(2k, in sum then 8k “sectors”) with 

this principle we have a possibility for 

an equal division of the pizza between 

2k  persons (each person gets 4 

“sectors”). If we consider the 2k 

persons consecutively numbered 

(from 1 to 2k) and if we think of the 

union of the “k even persons” and the “k odd persons” respectively then we again have an equal division 

into two subsets.  In other words: If we number all the “sectors” from 1 to 8k (clockwise or counter 

clockwise) the area sum of the even ones is equal to the area sum of the odd ones! 

But if every quadrant is divided into three parts (equal angles, see Fig. 9b; generally: an odd 

number of sectors in each quadrant) then our proof says nothing about the conjecture that  still the area 

sum of the odd “sectors” is equal to the area sum of the even ones. In this case one does not have the 

easy situation of pairs of perpendicular “double sectors” with equal color. This case can be handled 

with calculus (see below). The phenomenon that the area sum is equal in both cases, adding all the odd 

“sectors” on the one hand and all the even ones on the other – regardless whether the quadrants are 

divided in an even or odd number of equal angles – , is called “pizza theorem” in the literature. 

 

 
3   Calculus  

 
Another possible treatment of this topic is given by an application of the basic idea of integral 

calculus: Integrals are limits of product sums ( )i ii
f x x⋅∆∑ . This useful and important basic concept 

for integrals – in many contexts – has been described quite often in the didactical literature (see e.g. 

Blum/Kirsch 1996, p. 62ff). With integrals we not only can calculate areas by using “slim stripes” (this 

geometric interpretation surely plays a big role but it should not be the only one) but they are useful in 

many other contexts. Often integral calculus at school is restricted to the application of the fundamental 

theorem of calculus ( )d ( ) ( )

b

a

f x x F b F a= −∫ : Calculating integrals by using antiderivatives. Teachers 

and school text books often want to come to this result as quickly as possible in order to have plenty of 

possible calculation problems to solve for the students. The mentioned theorem is often even degraded 

to a definition like ( )d : ( ) ( )

b

a

f x x F b F a= −∫  which in the sense of Hans Freudenthal can be seen as an 

“antididactic inversion”. From the perspective of many teachers and school text book authors one may 

save several troubles and efforts (explaining what an integral is) but the prize to pay for that “advantage” 

seems clearly too high: students never get to know what an integral really is. A famous formula for the 

calculation of integrals – rightly named fundamental theorem! – is degraded to a definition in order to 

Fig. 9a: Equal division between three 
persons – three parts in every quadrant 

Fig. 9b: Equal division between two 
persons – three parts in every quadrant 
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save time and possible troubles! If an explanation is more complicated just make a definition out of it? I 

think this must not be the kind of teaching that we should aim at! 

In the following we also deal with calculating areas, not by slim rectangular stripes but by slim 

circular sectors, however the principle of product sums is the same. Of course the following cannot be 

expected as autonomous students’ work but has to be explained by the teacher.  

Different to Kroll/Jäger 2010 I propose to omit all the formal and technical aspects concerning 

calculating the area of the particular “sectors” because when adding the four areas one does not need any 

technical calculations by using the mentioned lemma of elementary geometry. By using integral calculus 

also the formal gap in the plausibility consideration in 2.3 is closed. 

 

3.1 Reasoning with the Leibniz sector formula 

 
Using the mentioned lemma of elementary geometry 

2 2 2 2 2(2 )a b c d r+ + + =  and an application of integral calculus – also 

known as “Leibniz sector formula” – one can easily prove with 

calculus that the white and grey “sectors” in Fig. 1 have equal area 

sums (half the area of the circle). 

Many different types of areas can approximately be seen as 

sums of slim circular sectors especially the above “sectors” that are 

very similar to real sectors. We are thinking of a fixed center P and a 

“radius ray” with variable length r (depending on the angle of rotation 

ϕ ; “polar coordinates” but this explicit name is not necessary) and we 

are interested in the covered area of the “sector” that corresponds to 

the increase of ϕ  by ϕ∆  (Fig. 10). The sector with radius |PU| is too 

small, the one with radius |PV| is too big for the area of the “sector” with the edges P, U, and V (this 

“sector” indicates the area increment when the corresponding angle increases from ϕ  to ϕ ϕ+ ∆ ). 

