
The Mathematics Enthusiast The Mathematics Enthusiast 

Volume 12 
Number 1 Numbers 1, 2, & 3 Article 18 

6-2015 

A Models and Modeling Approach to Risk and Uncertainty A Models and Modeling Approach to Risk and Uncertainty 

Corey Brady 

Richard Lesh 

Follow this and additional works at: https://scholarworks.umt.edu/tme 

 Part of the Mathematics Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Brady, Corey and Lesh, Richard (2015) "A Models and Modeling Approach to Risk and Uncertainty," The 
Mathematics Enthusiast: Vol. 12 : No. 1 , Article 18. 
Available at: https://scholarworks.umt.edu/tme/vol12/iss1/18 

This Article is brought to you for free and open access by ScholarWorks at University of Montana. It has been 
accepted for inclusion in The Mathematics Enthusiast by an authorized editor of ScholarWorks at University of 
Montana. For more information, please contact scholarworks@mso.umt.edu. 

https://scholarworks.umt.edu/tme
https://scholarworks.umt.edu/tme/vol12
https://scholarworks.umt.edu/tme/vol12/iss1
https://scholarworks.umt.edu/tme/vol12/iss1/18
https://scholarworks.umt.edu/tme?utm_source=scholarworks.umt.edu%2Ftme%2Fvol12%2Fiss1%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.umt.edu%2Ftme%2Fvol12%2Fiss1%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/tme/vol12/iss1/18?utm_source=scholarworks.umt.edu%2Ftme%2Fvol12%2Fiss1%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


TME, vol. 12, no. 1,2&3, p. 184 

 

The Mathematics Enthusiast, ISSN 1551-3440, vol. 12, no. 1,2&3, pp. 184-202 
2015© The Author(s) & Dept. of Mathematical Sciences-The University of Montana 
 

A Models and Modeling Approach to Risk and Uncertainty 
 

Corey Brady 

Northwestern University, USA 
Richard Lesh 

Indiana University, USA 

 
Abstract: In this article we describe potential contributions of a Models and Modeling Perspective to research 
focused on learners’ developing conceptions about uncertainty and variation. In particular, we show how a 
particular class of realistic problem-solving tasks can illuminate how learners develop models to identify, describe, 
and predict emergent patterns of regularity in the behavior of various types of systems and in the data these 
systems generate. We begin by situating current design work in this area within a larger project to investigate idea 
development in the domain of data modeling over extended (course-length) periods. We give design principles 
and examples for key components in our research framework, and we provide illustrative examples of these 
components and their interactions around the themes of distance and measurement that arise centrally in our 
materials. Next, we show how our approach can support advances in research on risk perception and on the 
development of ideas around risk assessment and management. Specifically, we identify three key facets of our 
approach and materials that make them good candidates for contributing to risk-oriented design research in 
education. Within each of these facets, we suggest research questions that could be addressed, and we provide 
examples and conjectures based on prior and ongoing work. In particular, we return to the ideas of distance 
explored in our examples and show connections with important questions in research on learners’ perception and 
reasoning about risk. 

Keywords: modeling, mathematization, problem-solving, affective dimensions of knowledge. 

 
Introduction 

In this article we describe potential contributions of a Models and Modeling Perspective to 
research focused on learners’ developing conceptions about uncertainty and variation. In particular, we 
show how a particular class of realistic problem-solving tasks can illuminate how learners develop 
models to identify, describe, and predict emergent patterns of regularity in the behavior of various types 
of systems and in the data these systems generate. We begin by situating our current design work in this 
area within a larger project to investigate learners’ ideas in the domain of data modeling, as they develop 
over extended (course-length) periods. Our design is centered on a type of activities known as Model-
Eliciting Activities (MEAs), which engage learners in a deep form of modeling to construct solutions to 
real-world problems. The mathematical concepts uncovered in these core activities are then explored 
through Model Development Sequences (MDSs), where the classroom group of learners unpack and 
extend their collective ideas, connecting them with more formal mathematical constructs and 
investigating the reach of these new conceptual tools. We give design principles and examples for key 
components in our research framework, and we provide illustrative examples of these components and 
their interactions around the themes of distance and measurement, which arise in student solutions to 
MEAs and can be explored further through MDS activities. 

After describing our framework, we show how our approach can support advances in research on 
risk perception and on the development of ideas around risk assessment and management. Specifically, 
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we identify three key facets of MEAs that make them good candidates for contributing to risk-oriented 
design research in education: 

1. MEAs engage learners in optimization processes involving constraints and tradeoffs. 
2. MEAs prompt learners to draw upon a wide range of problem-solving resources. 
3. MEAs move beyond simplified problem settings that solicit the application of mathematical 
concepts and procedures that have been previously taught. Instead, by giving learners 
computational tools and pushing them to develop new mathematical constructions, MEAs are 
supportive environments for the kind of mathematical work that occurs in authentic settings 
outside of school.  
Within each of these facets we suggest research questions that could be addressed through our 

approach, and we provide examples and conjectures based on our prior and ongoing work. To illustrate 
the importance of connections among ideas throughout a course-length engagement with modeling of 
this type and across MDS sequences, we suggest connections between the ideas of distance that were 
explored in our examples with important questions in research on learners’ perception and reasoning 
about risk. 
 

