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Abstract: This study uses the perspective of schemes to analyze characteristics of 
arithmetic word problems that can influence the process of translation from the verbal 
statement to an arithmetical representation. One characteristic that we have detected in 
the two-step word problems is the presence of one or two connections (nodes) in schemes 
that represent them, and this paper explores whether the number of nodes affects the 
activation of the associated schemas. With students from the 5th and 6th grades of 
elementary school (11 and 12 years of age), we analyze the written productions and 
would stress that the number of connections influences the activation of the right schema. 
Results show that the double connection implicate a greater difficulty for obtaining a 
correct arithmetical representation. Likewise, the presence of a simple or double 
connection between the two relationships means that the students commit specific errors 
that we associate with this characteristic. 
 
Keywords: Two-step word problems, arithmetic, schemes, double node, errors. 
 

Introduction 

Research on problem solving on mathematics education is a wide and varied field, 

and it is not limited to a single study focus; nor is it performed within a single theoretical 

framework (Castro, 2008; Santos, 2008). A good number of studies have centered on the 

use of arithmetic operations to solve word problems. Verschaffel, Greer, & Torbeyns, 

(2006) distinguish four focuses in the study of arithmetic problems: (a) conceptual 

structures (schemes) for representing and solving word problems; (b) word problems 

viewed from a problems-solving perspective; (c) a sociocultural analysis of performance 

on arithmetic word problems; and (d) the modeling approach.  

                                                 
1 Author’s address: Facultad de Ciencias de la Educación, 18071, Granada, Spain. E-mail: ecastro@ugr.es 
2 Author’s address: Facultad de Ciencias de la Educación. Almería, Spain. E-mail: afrias@ual.es 
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Since the 1990s, there have been a tendency in Mathematics Education to 

undervalue the educational value of word problems and stress situated and socially 

mediated approaches to solving authentic, complex problems. Despite this focus, 

Jonassen (2003) indicates that “story problems remain the most common form of problem 

solving in K-12 schools and universities” (p. 267). This paper treats arithmetic word 

problems whose statement contains two relationships between the data and that therefore 

require more than one operation to solve them (two-step arithmetic word problems). We 

perform our analysis from the perspective of schemes (Hershkovitz, & Nesher, 2003) and 

focus on characterizing the double node in two-step arithmetic word problems and the 

schemes to which they give rise, and on studying the influence of the double node on the 

activation of the schemes and the errors this causes. Enright, Morley, & Sheehan (2002) 

indicate that problem features such as those described previously can be related 

theoretically to individual differences in cognition (p. 51). 

 

The scheme approach 

From the semantic perspective on one-step arithmetic problems, once the 

concepts and relationships involved are understood, the child has only to choose the 

correct operation and apply it (Quintero, 1983, p. 102). In problems with several steps, it 

is also necessary to understand the concepts and relationships, but additional issues are 

involved as well. Quintero (1983) indicates that the child must plan and organize the 

order in which to apply the operations and identify the pairs of numbers to which to apply 

each operation. Shalin and Bee (1985) analysis of two-step problems leading to specific 

structures is based on the possible logical combinations of one-step problems. They 



  TME, vol10, nos.1&2, p .381 
 

 
 

represent the corresponding scheme of a simple arithmetic word problem by means of a 

diagram (Figure 1) of three connected components in terms of part-whole relationships. 

 

Figure 1. Notation of the triad of components present in the part-whole relationship 

 
If the diagram in Figure 1 represents a mathematical object, we can construct 

more complex mathematical relationships from it using more than one diagram and 

connecting them to each other, forming networks. Following this idea, Shalin & Bee 

(1985) obtain the structure of a two-step problem by combining two triads based on local 

relationships. Each of the different ways of combining two triads like that in Figure 1 

constitutes a different global problem structure. These combinations  (Figure 2) define 

three structures of two-step problems: hierarchy, sharing the whole and sharing a part. 

