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Abstract: Clarifying what is normative or appropriate reasoning under various circumstances provides a valuable 
reference for guiding what should be taught, and, in contrast, what should not be. This paper proposes a cognitive 
framework for viewing normative reasoning and behavior under uncertainty, including the applying of knowledge 
of probability and statistics in real world situations; and identifies implications for educational practice. Factors 
relevant to normative reasoning under uncertainty that are addressed within the framework include: risk of 
misapplying statistics knowledge, involvement of mathematical and non-mathematical reasoning, knowledge of 
real world domains and situation/application detail, and existence of expert consensus. The cognitive framework 
is illustrated using examples of reasoning about risk, including industry standards for risk management. The work 
of Kahneman and Tversky, G. Gigerenzer, and others is related to and contrasted to the framework presented. 

Keywords: reasoning under uncertainty, statistical reasoning, probabilistic reasoning, risk, improving 
probability education, improving statistics education, misapplication of statistics, statistics application. 

 
Introduction 

Clarifying what is normative or appropriate reasoning under various circumstances provides a 
valuable reference for guiding what should be taught, and, in contrast, what should not be. This paper 
proposes a cognitive framework for viewing normative reasoning and behavior under uncertainty, 
including the applying of knowledge of probability and statistics in real world situations; and identifies 
implications for educational practice. In sections below, factors relevant to normative reasoning under 
uncertainty are identified, illustrated with examples, and related to the research literature on reasoning 
under uncertainty. In particular, examples involving reasoning about risk are addressed, including 
reasoning reflected in industry standards for risk management. In the final sections, the factors are 
integrated into a cognitive framework; and implications for educational practice are identified.     

In real world situations, we are often in the position that the outcome of a situation, which is 
subject to uncertainty, matters to us. To reason and behave normatively at such times is important, since 
doing so helps to bring on potential benefits and/or to stave off potential difficulties. Such real world 
situations draw interest and are engaging, and typically call for action, because the results matter. Such 
real world situations also are aptly described as involving risk. Not only is the outcome of the situation 
uncertain, with alternative possible outcomes, but the possible outcomes have positive or negative 
impact, so that there is risk that a positive outcome will not occur, and/or risk that a negative outcome 
will occur. By addressing what is normative reasoning and behavior in such situations, the cognitive 
framework presented here applies in general to reasoning about risk. 

As a simple example, consider observing the rolling of a pair of six-sided dice. There is 
uncertainty in the outcomes, but unless the rolling occurs in the context of a game or other real world 
consequences, the outcomes don’t really matter. Now, consider that the rolling of the dice is occurring in 
the context of gambling, and that you are about to place a large sum of your money as a bet on the 
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outcome of the roll. Now the outcome is more important, the situation is more engaging, you are 
interested in your options for action that may make a difference in the situation, and there is risk. As 
another example, consider that you are a young person and occasionally contemplate your own mortality, 
but realize that, due to your generally safe environment and healthy habits, your odds are good that you 
will live a long life; and so the issue of your possible early death is not of real concern to you. Now 
consider that you and your spouse are just starting a family. Although the probability that you will die 
relatively young is still low, now the possibility of your early death is of concern to you, since it would 
have a great financial and otherwise life-impacting effect on your remaining family. The situation 
regarding your mortality is now more important, more engaging, involves risk, and has led you to 
consider possible actions, including buying life insurance.  

The focus of the framework presented here is not just on people’s judgments of probability of 
outcomes in situations involving uncertainty, but a broader sense of reasoning under uncertainty that 
includes consideration of risk, perceived consequences of outcomes, and human actions/ behavior in that 
context. 

 
Mathematical and Non-mathematical Reasoning 

Historically, the research area of “reasoning under uncertainty” in cognitive psychology and 
decision science has been closely identified with the mathematics of probability and statistics. In a 
seminal paper in the field, Tversky and Kahneman (1974) reported their research in which adults had 
been posed written problems calling for them to reason and make judgments under uncertainty; and the 
authors concluded that their subjects showed “biases” and “errors” in their judgments, using reasoning 
heuristics, such as representativeness and availability, while not being influenced by relevant 
mathematical information provided in the problems, such as prior probabilities or base rates, and sample 
sizes. The authors describe the representativeness heuristic as judging the probability that an object A 
belongs to a class B, or that an event A originates from a process B, “by the degree to which A is 
representative of B, that is, by the degree to which A resembles B” (p.1124). An example provided is the 
case of being given a written personality sketch of a person and being asked to judge the probability that 
the person has a particular occupation, such as librarian, engineer, or lawyer; and making the judgment 
based on the person’s similarity to one’s stereotype for the occupation. The availability heuristic refers 
to assessing “the frequency of a class or the probability of an event by the ease with which instances or 
occurrences can be brought to mind” (p. 1127). An example provided is the case of “assess[ing] the risk 
of heart attack among middle-aged people by recalling such occurrences among one’s acquaintances” 
(p.1127). The body of research on heuristics and biases in reasoning and judgment has grown over the 
decades (for example, see compilations of research in Kahneman, Slovic, & Tversky, 1982; and 
Gilovich, Griffin, & Kahneman, 2002). A continuing theme within the body of research has been to note 
the presence of error in human judgment under uncertainty with respect to not understanding basic 
principles of probability and statistics and/or not applying them when appropriate. In a review of his 
work and others’ on heuristics and biases, Kahneman (2011) noted that a takeaway of the work is “that 
there are distinctive patterns in the errors people make” in their “judgments and choices” (p.3). 

