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Trajectory of a problem: a study in Teacher Training 
  

Alain Kuzniak, Bernard Parzysz & Laurent Vivier 
Laboratoire de Didactique André Revuz, Université Paris Diderot, France 

 
Abstract: Problems are frequently used in mathematics to introduce and convey new 
notions and skills. Hence, teachers transform and adjust those problems to their students' 
level. The present study focuses on this transformation process on the particular case of a 
geometric problem posed by two teacher educators in one French Institute for Teacher 
Training. The whole process is described as a trajectory of the problem through various 
institutions from training center to secondary school and back. Before presenting the 
notion of trajectory of the problem, some elements about a general theoretical frame 
which refers to didactics of mathematics are presented. 
 
Keywords: Geometry, open problem, problem situation, problem solving, teacher 
training, technologies. 
 

 

Introduction 

The idea of grounding the teaching of mathematics on making students solve 

problems is not new, especially in primary education. From the 1970’s on it has been 

very popular in many countries, undoubtedly as a reaction to the abstract teaching given 

during the so-called ‘modern math’ period. This pedagogical trend was variously 

structured according to the country, and the use of problems for learning maths depends 

to some extent on both cultural traditions and theoretical frames underlying teaching 

which are specific of each country. We became aware of these differences on the 

occasion of a joint research undertaken by a French team (from the LDAR, Paris-Diderot 

University) and a Mexican team (from Cinvestav, Mexico-city). The scope of this study, 

presented at the Cerme 7 Conference (Rzeszów, 2011) by Kuzniak, Parzysz, Santos and 

Vivier (2011), was the question of the initial training of teachers to the use of 

technologies for the teaching of maths. On the Mexican side, the implementation was 
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based on the problem solving methodology, whereas on the French side the stress was put 

on the notion of open problem, in connection with Brousseau’s Theory of Didactical 

Situations (TDS). 

In this article we shall present in detail our approach for this research, within a 

training course for prospective mathematics secondary school teachers, with reference to 

some of the theoretical frames used by our team, and especially the notions of open 

problem and instrumental approach (sec. 1.1 and 1.2). Besides, the training course 

situation here studied belongs to what can be described as a training homology strategy 

(sec. 1.3). The problem at work is used to develop among pre-service teachers, not only 

their mathematical knowledge, but also their didactical knowledge.  

After having exposed an a priori analysis of the problem (sec. 2), we describe in 

section 3 the work required from the students-teachers which is split into three steps. 

Then, we expose and analyse the various transformations of the problem chosen for the 

training. 

Finally, in discussion section (4), we define a framework (sec. 4.1) intended to 

describe and analyse what we call the trajectory of the problem, that is its global 

evolution, from its use in the training course to its setting up in a regular classroom. We 

conclude the section (§4.2 sq.) with remarks on some important points related to teacher 

training. 

1. Context and stake of the study 

1.1 Problem solving in French context 

As Artigue and Houdement (2007) underscore it, there does not exist a tradition 

of education research on problem solving in French didactic research even if Polya and 

Schoenfeld works are well known. This characteristic partly results form the influence of 
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the Theory of Didactical Situations (TDS in the following) initiated by Brousseau (see 

Brousseau, 1997, for reference texts in English) and from the pedagogical approach 

developed by the IREM (Institut de Recherche sur l'Enseignement des Mathématiques). 

Both introduced two kinds of perspective on problem solving: problem situation and open 

problem.  

The notion of “problem situation” appeared in France in the 1980’s in 

Brousseau’s TDS, which is based on a socio-constructivist conception of learning. A 

problem situation is a learning approach aiming at fostering the acquisition of a new 

knowledge by the students. Its setting up implies identifying previously their conceptions 

by analysing their errors. On this basis the teacher conceives of and sets up a situation 

presenting some specific features, namely: 

 be relevant for the cognitive objective aimed at;  

 have a meaning for the student;  

 allow him/her to begin the search for a solution;  

 be rich (in terms of mathematical and heuristic contents);  

 be possibly formulated within several conceptual “settings” (Douady, 1986) or 

“semiotic registers” (Duval, 2006). 

The notion of “open problem” was introduced at about the same time (Arsac et 

al.1988, Arsac & Mante, 2007). In comparison with the problem situation, the aim of an 

open problem is methodological rather more than cognitive. The students are induced to 

implement processes of a scientific type, i.e. experimenting, formulate conjectures, test 

them and validate them. The problem must belong to a conceptual domain in which 

students are somewhat familiar with, the wording (statement) has to be short and induce 
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neither a solution nor a solving method. Here is an example taken from APMEP (1987): 

What is the biggest product of two numbers which can be obtained by using once each of 

the digits 1, 2, 3,…,9 to write these numbers? 

In fact, open problem and problem situation refer to two complementary sides of a 

mathematician’s work:  

 in the case of an open problem the question is to find a genuine and personal 

solution, with one’s own means, the general solution can be out of reach of the 

students (and possibly the teacher); 

 in the case of a problem situation the question is, starting from a specific 

problem, to elaborate a more general knowledge (concept, process…) which is 

intended to be institutionalised, socially acknowledged and mastered by all the 

students. 

The French official curricula for junior high school integrated recently − though 

without naming them − these two practices: 

If solving problems allows the emergence of new elements of knowledge, it 
is also a privileged means to broaden its meaning and to foster its 
mastery. For that, more open situations, in which the students must 
autonomously appeal to their knowledge, play an important role. Their 
treatments require initiative and imagination and can be achieved by 
making use of different strategies, which must be made explicit and 
compared, without necessarily privileging one of them. (BOEN 2008, page 
10, our translation.) 
 