Theoretical Framework: Research in the Models and Modeling Perspective 
In this section we briefly outline the theoretical perspective that underlies our design work. For 

over thirty years, researchers adopting a Models and Modeling Perspective (M&MP) in mathematics 
education (Lesh, 2003a; 2003b; Lesh & Doerr, 2003) have engaged in research to understand the 
development of mathematical ideas. A fundamental principle underlying this work has been that learners’ 
ideas develop in coherent conceptual entities, called models, described by Lesh & Doerr (2003) as: 

…conceptual systems (consisting of elements, relations, operations, and rules governing 
interactions) that are expressed using external notation systems, and that are used to construct, 
describe, or explain the behaviors of other system(s)—perhaps so that the other system can be 
manipulated or predicted intelligently. (p. 10) 

Under appropriate conditions, learners’ models can be evoked and expressed in “thought-
revealing artifacts.”  These artifacts can become objects for reflection and discussion by both individual 
learners and collaborative groups, and they also present rich data sources for researchers. In particular, 
when individuals and groups encounter problem situations with specifications that demand a model-rich 
response, their models are observed to grow through relatively rapid cycles of development toward 
solutions that satisfy these specifications. Models are thus powerful elements both for creating 
educational activities and for conducting research into learning.  

From the Models and Modeling Perspective, Knowledge is seen as: 
• Involved in perception and intuitions as well as action and conscious thought. 
• Situated and shaped by context. 
• Socially-shared and shaped by the community. 
• Connected. 
• Systemic, distributed, and emergent. 
• Expressed in a variety of external media. 
• Not simply logical / mathematical in nature. 
• Often tacit. 
• Initially piecemeal, undifferentiated, un-integrated and unstable. 
• Continually developing along a variety of interacting dimensions. 

Figure 1. Features of the M&MP conception of knowledge 
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As a program of research, M&MP research developed explicitly to investigate the following 
kinds of questions:   

•How can we characterize realistic problem-solving situations where solutions demand 
elementary-but-powerful mathematical constructs and conceptual systems?  
•What kinds of “mathematical thinking” are emphasized in such situations? 
•What does it mean to “understand” the most important of these ideas and abilities? 
•How do such competencies develop, and what can be done to facilitate their development? 
•How can we document and assess the most important (deeper, higher-order, or more powerful) 
conceptual achievements that are needed for full participation as citizens in increasingly complex 
societies and professions?   
•How can we identify students who have exceptional potential that is not adequately measured 
by standardized tests? 
These questions are tightly linked to the M&MP’s view on the nature of knowledge (see Fig. 1). 

Here, the M&MP builds on perspectives originating with Piaget and Vygotsky as well as with the 
American Pragmatists including Peirce, James, Meade, and the later Dewey,  (c.f., English et al, 2008; 
Lesh & Doerr, 2003).  
Model-Eliciting Activities (MEAs) 

Rooted in these perspectives and pursuing questions such as the ones listed above, M&MP 
research has sought to illuminate the nature of knowing and learning in authentic problem-solving 
settings. A key requirement of such settings is that they challenge learners to engage in original 
mathematical work (i.e., to produce mathematics constructions that are new to them), rather than merely 
applying mathematics learned from an authoritative source. Iterative design work to create such learning 
environments has led to the development of a genre of materials and activities, known as Model-
Eliciting Activities (MEAs). In MEAs, students are presented with authentic, real-world situations where 
they repeatedly express, test, and refine or revise their current ways of thinking as they endeavor to 
generate a structurally significant product—a model—comprising a conceptual structure for solving the 
given problem. These activities give students the opportunity to create, adapt, and extend scientific and 
mathematical models in interpreting, explaining, and predicting the behavior of real-world systems. 

Originally designed as environments for research into what it means to “understand” important 
concepts in the K-12 mathematics curriculum, MEAs were first and foremost intended to provide 
documentation and evidence to illuminate the development of ideas in classroom groups. Thus, MEAs 
were designed in such a way that students would clearly recognize the need to develop specific 
constructs – without dictating how they would think about relevant mathematical objects, relationships, 
operations, patterns, and regularities. In general, this approach is inspired by the way engineers are given 
design “specs,” which include brief descriptions of goals and available resources or constraints (such as 
time or money). As learning environments MEAs are also designed to optimize the chances that 
significant conceptual adaptations will occur during sufficiently brief periods of time so that the 
processes of conceptual change can be observed directly by researchers and teachers. Along with a range 
of particular MEA activities, the early M&MP community outlined six key design principles for MEAs 
to meet these goals (see, e.g., Doerr & English, 2006; Lesh et. al., 2000; Hjalmarson & Lesh, 2007): 

1. Personal Meaningfulness. Is the problem situation realistic, in the sense that a solution would 
be of genuine interest to a client?  Is the problem space sufficiently open to ensure that different 



Brady & Lesh 

groups of students are able to pursue diverse solution paths based in their own unique personal 
knowledge and experiences?  
2. Model Construction. Does the problem truly require the new construction, modification, 
adaptation, or extension of a model in order to be solved?  Does the problem engage with deep 
mathematical structures and regularities, rather than engaging mainly at the surface level? 
3. Self-Evaluation. Are the problem’s criteria sufficiently clear that student groups can judge for 
themselves the usefulness or adequacy of proposed solutions?  
4. Model Generalizability. Do the models that are created in the activity apply only to the 
specific situation of the problem, or are they likely to be generalizable to a broad range of 
situations?  
5. Model Documentation. Will student responses to the problem explicitly reveal their 
characteristic ways of thinking about the situation?  Will they provide clear evidence about the 
mathematical objects and relations they have engaged with in solving the problem? 
6. Simplest Prototype. Is the problem situation as simple as it can be, while still meeting the other 
design principles?  Does the experience of the MEA “stick” with students so that they are able to 
use it as a lens for viewing future problems that feature similar mathematical structures? 

An Example MEA: The Darts Problem 
To illustrate the genre of the MEA, we provide the example of the Darts problem. This problem 

plays an important role in our work with data modeling, statistics, and probability, as, among other 
things, it challenges students to invent notions associated with centrality, spread, and distance from an 
expected distribution. Students are usually introduced to the Darts problem after having engaged with 
several other MEAs that press them to create operational definitions for key constructs such as “worker 
productivity” or “volleyball-playing ability,” using data of various kinds to develop and apply 
quantitative measures of such constructs. The Darts problem pushes students to expand on this line of 
thinking, creating operational definitions of constructs for use in evaluating both performances (darts 
games) and performers (darts players). 