Others have objected to the negative view of human ability and performance that has come along 
with the “heuristics and biases” literature, and have observed that people, in their daily activities do 
regularly encounter uncertainties, and show competence in dealing with them, although they may use 
heuristic reasoning, and not be applying a knowledge of probability and statistics in these situations. For 
example, Cohen (1981) noted regarding research on heuristics and biases, that subjects’ performance on 
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unfamiliar tasks and in laboratory conditions, is not an adequate basis for judging their rationality or 
competence; and that, in some cases, subjects may legitimately interpret the problem differently than 
does the experimenter, and respond rationally within their interpretation. Also, he noted that some of the 
research is merely a “test of intelligence or education” (p.325), demonstrating “a lack of mathematical or 
scientific expertise” (p. 325) that is unreasonable to expect that all would have. Kahneman (2011) has 
defended the negative focus of the heuristics and biases literature by drawing an analogy to the 
legitimate attention to the study of disease in the field of medicine (p.4). 

To call out “error” in judgments and choices, as is done in the heuristics and biases literature, is 
to presume some notion of what is normative or appropriate to do under the circumstances in which the 
error was observed. Cohen (1981) criticized researchers’ tendency to assume an “inappropriate 
normative theory” (p.328) drawn from logic and statistics, not recognizing that many important 
normative issues are still controversial among experts in the field. Lopes and Oden (1991) criticized the 
heuristics and biases literature for its “normative models drawn from probability theory, economics, and 
logic” (p.201), inadequate to serve for the broad range of human decision making under uncertainty. 
They noted that, in the field of artificial intelligence, where intelligent performance of machines is the 
goal, heuristic reasoning is viewed positively and researchers “seek … out and embrace” (p.209) the use 
of heuristics. Lopes and Oden advocate the positive perspective that observed human performance 
“signal[s] the operation of a quite different kind of intelligence than is implied by conventional notions 
of rationality, an intelligence reflecting the properties of the [human’s] massively parallel computational 
system that has evolved to meet the requirements of existence in a noisy, uncertain, and unstable world” 
(p.201). 

Gigerenzer (1996) has critiqued the heuristics and biases literature as having too narrow a view 
of normative reasoning, and being too vague regarding the cognitive processes involved in heuristic 
reasoning. Regarding the narrow view of norms, he noted that, within the literature, there is a “practice 
of imposing a statistical principle as a norm without examining content” (p.593) of the problem posed; 
he says, “A convenient statistical principle, such as the conjunction rule or Bayes’s rule, is chosen as 
normative, and some real-world content is filled in afterward, on the assumption that only structure 
matters. The content of the problem is not analyzed in building the normative model, nor are the specific 
assumptions people make about the situation” (p.592). So the failure of researchers to more broadly 
analyze the content of the problem and reasonable potential interpretations, then bypasses analysis of 
information that is needed to determine what is normative reasoning under the circumstances. As an 
example, Gigerenzer noted that the words “probable” and “and” used in a written problem, may 
legitimately be interpreted with natural language meanings by subjects, while researchers intend their 
interpretation as mathematical or logical terms; and the subjects’ reasonable interpretations bear on what 
is normative reasoning under the circumstances.  

Instead of viewing heuristic reasoning as being subject to error due to ignoring some information, 
Gigerenzer and Gaissmaier (2011) make the point that the use of heuristic reasoning that “ignor[es] part 
of the information can lead to more accurate judgments than weighting and adding all information, for 
instance for low predictability and small samples” (p.451). They note that “for many decisions, the 
assumptions of rational models [defined by logic or statistical models] are not met, and it is an empirical 
rather than an a priori issue how well cognitive heuristics function in an uncertain world” (p.451). 

Regarding normative reasoning under uncertainty, then, a conclusion here is that both 
mathematical reasoning (using mathematical logic, probability, and statistics) and non-mathematical 
reasoning (such as heuristic reasoning and language interpretation) have a role. Non-mathematical 
reasoning is used here as a broad umbrella term to contrast to mathematical reasoning, the latter 
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referring to reasoning using the formal subject matter of mathematics, including concepts, principles, 
and techniques of logic, probability, and statistics. It should be noted that what is called here non-
mathematical reasoning nonetheless may have quantitative aspects, such as judging degrees of similarity 
and frequency. It is beyond the scope of this paper to provide an inventory and elaborated description of 
this rich and important category that is simply bundled here as non-mathematical reasoning. For many 
real world problems involving uncertainty, probability and statistics are powerful tools applicable to the 
circumstances, and are widely acknowledged as the norm to use under those circumstances. However, 
there are also situations involving uncertainty in which models based on probability or statistics do not 
apply, e.g., when the required assumptions for the model are not met; and yet, effective reasoning 
leading to adaptive judgments and behavior may proceed using heuristic reasoning. For some situations, 
there may look like a way to apply mathematics, but that application of mathematics in the situation may 
not be normative. In the later section that introduces the cognitive framework for normative reasoning 
and behavior under uncertainty, an example is presented which illustrates the need for caution in 
applying mathematical reasoning and the role of non-mathematical reasoning in normative reasoning 
and behavior. 

 

Risk of Misapplying Knowledge of Probability and Statistics 
The power and value of knowledge of probability and statistics lies in its appropriate application 

in real world situations. If the applicability of the math in certain circumstances is controversial, or if 
one applies the math to a situation without care to attend to relevant detail, or if one’s knowledge is 
partial or lacks the firmness to ensure appropriate application to the circumstances, then there is real 
potential for misapplication. In such cases, to apply such knowledge involves risk and calls for 
awareness of the risk.  

Misapplications of knowledge in probability and statistics may also occur intentionally with self-
serving motivation, what has been called “lying with statistics,” done by those who aim to take 
advantage of an audience who is inattentive, unsuspecting, and/or weak in statistics knowledge, with the 
goal to reap advantage for themselves to the detriment of others. Due to this possibility, the use of 
reported statistical information in reasoning involves risk and calls for awareness of the risk. 