The notion of research narrative (narration de recherche), which is explicitly 

linked with those of open problem and problem situation, appeared in France some 

twenty years ago, first at junior high school level, before being extended to senior high 

and primary school (Bonafé et al. 2002). It involves asking the student to write an 

account of the thought processes he/she has undertaken in order to solve a given problem, 
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pointing out his/her ideas, successes, failures, etc. The features of the problem are the 

same as for an open problem, but its statement has often several questions and is such 

that the student must be able to start a research, test his/her results and validate them. 

And, if possible, different solutions can be considered. 

1.2 Integration and influence of technologies 

Pre-service teachers in maths are accustomed to solving mathematical problems 

with specific software, mainly of the symbolic calculation or dynamic geometry types but 

this does not mean that they are prepared to use them as future teachers. Research studies 

into teaching in technological contexts (see Laborde, 2001) show that the students 

(preservice teachers) do not have or have little knowledge of the teaching of mathematics, 

that is to say, they are unaware of the development of mathematical notions in teaching 

situations and they have difficulties in the use of software in a learning situation. This 

makes it necessary to integrate specific work in the form of understanding teaching using 

software into teacher training. 

Specific studies on teacher training within a technological context (see Chacon 

and Kuzniak, 2011) are few. And they show the need to go more deeply into processes 

regarding proof and the structuring of different spaces of knowledge (teaching, 

mathematical, instrumental) which a teacher must structure when using dynamic software 

for geometric learning.  Moreover future teachers have to be aware of secondary school 

students difficulties related to instrumental knowledge.  

1.3 Teacher training 

Till the end of 2010, IUFMs, Instituts Universitaires de Formation des Maîtres 

(French University Training Colleges), have been in charge of the formation of 

preservice teachers. The IUFMs were accepting, after a first selection, maths graduate 
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students from any University (three years of study). During one year, students were 

preparing a competitive examination with academic maths knowledge. The successful 

candidates received a theoretical and practical education of one year (the “second year”) 

in the Institute and were in charge of a class for six hours a week; they received a salary. 

Nowadays, students need to have a master and pass competitive examination to become 

teachers. Preservice secondary teachers could follow a master in teacher education (two 

years) at University, they are not in charge of a class and are not paid during the second 

year. Our experimentation was made in 2010 before the new system. 

As it is well known, preservice teachers need a set of knowledge on maths and 

teaching, usually described with the notion of Pedagogical Content Knowledge (PCK) 

introduced by Shulman (1986) to complement subject content knowledge, and based on 

this idea, various refinements have been made to describe knowledge that is really needed 

to teach mathematics known as Mathematical Knowledge for Teaching (MKT). Teaching 

mathematics is obviously connected to Mathematical Content Knowledge but also to 

other ones that are not automatically owned by a specialist of mathematics and that are 

more or less close to mathematics like history, epistemology, didactics, psychology or 

pedagogy. This large set of knowledge is classified in two parts. The first one, that is 

made explicit and structured clearly within the frame of didactical theories, constitutes 

Didactical Content Knowledge. The second one, that is not explicitly written and 

theorised, but exists in the professional action of each teacher is what is called “third 

knowledge” (Houdement & Kuzniak, 2001). Within this framework, the question is how 

to introduce and combine the various types of knowledge. And how to give to students 
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who are specialists of mathematics at university level, a level in school mathematics 

which are often far away from the first one.  

The combination between various types of knowledge can take different forms: 

they can be suggested to or developed by the students; they can be juxtaposed or 

connected; the connection can be explained or not…So we have distinguished various 

strategies which differ concerning the explanation of knowledge, the combination 

between them, the position they give to the students. Strategies also depend on the 

knowledge considered as dominant and on the transposition made by the teacher trainer.  

During our experimentation, we followed a strategy firstly based on homology 

and then on transposition. That means that we first use the lack of knowledge of content 

and teaching for the classroom of the preservice teachers as a pretext to build a learning 

situation close to a conception of teaching favoured by French curriculum. The preservice 

teachers, or student teachers, are considered similarly as maths students searching a 

problem and supposed to analyse the teaching session to pinpoint elements of didactical 

knowledge and the “third” knowledge. The strategies based on transposition favour 

didactical knowledge. Then, we tried to know more about the phenomena of transposition 

of knowledge that might be a bias in every teaching situation (Chevallard, 1985). Student 

teachers are considered as teachers examining their own teaching way. We detail this 

with the notion of problem trajectory for the training.  

2. Presentation of the problem the folded square and a priori analyses 

The problem we discussed in this paper is the core of a pre-service teachers’ 

training course that conveys didactical knowledge about problem use in the class. For this 

reason, this problem was asked to fulfil several conditions: 

 To be an « open » problem easily integrated in the teachers' training process. 
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 To allow the link between several semiotic registers (Duval, 2006) and the use 

of various mathematical settings (Douady, 1986) related to French curriculum. 

 To be solved in different technological contexts especially those using 

dynamic software. 

 To be open to a number of exploitation and transformation in class with pupils 

and training session with future teachers. This point relates to our idea of 

problems trajectory. 

To these various constraints linked to a training context, we added one more 

related to the context of a comparative study. For that, we chose a problem or a kind of 

problems already given by other researchers using other theoretical approaches. 

The problem posed to the students belongs to a kind of problems named “shop-

sign problems” as used in Artigue, Cazes and Vandebrouck (2011). In such problems, 

with geometric support, two areas representing a shop-sign are determined by a point 

situated within a square or a circle or a rectangle... Both areas change in function of the 

position of the point in the square. These problems are introduced in a geometric setting 

but to solve them, a change to algebra or calculus settings is generally required. Changes 

of semiotic registers with algebraic or functional notations are also needed to get a 

solution. The functions used are quadratic polynomial functions which allow a 

mathematical treatment in synchronization with the secondary school curriculum. 