 
Figure 2a.  Part one of the Darts MEA. 
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Figure 2b.  Part two of the Darts MEA. 

After breaking into groups, the students are presented with the two-part problem statement 
(Figures 2a and 2b, above).  The Darts problem is somewhat unusual among MEAs in being itself 
embodied in software form, using a dynamic data exploration tool (here, TinkerPlots). In contrast, most 
MEAs are paper-based, with dynamic mathematics software being more heavily used in follow-on 
activities. The basic structure of students’ engagement with the Darts problem, however, is typical of 
MEAs. Student groups engage in cycles of thinking, characterized by identifying possible interpretation 
schemes for the problem context, testing these schemes, and revising or adapting them to accommodate 
new ides or to address shortcomings. Through these cycles, their thinking evolves rapidly towards 
increasingly effective approaches to the problem. For instance, in the first 10 minutes of work, groups 
may focus on one or another feature of the problem (e.g., attending to one dart of the three thrown per 
player, or even, when attending to the coordinate values for a single throw, attending only to the greater 
of the two). As they grapple with and discuss the first part of the problem, however, groups generally 
move toward a definition of distance-from-the-bullseye. (This is often expressed either as Euclidean 
distance, as its square (adopted for convenience in calculation), as single-coordinate differences, or as a 
“taxicab” measure obtained by summing these coordinate distances (as absolute values of coordinate 
differences.)) 

While the idea of distance is sufficient for the task of ranking individual throws according to 
quality (with the rule that a lower distance corresponds to a better throw), it does not solve the problem 
of scoring a round. Recognizing this, some groups turn to a notion of an average (either based on their 
distance calculations or re-invented independently), while other groups attend to the rings drawn on the 
board, associating scores with each ring by drawing on intuitions associated with fair-rewards. To 
support this second strategy, groups may tap into ideas about probability and area, beginning to reflect 
on the likelihood that a “random throw” will land inside different target circles. 

In tackling part 2 of the Darts problem, the groups’ focus generally moves from scoring throws 
and rounds to evaluating players. Here, groups begin to generate candidate attributes for players such as 
“consistency” “precision” and “accuracy.” In many cases, learners realize that their groupmates have 
slightly different attributes in mind for these terms. Many groups find that (at least) two are at work—
one corresponding roughly to an idea of “centrality” and another corresponding to ideas of “spread.”  
Group discourse also begins to reveal questions about the nature of simulations and distributions, as 
students question whether the computationally simulated players “really” have different skill levels or 
attributes, and if so, how they might detect such differences with repeated trials of the simulation. 
Finally, additional concepts emerge as groups converge on a solution and begin to draft their letter to 
Laura, the “client.” For instance, they may reflect on which of the two attributes might be more 
“teachable” to players over the season, or they might become concerned about how to reduce the 
logistical complexity for judges attempting to choose between candidate players in noisy pub settings.  
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In this way, students iteratively develop solutions to the problem in the time allotted—usually 60 
minutes for this MEA. In some implementations, the class then gathers together for a structured “poster 
session” event. Here, one member in each 3-person group hosts a poster presentation showing the results 
of their group. The other two students use a Quality Assurance Guide to assess the quality of the results 
produced by other groups in the class. These forms are submitted to the teacher and contribute to 
assessment in various ways, providing evidence for the modeling and conceptual achievements of both 
individuals and groups. 
Model Development Sequences (MDSs) 

Moving beyond individual MEAs, recent M&MP research has also investigated ways in which 
MEAs can be integrated within larger instructional sequences: Model Development Sequences, or 
“MDSs” (Lesh et. al., 2003). MDSs offer classroom groups opportunities to unpack, analyze, and extend 
the models they have produced in MEAs, as well as to connect their ideas with formal constructs and 
conventional terminology. This unpacking work helps to ensure the lasting retention of concepts at the 
level of generality required to apply them flexibly in novel situations. MDS activities also set the stage 
for the critical connection between conceptual development (the centerpiece and focus of MEAs), and 
procedural knowledge that is required for students to achieve well-rounded competence in any subject 
area. In our examples here, we will highlight how the key theme of distance that emerges in students’ 
MEA work can be developed in MDS activities. 

Within an MDS, reflection tools support students in stepping back from their modeling processes 
and reviewing this work as critical observers of both individual and group modeling behavior. In the 
design of our course materials, we consider these tasks core to the learning process. In general, M&MP 
research expects that when students interpret situations mathematically, the interpretation systems they 
engage are not purely logical or analytical in nature. Rather, they also involve attitudes, values, beliefs, 
dispositions, and metacognitive processes. Moreover, the M&MP does not treat group roles or group 
functioning as if these were fixed student attributes that determined their behaviors. Instead, students are 
expected to develop a suite of problem-solving personae that they learn to apply purposively as the 
situation demands.  