For α ϕ β≤ ≤  the covered area is divided in slim circular 

sectors. Adding up all these small sector areas yields a product 

sum which in the limit becomes an integral: 

 

 

21
( )

2
i i

i

r ϕ ϕ⋅∆∑  21
( )d

2
r

β

α

ϕ ϕ→ ∫  where [ ],α β  is the domain 

of integration (concerning the associated angle ϕ , “Leibniz sector 

formula”).  

 

Applied to a white or grey “sector” in the pizza theorem 

we get 
/4

2

0

1
( )d

2
A r

π

ϕ ϕ= ∫  because the angle in each such “sector” 

is  π / 4 = 45°. We restrict to the grey “sectors” and draw thickly 

the “initial radii” 
1 2 3 4(0), (0), (0), (0)r r r r  and radii in the end 

position – meant after the rotation by 45° – 
1 2 3 4( / 4), ( / 4), ( / 4), ( / 4)r r r rπ π π π ; we also draw a 

“position in between” of these radii (Fig. 11).  

 

For every angle 0 / 4ϕ π≤ ≤  we have: The corresponding radii are perpendicular to each other! 

Fig. 10: Leibniz sector formula 

Fig. 11: Leibniz sector formula in the  
              pizza theorem 
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We need not calculate the particular areas of these “sectors” because of the above lemma from 

elementary geometry with  instead of , , ,a b c d :
  

2 2 2 2 2

1 2 3 4 (2 )r r r r r+ + + = .  With this we get: 

( )
2

/4 /4 /4 /4

2 2 2 2

grey 1 2 3 4 1 2 3 4

0 0 0 0

/4 2
2 2 2 2 2

1 2 3 4

0
(2 )

1 1 1 1
( )d ( )d ( )d ( )d

2 2 2 2

1 1
( ) ( ) ( ) ( ) d (2 )

2 2 4 2
r

A A A A A r r r r

r
r r r r r

π π π π

π

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

π π
ϕ ϕ ϕ ϕ ϕ

=

= + + + = + + +

= + + + = ⋅ ⋅ =

∫ ∫ ∫ ∫

∫ �������������

            (2) 

  

Remarks: 

• Hereby the formal gap in 2.3 (plausibility consideration) is closed: Looking at (2) one can see 

immediately that the approximate formula (1) even holds exactly. 

 

• Analogously here in the analytical perspective we easily see the mathematical core, the above 

mentioned proportionality: instead of / 4π  this would work with every other angle ϕ  of 

perpendicular “double sectors”, one would get 2 21
(2 ) 2

2
A r rϕ ϕ= ⋅ ⋅ = ⋅   as above in the plausibility 

considerations (using elementary geometry) in 2.3. 

 
3.2 The boundaries of the pizza “sectors” 

 

We have mentioned and proved already (with elementary geometry) that not only the pizza area but also 

the pizza boundary is divided equally by this method, this should be investigated now with calculus. The 

basic idea behind is the well known phenomenon that the circumference of a circle is the rate of change 

of the area with respect to the radius. For a proper understanding of the principle of the derivative it is 

very important to understand the mentioned phenomenon with regards to contents, not only formally by 

( )2d
2

d
r r

r
π π=  (cf. Blum/Kirsch 1996, p. 61, Hefendehl-

Hebeker 1998, p. 198f). Analogous considerations yield 

the insight that the surface area of a sphere is the rate of 

change of the sphere’s volume with respect to the radius. 

These interesting issues can enrich the mathematics 

teaching of teacher students and students at school if not 

the syntax but semantics, contents, and understanding are 

in the focus of the teaching process.  

We have already mentioned that – with arbitrary 

radii – the area of two “perpendicular double sectors” (as 

in Fig. 11 the four grey “sectors”) is independent of the 

point’s P position and of the position (concerning 

rotation) of the blades. The area only depends on the 

opening angle ϕ  of the “sectors”  (proportionality). 