By using dynamical geometric software as Geogebra, it is also possible to solve 

such problems in a graphical setting by focusing on the covariation of areas without the 

use of a functional or algebraic writing. It is indeed possible of drawing a graphical 

representation of the phenomena studied without any algebraic writing of the function: 
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the curve is defined as a locus of points. The number of solutions that students can find 

and understand is increased by the use of technological tools introducing an experimental 

perspective in the implemented working space.  

The problem was presented in a real context with material and not with a writing 

in mathematical form: A square, cut in a bi-color sheet, is given to the students. And they 

have to fold it along a diagonal and compare the areas of both visible parts of different 

colours. Students are entirely in charge of the problem representation according to the 

first step of the modelling circle in Blum and Leiss (2005) view. By doing that, we do not 

favour any mathematical approaches and frames but to control the task effectively made 

by student teachers and reach our training objectives on the use of technologies for 

teaching, student teachers have been encouraged to use some software as it will be 

detailed in sec 3.1. on problem trajectories. 

The problem is not original and was used in French and Mexican contexts 

(Kuzniak et al., 2011) with the following form, Mexican Task, which will give the reader 

an easier access to the mathematical stake of the problem. 

Mexican Task. A square piece of paper ABCD, the side of 
which is l, has a white front side and a blue back side. 
Corner A is folded over point A' on the diagonal line AC. 
Where should point A' be located on this diagonal (or: how 
far is A' from the folding line) in order to have the total 
visible area half blue and half white?  

 A’  A

B 

C 

D 

 

In this version, a figure is associated to the text and that orients and makes easier 

the mathematical work of students. It is no more necessary to fold the square and the 

problem for students is to find the mathematical expression of both areas: area A1 of the 

blue triangle and area A2 of the white hexagon. Moreover, the side of the square is given 
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as a parameter l and the question is exactly on the place of point A' on the diagonal. 

Visual adjustments are invalidated by calculations for the area of the triangle seems larger 

than the other in the case of equality1. So, to solve the problem students need to reason on 

an elaborate and high level.   

Two great types of reasoning are expected:  

 In the first one, students need to determine an algebraic expression for each 

area and solve a quadratic equation; in France, this approach is only possible 

without help in grade 11.  

 In the second one, it is possible to reason in figural register. Indeed, the 

drawing given in the text makes visible three ''useful'' areas, the two areas to 

compare and a new area A3, equal to A1: the area of the triangle of vertex A 

completing A1 to make the square of diagonal AA'.  This new area does not 

exist in the real folding since the triangle does not have a material existence in 

this case. With the use of this new area, it is possible to find, almost without 

any calculation, a solution of the problem. The drawing makes clear a 

decomposition of the square ABCD which implies the equality 2A1 + A2 = l2 

between the areas and in the case where A1=A2, we get 3A1= l2.  

If x denotes the side of the square made by the two rectangle and isosceles 

triangles, as A1= x²/2, then 3x²/2=l², hence x²=(2/3)l².  

It should be noted that if we take the unknown d on the diagonal, d is the height of 

one of the rectangle and isosceles triangles, then x²=2d² and so d2=l2/3. This way gives a 

simple solution to the original problem posed by Carlson et Bloom (2005): 

                                                 
1 Let’s note that these invalidations are operational since the grade 6 (it has been noted with the 
class of the student teacher STe). 
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A square piece of paper is white on the frontside and black on the backside 
and has an area of 3 in². Corner A is folded over point A' which lies on the 
diagonal AC so that the total visible area is half white and half black. How 
far is A' from the folding line. (op. cit. p. 55) 
 

In the case chosen by the authors, the area of the square is of three square inches 

and we get immediately d²=1 and therefore d=1. This initial formulation of the problem is 

really more complex than those used in our study with a real folding and material that 

allow the student chose a more « natural » variable as the side or the diagonal or in 

Mexican Task approach where a drawing and the variable are provided. The form used by 

Carlson and Bloom is not geometric meaningful because it gives only the area of the 

square. This probably explains much of the difficulties2 encountered by their students, 

though advanced in mathematics.  

The requested use of a software in the task posed in our study changes again the 

nature of the task. The software – Geogebra – gives an area immediately to each of the 

surfaces and, as mentioned, it allows – and to some extent encourages –  the use of 

graphics, without the need for an algebraic notation. One could represent graphically A1 

and A2 in function of x (or d) and then solves the problem by considering the curve 

intersection (see figure 1 in sec 3.2.1). It is also possible to solve the problem by drawing 

the graph of point which coordinates are (A1,A2) – it is a straight line – and considering 

the intersection with the line y=x. 

With this first analysis, it is already clear that the same initial problem can be 

transformed in different ways leading to very different tasks, depending on the support 

and tools provided to students or preservice teachers and obviously on curriculum 

                                                 
2 In the adaptation of STb, described in section 3.2.1, the square has an of area 27 cm2 but 
the square is given to students (within the Geogebra software). 



  Kuzniak, Parzysz & Vivier 

 

content. These tasks may also depend strongly on institutional constraints integrated by 

teachers and their trainers. This is the subject of the study presented in the third section. 

3. Transformations of the problem for teacher training 

In this section we study the various transformations of a single problem P0 inside 

the French educational system through two institutions: a training center for teachers and 

secondary school classes. More precisely, this study involves two groups of student 

teachers and two teacher educators, named TEa and TEb in the following. The aim of the 

research is to grasp the impact of an initial training of math secondary schoolteachers on 

their actual teaching in a classroom: what remains of the training when these teachers are 

back with their students with real constraints? Due to this aim, our study is not based on 

Brousseau’s theory nor on problem solving but on a specific framework presented in 

section 4.1. We suppose that the changes of institutions motivate and make necessary 

some transformations, the study of which will enable to better understand some 

constraints lying on teachers, together with some usual practices of the profession. 