The risk of misapplication is greater, the greater the likelihood that the application of knowledge 
is in error, and the greater the negative impact of the error(s). Regarding negative impacts, 
misapplications may lead to flawed statistical results, e.g., inaccurate estimates or false reports of 
statistical significance of results. And then those flawed results may be used as a factor in decision-
making, leading to unsound decisions with follow-on negative consequences. Whether the situation 
relates to results in medical science and patient treatment choices, business data and product promotion 
decisions, political polling and decisions on allocation of campaign resources, environmental impact 
data and setting of government environmental policy, product information in consumer reports and 
personal purchasing decisions, or other matters, the negative consequences of misapplication of 
knowledge of probability and statistics may be great.  

Regarding the likelihood of a person’s application of probability and statistics in a situation 
being in error, relevant is the chronic finding concerning modern education in probability and statistics 
that the subject matters are difficult for students to learn and for teachers to effectively teach. In a 
frequently cited research review from over 25 years ago, Garfield and Ahlgren (1988) concluded: “… 
despite the enthusiastic development of new instructional materials, little seems to be known about how 
to teach probability and statistics effectively” (p. 45). In a more recent research review, Tishkovskaya 
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and Lancaster (2012) conclude that “Despite the widespread emphasis on reform in the teaching of 
statistics and the increase in papers on statistics education in the research literature, statistics is still 
viewed as a discipline with a need for significant improvement in how students are educated (Garfield & 
Ben-Zvi, 2008)” (p. 2).  

Considering the circumstances just reviewed, including widespread weak knowledge of 
probability and statistics, yielding potential for misapplication of probability and statistics, and the range 
of negative impacts that may result from misapplication; therefore, in present circumstances, it is 
reasonable to view the risk of misapplying probability and statistics as significant. 

There is evidence that even those who have taken courses in probability and statistics as part of 
their professional training, and who use statistical methods in their profession, fail to apply those 
methods appropriately, to the detriment of their professional work (Simmons, Nelson, & Simonsohn, 
2011; Ioannidis, 2005; John, Loewenstein, & Prelec, 2012). This is presumably due at least in part to 
problems in learning the subject, and may also occur intentionally with self-serving motivation, e.g., 
manipulating data to be able to report statistically significant results and get one’s work published. It is 
reasonable to suppose that the follow-on negative consequences of such professional misapplication of 
probability and statistics, including wasted effort and opportunity lost, incurred across the broad range of 
professional fields, is great.  

In this paper, I raise the point that it is right to take into account in reasoning under uncertainty 
the risk of misapplying knowledge of probability and statistics. In a sense, the mathematics is a double-
edged sword—powerful when applicable and applied appropriately, and also presenting great risk, both 
from unintentional misapplication, and from intentional misuse. Regarding the unintentional 
misapplication, it is a virtue to appreciate the limits of one’s own state of knowledge. Incompleteness 
and lack of firmness in one’s own knowledge is a true source of uncertainty, as one analyzes a situation 
and faces decision-making under uncertainty. Self-awareness and accuracy of perception of one’s own 
weaknesses in knowledge supports normative reasoning and behavior for the individual in those 
circumstances. Recognizing the virtue of such awareness is akin to appreciating the wise saying, “A 
little knowledge is a dangerous thing.” Regarding the intentional misuse, given the reality of its presence 
(e.g., in commercial advertising, political campaigning, and business financial reporting), again, it is a 
virtue to consider this factor in reasoning under uncertainty, being circumspect in evaluating reported 
statistical results and in integrating them into one’s own reasoning. 

Illustrations and Discussion 
To illustrate the potential for error in applying knowledge of probability and statistics, two real 

world examples are described below, that involve drawing inferences about a population from a sample. 
Discussion follows regarding the potential errors and negative consequences.  

Two examples. Consider the case of conducting an opinion survey and compiling the results; or 
sampling products from a manufacturing process, and measuring the sample’s characteristics. In the case 
of the survey, for each item on the survey, the percentage of people in the sample making each possible 
response is tabulated. In the case of the manufacturing process, for each sampled product, measurements 
are taken for a set of characteristics of the product, and the mean measurement (arithmetic average) for 
each of the characteristics (across the products in the sample) is calculated. One may now conclude that 
the opinion percentages in the sample tell us the opinion percentages in the population as a whole (or 
close to it); and one may conclude that the manufacturing process, in general, produces products with 
the mean measurements obtained from the sample (or close to it); but if one were to do so, one would be 
misapplying knowledge of probability and statistics. What are the errors? 
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Need evidence that the sample is representative of the population. Steps need to have been 
taken to ensure that the sample is representative of the population about which one wishes to make 
inferences. In the case of a survey, this means that the demographic characteristics of the sample should 
match the demographic characteristics of the population. So, for example, one should sample the full age 
spectrum, and not just residents at a retirement community or just newly registered voters. If one wants 
to predict the outcome of an election, then one should sample likely voters (ones that have a history of 
voting regularly), and certainly not just unlikely voters. In the case of the manufacturing product sample, 
one should sample from the range of products about which one wants to draw conclusions, and not just 
the products that are least costly to sample, or for which one expects the “best performance” for the 
characteristics; and one should sample from the full spectrum of manufacturing conditions, e.g., from 
both day and night shifts, and from a range of typical manufacturing equipment conditions. To 
summarize, the procedures for data collection and analysis should be designed and be faithfully 
executed to ensure that the sample is representative of the population. In reality, samples may be 
collected in an unplanned manner; or in a manner to minimize collection time and/or cost, without 
regard to the resultant representativeness of the sample; or in a manner designed to manipulate results to 
a desired end instead of focusing on having a representative sample. Large data sets may be collected 
using multiple personnel, each using different and undocumented procedures; and respondents in a study 
may be anonymous, without demographic information collected; and such circumstances limit the 
usefulness of the data set for making inferences about the population. Random sampling from a 
population is a technique to obtain a representative sample, but that technique has not necessarily been 
faithfully used.  