In product classification and toolkit inventory activities, students continue the work of 
abstraction, identifying links among their solutions to different MEAs and between these solutions and 
the “big ideas” of the course. Model exploration activities (MXAs) provide a model-rich environment 
for introducing more conventional terminology, concepts, and skills, which students need in order to 
formulate sophisticated models and present them to a mathematical community. These may use a 
combination of pointed YouTube videos and interactive simulations in dynamic mathematics software. 
(In our work to construct a course-sized repository of materials to fuel MDSs there are to date 
approximately 50 of these YouTube videos with accompanying simulations in dynamic geometry and 
dynamic statistics software. These are currently collected under the ProfRLesh channel.)  Finally, model 
adaptation activities (MAAs) allow students to transfer ideas and techniques developed in MEAs to 
situations calling for similar performances. These MAA activities also provide smaller-timescale 
modeling scenarios that exercise concepts students have explored in other components of the MDS. 
They may be pursued individually or in small groups, depending on the nature of the task and the 
teacher’s instructional or assessment goals. 
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Example MDS Activities Associated with the Darts MEA 
Model Exploration Activity (MXA) 

As mentioned above, most student groups develop one of several distance formulas in order to 
evaluate the quality of dart throws in Part 1 of the Darts MEA, and most also operationally define an 
attribute of a darts round that is analogous to a construct expressing the center of a dataset. They then 
examine the variation of this attribute over many rounds to describe an attribute of the player. A MXA 
that helps to unpack and extend this work is shown in Figure 3 below, implemented using the NetLogo 
software (Wilensky, 1999). Here the NetLogo environment produces visualizations of “level curves” of 
the sums of distances to chosen points. Students can add, remove, and rearrange these points, and they 
can select among various definitions of distance. Screens 3a, 3b, and 3c show the different results 
obtained by using three points and varying the distance definition (3a uses the square of Euclidean 
distance, 3b the Euclidean distance, and 3c the “taxicab” or “Manhattan” distance). Screen 3d shows the 
effects of adding points (there are five) and zooming out in scale. The numerical values for distances and 
the coloring update in real time as points are moved, giving students a multidimensional sense of the 
way different distance functions operate. Moreover, because NetLogo is a “glass box” environment, it is 
a relatively simple matter to modify distance formulae or add new ones, change the coloring 
visualization, and so forth.  

 

 
Figure 3.  A dynamic environment for visually exploring the effects of different distance formulae.  

Fig 3a (upper left) Square of Euclidean distance; Fig 3b (upper right) Euclidean distance; Fig 3c (lower 
left) taxicab distance; Fig 3d (lower right) Euclidean distance, with five points, zoomed out. 
Though learners are given freedom to explore in this environment, developing intuitions and a 

feel for how distance measures are affected by changes in the data, there are also several directions that 
teachers may wish students to explore and discuss more systematically. One such direction involves 
investigating what happens when all data points are collinear. In this case, the points can be interpreted 
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as scalar values along the shared line, and the different distance-minimizing centers can be connected 
with the familiar notions of the mean and median of a dataset. Another involves studying the effects of 
parity on the different distance definitions – how it sometimes matters whether there are an odd or even 
number of points in the dataset. Finally, one can explore questions of weighting by making two or more 
points coincident and investigating the impact on the various centers. In general, moving to the two-
dimensional setting helps to ground many of the definitions that have been learned with one-dimensional 
(scalar) data in a broader context. 
Toolkit Inventory Activity 

While completing the Darts MEA and reviewing their peers’ solutions, students may collectively 
identify such modeling toolkit entries as “simulating many trials” or “eliminating outliers.”  In terms of 
the “big idea” of distance, questions about how to identify or define outliers arise naturally from learners’ 
impulses to offer darts players “do-overs” under some conditions or to discard certain throws as not 
being “accurate representations” of the players’ skill level. Indeed, a somewhat unusual but by no means 
rare strategy for scoring a round is to discard the best and worst throws, basing the score solely on the 
“median” throw. While this strategy may drop out in favor of other approaches, the idea of discarding 
data may reappear in different guises, and the question of its fairness can draw out debate on a variety of 
important topics, including the nature and identification of outliers. This can be a very rich topic for 
classroom discussion, as it integrates a variety of key ideas including notions of representativeness, 
rarity, variation between and within individuals, central tendency, and distance. 
Model Adaptation Activity (MAA) 

Again building on the idea of generalizing distance from a landmark outcome (the bullseye in the 
Darts MEA), students can be asked to consider other simulations in which an outcome is a complex 
event, as, in the example shown below, 30 throws of a six-sided die. Though this situation is in some 
senses quite different from the Darts problem, students find that powerful ideas from that setting can 
guide their work in this new context. 

 
Figure 4. Model Adaptation Activity (MAA). Students generalize the idea of an invented distance from 

the Darts MEA to measure the distance of these distributions from an “expected” distribution. 
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Each of the graphs below show results from 30-roll spinner samplers that were
similar to the one on the left.  However, not all of the samplers were fair.   

1.  Using only your intuitions, rank the graphs according to which is "most likely"
and "least likely" to have come from a fair spinner.

2.  For a fair spinner, a "perfect result" would distribute results evenly across all
categories (one through six).  So, for a 30-roll sampler which has six possible
outcomes, the EXPECTED VALUE of any given outcome is five out of thirty (or
16.7%).  ...  Write a distance formula which tells how far each of these graphs are
from a "perfect result" (which has five in each category).  This distance formula
should allow you to automatically rank the results from "most likely" to "least
likely" to have come from a fair spinner.



 TME, vol. 12, no. 1,2&3, p. 192 

Here, students are first asked to rank the outcomes intuitively according to their sense of which is 
more likely to occur. Discussions reveal some agreement (usually at the extremes of “likely” and 
“unlikely” distributions), with other points of dispute (usually among the middle-likelihood 
distributions). On one hand, the agreement helps to confirm the intuitive nature of applying the idea of a 
distance and the construct of an expected value in this setting. On the other hand, the disputes drive the 
class toward establishing an explicit, quantitative definition of this distance to settle arguments. After 
developing and coming to agreement on a distance concept and working through the process of 
operationalizing it as a formula, students can express that formula computationally in the TinkerPlots 
environment and run a large number of simulated trials of fair dice. Representing these trials according 
to their distance measure (or, if there are several candidate distance measures, according to each of 
these), students estimate the probability that sample’s distribution will be a given distance, or further, 
from the expected distribution. (See Figure 5, below.) That is, students can observe that in, say, 10,000 
trials using a fair spinner, only about 100 trials yielded a distance measure of greater than a threshold 
value. This would provide an empirical estimate of the probability of meeting or exceeding this 
threshold (of approximately .01). 