3.1 The transformations of the problem 

In the training course involved in the present study we shall distinguish three 

stages of transformations of problem P0. In this section we describe these stages. 

Stage 1. First transformation: from problem P0 to problem P1 
Problem P0 (section 2) required a first transformation in order to be given in the 

initial training of secondary schoolteachers. The students are prospective math teachers 

and the aim of the educators (TEa and TEb) is twofold: at the beginning it is a matter of 

insuring that their students have well understood the problem with its educational 

potential, the various ways for solving it and the possible difficulties of the solutions. In a 
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second time they will be asked to transform this problem in order to use it in their own 

training classrooms. 

Here is the form chosen for P1 by TEb, together with the working instructions 

given to the student teachers (the form chosen by TEa was very close). 

You have at your disposal a square of paper, one side of which is white and 
the other is grey. A fold shows a diagonal of the square 
A type of folding bringing a vertex of the square on this diagonal, like the one 
performed on the enclosed square, is considered. 
One intends to compare the white and grey areas obtained in that kind of 
folding. 

For both groups TEa and TEb, problem P1 was based on this ‘minimalist’ 

presentation making use of a model: TEa showed the student teachers the folding with a 

material square and TEb decided upon sending the instructions with a material square by 

mail. 

The student teachers are asked to work on the problem and show their entire 

solution process (Schoenfeld 1985).  This solution is complemented by a research 

narrative (cf. section 1.1). It is during this research phase that the student teachers, here in 

a ‘student’ position, had to use at least one technological tool3 to explore the problem 

favouring experimental approach according to the French curriculum.  

The choice of a problem as ‘bare’ as possible from the mathematical point of view 

has also a didactical aim, conveyed by homology: encourage the prospective teachers to 

use, on one side problems with an open question, and on the other side technologies for 

solving them. By so doing the educators hoped that the student teachers would feel free to 

operate their own choices, both from a mathematical point of view (cf. a priori analysis in 

                                                 
3 To be chosen among: spreadsheet, dynamic geometry software, calculator. 
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section 2) and as regards the actual modes of class implementation by integrating 

technological tools (cf. section 1.2). 

Stage 2. Second transformation: from problem P1 to problem P2 
Again in the training center, the student teachers were asked to write down the 

wording of a problem and to make explicit the modes of implementation for their 

students in their classrooms. Actually, the students involved are also math teachers in a 

secondary class (junior or senior high school). At this stage, the issue is not to pose the 

problem in a class but, in the training center, to think about the form that the problem 

could take if it were posed to a class. In that sense it may be considered as a virtual 

problem P2 which marks the outcome of the work for TEa’s training group. This stage 

could possibly have been carried on, but its existence and its control had not explicitly 

been anticipated in the course specific for this group of training students. A description of 

the work of TEa’s group is developed in Kuzniak, et al. (2011). 

Stage 3. Third transformation: from problem P2 to problem P3 
In TEb’s group, after a session of the ‘seminar’ type in which the students had to 

expose their work in stages 1 and 2, they were asked to write down a problem P3, again 

with making explicit its modes of implementation and its aim, and above all to actually 

pose it to their own students. Then they had to present in the training center, again during 

a session of the seminar type, and a posteriori analysis of problem P3 posed in their class, 

illustrating it with their students’ writings. This shift from the training center (virtual 

problem P2) to the classroom (real problem P3) supposes a sharper adaptation of the 

problem to the trainee’s class, in particular because of the real constraints. 

3.2. Description of complete trajectories developed by student teachers  

We call the set of stages transforming problem P0 which has been exposed above 

a trajectory of this problem. Of course, every student teacher develops his/her own 
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trajectory, which can even be trajectories because classroom is an important factor 

influencing the transformations of a problem. 

Below are described the complete trajectories of P0 elaborated by five student 

teachers of the TEb group, named STa, STb,... STe. In fact, the differences between these 

trajectories are essentially due to the mathematical aims linked with the teaching contents 

of each class and with standard activities of textbooks at the different teaching levels. The 

student teachers try to design and develop teaching activities which are as close as 

possible to what we call suitable mathematical working space (Kuzniak 2011).  

Hence, the aims of each problem are different according to the mathematical 

contents aimed at. On the other hand, a teacher will only give his students a problem on 

the condition that it fits well in the syllabus. For this reason it is necessary to supply the 

student teachers with problems having strong potentialities and open to varied 

adaptations. In the present case, problem P1 (cf. section 2), elaborated after discussion by 

the teacher educators, is adequate and, as will be seen, might give rise to adaptations at 

all secondary education levels. Another common characteristic that we noticed is that the 

problem was always used to introduce a new knowledge and never an assessment of an 

old knowledge. 

3.2.1 Two pre-service teachers’ trajectories at grade 10  

In this first case we consider two student teachers, STa and STb, teaching in 

seconde grade (grade 10), which in France is the first course of senior high school. In 

spite of different modes, essentially due to the real constraints of the two classes, the two 

trajectories presented here are very close to each other. Such closeness can be explained 

by the fact that the aims chosen, depending on the teaching program of the class, were 

practically identical, that is, a global study of polynomial functions. Indeed, problem P1 is 
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close to a standard type of exercises which can be found in many textbooks at this 

education level: a geometric statement followed by a modelling by a quadratic function 

enabling to solve the initial problem. 