 

Figure 2. Hierarchical scheme, sharing the whole and sharing a part  

 

Nesher & Herskovitz (1994, 2003) research the influence that the three schemes 

(Figura 2) have on the index of difficulty of composite problems. With a sample of 

students from third, fourth, fifth, and sixth grades in Israel, they find that the variable 

type of scheme has a significant effect on the index of difficulty of these problems. The 

“hierarchical” scheme is the easiest, followed by the “shared whole” and finally the 

“shared part” scheme. The study by Shalin & Bee (1985) also showed that children in the 
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3rd, 4th  and 5th grades (elementary school) had a higher rate of success with the 

hierarchical scheme. In the following section, we will see that the results can be altered 

by other cognitive variables. 

 

Decrease-increase relationship 

In the research performed by the Numerical Thinking Group of the University of 

Granada, with 4th, 5th, and 6th grade elementary school children from Granada (Spain), the 

results obtained by comparing the indices of difficulty of the different combinations of 

the relationships of increase or decrease show that the combinations of increase and 

decrease affect the difficulty of the two-step problems (Castro, Rico, Castro, & Gutiérrez, 

1994; Castro, et al., 1996); Rico, Castro, González, & Castro, 1994; Rico, et al., 1997). 

The four classes of problem are determined by whether the relationship is one of 

increase or decrease.  

Type (I, I). Two relationships of increase. The whole of the first initial 

relationship is a part of the second relationship (hierarchical scheme). 

Type (D, D). Two relationships of decrease. One part of the first 

relationship is the whole of the second relationship (hierarchical scheme). 

Type (I, D). First relationship of increase and second of decrease. The two 

relationships share the whole (sharing the whole scheme). 

Type (D, I) The first relationship is one of decrease and the second one of 

increase. The two relationships share a part (share a part scheme).  

Presented in order of increasing difficulty, they are:  

(I, I), (I, D), (D, I) and (D, D) 
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where the type (D, D) is the most difficult. These results contradict the argument that the 

hierarchical scheme is generally less difficult than the other two schemes. Shalin & Bee 

(1985) and Nesher & Hershkovitz (1994) find that the problems associated with the 

hierarchical scheme are less difficult than the others. However, in Castro, et al., (1996) 

study with additive problems, the problems corresponding to the two extreme 

combinations—the easiest, increase-increase (I, I) and the most difficult decrease-

decrease (D,D)—correspond to the same scheme: the hierarchical scheme. The difficulty 

of the hierarchical scheme is consequently affected by the relationships of increase or 

decrease used to state the problem. Other cognitive variables also appear in two-step 

problems, however, such as the number of connections between the components of the 

basic structure, as we will see in the next section. 

 

Problems with two nodes  

One of the key issues in understanding the structure of two-step word problems is 

understanding the nature of the two elements that compose the basic triad of the part-

whole scheme and the way of connecting these elements between two triads. To 

determine how this is done, Nesher & Hershkovitz (1994) perform a textual analysis of 

the problems, breaking them into components. They distinguish three components in a 

one-step problem. Two of these provide numerical information explicitly (complete 

components) and the other, the question, is missing numerical information (incomplete 

component). 

In the composite schemes for two-step problems (Nesher & Hershkovitz, 1994), 

the connection between the two one-step problems is created by a new component, which 
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they call the latent component of the problem (see Figure 3) and which is common to the 

two simple structures.  

 
Figure 3. Latent component 

From a representational point of view, we say in this situation that there is a nexus 

or node between the two simple structures that produce the corresponding composite 

scheme. Thus, the two simple structures share a component within a two-step problem. 

For example, in Problem 1:  

Problem 1. I bought 5 books. Each book cost 8 euros. If I pay 50 euros, 

how much money will I get back?  

In the first structure, the latent component is the question of the first problem:  

 I bought 5 books  

 Each book cost 8 euros  

 How much do all of the books cost?  

In the second structure, the latent component becomes a complete component:  

 All of the books cost 40 euros. 

 I pay 50 euros. 

 How much money will I get back? 

 
In this problem, the latent component (the price of all the books) is shared by the 

first and second arithmetic structures. This latent component, which is not stated 
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explicitly in the wording of the problem, connects the two structures. The price of the 

books is obtained in the first structure, where it has the function of incomplete 

component. This price is then used in the second structure as a complete component. This 

function of connection between the two structures is what leads us to call it a node or 

nexus of union between the two.  