Hence the same holds for the difference of two such 

areas, that is for the area sum 1 2 3 4A A A A A∆ = ∆ + ∆ + ∆ + ∆  

of the four grey parts of the annulus when increasing the radius from r to r r+ ∆  (Fig. 12). Since  

1 2 3 4, , ,r r r r

Fig. 12: Equal division of the pizza boundary 
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( )1 2 3 4
A b b b b r∆ ≈ + + + ⋅∆  (the annulus everywhere has the same width r∆ , hence these parts of the 

annulus together can approximately be thought of as a rectangle with length 1 2 3 4b b b b+ + +  and width 

r∆ ) does not change under translation or rotation of the cutter (see above) the same holds for 
A

r

∆

∆
 and in 

the limit also for 
1 2 3 4

0

d
lim

dr

A A
b b b b

r r∆ →

∆
= = + + +

∆
 (sum of the four arc lengths of the grey “perpendicular 

double sectors”). That means the sum of the four arc lengths 1 2 3 4b b b b+ + +  on the pizza boundary is 

independent of the point’s P position and of the rotation position of the blades. This sum itself therefore 

is proportional  to the opening angle ϕ . By this we have shown in an elementary way that for an 

opening angle of 45ϕ = ° we get exactly half of the circumference of the circle – an equal division of the 

pizza boundary between two persons (analogous if we have n persons and an opening angle 90 / nϕ = °  
of the “sectors”). 

 

3.3 The pizza theorem when each quadrant is divided in an arbitrary number of “sectors” (odd or 

even) 

 

With the considerations so far we have shown in two ways (using elementary geometry on the 

one hand and calculus on the other) that the pizza theorem holds in the case of dividing each quadrant in 

an even number of pieces (“sectors”): The area sum of the grey “sectors” equals the area sum of the 

white ones (in each case we have half the area of the circle). In the following we will show that this is 

the case in general (also when we have an odd number of pieces in every quadrant). 

One could ask here: Why did we not use this method (general case) from the very beginning? 

The answer is easy: The mathematical core of the above reasoning (the mentioned proportionality) is 

very important for properly understanding the phenomenon, but this proportionality does not appear in 

the following considerations. A second reason could be that in the one or another situation the general 

case may be not so interesting, that one wants to reduce complexity and deal only with our initial special 

case of four cutting blades. For this case we wanted to provide possibilities. 

We have to prove that the sum of all the areas of the odd “sectors” is exactly half of the circle 

area. We will have to calculate sector areas by corresponding integrals (in the above version we actually 

did not do real calculations). We will not determine areas of single “sectors” but of two opposite ones, 

so called “double sectors” (see Kroll/Jäger 2010).  

 

First we have to deal with two important items that we will need: 

 

• 
1

0

sin (2 1) 0
m

k

k
m

π−

=

 
+ ⋅ = 

 
∑         and         

1

0

sin 2 0
m

k

k
m

π−

=

 
⋅ = 

 
∑                                                                  (3) 

Proof: If we write 
2

2m

π
 instead of 

m

π
 these trigonometric equations become quite clear:  

2

2m

π
 is the 

central angle of a regular (2m)-gon (even number of vertices!), e.g. drawn in the unit circle with one 

vertex at (1|0) and the opposite one at ( 1 | 0)−  (Fig. 13, regular octagon). (2 1)k
m

π
+ ⋅  are the odd 

multiples of this central angle and the corresponding vertices of the regular (2m)-gon lie 
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symmetrically with respect to the x-axis. Thus in 

sum the corresponding sin values cancel each other 

(analogous in the case of 2k
m

π
⋅ , the even multiples 

of the central angle). 

 

• Let 1
( ) :r PSϕ =  and 1

'( ) :r PRϕ =  be the distances 

from P to the perimeter of the circle (Fig. 14). One 

can read off immediately : | | cosf QP e ϕ= = ⋅  and 

: | | sinh MQ e ϕ= = ⋅ . Because of symmetry reasons 

we have :c QS QR= =  and with Pythagoras we get  

2 2 2 2 2 2sin ( )c r h r e ϕ= − = − ⋅ . Due to 1 'r c f= +  and 

1r c f= −  we can write 

      
( ) ( )

( )

2 2 2 2

1 1

2 2 2 2 2

' 2

2 sin ( ) cos ( )

r r c f

r e eϕ ϕ

+ = +

= − ⋅ + ⋅
  

and finally:  ( ) ( )2 2 2 2

1 1
' 2 cos(2 )r r r e ϕ+ = + ⋅  

 

With this knowledge it is not difficult to calculate the 

area of a double sector by using the Leibniz sector 

formula. We get (see Fig. 14): 

( )

( ) ( )

2 2

1 1

22 2 2

1 1

2 2

2 1 2 1

1
' d cos(2 ) d

2

1
sin(2 ) sin(2 ) (4)

2

r r r e

r e

ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

   + = + ⋅ =  

− + −

∫ ∫
              

 

We apply this formula to the particular double 

sectors, e.g. in Fig. 15 we have altogether n = 6 such 

double sectors (the odd ones are white). This number n is even at any rate (n = 2m) independent of the 

fact whether each quadrant is divided into an even or odd number of “sectors”. 