Stage 1. Solving problem P1 
STa and STb solved the problem in a similar manner and used the graphs of the 

two functions defined by modelling the two areas (triangle and hexagon) generated by the 

use of Geogebra software. The variable chosen, called x, is the length of the side of the 

small square. The intersection point of the two curves gives an approximate solution: the 

common measure of the areas is its ordinate while the measure of the side of the small 

square in the case of equality is its abscissa. However, the use of Geogebra by the two 

student teachers was very different: 

 STa constructed, in a same file, the square simulating the folding and drew the 

two curves representing the areas as functions of the distance between the 

folded vertex and a free point on the folding diagonal (cf. figure 1). 

 STb as well made a construction with Geogebra to simulate the folding (two 

constructions were proposed) but functions are used in another file. She first 

got the two algebraic functions then graphically represented them (cf. figure 

2). In this case Geogebra was in fact used as a graphics software and not as a 

dynamic geometry software. 
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Figure 1. Use of Geogebra by STa for the solving of P1  

 
Figure 2. Use of Geogebra by STb for the solving of P1  

Another difference between STa and STb appears in how each of them considers 

the square length l with the software: 
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 STa fixed the value of the square length to l = 3 cm though he received a 5 cm 

length square by mail: he considered this value inadequate because it did not 

allow a good representation of the two curves on the computer window, the 

size of the objects being estimated too big. This last point shows that he has a 

quite poor knowledge of the software since he modified the situation instead 

of using the Geogebra potentiality to manage the mathematical situation. 

 STb did not fix the square length since the parameter l is managed by the 

software through a cursor and the two functions introduced are defined using 

this parameter. So the abscissa of the intersection point of the two curves 

gives the searched value of x as a function of l.  

Nevertheless, neither STa nor STb undertook a deeper exploration of the situation 

within the software. They only gave approximate values4 of the solution: 

 STa wondered whether the same reasoning is still valid when the value of l − 

that is the square size − is changed but it seems that he did not try answering 

this dilemma. 

 STb did not try to search the link between the solution, which is the abscissa 

xA of point A in figure 2, and the parameter l given by the cursor. Indeed, the 

graph of function l → xA(l) could be easily obtained by considering the point 

of coordinates (l,xA). Then, one can easily see that this graph is a straight line. 

During the exploration of the possible solutions, the two student teachers did not 

use any other software. Their researches within a paper and pencil environment are also 

                                                 
4 STa obtained the approximate value 2.46 for l = 3 cm; STb gave the approximate solution 
values with 5 decimals. STb noticed that these approximate solutions were also approximate 
values of 1/3 (for l =1) or 4/3 (for l=2, cf. figure 2). But this remark was without any consequence 
on splitting the square area into three thirds: STb stuck to her approximate determination of x. 
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very close. The configuration studied is general and both use the l parameter to name the 

side of the square and a variable (or unknown) x to name the side of the small square. 

After calculation of the two areas as functions of x, the problem was solved in the case of 

equality, with the answer 32 / l accompanied by a justification for not considering the 

negative root of the equation. The comparison of the areas was made by using the 

extreme values x=0 and x=l, as well as an argument (implicit for STa) about continuous 

functions. 

On the other hand, a notable difference between STa and STb appeared in the 

management of the geometric setting. Using properties of orthogonal symmetry STb 

developed a detailed proof on the nature of the triangles which seem to be isosceles and 

rectangle. STa apparently remained at a visual stage (of the GI type, see (Houdement & 

Kuzniak, 1999)) since he did not make any remarks on the geometric configuration, 

although he fully used it in his calculations. 

Stages 2 and 3. Problems P2 (virtual) and P3 (real) 
For both STa and STb these problems were integrated in the chapter on 

polynomial functions of degree two. 

For STa, the statement of the virtual problem P2 is identical to P1 (with the 

exception of the length of the side of the square which is fixed to 5 cm) with the use of 

Geogebra in half-classes. Though the precision "the length of the side is not given" can 

be noticed, the statements of the real problem P3 and P2 are almost identical (and so is the 

case for P1). However, P3’s implementation modes are very different. It is finally given as 

homework, the choice being left to students to send a Geogebra file by Internet or to give 

back a paper-and-pencil work. Contrary to P2, the use of the software is not required. 

Sending works by electronic mail had already been used in the year but none of  SPa’s 
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students chose this option for this work, and finally all of them achieved a paper-and-

pencil work (presumably using calculator). 

In both problems, P2 and P3, STa encouraged his students to make the folding by 

themselves. However, in P2 the square was given whereas in P3 the square had to be 

constructed by the students themselves: therefore they had to choose the length of the 

side. 

For STb problem P2 is close to P1 but, with the addition of specific questions, it 

became a closed problem. The l side was fixed to 6 cm and only the case of equality was 

asked; the actual folding was required (for this a bi-colored square on which a diagonal 

had been drawn was given to every student); a question asked to prove the existence of an 

isosceles rectangle triangle; notations for geometric points and the variable x were 

provided and use of Geogebra was considered – in half-classes – to represent the two 

curves and thus allow a graphical resolution of the problem (let’s notice that this type of 

task has already been asked in this class). 

Although if in P3 there is no question about the nature of the triangle, STb 

mentioned that the nature of this triangle would be assumed. Finally l was fixed to 33

(more or less like in problem P0, although STb did not know of it) and the question was 

then more open, no procedure was imposed anymore, the students had the choice 

between Geogebra software and paper-and-pencil environment. Two questions were 

asked: one on the case of equality and the second on the comparison of areas. The 

students, by groups of three, had to cut out a square. Two different aids had been 

prepared by STb: for students who choose Geogebra (the square 33  size was already 

constructed) a hint indicates some Geogebra tools, and for those who chose the paper-
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and-pencil environment several possibilities for choosing the unknown, or variable x, 

were given (this help was not immediately provided and was limited to cases of 

blockage). 