In the schemes of two-step problems defined by Shalin & Bee (1985) and 

subsequently used by Hershkovitz & Nesher (1996) and Nesher & Hershkovitz (1994, 

1996, 2003), the latent quantity is the only nexus of union between the two simple 

structures. However, the condition of a node does not imply being a latent quantity, nor 

does it mean that this is the only quantity with this condition. The node can also be a 

piece of information given explicitly in the statement and that is shared by more than one 

simple structure within a two-step problem. It is possible to find two-step problems that 

have two simple structures connected by two nodes, as occurs in the following problem:  

Problem 2. John has 5 balls. His grandfather gives him triple the number 
he had. How many balls does John have now?  

 
This problem 2 combines two simple schemes: one multiplicative scheme and one 

additive. Both schemes have two quantities, “John’s 5 balls” and “the balls that John’s 

grandfather gives him,” which are shared. In Figure 4, we see the representation of the 

two simple schemes and how both contain the shared quantities. This kind of two-step 

problem has only two pieces of information or, from another perspective, three pieces, 

but one of these is repeated or has a double function. Therefore, two components are 

shared by the two simple structures, one of these the latent component (balls that the 

grandfather gives) and the other the repeated piece of information (John’s 5 balls) in the 

problem. 
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Figure 4. Simple schemes of a two-node problem  

The quantities that are shared by various simple structures within a composite 

problem have, therefore, the condition of node, independently of whether these quantities 

are given pieces of information or intermediate unknowns (latent quantities) in the 

problem.  

 Types of two-node schemes  
 

The problem we have used as an example of a double node is hierarchical in kind 

(see Figure 5), and the 15 balls constitute the latent variable, which is the intermediate 

unknown quantity.  

 

Figure 5. Hierarchical scheme 

We can see that the quantity of 5 balls appears in the two simple structures. If we 

merge both boxes into a single one, as shown in Figure 5, we get a sub-scheme of the 

hierarchical scheme, but one in which two quantities are shared by the two simple 

schemes.   
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Figure 6. Composite scheme HP 

When a part and the whole of one simple scheme matches with the part and part 

of the other simple scheme (P, W = P, P), we call this composite scheme HP, since it can 

be obtained from the hierarchical scheme H, since one part of each simple scheme 

coincides with the other (see Figure 6). 

 
In the other two structures of two-step problems, sharing part and sharing whole, 

new substructures also emerge with this condition of considering the double node. In the 

case of the structure “sharing part” (SP), we can generate a substructure by making it 

agree with the other part of the two simple schemes (see Figure 7). We call this 

substructure SPP. 

 

 

Figure 7. Composite scheme SPP 

An example of a problem corresponding to the structure SPP is  
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The double node as a characteristic of some two-step problems can be related 

theoretically from the cognitive point of view to individual differences or different 

success rates (Frías, & Castro, 2007). This is due, for example, to the limited capacity of 

the work memory or, as Embretson (1983) suggests, to the fact that “the characteristics of 

the stimuli of the items in the tests determine the components that are involved in finding 

the solution” (p. 181). From the foregoing considerations, we find it important to study 

whether the two-node problems have different cognitive effects on the subjects.  

For the specific case of two-step problems, the variable node takes more than one 

value. We have described two-step problems with one node and two-step problems with 

two nodes. We now ask whether the number of nodes in a scheme is a cognitive variable 

that can influence the problem-solving process for two-step problems in students who are 

finishing their elementary education.  

Our conjecture is that the number of nodes in a composite two-step problem 

affects the way in which the advanced elementary school students represent two-step 

problems internally. This difference should become visible in issues such as the success 

rate and the emergence of errors specifically involving the number of nodes. 

 

Method 

Participants 

We performed a study to compare the competence of students from the fifth and 

sixth grades of elementary education (ages ranging from ten to twelve) in two-step 

arithmetic problems and to determine whether the number of nodes in the problem 

influences the process of solving it. 172 students from public elementary schools in the 
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city of Almería (Spain) participated in the study, 86 students from 5th grade and 86 from 

6th.  