Furthermore, the classroom group can use this simulation approach to reflect back on the 
distance measures themselves. For instance, they can confirm whether their measure does in fact 
correlate to likelihood (i.e., whether larger distances from the expected value are (uniformly) rarer). 
They can also make judgments about whether one definition or another does a better job of “separating” 
outcomes in different ranges. Distance measures can then more formally and confidently be connected 
with the probability of being that far or further from the expected value (essentially a one-tailed p-value). 
Finally, students can either learn that the procedure they have invented is essentially the chi-square 
measure, or they can compare their approach to that standard test. Importantly, this experience of the 
chi-square concept does not require a blind appeal to the authority of statistical tables or results from 
mathematical analysis beyond the level of middle- or high-school students, and it appropriately grounds 
such tools (when they are encountered) in intuitive notions of distance and expectation. 

 
Figure 5. TinkerPlots simulation of 10,000 trials of 30 samples, evaluated according to the class’s 

chosen definition of “distance from the expected distribution” 
 

Three Facets of MEAs that Make them Propitious Environments for Research on Risk 
Having now given an account of M&MP research in general and our approach to MEAs and 

MDSs in particular, we are in a position to discuss the application of this design research methodology 
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to study questions associated with perceptions and reasoning about risk. In particular, we describe three 
facets of MEA research that resonate with risk-related education research are as follows:  

1. They engage learners in optimization processes involving constraints and tradeoffs. MEAs 
present learners with problem settings that require them to optimize solutions and processes, 
working within constraints, making trade-offs, and accounting for second-order effects. Risk can 
play a key role in such situations, introducing the need to balance prospective gains against 
potential losses. Learners’ invented strategies can provide a rich source of information about 
their ideas and attitudes about both.  
2. They prompt learners to draw upon a wide range of problem-solving resources. MEAs 
promote reasoning and the use of knowledge resources in a broad sense, including not only 
logical/analytical thinking but also affective/intuitive thinking. As such, the view of modeling 
that emerges from such activities includes the feelings, attitudes, values, and beliefs of learners. 
Recent research has become increasingly tuned to the role of feelings and intuitions both in 
conditioning perceptions of risk and in generating the human meaning behind abstract statistics 
and probabilities; thus, these dimensions of problem solving may be of particular interest (see, 
e.g. Slovic, 2000, 2010; Borovcnik, 2011). 
3. They move beyond simplified problem settings that solicit the application of mathematical 
concepts and procedures that have been previously taught. MEAs involve learners in the 
interpretation of phenomena and situations that are not pre-classified as examples of constructs 
taught in a particular topic or textbook area. Thus, they can offer excellent opportunities for 
exploring the development of ideas associated with a variety of conceptions of uncertainty that 
are interconnected in real-world settings but that are taught and learned in different domains and 
at different points in school curricula. Because MEAs involve learners in authentic creation of 
mathematical models, they offer designers the opportunity to engage learners with phenomena 
that may evoke very different conceptions of indeterminacy, ranging from randomness and error 
on one hand to complexity and emergent phenomena on the other. Perceiving and managing risk 
may take on very different aspects in these different settings. 
We deal in more depth with each of these facets in the sections below. For each facet, we discuss 

potential contributions of M&MP research and we outline research questions and conjectures that can be 
pursued by the design research approach we have outlined above. 
Facet 1. MEAs engage learners in optimization processes involving constraints and tradeoffs 

In MEAs learners are presented with challenges that require them to optimize processes or 
outcomes, work within constraints, make trade-offs, and account for second-order effects. Many 
problems involving risk are similar in the sense that they require balancing the opportunity for some 
kind of gain with the potential for some kind of loss. Such modeling situations are conceptually rich in 
part because they demand a deep and flexible understanding of the systems that are involved. To 
understand these features, learners must envision the parameter space of a system—the range of its 
behaviors as its key parameters change. Essentially, this replaces ‘snapshot’ evaluations of a system’s 
behavior with a sense of multi-dimensional covariation. Moreover, when the consistency of a system’s 
behavior and/or the measurement of that behavior are themselves problematized, multiple notions of 
uncertainty and variation are introduced and must be coordinated. MEAs can place students in situations 
that require them to develop models of systems under these kinds of conditions; as a result, they offer 
extremely rich environments to study learners’ ways of thinking and the broader development of ideas 
about these topics 
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Risk- and uncertainty-related research questions that could be pursued via MEA designs include 
questions like the following: 

•When faced with realistic problem settings, what kinds of uncertainty and variation are most 
salient to learners and enter most strongly into their calculations and their proposed solutions?   
•Do learners develop different coping or mitigation strategies for different categories of 
variability in their data?   
•How does the frame of recommending a course of action for someone else (e.g., the “client” of 
the MEA) affect learners’ assessments of risk and the weight they assign to possible outcomes?  
Finally, in a course-length engagement with MEAs and MDSs, there are interactions with big 

ideas and constructs developed elsewhere. Taking as an example the idea of distance, as discussed above, 
we might ask whether and how learners draw on such multi-dimensional notions of distance as resources 
for expressing and operationalizing “riskiness.”  Similarly, we could attend to learners’ perceptions of 
weaknesses or limitations in using the distance construct as a definition of riskiness, and we could use 
these responses to illuminate their reasoning processes. 
Facet 2. MEAs prompt learners to draw upon a wide range of problem-solving resources  