In the i-th “double sector” the “polar angle” ranges from 

�
1

2

( 1)

m

i
n

π
ϕ = − ⋅  to 

�
2

2m

i
n

π
ϕ = ⋅ .  

Thus from (4) we get for iDS , the area of the i-th “double sector”: 

� �

2 2

2 2

2 2

1
sin (2 ) sin (2 2)

2

1
sin sin ( 1)

2

i

m m

DS r e i i
n n n

r e i i
n m m

π π π

π π π

    
    

= ⋅ + ⋅ − − ⋅    
    
    

    
= ⋅ + ⋅ − − ⋅    

    

 

Fig.  14: Leibniz sector formula in a “double sector” 

Fig. 15: Pizza theorem with three 
“sectors” in each quadrant 

e

r'1

r1

h

r

f

ϕϕϕϕ1111

ϕϕϕϕ2

ϕϕϕϕ

Q

P

M

R

S

Fig. 13: Regular polygon with an even number of vertices  

(- 1 | 0) (1 | 0)
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Now we calculate the area sum 
1

2 1

0

m

k

k

DS
−

+
=

∑  of the odd “sectors” with the numbers 2 1i k= +  and 

do the summation of the particular parts separately:  We have m = n/2 times the summand 2
r

n

π
⋅  which 

yields 2

2
r

π
⋅ , that is exactly the half of the circle area. The other trigonometric sums yield 0 according to 

(3), and by this the general pizza theorem is proved.  

 

Finally another pizza theorem (http://mathworld.wolfram.com/PizzaTheorem.html), easier to 

prove: The volume of a pizza with radius z and thickness a is given by  Pi z z a . 

 

4   Teaching aspects  
 

All in all this is an ambitious topic with many possible connections to other mathematical fields. 

It seems to be a good opportunity to foster elementary geometry in mathematics teaching by dealing 

with an interesting phenomenon (equal division of a pizza). In German speaking countries in my opinion 

there should be payed more attention to elementary geometry in lower secondary schools. Here one may 

think of matters like symmetry, reflections, rotations, division in pairwise congruent pieces 

(equidecomposability); these learning matters can be strengthened, extended, and linked when dealing 

with this topic. In the teaching of differential and integral calculus in school (high school, college) often 

syntax and special techniques of calculation (things that often could be done by computers) are given 

priority while semantic aspects and real understanding are neglected. But within the presented topic the 

idea of an integral as a limit of a sum of products (areas as sums of slim circular sectors) is constitutive, 

and this is a really semantic aspect. New terms like “polar coordinates” or “Leibniz sector formula” etc. 

are not important. So far to competencies with regards to contents. Competencies with regards to 

processes that can be fostered by the suggested topic are: cross-linking matters, problem solving, 

exploring situations, verifying phenomena (using Dynamic Geometry Software – DGS), argueing and 

reasoning.  

 

How and in which grades could this phenomenon be dealt with at school? 

 

In lower grades (say grade 7 to grade 9) a similar problem with 

a square instead of a circle may be dealt with as a problem that students 

are supposed to solve individually. Maybe some smaller hints from the 

teacher are necessary?  

 
In a square the knife (cutter) is placed like in Fig. 16: two 

blades parallel to the edges and the other two parallel to the diagonals. 

Find arguments to show that the area sums of the white and grey pieces 

respectively are equal (cf. Kroll/Jäger 2010, 103f). 

 

Remark: If P is not the center of the square (in the case of the 

center everything is clear) then P lies in a special quadrant. Without 

loss of generality we may assume that P lies in the right quadrant above.  

Fig. 16: Square and cutter  
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Here there are several possibilities to see that the area sums 

are equal. When having in mind individual work of students it is 

always a big advantage if there are several ways to solve a problem 

because in this case different approaches can lead to the solution. A 

possible hint for a short and elegant solution could be: “construct a 

special line segment (dashed) – the upper edge reflected on the 

horizontal line segment through P (Fig. 17)”. 