 
Variables 

Given the wide variety of two-step problems, we limited the study to using a 

carefully-defined set of problems. The first condition we imposed on the two-step 

problems used in the study was that the semantic category corresponding to the first 

simple structure of the problem be comparison (additive or multiplicative) and the 

semantic category corresponding to the second simple structure of the problem be 

combination, whether additive or a cartesian product. We imposed this restriction to 

control for the possible effect that the kind of semantic category in each of the simple 

schemes could have on the overall solving of the two-step problem. 

Once we established this condition, the problems we used were chosen using 

factorial design with four factors or independent variables of the problems, which are: 

 
First factor  

The first factor, which we call A, includes whether one of the simple structures 

that make up the two-step problem has an additive or multiplicative character. We 

understand the additive structure here to include problems that are solved with one 

addition or subtraction. Likewise, we understand by multiplicative structure problems 

solved with one multiplication or division. The variable A refers to the double arithmetic 

relationship present in the two-step problem and in this study takes two values, 

corresponding to the possible combinations of a problem composed of two steps, a simple 

additive structure and another multiplicative structure:  



  TME, vol10, nos.1&2, p .391 
 

 
 

 Al for an additive structure followed by a multiplicative structure 

(+, ×).  

 A2 for a multiplicative structure followed by an additive structure (×, +).  

Second factor  

Since the two-step problems that compose the instrument we have used all contain 

a simple scheme of comparison, we have limited the possible variants of these 

comparison problems to two kinds, consistently worded comparison problems and 

inconsistently worded comparison problems (Lewis & Mayer, 1987). Attending to these 

two kinds of wording for comparison problems, we consider the variable to be the kind of 

wording in the comparison, which we have called variable E and which takes two values:  

 El if the wording of the comparison is consistent.  

 E2 if the wording of the comparison is inconsistent.  

El    Consistent wording E2    Inconsistent wording 

John has 15 marbles  
Peter has 3 times more marbles than John 
How many marbles do they have 
altogether? 

Peter has 15 marbles  
Peter has 3 times more marbles than John  
How many marbles do they have 
altogether? 

 
Third factor  

Each of the simple relationships involved in a two-step problem can be of either 

increase or decrease (Castro, et al., 1996; Castro, Rico, Castro, & Gutiérrez, 1994; Rico, 

Castro, González, & Castro, 1994). We call R the variable that combines the two 

possibilities in the double relationship. In this study, we will take into account two 

values:  
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 R1 for the relationship increase-increase (I I).  

 R2 for the relationship increase-decrease (I D).  

From the point of view of direct translation based on key words, this variable 

provides information most specifically about the arithmetic relationship that can be used. 

Increase will refer to addition or multiplication and decrease to subtraction or division.  

 
Fourth factor  

The fourth factor is the variable, our main focus of attention. It includes the 

number of nodes in the two-step problem. The number of nodes, which we call the 

variable nodes (N), has two values in this study:  

 N1 for two-node problems.  

 N2 for one-node problems.  

N1 two-node problems N2 one-node problems 

Mary has 15 trading cards. George has 3 
times more trading cards than Mary. How 
many trading cards do George and Mary 
have between the two of them? 

Mary has 15 trading cards, and Paula has 
90 cards. George has 30 more cards than 
Mary. How many cards do George and 
Paula have between the two of them? 

 
Instrument and procedure 

The instrument used in this experiment was a questionnaire with sixteen 

problems. The sixteen problems correspond to the possible combinations that emerge 

from crossing the four factors mentioned above in a factorial design. So as not to 

overwhelm the study subjects with too many problems, we divided this set of sixteen 

problems into two questionnaires of eight problems each, according to the following 

distribution: 
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 N1 N2 

A1  A2 A1 A2 

E1 R1 Q1 Q2 Q1 Q2 

R2 Q2 Q1 Q2 Q1 

E2 R1 Q1 Q2 Q1 Q2 

R2 Q2 Q1 Q2 Q1 

Q1 Questionnaire Nº 1   Q2 Questionnaire Nº 2 
 

The problems in these questionnaires were solved by the children individually and 

silently in the classroom using pen and paper. Each child was given a questionnaire at 

random. 