3.2.2 A pre-service teacher’s trajectory at grade 8 

One student teacher, STc, was in charge of a grade 8 class. At this level, two 

mathematical contents, obviously in relation with the syllabus, were considered: 

mathematical proof in geometry (chosen by STc) and algebraic calculation.  

Stage 1. Solving problem  P1 
STc produced a long research, exploring various points of view on the problem, 

remaining mostly in a geometrical setting. He produced proofs using geometrical tools 

and notions: isometric triangles, intercept theorem (known in France as the théorème de 

Thalès), orthogonal symmetry, Pythagoras’ theorem, perpendicular bisector, square, 

bisector, sum of angles of a triangle. He chose a variable x on the diagonal (he 

instinctively did not consider the side of the square) and calculated the areas but he could 

not solve the problem. 

In his research on problem P1, STc made a clear distinction between geometrical 

paradigms GI and GII (Houdement & Kuzniak, 1999) which constitutes one of the stakes 

of the teaching of geometry at junior secondary school. An attempt to cut out figures for 

determining areas (especially for the hexagon) was also noticed but STc concluded that it 

was impossible to find a solution without using the above mentioned geometry tools. 

He also used the Geogebra software to simulate the folding and visualize the 

hexagonal area by a curve, using sizes measured by the software (length and area). Like 

for STa, the value of l leads to a curve that does not fit well in the graphical window. But 

instead of modifying the value of l, STc divided the ordinates of the points by 10. He 
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stopped when seeing that he got a parabola as his calculations had shown him. He did not 

solve the problem, neither with the software (contrary to STa and STb), nor by using the 

notion of function (the curve shows only that there is a parabola). 

Stages 2 and 3. Problems P2 (virtual) and P3 (real) 
STc did not produce a virtual problem P2 (this comes probably from an omission 

or misunderstanding of the statement), and in his real problem for his class he put the 

stress on the teaching of proof. The problem P3 he proposed was stated only in a paper-

and-pencil environment, and there are multiple reasons for this: 

 he points out constraints in the use of the computer room; 

 he thinks that his students are not able to use a software for making a 

conjecture without being guided and he wants to keep the character open of 

the problem; 

 he thinks his grade 8 class is a ‘good’ one. 

He then considers a paper-and-pencil work in small groups, planned for two 

sessions. The problem P3 he poses asks to cut out a 6 cm sided square, with the students 

achieving actual folding, and includes only one question: "How to achieve this folding so 

that the grey area is equal to the white area?" 

The aim is twofold, as it can be noticed in the planned institutionalization: proof 

of the fact that the hexagon is obtained by removing a small square and calculation of the 

position giving equal areas. Besides, after the first session a student proposed to cut out 

the square into three figures having the same area (hexagon and two isosceles rectangle 

triangles) but without being able to justify it. Then STc adjusted his plans and thought of 

proposing a solution based on the areas: the area of the small square must be equal to the 

two thirds of the total area, and therefore the side of the small square (which gives the 
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solution) is 32 /  × 6 cm or 24  cm. However, in the class reality, the aspects linked to 

geometrical proof were hardly tackled during the session.  

3.2.3 Two pre-service teachers’ trajectories at grade 6  

At grade 6 level, the mathematical notions that the students know do not allow the 

use of the previous mathematical supports (functions, algebraic calculation, geometrical 

proof). It seems that the calculation of areas of polygonal figures is the only possible 

mathematical support at this level. Thus, it is not surprising that this very content 

constitutes the choice of both student teachers, STd and STe, who are considered in this 

section. 

Stage 1. Solving problem P1 
STe used Geogebra for modelling the folding. A visual adjustment with the 

measures of the two areas allowed him reducing the gap between them in order to solve 

the problem in an approximate way. Then, in order to make a conjecture, STe tried 

searching for a notable value, the approximate solution could be an approximation of it. 

His attempts were not successful in spite of two constructions depending on whether the 

mobile point is on the side of the square or on the diagonal – these lengths being, in each 

case, fixed to 10 cm for making the research of a conjecture easier.  

Then STe shifted to paper-and-pencil environment. After fixing the length of the 

square to 1, he produced two calculations of the solution by taking two unknowns, 

respectively the side x of the small square, and 1–x. For STe, it is explicit that equal areas 

corresponds to cutting out the square into three thirds, but the general comparison of 

areas is not taken in account. 

In her research for a solution, STd started with working in a paper-and-pencil 

environment; she named x the length of the side of the small square and l the length of the 
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side of the initial one, calculated the two areas and solved the problem of their equality. 

Let us remark that she wrote, without justification, that the comparison of areas is solved 

with the help of the equality case. The comparison of areas was made with respect to the 

value l/√1.5. Then STd carried out the folding with her square: "I measured l (7,3cm), I 

did the calculation, which gave x=5.96". STd found that, visually, there seemed to be a 

little difference between the areas and she thought that it is due to an optical illusion. She 

then gave a construction of the folding with the help of the Geogebra software. STd 

regrets that this only provides an approximate value of the solution, like the ones 

obtained with a square of paper: measures and area calculations. 

Stages 2 and 3. Problems P2 (virtual) and P3 (real) 
STe proposed a statement of the virtual problem P2 identical to P1’s, but he fixed 

the side of the square to l=12 cm. The scenario he considered includes three steps: 

 an initiation, during about 20 min, in a session that involved an actual folding 

of a particular square, a statement of the problem and first attempts of 

solution; 

 a second stage, in the computer room, to determine an approximate solution 

with the help of Geogebra; 

 a last stage, working in pairs, aiming to justify the solution found with the 

help of a cutting out of the square (this last step being not explicit). 