The mean can be a misleading measure of central tendency. Just knowing the mean (arithmetic 
average) of a sample, or of the entire population of focus for that matter, does not tell one what the 
underlying distribution of the population is. Although one may expect the bulk of a distribution to be 
around the population’s mean, and that may often be true, such as for a normal distribution; it is also 
possible for it not to be true, such as is the case for bimodal or highly skewed distributions. For example, 
household income in the United States is a highly skewed distribution, with a long tail extending up into 
the super rich range; and the population mean income is much higher than the income of the central bulk 
of the population. For that reason, the median and not the mean is used in government reporting of US 
household income trends. In the case of an opinion survey, one may have a bimodal distribution if two 
groups comprising the population respond very differently to a question (e.g., teenagers and adults). In 
the case of measuring products from a manufacturing process, one may have a bimodal distribution if 
settings of the manufacturing machinery shift abruptly (e.g., accidentally due to human error, or due to 
mechanical failure) during the time when the sample is being collected. In these examples, the mean of 
the sample is a misleading measure of central tendency, since it does not inform one about where the 
bulk of the population lies, and, indeed, it may be in a range where very little of the population falls. 

Need to take into account the sample size, whether sampling is random, and population 
variance. Since there is variation in a population, evident in its distribution, a single observation taken 
randomly from the population may be from anywhere in the possible range. When a random sample is 
taken from any population, the larger the sample size, the sample mean approaches being normally 
distributed with the mean being the same as for the population from which the sample is drawn (by the 
classical Central Limit Theorem). Thus, in the examples, for the sample mean to be informative 
regarding the population mean, the sample must be random and of sufficient size; and the larger the 
variance of the population, the larger the sample size is needed to bound the estimate of the population 
mean. The general caution is not to make wide-sweeping conclusions about a population based on a few 
observations or a small sample, and when the sample is not random.  
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Need to take into account required assumptions when applying statistical techniques. Based on 
an opinion survey, one might want to assess whether teenagers and adults differ in their opinions on a 
particular issue. Or, similarly, based on manufacturing product measurements, one might want to assess 
whether production quality differs for the day shift and the night shift. Both these inquiries relate to 
whether two groups are different. There are statistical tests designed to assess whether two groups are 
different, and these tests have assumptions that apply for their use. A commonly used test for difference 
between two groups is the Student’s t-test, which assumes the data from the two populations are each 
normally distributed with the same variance. If the assumptions for the use of a statistical test do not 
hold for the situation of study, then to use that statistical test in that situation is not appropriate, and to 
do so may yield misleading results. Data is not always normally distributed, so use of techniques that 
assume normally distributed data is not always appropriate. For testing whether two groups differ, there 
are non-parametric statistical tests that apply no matter what the two population distributions are, such as 
the Mann-Whitney U-test, which is based on ranking of scores. Unless the assumptions for a technique’s 
use are met in the situation to which it is applied, the results may be misleading, and lead to unsound 
decisions and negative follow-on consequences.  

Need to consider practical significance along with statistical significance, notably when 
sample size is large.  Continuing the example of looking for whether there are differences between two 
groups, and assuming that an appropriate statistical test is applied, let us say that a statistically 
significant difference is reported. So, for example, for the opinion survey, teenagers and adults are found 
to differ statistically significantly in their support for increased federal funding for low interest student 
loans. For the manufacturing product measurements, product quality is found to be statistically 
significantly different for the day and night shifts. A natural conclusion in both these cases may be that 
the results are meaningful, relevant, and noteworthy. However, that may not be the case. It is not just the 
statistical significance of the difference that matters, but also the magnitude of the observed difference 
between groups. A very small difference between groups may be detected by a statistical test if the 
sample size is large enough. In the two examples, if the sample size is large (e.g., 200), the actual 
magnitude of the observed difference between the two groups (that are statistically significantly 
different) may be quite small, not large enough to warrant treating the two groups differently, or 
warranting any action based on the observed difference between groups. An example of an abuse related 
to this principle is when a researcher seeks to conduct a study that will yield statistically significant 
results so that it will be publishable, and designs a study for which there is low effort and cost to include 
additional subjects or items in the study, accumulates large sample sizes for the two groups, and obtains 
results that show a statistically significant difference between groups, and show only a small observed 
magnitude difference between the groups, thus producing results that are of limited usefulness or merit. 

The above real world examples and discussion provide a brief view into specific potential 
misapplications of knowledge of probability and statistics and potential follow-on negative impacts, to 
illustrate that the risk of misapplication of knowledge is broadly present and practically significant in 
real world situations. It is a true source of uncertainty, of which it is a virtue to be aware and to address 
with reason; and, it is right to be included in a description of normative reasoning under uncertainty.  

 
Real World Domain Knowledge and Situation/Application Detail  

Reasoning under uncertainty involving the application of knowledge of probability and statistics 
involves reasoning about the real world situation to which the math is applied. The illustrations and 
discussion in the previous section illustrate that mathematical concepts, principles, and techniques are 
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mapped onto a real world situation, and reasoning proceeds within the domain of the situation, 
referencing relevant details of the situation and the mathematics that applies. For example, the concept 
of random selection must be applied within the application detail of selecting and procuring people to 
participate in an opinion survey, or within the detail of establishing a sampling plan of products in a 
manufacturing process. As another example, the population about which one wishes to draw inferences 
by sampling needs to be defined, in terms of details in the application domain, such as all voters in the 
state who will vote in the fall election or all voters in the county who are eligible to vote, or all products 
manufactured at a particular manufacturing site or product lines with high levels of consumer complaints.  

Indeed, normative reasoning under uncertainty within a particular domain is dependent on the 
application details. For example, if one is going to conduct an opinion survey (or interpret the results of 
one) appropriately, part of the relevant knowledge is knowing factors within the domain that are relevant 
to ensuring a representative sample. If one does not apply appropriate domain knowledge in reasoning 
under uncertainty, then the knowledge of the math, out of the context of the application details, cannot 
deliver the normative reasoning leading to sound judgments for the situation.  