 
Results 

The answers given by the subjects to the problems posed were evaluated as 

correct or incorrect, taking into account the choice and execution of the operations, as 

well as the expression of the result. We have classified a response as correct when the 

subject has chosen the right two operations between the corresponding data and has 

expressed the solution correctly, writing it in the space provided for the result the 

expression of the relationship that each problem required according to the instructions 

provided on the questionnaires. This circumstance occurred in different ways. The most 

common was to perform two operations, executing the corresponding algorithms, and to 

conclude with the full expression by answering the question posed in the problem. 

However, we have also considered correct those answers in which this was done 

implicitly. For example, given the problem: 

Javier has 12 pairs of pants. Javier has 3 more shirts than pairs of pants. 
How many ways can Javier combine pants and shirt? 
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Some subjects did one of the operations (12+3=15) mentally, so that the only 

explicit operation that appears is 12×15=180. In cases like this, we have evaluated the 

answer as correct, since we understand that student chose the two correct operations, 

performed one as a mental calculation and the other as a written algorithm, and provided 

the correct answer: “Javier can combine his shirts and pants in 180 different ways.” We 

have also considered answers to be correct if the answer was expressed elliptically, for 

example, “They can be combined in 180 ways.” In cases where students chose the 

operations to be performed correctly and used the correct data but committed a 

calculation error in the algorithm, we have considered the answer to be correct, even 

though the result shows a quantity different from the correct one. In this case, we believe 

that this kind of error does not affect the subject’s understanding of the problem. 

The answers were evaluated as incorrect when one of the two operations to be 

performed was not the correct one or the subject did not perform the operation with the 

proper data. No response on one of the operations was also qualified as incorrect, since it 

shows that the subject did not understand at least one of the two relationships in the 

problem. No answer at all was also evaluated as incorrect. 

 
The success rates at which the children in the study were able to translate each of 

the questionnaire problems into its arithmetic representation are shown in Table 1 as 

percentages. They range from 20% for the most difficult problem to 90% for the least 

difficult. This result shows that some of the factors that define the problem influence their 

difficulty. To highlight which variables have a significant influence, we have applied a 

variance analysis to the four factors. 
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Table 1. Percentages of success in the questionnaire problems according to factors  

 N1 -two nodes N2 -one node 

A1 +× A2 ×+ A1+× A2 ×+ 

Consistent 
E1 

R1   I I 37 80 36 90 

R2  I D 34 57 33 58 

Inconsistent 
E2 

R1 I I 28 36 34 55 

R2 I D 22 30 20 51 

 
Using the success rate measured in percentages as a dependent variable, we have 

applied variance analysis to detect whether the four factors defined in the study had a 

significant effect on the success rate. The variance analysis applied to the data obtained 

shows a significant effect on the following cases:  

 variable N number of nodes (F = 6.677, p=0.010). The percentage of success 

on problems with one or two nodes is: two nodes-N1 (41%) and one nodes-N2 

(63%). 

 variable R combinations of increase and decrease (F=20.982, p=0.000), with a 

percentage of success on the combinations of: increase-increase (49%) and 

decrease-increase (38%). 

 variable E or kind of wording (F=56.504, p=0.000): Consistent (61%) and 

inconsistent (45%). 

 variable A combination of the additive and multiplicative relationships 

(F=116.760,  p= 0.000). The percentages of success on the combinations of 

additive and multiplicative relationships used were: A1(+×) combination 

(30%) and A2(×+) combination  (57 %). 
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We interpret the marked difference in difficulty shown by combinations A1 and 

A2 according to the restriction imposed, that is, that the problems be comparison (additive 

or multiplicative) in the first step and either additive or Cartesian product combination in 

the second step. In problems of the type +×, we use the additive comparison in the first 

step and the Cartesian product in the second step. In problems ×+, we use the 

multiplicative comparison in the first step and the additive combination in the second. 

The presence of the Cartesian product in the simple scheme corresponding to the second 

step of the problems seems to cause the difference in difficulty.  

 
The only significant interaction effect influenced by the variable of node is N×A 

(F=6.084, p=0.014). This interaction does not change the order of difficulty of the values 

of the variable node, however, as can be seen in graphic 1. 