He proposed a ‘dressing’ of the problem in order to make it more concrete for his 

students: a square field inherited by three brothers has to be divided between them. The 

eldest receives the total big square minus a small square (situated in ‘a corner’), this 

remaining  small square being shared between the two others. The question is: "do the 

three brothers have equitable parts?". This dressing, not taken up in problem P1, changes 



  TME, vol10, nos.1&2, p .431 
 

 
 

significantly the problem because it turns it onto cutting the initial square into three 

polygons of equal areas. There is not folding anymore and nothing is said on how the 

small square is shared between the two younger brothers (nor even if it is equitable). 

The real problem P3 took up this idea of contextualisation, but remains closer to 

problem P1: a firm wants to make a logo defined by the folding of a square of side 12 cm 

and the constraint of equality of the two areas. STe also took up the idea of three phases, 

only slightly modified: 

1. a first activity, on paper, to understand the problem; 

2. a second activity, with Geogebra (construction and research are very guided), 

to find out an approximate value, which is quite suitable for the realization of 

the logo; 

3. here the justification was replaced by a actual construction of the logo on 

paper, using this approximate value (this third step was planned in the same 

session than point 2). 

The student teacher STd proposed a problem P2 taking up problem P1 and 

modifying the question in the same way as STe: "How has the black corner to be folded 

so that it has the same area than the white surface?" The possibilities for using calculator 

as well as the Geogebra software were mentioned (under the condition of not asking to 

draw the diagram, judged too complex for this level). In particular, STe planned to have 

the students work in groups of four in a computer room and let them choose their 

environment. 

The real problem P3, differs notably from P1 by the fact that one the interest is 

only in the equality (like P2) and especially the fact that an approximate value is 
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explicitly asked: "Determine as precisely as possible a folding of this type, so that the 

white part and the colourful part have the same area". The work was organised in groups 

of three students in the computer room, with a possibility to use Geogebra or only paper 

and pencil. Each group was provided a square of paper, the size of which was 3 cm, 4 cm, 

5 cm or 6 cm (STd explicitly adjusted this choice of the didactical variable: multiple of 3 

or not). 

4. Discussion 

4.1 About trajectories 

In this section we propose an original frame to organize and analyse the emerging 

trajectories to deal with the problem, like those which have been set out in section 3. The 

aim of this frame is to take into account various dimensions of a problem (institution and 

persons involved, goal(s) aimed at) and study the nature and the dynamics of the changes 

which take place through the successive ‘moves’ of this problem from one institution to 

another. 

At the start there is a problem, not necessarily mathematical, coming from an 

institution I, that may involve an everyday life or any domain of knowledge. Then there 

are several didactical institutions I1, I2,… in which successive alternative forms 

(‘avatars’) of the initial problem will show up. In each institution Ik (k ≥ 1) one or several 

individuals Tk  in a ‘teacher’ (or ‘educator’) position, as well as individuals Sk in a 

‘student’ (or ‘trainee’) position, will be distinguished. 

These institutions will be concatenated between them in the following way: the 

problem was introduced in Ik under the Pk avatar by Tk who poses it to the Sk with a given 

purpose. Then one of the Sks, who in institution is in a ‘teacher’ position (Tk+1 = Sk), 
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poses the problem to his/her students Sk+1s under the avatar Pk+1, with a purpose which is 

generally different (figure 3). 

 
Figure 3.  Concatenation of institutions 

Of course this process can possibly be carried on from an institution to another 

(I1, I2,… , In), depending on the involved individuals. The succession of stages − and 

hence of avatars of the problem − constitutes the trajectory of the problem. 

Example (figure 4). 

Stage 1. In a training center for teachers (institution I1) a math educator finds a 

problem written in everyday language in a magazine. He/she thinks that it could well give 

rise to a geometrical activity for his/her trainees. Then he/she transforms it into a 

geometrical wording and, within the training curriculum, asks the trainees to search ‘all 

possible solutions’ of the problem, regardless to the classroom level. (mathematical a 

priori analysis). 

Stage 2. Again within the training curriculum (institution I2=I1), the teacher 

educator asks his/her trainees to transform the wording into a new one that could be 

posed as a research problem to a class of a given level (didactical a priori analysis). 

Stage 3. Back to his/her school (institution I3), each trainee undertakes posing the 

problem in his/her class. For that he/she transforms again the wording according to this 
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particular class and poses it by asking his/her students to use their knowledge to find a 

solution to the problem. 

Stage 4. Back to the training center (institution I4=I1), the educator asks the 

trainees, gathered in groups according to the level of their classes, to work out for that 

level a new formulation of the wording, in order to make it a research problem taking into 

account the implementation that they could observe in their own classes (a posteriori 

analysis). 

                           

                              
Figure 4 : Examples of trajectories of a problem 

 

The first three stages correspond to the example of training constituting the study 

of section 3: I1=I2 is the training center and I3 is one of the secondary school classes. 

Stage 4 could not be achieved during the training. It is nevertheless important, either 

being put into play in the training center or not, because it marks the start of a cycle of 

transformation of the problem taking into account the feedbacks from the students. This 

is a central component of the profession of teacher. 
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Moreover, one may quite consider conceiving trajectories in which other modes 

of transmission of problems intervene. For instance think of a continued training instead 

of an initial one or a debate between teachers of a same secondary school. 