Research in modeling indicates that learners develop problem-solving personae over an extended 
period of engaging with problems like those found in MEAs (Hamilton, Lesh, Lester, & Yoon, 2007). 
Investigations using the Reflection Tools that are part of MDS designs described above increasingly 
suggest that while these problem-solving personae may have a logical or technical core, they also 
involve “soft” aspects of knowledge, including attitudes, feelings, and beliefs (both about oneself and 
the domain). Here, we find a strong potential overlap with recent studies on the psychology of risk 
perception, which emphasize the impact of non-logical processes on learners’ conceptions of risks and 
probabilities. Particularly interesting in this regard is evidence supporting dual process theories of 
probabilistic thinking and responses to risk (e.g., Kahneman, Slovic, & Tversky, 1982; Kahneman & 
Frederick, 2002). Such research posits the existence of “heuristics” that support intuitive, “System 1” 
responses to real-world situations. More generally, the role of feelings in human responses to risk and 
uncertainty is increasingly important in this domain, as led by work of Slovic and colleagues (e.g., 
Slovic, 2000, 2010). Their research has established an “affect heuristic” (Finucane et al, 2000; Slovic et 
al, 2002), by which “feelings serve as an important cue for risk/benefit judgments and decisions.” 
(Slovic, 2010, xxi). 

In spite of evidence that people do in fact give great weight to their intuitive, experiential sense 
of risk, as compared with more deliberative and analytical sense-making processes, Slovic and 
colleagues do not argue in favor of extirpating the intuitive in favor of the analytical. On the contrary, 
their research suggests that intuitive and experiential factors play a key role in grasping the meaning of 
probabilistic situations, so as to weigh risks appropriately (Slovic, 2002). That is, this line of research 
suggests “we, as a species, think best when we allow numbers and narratives, abstract information and 
experiential discourse, to interact, to work together” (Slovic, 2010, p. 79). At the same time, there are 
many situations in which humans can be misled by their feelings. A reasonable approach to this dilemma 
would seem to involve supporting learners in building both a better toolkit for analytical thought and 
more effective ways of associating or formulating stories, scenarios, and images for data, as resources 
for affective responses (see also Borovcnik, 2011).  

Of course, understanding the affect heuristic and its relation to other dynamics of risk perception 
and reasoning is an ongoing challenge. Here, the design of MEAs can offer researchers a range of tools 
for getting at related questions. For instance: 
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•How does the social setting of a small problem solving group change the nature of risk 
perception in its members?  Does in-the-moment social discourse provide resources that can be 
used by the group to blend System 1 and System 2 responses? 
•How durable is affect-based risk perception?  Does it leave traces in the solution strategies 
formulated by groups and/or in their communication strategy for explaining their solutions to the 
“client” of the MEA? 
Finally, connecting again with the distance theme, when the likelihoods of threats and risks (or, 

benefits and rewards) are described with reference to distance, does this promote new and/or 
unanticipated ways of thinking about contingency?  A spatial metaphor may, for example, suggest to 
learners notions of intervening regions or “buffers” affected by and depleting the threat or benefit. 
Researching Facet 2:  Early design of an MEA and MDS on Probability and Risk Perceptions 

We have not yet incorporated activities specifically focused on risk perception and reasoning 
with our existing materials on data modeling and statistics. However, we have begun the design process 
of creating an MEA and MDS to study related issues, and we describe some of our conjectures here. The 
process of designing MEAs is itself an iterative modeling process, and so we expect that our thinking in 
this area will develop significantly as we proceed. 

A preliminary statement of a prototype-MEA, the Charity Benefit problem, is shown below:  

  
Figure 6. The Charity Casino Night problem. 

In building toward this problem, we explored several questions with small groups of 7th-9th grade 
learners from a weekend enrichment program. The first question was whether the students would find it 
interesting to invent chance-based gambles. We found this to be both an engaging and a revealing 
activity, particularly when the task was phrased in terms of creating gambles that would fool prospective 
players about the likelihood of winning. Our most recent activity to test the viability of this type of 
design task was as follows:  Each group worked independently to design a pair of chance-based gambles. 
When all groups had completed their designs, one group was chosen to present. An opposing group (the 

Charity Casino Night Benefit 
In this activity, your task is to design two different chance-based gambling booths for 
a charity benefit event. At charity benefits, the attendees are in principle happy for the 
“house” to win more than the players, but they still want the games to offer them a 
reasonable chance of winning. In fact, they may be more likely to play the games 
where they think they are more likely to win. 
 
The organizers of the benefit expect approximately 500 people to attend the event. As 
you design your two booths, be sure to explain to the benefit organizers:  

• how each game is played, 
• how much the organizers should charge people to play each game, and 
• how much each game should pay out to winners.  

NOTE: In writing your game’s rules and describing a player’s winnings, be sure to clarify how the 
player’s stake (what they paid to play) is treated when they win. For example, if the game costs $1 to 
play and winners receive $2, does this mean that they receive $2 plus the $1 they staked, or $2 including 
the $1 they staked? 
 
Write a letter to the benefit organizers including the description of your game and any 
guidance you can give them about what they can expect to earn from your two booths 
in the one-night charity benefit event. 
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“challengers”) was offered their choice of the two, and the students themselves (the “authors”) were then 
forced to take the other gamble. The challengers and the authors then played their gambles until one side 
won. Following the challenge, the authors explained their design, with an emphasis on demonstrating 
which side “should have won” based on the relative probabilities of winning the two gambles.  

In the students’ designs, “analytical” strategies (such as creating gambles whose probabilities 
were difficult to compute) were deeply mixed with “psychological” or “rhetorical” strategies, in which 
the authors attempted to manipulate their opponents’ perceptions of relative probabilities through 
various means. Figures 7-9, below, show three groups’ challenges. In Figure 7, the group hoped that the 
phrasing of Game 1 would trigger their opponents to assess the probability of winning as 1/36 rather 
than 1/6. In Figure 8, the group used contrasting descriptions (descriptions of winning in Game 1 versus 
descriptions of losing in Game 2) to attempt to manipulate their imagined opponents’ assessment of 
probabilities. In Figure 9, the group was hoping their opponents would focus of the number of winning 
balls, instead of the proportion of winning outcomes to total outcomes. (In fact, the students’ calculation 
of the probability for game 2 was incorrect, so Game 1 actually had slightly more favorable odds.) 