In summary, domain knowledge and expertise are important contributors to normative reasoning 
under uncertainty within the domain. For example, important within medical science is knowledge and 
expertise in medical and pharmaceutical research, important within business is knowledge and expertise 
in market surveying and manufacturing, and important in opinion polling is knowledge and expertise in 
opinion research. 

The close relationship between the math of probability and statistics, and domain knowledge in 
the areas to which it has been applied, is illustrated in the history of the development of the mathematics 
of probability and statistics. Gigerenzer et. al. (1989) have noted: “Perhaps more than any other part of 
mathematics, probability theory has had a relationship of intimacy bordering upon identity with its 
applications. Indeed, there was arguably no ‘pure’ theory of mathematical probability until 1933 …, and 
until the early nineteenth century, the failure of an application threatened the theory itself … For much 
of its history, probability theory was its applications” (pp. xiii-xiv). As probability theory spread to new 
domains, “…the mathematical tool shaped, but was also shaped by, its objects” (p. xiv). “From its 
beginnings in the mid-seventeenth century, probability theory spread in the eighteenth century from 
gambling problems to jurisprudence, data analysis, inductive inference, and insurance, and from there to 
sociology, to physics, to biology, and to psychology in the nineteenth, and on to agronomy, polling, 
medical testing, baseball, and innumerable other practical (and not so practical) matters in the twentieth” 
(p. xiii). The close relationship between the math of probability and statistics and the real world 
application domains to which it has been applied, is also evident in the cognitive realm: normative 
reasoning under uncertainty in real world situations incorporates and integrates both knowledge of the 
math of probability and statistics, and knowledge of the application domain. 

 

Expert Consensus 
As discussed in sections above, to apply the math of probability and statistics to a real world 

situation involving uncertainty, is not always the normative approach to reasoning for the situation. 
Sometimes the assumptions required to apply the math do not hold in the situation, so the math is not 
applicable; and sometimes, with either good or bad intentions, math knowledge is misapplied in a 
situation. Rather, what determines what is considered normative reasoning under uncertainty in various 
situations is the consensus of experts within the culture or relevant communities.  
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Among mathematicians in probability and statistics, there has not always been consensus. 
Gigerenzer et. al. (1989) have described the long and heated disagreement between giants of the field R. 
A. Fisher and the duo J. Neyman and E. Pearson regarding tests of significance and hypothesis testing, 
and note that the “vigorous controversies … have not ended” (p. 105). They added that “Disputes no less 
heated have characterized the relationship between Bayesians and frequentists” (p.105). Lopes (1982) 
reviewed literature related to the understanding of randomness, and raised the point that some assume 
“that randomness is clearly defined and well understood by those who are not naïve [mathematicians 
and philosophers]. Nothing could be farther from the truth” (p.628). She goes on to describe the 
different views of randomness of R. von Mises, G. Spencer-Brown, K. Popper, and others. Cohen (1981) 
made the point that the consensus of experts in a field can change over time, and cited the example of 
challenge arising to the Frege-Russell logic of quantification that seemed once “a universally received 
doctrine” (p.328). 

As discussed in sections above, in reasoning about real world situations involving uncertainty, it 
is not just reasoning based on the math of probability and statistics that may apply, but necessarily also 
applicable is non-mathematical reasoning, such as heuristic reasoning, language interpretation, and the 
use of domain knowledge for the situation. Relevant experts in this case are both mathematical 
statisticians and experts in the domain of the application. Normative reasoning under uncertainty in the 
domain is determined by a consensus of these experts, if such a consensus is reached. If the math of 
probability and statistics is not clearly applicable within a domain of application, then normative 
reasoning under uncertainty in the domain using non-mathematical reasoning is determined by 
consensus of experts in the domain, again, if such a consensus is reached.  
Normative Reasoning for Risk Management 

Risk management involves reasoning under uncertainty and is an important function in business 
and industry. Industry standards for risk management have been established by industry-supported 
organizations, including the International Standards Organization (ISO) and, in the US, the federal 
government-sponsored Software Engineering Institute (SEI), both of which have assembled groups of 
experienced practitioners from industry (domain experts) to collaborate to establish standards for risk 
management, and to maintain those standards over the years. Established by domain experts and 
accepted by the community, the standards describe normative reasoning and behavior for risk 
management, and are used widely in industry as guidelines to promote effective practice of risk 
management. 

ISO 31000:2009 Risk Management standards. The purpose of ISO 31000:2009 Risk 
Management – Principles and guidelines, as described on the ISO website, is to help “any organization 
regardless of its size, activity, or sector” to “increase likelihood of achieving objectives, improve the 
identification of opportunities and threats and effectively allocate and use resources for risk treatment.” 
Within the standard, the risk management process includes risk assessment (identifying, analyzing, and 
evaluating risks) and risk treatment, all preceded by establishing the context for risk management. Risk 
analysis includes considering “the causes and sources of risks, their positive and negative consequences, 
and the likelihood that the consequences can occur” (p.21). A companion standard ISO/IES 31010:2009 
Risk Management – Risk assessment techniques, “provides guidance on selection and application of 
systematic techniques for risk assessment” (Scope section, para. 1). To support identifying the risks that 
should be managed, the standard provides guidelines for selecting risk assessment techniques, and 
describes a set of 31 risk assessment techniques from which one may select, including brainstorming, 
structured or semi-structured interviews, Delphi Technique, check-lists, and Root Cause Analysis. 
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Regarding risk treatment, the ISO 31000:2009 standard provides a list of possible ways to manage or 
treat the risks one has identified:  

•avoiding the risk by deciding not to start or continue with the activity that gives rise to the risk; 

•taking or increasing risk in order to pursue an opportunity; 

•removing the risk source; 

•changing the likelihood; 

•changing the consequences; 

•sharing the risk with another party or parties (including contracts and risk financing); and 

•retaining the risk by informed decision. (p.9) 

The standard illustrates use of heuristic reasoning and the deep involvement of domain knowledge in 
the specification of the standard. 