4.2 On training 

During the first session dedicated to presentation of the problem P1, the teacher 

educator TEb made an unsuccessful attempt to orientate the trajectories by encouraging 

the teacher students to think about the use of spreadsheet in the class. However, as we 

saw it in the class of STd, sixth grade students could generate values tables close to what 

they could get faster with spreadsheet. We could observe the teachers’ difficulties to 

integrate spreadsheet in their actual practices despite an important focus during the 

training. It could suggest a training underperforming, but this opinion needs to be 

qualified because it seems that spreadsheet, according various studies, is a tool especially 

difficult to integrate into lessons by teachers. Indeed, Haspekian (2005) mentions some 

specific problems on spreadsheet instrumentation or teaching of particular notions related 

to spreadsheet (such as delicate and complex notion of cell) which do not exist or not 

under the same form in maths knowledge at this grade:  that can interfere negativity with 

the teaching of algebra. Teachers can be aware of these difficulties and avoid the use of 

spreadsheet in class despite the official demand from educative institution. The 

interpretation is confirmed by the experiment of TEa. One group of teacher students had 

to prepare a session using spreadsheet. Convinced of the impossibility of using 

spreadsheet in their own class, they prepared a session dedicated to the teaching of 

algorithms without any actual adaptation to the level of their students. They argued that 

the use of a spreadsheet needs too much time and knowledge which is not of 

mathematical nature.  
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Open problems and problem-situations with a-didactic potential are largely 

favored by the training in teacher training institution I1, especially  to encourage student 

teachers to not only ask problems with closed questions to their students. As the problems 

P3, posed in class, were generally open, we can conclude that prospective teachers were 

aware of this mathematics education complexity. This is perhaps due to the training based 

on homology that we gave to the students and which postulates that teachers students will 

reproduce the form of the teaching they received during their training in I1 .  

It should also be noted that the virtual problem P2 does not provide a lot of 

information on the actual course in class, except to check that changes of the 

mathematical support could only be possible in the class in front of school students (see 

STc). Even when student teachers know they will have to manage the problem with their 

students, the real constraints of the class do not seem to be taken into account before they 

are involved in real teaching scenarios with their own students. This leads to significant 

differences between laboratory work in I2 towards I3  and the actual work in I3 and could 

suggest that the training on problems prepared in I2  is not representative and far away 

from the reality of class teaching - even if this work remains interesting for training. That 

too should lead teachers educators to complete the training by requiring prospective 

teachers to engage into an actual implementation in a class with an a posteriori analysis. 

This demand can also show them that, first, it is possible to implement in I3 the 

requirement made in  I1 and, then, that the demand of the training institution is not 

opposite to the demand of school institution as some students think of it.  

4.3 On the choice of the specific technological context  

All prospective teachers have chosen to use Geogebra software to approach their 

problem research in response to the demand of using a technological context. This sole 
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choice of Geogebra could be explained by some factors. First, training in I2 favors this 

software which is widely used in French secondary school system. On other hand, 

Geogebra which is a multi-purpose software is well adapted to the problem:  P1 is 

generally seen as a geometrical problem and therefore the use of a dynamic geometry 

software is somehow natural, and for grade 10 the problem is also connected to functions 

as modeling tools and the use of Geogebra to make graphics is well suited. 

For the problem posed in class, three different environments are employed for 

solving it: a paper and pencil environment or Geogebra (STa, STd), only Geogebra (STb, 

STe) and no use of software (STc). Moreover, there are few mentions of the use of a 

calculator (STd is the unique teacher who speaks explicitly about it) while school 

students use it widely. Perhaps, this lack of allusion to calculator is due to the fact that 

teachers do not perceive it as a technological environment (despite the instructions see 

sec 3.1) and they think of a computer. It is also possible that its use is now considered 

transparent and routine for prospective teachers and they feel no need to mention it. 

4.4 On the folding 

All prospective teachers keep the idea of the folding to present the problem to 

their students. Probably this anchoring to the real world supports the devolution of the 

problem as the attitude of STe suggests it: he left aside the idea of folding in the virtual 

problem P2, but it takes again this idea when he poses the real problem P3 to his students 

in class. 

However, the folding is not easy to define as we can see it in I1 where the teacher 

educators had been obliged to mention other geometric terms than the area like square 

and diagonal and vertices.  The diagonal could be also drawn (an even marked by a fold 

as STe did it). Other ways are possible: STc pointed out the vertex to fold on the diagonal 
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by coloring the good corner to use; STd has not defined the folding with enough 

precision and students did not well understand the instructions so that STd added some 

comments during the session in class; STa and STb made an unequivocal coding of the 

figure (like in the Mexican task in sec. 2).  

4.5 On the problem 

It is indeed a problem with a high potential that can be addressed at all levels of 

secondary education. The student teachers have all agreed without hesitation to pose it 

with their own transformations to their classes and students and, according to their 

comments, the students were interested in solving the problem P3. 

Many adjustments were made especially concerning modalities of 

implementation. But despite the diversity of educational levels where the problem was 

given, the core of the mathematical problem stays stable with few changes. Among the 

changes, we can note essentially: the value of l (except for STa) and the research of the 

equality (except for student teachers teaching in grade 10, STa and STb). The biggest 

adjustment was made by STd, who introduced the concept of precision of the solution. 

By and large, the problem P1 did the job. 

We can conclude that the transformations of the problem P1 to give it in class are 

simultaneous oriented by the researches of the mathematical solution and by the official 

syllabus of the grades involved in the teaching.  It would be interesting to know what will 

be the use of the problem by the teachers some years later and how the trajectory of the 

problem continues evolving. We intend to make an interview with the prospective 

teachers involved in this study in the future. Another point of interest is the impact of 

such problems on school students and some material need to be used to precise this 

crucial point.  
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