 
Figure 7. Students are attempting to cue the idea of a 1/36 probability for double sixes in Game 1. 

 
Figure 8. By describing winning conditions in Game 1 and losing conditions in Game 2, this group 

hoped to lure opponents into choosing the less-favorable gamble. 
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Figure 9. There are more “winning balls” in Game 1, but more chances to draw in Game 2. 
This early experiment has suggested the potential of designs in which students attempt to 

manipulate the presentation of a gamble to make it more likely for another person to mis-perceive the 
odds. To capitalize on this feature in the Charity Benefit MEA, we plan in our next iteration to convert 
the “poster session” of the MEA into a simulation of the charity event itself. To do this, we will use a 
networked participatory simulation or “PartSim”(Colella, 2000; Colella, Borovoy, & Resnick, 1998; 
Wilensky & Stroup, 1999a; Klopfer, Yoon & Perry, 2005), implemented using the HubNet module 
(Wilenksy & Stroup, 1999b) of NetLogo. In this simulation one group member will “man” the group’s 
booths while their groupmates circulate in the virtual charity casino, spending an allotment of tokens on 
the available games.  

In other work related to social policy and risk of flooding (Brady et. al, in preparation), we have 
seen the power of such PartSims to provide learners with a “feeling of risk” (Slovic, 2010), even when 
the associated computer visualizations are quite simple and do not provide an immersive “virtual reality” 
experience. In the Charity Event PartSim, we aim to provide two kinds of risk sensation:  one, for the 
two roving players, as they make selections similar to those that gamblers at the event would do; and a 
second, for the booth-manning team member, who can monitor many more instances of game play and 
watch the winnings for the booths, compared to the expectations they have stated in their designs. 
Students will circulate among roles, experiencing both. If our flood modeling experience is a good 
indicator, students in both roles will feel substantial and “realistic” levels of tension about the results, 
even though no actual currency is at stake in the gains or losses of the PartSim.  

Patterns that emerge in students’ interactions with the PartSim will also create realistic feedback 
to the groups about the relative attractiveness of their games. Games with more attractive winning 
propositions may be played more often, and this will give them a greater opportunity to return revenue 
as expected by the theoretical probabilities that underlie their gambles. On the other hand, the “casino” 
environment will also introduce complications and complexities that should make the analysis of the 
experience and the data that results into rich contexts for reflection and discussion. For instance, games 
that happen to return atypical results in their early plays or games that return variable winnings may 
experience changes in popularity that the group can reason about in terms of such concepts as 
information cascades on the one hand or the attractiveness of certain kinds of winnings profiles on the 
other. In any case, the tabulated results on the net revenues earned for the charity will be a dataset 
worthy of group reflection, as will be the various experiences and perceptions of the learners-as-players. 
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Facet 3. MEAs move beyond simplified problem settings that solicit the application of 
mathematical concepts and procedures that have been previously taught.  

M&MP research argues that models are conceptual systems that support and organize perception 
itself. In a wide range of settings, when we engage with the world our models enable us to see 
phenomena in particular ways: they make selected attributes of situations salient to us, and they orient us 
toward potential actions and judgments. Our mathematical models do this work in ways that emphasize 
structural features of situations. Among other things, this means that in realistic problem settings, 
experts distinguish themselves from non-experts not only by what they do but also by what they 
perceive.  

This perspective also implies that authentic modeling is a fundamentally interpretive process. 
MEAs, like real-world problem settings, are not framed as occasions to apply a particular procedure or 
construct. Instead, they admit a variety of possible approaches, and most adequate solutions are 
characterized by bringing together ideas from different subject areas. In general, a modeler’s entire store 
of prior knowledge and experiences acts as an interpretation system through which she or he is able to 
make sense of new phenomena. And in the cyclic modeling process of MEAs, learners build upon their 
past experiences and prior knowledge to develop new ways of seeing problem situations. Again, this is 
one of the primary reasons why solutions to MEAs often incorporate ideas from across the experience 
base of problem solvers. They may draw on ideas and techniques from multiple domains or textbook 
topic areas, and they may merge logical analyses and calculations with value-based judgments, feelings, 
and beliefs. 

We argue that research is needed to investigate fundamental questions about students’ reasoning 
and what it means to understand core ideas in probability, uncertainty, and risk. Given this, we believe it 
is essential to study learners’ modeling processes in settings that feature open and authentic inquiry in 
the sense descried above. The openness and authenticity of the challenge is critical to the value of 
modeling activities and can be overlooked in discussions of modeling. For instance, in spite of an 
encouraging emphasis on “modeling” in the Common Core State Standards in Mathematics (CCSSM, 
2010), it is unfortunately possible to see the description of modeling there as describing mere 
applications of already-learned mathematical constructs to simplified real-world situations. As an 
example, in the CCSSM practice standard, “Model with Mathematics” we read: 