CMMI for Development, Risk Management standards. The SEI’s Capability Maturity Model 
Integration (CMMI) for Development (Chrissis, Konrad, & Shrum, 2011) is a “collection of best 
practices that help organizations to improve their processes” (p.xv), originally established in its earliest 
form (CMM) for software development organizations in 1995, but also applicable to other organizations. 
CMMI-DEV includes a process area for Risk Management, with the purpose “to identify potential 
problems before they occur so that risk handling activities can be planned and invoked as needed across 
the life of the product or project to mitigate adverse impacts on achieving objectives” (p.481). The risk 
management practices include identifying and analyzing risks, including evaluating risk likelihood and 
risk consequence (i.e., impact and severity of risk occurrence) through human judgment, and tracking 
risks to monitor whether they have reached pre-planned thresholds to trigger management activities, 
including implementation of risk mitigation plans. The best practices illustrate the use of heuristic 
reasoning and involvement of domain knowledge, e.g., in the identification and quantification of risks 
and in the establishment of risk mitigation plans. 

 

A Cognitive Framework for Normative Reasoning and Behavior under Uncertainty 
In the previous sections, factors relevant to normative reasoning under uncertainty for real world 

situations, have been identified and discussed. In this section, the factors are integrated into a cognitive 
framework. The purpose of the framework is to present, in integrated form, key features of normative 
reasoning under uncertainty for real world situations, to further emphasize their role, and show how they 
tie together. The intended message is not that this is a complete list of features, but rather, a fundamental 
set of features that deserves emphasis, and provides useful perspective for researchers and educators. At 
the end of this section, the features and how they tie together are illustrated through an example. 

Regarding the scope of the framework, it focuses on addressing human performance in real 
world situations involving uncertainty, in which what may happen or may be true, matters; and not with 
abstract, artificial, or simplistic tasks, e.g., as may occur with laboratory subjects being presented with 
short written problems to which to respond. In real world situations, the focus is on performing well or 
adaptively given the circumstances one is faced with and the consequences that may result. Real world 
situations are engaging, rich in detail, and call for action, and are where the value of normative 
reasoning under uncertainty delivers its payoff.  
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Real world situations may be categorized into “domains,” e.g., involving medical science, 
business, politics, or consumer behavior. Often, within a domain, one can identify expert practitioners 
who may collaborate and reach consensus on what is normative reasoning under uncertainty for types of 
situations in the domain. Expert consensus provides the basis for identifying reasoning and behavior as 
normative. In contrast, to assume that any application of probability and statistics to a real world 
situation is normative, is unfounded. Also, to assume that every real world situation has an established 
normative standard for reasoning and behavior is unfounded.  

For domains of application of probability and statistics, expert practitioners do exist, and provide 
a basis for establishing normative standards for reasoning under uncertainty within the domain, 
including normative application of probability and statistics. Still, there are controversies among experts, 
and so one cannot assume that there are normative standards for all applications of probability and 
statistics nor for all situations within a domain. What is and is not normative application of probability 
and statistics within a domain then has implications for what should and should not be taught, which is 
addressed in the last section of this paper on educational implications. 

A Cognitive Framework for Normative Reasoning and Behavior under Uncertainty  
Steps: Get initial 

situation 
understanding 

Identify and evaluate 
applicable reasoning 
threads  

Apply synthesizing 
reasoning and resolve 
understanding 

Respond/ act, 
given resolved 
understanding  

Actions 
(cognitive and 
behavioral): 

• Get initial 
situation 
understanding 
including 
situation/ 
application detail 
• Recognize 
elements/ 
sources of 
uncertainty 
• Focus on 
question(s) about 
the situation 

• Identify relevant 
information and  
reasoning threads to 
address the question(s)  
• Seek out additional 
information about the 
situation to clarify or 
confirm the situation 
aspects related to 
reasoning threads; for 
mathematical reasoning, 
confirm that required 
assumptions hold 

• Apply synthesizing 
reasoning to reasoning 
threads, leading to 
resolving understanding 
• Seek out additional 
information about the 
situation to clarify or 
confirm the situation 
aspects related to 
synthesizing reasoning 
threads; for synthesizing 
using mathematical 
reasoning, confirm that 
required assumptions are 
satisfied 

• Based on 
resolved 
understanding, 
respond/ act, e.g.: 
judge situation 
(e.g., make an 
estimate), choose 
an alternative,  
act to change the 
situation, continue 
to 
track situation to 
monitor 
uncertainties, 
abandon/avoid 
situation 

Character-
istics: 

• Normative reasoning is agreed upon by expert consensus within a domain of application and 
accepted by the community 
• Reasoning incorporates and integrates: mathematical reasoning (based on logic, probability 
and statistics), non-mathematical reasoning (e.g., heuristic reasoning and language 
interpretation), knowledge of domain and situation/ application detail 

Performance: • Proficient practitioners provide examples of normative reasoning and behavior 
• For individuals not proficient in normative reasoning for a situation (reasoning based on 
expert consensus), in general, it is a personal norm to consider the risk of misapplying 
knowledge, in one’s reasoning and behavior for the situation 

Figure 1.  A cognitive framework for normative reasoning and behavior under uncertainty 
Having reviewed its intended scope, a cognitive framework for normative reasoning and 

behavior under uncertainty, expressing and integrating the factors discussed in previous sections, is 
presented in Figure 1 (above). 
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In the cognitive framework, the process for reasoning and behavior is broken down into four 
high level steps. The steps highlight the progression from initial situation understanding, to identifying 
and evaluating relevant reasoning threads, to applying synthesizing reasoning to the reasoning threads 
and resolving one’s understanding, and responding/acting based on the resolved understanding. These 
steps may occur cyclically over time when a situation is being continuously monitored. This entire 
process is included in the scope of what is judged to be normative reasoning and behavior for the 
situation. For the entire process, mathematical and non-mathematical reasoning, and the use of 
knowledge of domain and situation/application detail apply. There are actions within the steps to seek 
out additional information to clarify or confirm one’s understanding of the situation, including, for 
mathematical reasoning, to confirm that required assumptions hold for the situation. 