 

With this hint the following is clear by symmetry: above the 

dashed line the white parts equal the grey parts, therefore one has to 

think only of the parts below this line. In the case that students 

cannot find a solution individually despite of this hint there can be 

another one: Draw another line segment which leads to equal areas 

III and IV. Then the problem is reduced to finding reasons why I and 

II have equal areas (Fig. 18). If lower grade students succeed in 

reasoning this fact it can be seen as a good performance (here 45° 

angles and the resulting symmetries can play an important role).  

 

Concerning the original problem (circular pizza) in   

secondary schools students could gather practical experiences on the 

one hand (cutting circles of carton in the described way and 

weighing all the grey and white pieces
5
) and on the other the 

phenomenon could be explored by using DGS as a means of 

measuring the corresponding areas. 

 

Also dealing with the dissection following P. Gallin (Fig. 5) seems to fit well to secondary 

school (grade 7 to 9), maybe even as problem to be solved autonomously by groups of students. Fig. 5 

probably has the character of a “proof without words” even for many students of grade 7 – 9. I do think 

it could work with these students because one does not need more ingenious ideas, the helpful octagon is 

drawn in the figure, it is also explained how it arose. Also not so capable students can have the idea to 

simply count the area pieces a, . . ., g, x (their congruency is here immediately clear) in the white and in 

the grey zone outside the octagon. Also inside the octagon the way of reasoning is evident. The proof for 

the equality of the pizza boundaries following P. Gallin (using elementary geometry, see Fig. 6a,b) is 

also suitable for secondary school students. If the problem reduction Fig. 6a � Fig. 6b is done by the 

teacher (students in secondary schools will probably not see this possibility by themselves) then the 

further handling of the problem could be done autonomously in groups (maybe small hints from the 

teacher are necessary). For better supporting ideas and concepts and for visualizing the use of DGS (as a 

means of measuring) could be recommended, best in advance of the proof. 

In high school or college (when the basics of calculus are taught) the phenomenon could be 

presented by the teacher, independent students’ activities seem not to fit here. When realizing this 

ambitious program the main goal would be the important idea of the integral as a limit of product sums 

(here: slim circular sectors). In school the aspects of 3.1 would suffice, the ones of 3.2 (boundaries of the 

pizza pieces) and 3.3 (general case) are not necessary there. The important lemma of elementary 

                                                 
5 If the grey pieces together have the same weight as the white pieces together then it is clear that the area sums 
are equal, too. 

Fig. 17: Square and cutter – first hint 

Fig. 18: Square and cutter – second hint 
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geometry can provide aspects of crosslinking several mathematical fields (calculus, elementary 

geometry), also individual students’ work is well possible (problem solving, maybe in groups). 

Also at university – teacher education – Fig. 5 (dissection following P. Gallin) could be dealt 

with, students of a geometry course could analyze the figure autonomously. But at this level students 

could also analyze Fig. 4 (including the helpful octagon; Fig. 3 – without this octagon – is with regards 

to my experiences not so good for that purpose). For preparing such an analysis of Fig. 4 one could pose 

the following problem (then working with the octagon is easier):  

A rectangle ABCD is rotated (center M) by 90° (� ' ' ' 'A B C D ) so that the octagon 

' ' ' 'A BCB C DAD  is established (see Fig. 19). Explain 

exactly why e.g. the line segments ' , ' , 'A B D C B C  are “45° 

lines” (for reasons of clearer arrangement only one diagonal 

'D C  is shown, but the others are such “45° lines” as well).  

It is clear that in calculus courses at university 

(teacher education) all here presented aspects can be 

covered. But I have made the experience that the Leibniz 

sector formula is very rarely presented is such courses. I 

regret that, not because I want students to solve many 

integrals in polar coordinates, I regret it primarily because I 

think having another geometric idea of product sums (not 

only slim stripes and rectangles, but also slim circular 

sectors) is a valuable enrichment of the idea of integrals in 

mathematics teacher education. As I got to know it for the 

first time I asked myself: Why did nobody during my 

studying time at university (in calculus courses) tell us about this simple and important idea? Dealing 

with the general case (cf. 3.3) is in my opinion even at university not obligatory. 
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