Mathematically proficient students can apply the mathematics they know to solve 
problems arising in everyday life, society, and the workplace. In early grades, this might 
be as simple as writing an addition equation to describe a situation. In middle grades, a 
student might apply proportional reasoning to plan a school event or analyze a problem 
in the community. By high school, a student might use geometry to solve a design 
problem or use a function to describe how one quantity of interest depends on another. 
Mathematically proficient students who can apply what they know are comfortable 
making assumptions and approximations to simplify a complicated situation, realizing 
that these may need revision later. They are able to identify important quantities in a 
practical situation and map their relationships using such tools as diagrams, two-way 
tables, graphs, flowcharts and formulas. They can analyze those relationships 
mathematically to draw conclusions. They routinely interpret their mathematical results 
in the context of the situation and reflect on whether the results make sense, possibly 
improving the model if it has not served its purpose. (CCSSM, 2010, emphasis [with 
italics] added) 
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The distinction between modeling and application is essential, both to research and to teaching. 
When problems are offered to learners as mere applications of particular mathematical principles or 
concepts, students do not experience authentic, fundamental challenges of interpretation. In contrast, 
when learners are presented with realistically complex problems (before instruction), they may engage 
in modeling as we have described it: a fully interpretive struggle. Student thinking in these contexts can 
thus illuminate connections and relations between topics normally treated as separate. We argue that this 
is particularly true with probability and uncertainty, and we believe that this is one of the reasons to 
expect that MEA-based research can be illuminating in this area. 

In fact, there are dimensions of research in risk and uncertainty that can be specifically 
illuminated by this form of learning activity. In closing this section, we outline one such topic: the 
distinction between sources and types of variation. In conducting authentic inquiry or making sense of 
novel situations, modelers often engage with various forms of uncertainty and may interpret them as 
arising from a variety of causes or mechanisms—for example, as due to error, to chance, or to 
complexity. Their tacit or explicit classification of these sources of uncertainty and variation may frame 
their modeling activity to highlight dimensions of the phenomena they describe, for example focusing on 
issues of measurement, on the action of unpredictable or stochastic systems, or on the operation of 
systems involving feedback loops, emergence, or sensitive dependence on contextual conditions.  

Importantly, many rich or multi-layered phenomena admit more than one valid interpretation. 
Moreover, even when one source or type of variation is dominant, the quantitative data collected from 
such settings themselves do not always offer distinctive cues to guide correct classification. For instance, 
the distributions of Figures 10 and 11, below, arise from situations that are more or less clearly 
dominated by issues of measurement (10a), probability (10b), and complexity (11). Yet the data 
distributions themselves are all visually similar and do not betray the types of mechanisms that 
generated them. As with “distribution,” so too with other core ideas involved in modeling risk and 
uncertainty, which also cut across these domains (e.g., variation, independence, sample space, or 
expected value). 

Given that the data themselves may not determine the “correct” model or interpretation of the 
source of uncertainty in the situation, students have the opportunity to engage in authentic forms of 
argumentation, negotiation and inquiry. In such settings, students’ different ways of thinking about 
phenomena and the different resources they draw on for interpretation can offer researchers insights 
about possible connections among ideas.  

   
Figure 10. Measurement (left). Distributions in measures of the circumference of the teacher’s head 
using a ruler and a measuring tape (after Konold & Lehrer, 2008). Probability and sampling (right). 

Revenue outcomes from one booth in 1,000 simulated charity events in the extended gamble activity. 
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Figure 11.  Complexity. Periodic sampling of the sheep population in a NetLogo simulated ecosystem. 

Furthermore, in the course of developing solutions to modeling problems, learners are forced to 
take a range of stances toward the uncertainty they encounter in phenomena, depending on their 
immediate goal and focus. These stances include: 

•Conceptualizing the situation. Here, the modeler invokes notions of uncertainty, chance, or 
complexity in making sense of the primary phenomenon (i.e., answering the question, “What 
kind of thing is it that we are describing?”). 
•Gaining data or information about the situation. In making or analyzing measurements of any 
phenomena, modelers grapple with error and imprecision. Further some forms of measurement 
may come to seem epistemologically problematic (i.e., these actions introduce a kind of 
“Heisenberg” principle, the urgency of which is heightened by the framing in terms of risk). 
•Describing and interpreting a collection of data about the situation. In understanding situations 
of uncertainty, we engage such concepts as our “expectation,” or our assessments of “best case 
and worst case scenarios.” Different domains offer different tools for addressing these questions, 
even if most involve some form of statistical thinking. We have shown above how distance can 
act as such a tool, one that derives from students’ experiences of geometry and physical 
measurement. 
•Combining and weighing these perspectives to formulate a strategy or decision in response to 
the situation at hand. Returning to ideas of variation, managing risk may primarily involve 
controlling and minimizing variation, or describing its cause and estimating its consequences on 
some other process or decision. In such cases, substantially different approaches and lines of 
inquiry may suggest themselves depending on whether the modeler views the variation in the 
system as arising from error (e.g., “noise,”), from inherent randomness, or from complexity (e.g., 
“feedback” or “emergence”). 
In MEAs, as learners assume any of these stances toward the phenomena they are modeling, or 

as they shift among them, their work offers us different perspectives on their emerging thinking. 
Moreover, these stances toward a problem do not necessarily form a sequence: learners may cycle 
through them multiple times, with the thinking from each stance deeply affecting the others.  

 
Conclusion 

We have a great deal to learn about idea development in authentic problem settings where 
probabilistic reasoning, uncertainty, and risk are foregrounded. In this article we have argued that 
Model-Eliciting Activities and Model Development Sequences can offer promising settings for 
investigating key questions in this area. In closing, we note that in this area as in many others, learners’ 
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knowledge is constituted as much by connections forged between big ideas in the domain and between 
these ideas and prototype situations as by an “intrinsic” understanding of these big ideas in isolation. 
The process of learning may therefore be expected to be multi-dimensional and non-linear. Thus, 
research into idea development in this area needs to identify both (a) local operational definitions of 
what it means for students to have learned big ideas in the domain, and (b) longer-timescale accounts of 
students’ growing appreciation of the significance and interrelatedness of these big ideas. We hope that 
the focus on learning processes across multiple MEAs and MDS units can contribute insights to this 
ongoing effort. 
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