Normative reasoning and behavior is presented in two forms within the framework. First, 
normative reasoning and behavior for a type of situation is agreed upon by expert consensus within a 
domain of application, and is accepted by the community. Proficient practitioners provide examples of 
this normative reasoning and behavior. Second, a personal norm for reasoning and behavior in the 
situation applies when an individual is not proficient in performing normative reasoning as settled by the 
expert consensus. For the person, there is a real risk of misapplying knowledge and reaping negative 
consequences, and so it is normative for the person to consider that risk in reasoning and behavior for 
the situation. 

An example 
Let us illustrate features of the framework, and of normative reasoning and behavior under 

uncertainty, with an example based on a real world situation. Consider the case of a hiring manager 
reviewing candidates for a job opening, with the purpose to determine which of the candidates to hire, or 
to hire none and keep looking. This situation involves uncertainty since the manager does not have 
complete knowledge of the candidates and how they may perform in the job. The situation involves risk, 
due not only to that uncertainty, but also because there are negative consequences to making a poor 
decision (such as hiring a candidate who ends up not performing well in the job, or who leaves the job 
after a short time, after company resources have been spent training him), and positive consequences to 
making a good decision (such as having a person exceptionally well suited to the job stay in the job, 
grow in the job, and serve the company well for years). 

A first question is whether there is a normative standard for reasoning and behavior in this 
situation. Even though the situation of evaluating candidates for a job and making hiring decisions, is a 
common and important situation, there is no worldwide consensus on best practices for hiring people for 
jobs. However, there may be a consensus on such practices for a smaller community.  

Let’s say that Company A has developed a consensus on their hiring practices. For each 
candidate, they conduct a structured interview with the candidate and rate the interview; and they 
administer a test of job skills that are required for the job, and generate a skill performance profile for 
the person based on the test. To be hired, a candidate’s job interview rating must fall within a specified 
acceptable range, and his skill profile must rate in a specified acceptable range for all required skills. If 
more than one candidate satisfies these conditions, the hiring manager judges, based on the interview 
and skill ratings, and his own judgment, the best candidate for the job. As defined, the hiring process 
involves heuristic reasoning. This is the hiring practice that has been in place for the past 5 years, and 
Company A may revise its practices in the future if improvements are identified and agreed upon. The 
company gets many of its job candidates from three educational/training institutions X, Y, and Z, and 
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maintains historical records on the number and percentage of its hires that come from each of the three 
institutions. Over the past 5 years, new hires have been 25% from X, 50% from Y, and 20% from Z.  

So, to follow the progression of the normative reasoning and behavior defined by Company A, 
using the steps highlighted in the cognitive framework, first, the hiring manager gets an initial situation 
understanding: he understands his typical goal to make a hiring decision, who the available candidates 
are this time, and the results of the structured interview and test of job skills for each of the candidates. 
Then the manager identifies and evaluates the relevant information to making the hiring decision 
(reasoning threads) for each candidate, considering each piece of information relevant to the decision. At 
this stage, the evaluation may lead to a candidate being eliminated from consideration because he does 
not meet the minimum requirements. Let’s say that four candidates have acceptable ratings for the 
interview and the test of job skills. Now, synthesizing reasoning needs to be applied to consider all four 
remaining candidates and which is the best bet to hire. For this step, the company’s normative process 
does not tightly constrain the decision, only saying that the manager is to consider the interview and skill 
ratings and also apply his own judgment. Consistent with these guidelines, the manager reviews in detail 
and compares the information for the four candidates. He eliminates two candidates who had mostly 
minimally acceptable ratings. Reviewing the full information on the two remaining candidates P and Q, 
the manager sees that one candidate Q has very high ratings for several skills, including a skill for which 
his other team members are not strong. He sees it as positive to be able to add someone strong in that 
skill to his team. In contrast, candidate P’s ratings are all in the midrange. The manager decides to hire 
candidate Q. 

A colleague, who knew that there were the two candidates P and Q in the final running for the 
job, suggested to the hiring manager that he hire candidate P, because P was from institution Y, which 
historically supplied 50% of new hires to the company, more than the 25% supplied by institution X, 
from where candidate Q had come. The hiring manager replied that there was no agreement in the 
company that that factor must be applied; and that he believed that one reason that institution Y 
provided more new hires was that more of their students were Spanish-speaking, which was a required 
skill for their jobs; and that candidate Q had that skill. The hiring manager also pointed out that, by 
basing hiring decisions on individuals’ performance, and not on the institution where they were trained, 
the process was fair, not giving preference to candidates based on where they came from. The colleague 
listened with interest, and departed with a greater self-awareness of gaps in his own knowledge related 
to making a good choice for new hire. 

The above example illustrates normative reasoning and behavior established by expert consensus, 
the use of heuristic reasoning and domain knowledge, and the richness of situation/application detail 
relevant to reasoning. In the example, there is mathematical information available on the base rates of 
new hires by educational/training institution, but that information is not required to be used in the 
process, and, in the example, reasons are provided for not using that information in the decision to hire 
an individual.  