 

Graphic 1. Percentages of correct answers according to nodes and combinations of 

arithmetic relationships 

 

In graphic 1, we can see that the problems with two nodes are more difficult to 

translate into a symbolic representation than the problems with one node for the two 

combinations of arithmetic operations. We can conclude from this analysis that the 
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number of connections between the two relationships is a significant differentiating 

characteristic in two-step problems. The percentages of success on one-node problems 

(63%) and two-node problems (41%) show a significant difference in students’ 

performance between these two kinds of problem. This difference does not depend on the 

other factors considered. 

 
Error analysis 

In written products, we found that in addition to typical errors already identified 

in one-step problems (such as the additive error or the inversion error), the sample 

subjects produced new errors in the two-step problems, errors that we identified as errors 

belonging to the double structure itself. Since our goal is to characterize the issues that 

differentiate the two-step problems, we will stick to the description of the errors specific 

to the double structure. 

 
Type 1 error: performing only one operation 

This error is characterized by using only one operation to solve a two-step 

problem. The operation may be either one of the two correct operations that should be 

performed or the wrong operation for another reason. In all of the cases, the subjects do 

not attempt to perform more operations but instead give as an answer the result of the 

only operation that they have performed with the two pieces of information from the 

problem. Most of the cases observed occurred in problems with two nodes (and only two 

pieces of information). In a few cases, this kind of error occurred with a problem of only 

one node (with three pieces of information). Table 2 shows examples of this kind of 

error.  
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Table 2. Error in performing one operation  

Problems Errors Comments 
Example 1 
Anne has 12 pairs of pants 
Anne has 3 shirts fewer than pants. 
How many ways can he combine 
pants and shirts? 

 
12  3 = 9 
Result: He can combine 
pants and shirts in 9 
ways  

 
Omits the second 
operation  

Example 2 
John has 24 balls 
John has 3 times fewer balls than 
Peter. How many balls do they 
have between the two of them? 

 
24 + 3 = 27 

 Result: Between the two 
of them, they have 27 
balls 

 
Omits the first 
operation  

Example 3 
Anne has 48 trading cards 
Mary has 4 times more trading 
cards than Anne. How many do 
they have between the two of 
them? 

 
48 × 4 = 192 

Result: Between the two of
them, they have 192
trading cards 

 
Omits the second 
operation  

 
In the problems used in this study, the two relationships are ordered; the first one 

is always a comparison and the second a combination. For this kind of error, we can 

therefore distinguish the cases in which the subject forgot the first relationship from those 

in which the subject forgot the second: 

 
1. Forgetting the first relationship  

In this case, subjects take the two pieces of information in the problem and 

perform an operation without taking into account the first relationship in the context of 

the problem. They focus their attention on the second relationship, which is the one in 

which the problem’s question appears. Examples 1 and 2 in Table 2 illustrate this case. 

 
2. Forgetting the second relationship  

In this case, they take the two pieces of information in the problem and work with 

them in the context of the first relationship stated in the problem, not taking into account 
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the second relationship. In the result, they answer the question in the problem that 

corresponds to the second relationship although this value was obtained with the first. 

Example 3 in Table 2 fits this type of error. 

 
Type 2 error. Ordered data  

This error is characterized by choosing the data for performing the relationships in 

the same order in which they appear in the problem. In certain problems in our study, this 

leads to an error in the two relationships in the problem. The students take the first two 

pieces of information that appear in the word problem and perform the operation, then to 

perform another operation on the result and the third piece of information, and finally, 

with this result, to find the solution. An example of this error can be seen in the solution 

given to the problem in Table 3. 

 
Table 3. Error in ordered data  

Problem Solution with Type 2 error 
George has 18 shirts and 6 belts. George has 3 shirts more 
than pairs of pants. How many ways can he combine pants 
and belt? 

18  6 = 12;  12 × 3 = 36 
Result: He can combine 
pants and belt 36 ways

 
This way of acting indicates recognizing the two relationships in the problem, 

even distinguishing between the two simple structures, one additive and the other 

multiplicative. But the subjects do not associate the data and the relationships in each 

structure correctly. This leads us to think that the choice of data is mechanical or 

algorithmic and that order of presentation takes precedence over any other characteristic 

of the problem. In many cases, we see that, if the correct order coincides with the order in 

which the data are presented, the subjects give the correct response, but when the correct 

order is different than the order in which the data are presented, students make mistakes. 
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These last two kinds of error, one operation and ordered data, occur in the same 

subjects; that is, that for the two-node problems they commit the error of one operation 

and for a one-node problem, that of ordered data. 