This hiring decision example structurally parallels examples that Tversky and Kahneman (1974) 
used to support their conclusion that people’s use of heuristics, such as the representativeness heuristic, 
in reasoning under uncertainty, “lead[s] to systematic and predictable errors” (p.1131), such as ignoring 
base rates or prior probabilities of outcomes. In one of Tversky and Kahneman’s examples, subjects 
were asked to judge the probability that a person has the occupation of engineer or lawyer, given a 
personality sketch as well as base rate information on the engineer vs. lawyer mix of the pool from 
which the sketch allegedly had been randomly selected. They found that subjects tended to use the base 
rate information if no personality sketch was provided; but tended to use only the personality sketch and 
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ignore the base rate information when the personality sketch was provided to evaluate. The hiring 
decision example shows a situation where it is normative to ignore available base rate information. In a 
parallel fashion, subjects in Tversky and Kahneman’s study ignore base rates in favor of focusing on the 
information provided about the particular individual being judged.  Regarding synthesizing reasoning, 
Tversky and Kahneman (1974) presuppose that people should follow Bayes‘ rule, a straightforward 
number crunching, in making a judgment based on the combined evidence from the personality sketch 
and the base rate information. In contrast, in the hiring decision example, the synthesizing reasoning 
occurs in the domain of the real world, richly using situation detail, and is not just a numerical 
calculation in the realm of mathematics.  

 
Implications for Educational Practice 

The mathematics of probability and statistics provides a powerful tool for use in reasoning under 
uncertainty, in situations when it is applicable. There is also risk of misapplying the mathematics. A 
view of what is normative or appropriate reasoning under uncertainty, including normative application 
of probability and statistics, provides valuable guidance for the effective and adaptive reasoning and 
behavior in real world situations; as well as valuable guidance for educational practice regarding what 
should and what should not be taught. Such a framework for normative reasoning and behavior under 
uncertainty has been presented in this paper. Based on the framework, recommendations for educational 
practice in probability and statistics follow: 

1. Demonstrate the power of probability and statistics when used normatively/ appropriately, in 
different domains. Provide real world examples that illustrate established normative standards 
for the application of probability and statistics in different domains, to show the power of 
probability and statistics when used appropriately. Use the established methods within the 
domain, which may integrate mathematical and non-mathematical reasoning, and provide the 
richness of detail involved in applying the methods. 
2. Use the domain of games of chance to teach probability and statistics. Games of chance 
provided the original problems that mathematicians used in the first development of the math of 
probability and statistics (David, 1962; Gigerenzer et. al., 1989), and provide a well-established 
domain for the normative application of probability and statistics. Moreover, experience with the 
concrete instantiation of randomness in the common random phenomena associated with games 
of chance (e.g., the rolling of dice, and the blind drawing of balls from an urn), helps to build the 
mature understanding of random phenomena that is a foundation for understanding probability 
and statistics (Kuzmak, 2014). 
3. Don’t teach students to ignore relevant domain knowledge and application/situation detail in 
situations involving uncertainty. Appropriate use of probability and statistics is not just choosing 
math formulae that seem to fit a situation, and plugging in numbers, and calculating, regardless 
of application detail and whether required assumptions are satisfied. If one is teaching in a way 
that models that kind of behavior, then one is teaching students to reason inappropriately, 
specifically, to ignore domain knowledge and application detail that is relevant to appropriate 
reasoning. Statistics problem solving should regularly include analysis of the domain of 
application adequate to justify the applicability of the math to the situation, and to not merely 
assume its applicability. 
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4. Explicitly teach the risks of misapplying probability and statistics. To prevent students from 
misapplying probability and statistics, and from using information based on misapplication of 
others, explicitly teach common ways that probability and statistics can be misapplied, that they 
should avoid. Examples of such misapplication were provided in the above section on that topic, 
e.g., not ensuring a sample is representative of the population about which one wishes to make 
inferences, and not taking into account required assumptions when applying statistical 
techniques. Give examples of the negative consequences of misapplying probability and 
statistics, to emphasize the importance of avoiding such misapplications. 

5. Explicitly teach that the use of the math of probability and statistics is not always the best or 
normative approach to reasoning and behavior under uncertainty. Give illustrations of 
normative reasoning under uncertainty in different domains, that use heuristic reasoning, and a 
combination of heuristic and mathematical reasoning. This provides further emphasis that the 
math of probability and statistics is a tool to be used when appropriate, which is not always. 
Give examples illustrating that there is not always an established normative approach to 
reasoning and behavior for a situation, and that there may be controversies over valid 
approaches, including controversies over how probability and statistics may apply.  

 
Conclusion 

The focus of this paper has been on providing a cognitive framework for viewing normative 
reasoning and behavior under uncertainty in real world situations, including situations involving risk. 
Such a framework provides a valuable reference for guiding what should be taught, and, in contrast, 
what should not be. Recommendations for educational practice in probability and statistics based on 
aspects of the normative framework have been provided in the section above. The framework for 
normative reasoning and behavior also provides a reference for evaluating whether particular examples 
of observed reasoning and behavior, identified as “errors” in the research literature, are rightly called so. 
Within the framework, a consensus of experts within the domain of application is the determinant of 
what is normative. The errancy of assuming that applying probability and statistics to a situation is 
normative, or assuming that every situation has an established normative response, has been noted. 

The framework provides a fresh perspective on factors that are fundamental to normative 
reasoning and behavior under uncertainty, emphasizing the roles of mathematical and non-mathematical 
reasoning, and real world domain knowledge and situation/ application detail, and illustrating the roles 
of these factors with several examples rich in relevant detail. Within the framework, mathematics is 
viewed as a tool that may be applied appropriately or inappropriately, not a universal solution. 

The risk of misapplying probability and statistics is identified as a significant risk at play in 
situations involving reasoning and behavior under uncertainty, and is illustrated through examples, 
discussion, and research findings. One faces this risk when one is not proficient at the normative 
reasoning and behavior agreed upon by domain experts. The framework recognizes that, in this case, it 
is a personal norm to consider the risk in one’s reasoning and behavior in the situation.  
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