 
Type 3 error. Repeating the unshared information  

In the two-node problems, we saw an error that consisted of using twice the 

unshared piece of information in the two simple structures that compose the two-step 

problem, while using the shared piece of information only once. An example is shown in 

Table 4.   

   

      Table 4. Error of confusing repeated information  

Problem Solution with Type 3 error 
Lucia has 15 shirts. Lucia has 3 fewer 
shirts than pairs of pants. How many 
ways can she combine shirts and pants? 

15 + 3 = 18;  18 × 3 = 36 
Result: She can combine shirts and 
pants in 36 different ways 

 
The previous solution that contains the Type 3 error shows that the subjects have 

recognized the two relationships and distinguished two structures, one additive and the 

other multiplicative. Further, the repetition of one piece of information from the problem 

in the calculations (in this case, the 3) seems to indicate that the subject recognizes that 

he or she must use this piece of information twice. The error occurs in choosing the right 

piece of information. 

 
Type 4. Other errors 

In this section, we include errors that do not fit any of those mentioned above, 

cases in which it is difficult to know what motivated the subjects’ choice of operations. 

Most of these cases occur in problems with one node in which the student only 
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recognizes as characteristic of the problem that there are always two or more operations 

but chooses the operation and/or the data related to it arbitrarily or by chance. 

The distribution of the four kinds of error described according to levels of 5th and 

6th grade are shown in Table 5. Here, we differentiate two subtypes two subtypes for the 

error one operation one type for the error ordered data and another for repeat unshared 

datum, whereas in classifying the others we include the unclassifiable wrong answers in 

the foregoing, as well as missing answers. 

 

Table 5. Frequencies of each error at each level and total errors 

Error 
type Subtype 5th grade 6th grade Total 
  Frequency %. Frequency %. Frequency% 

One 
operation 

Forgetting the first 
relationship  16 16.16 10 11.2426 14% 
Forgetting the 
second relationship  45 45.45 52 58.4297 52% 

Ordered 
data  22 22.22 14 15.7336 19% 
Repeat 
unshared 
datum  6 6.06 9 10.1115 8% 
Others  10 10.10 4 4.49 14 7% 
Total  99  89  188 100%
 

As can be seen in Table 5, all kinds of error detected appear in the two levels (5th 

and 6th grades). Overall, the error in one operation has occurred with similar frequency at 

both levels, but this is due to the fact that the two subtypes compensate for each other. 

That is, students in 5th grade omit the first operation more frequently, whereas those in 6th 

omit the second more frequently. The next most frequent error is that of ordered data, 

which occurs with greater frequency in students in 5th grade than those in 6th. 
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Since we chose and identified the problems based on the four factors (N, E, R, A), 

it is reasonable to attempt to relate the types of error defined to these factors. We 

classified the association between the errors as belonging to two-step problems. The four 

factors are shown in Table 6, which includes the distribution of frequencies for each of 

the problems, according to the combination of factors.  

 
Table 6. Frequency of errors in the combination of four factors 

Factors Type of error 
 
 
N 

 
 
E 

 
 
R 

 
 
A 

One operation Ordered 
data  

Repeating 
the unshared 
information  

Others 
 

Forgetting the 
first relationship

Forgetting the 
second relationship  

 
 
 
N1 

 
 
E1 

R1 
 

A1 7 15 0 3 0 
A2 0 13 0 0 0 

R2 A1 3 18 0 1 0 
A2 1 10 0 0 0 

 
 
E2 

R1 A1 4 11 0 1 0 
A2 0 10 0 1 0 

R2 A1 5 13 0 3 0 
A2 5 4 0 0 0 

 
 
 
N2 

 
 
E1 

R1 A1 2 0 9 0 2 
A2 0 0 1 1 0 

R2 A1 0 1 6 0 5 
A2 0 0 4 0 0 

 
 
E2 

R1 A1 0 0 11 1 2 
A2 0 0 2 0 1 

R2 A1 1 0 3 3 4 
A2 0 0 0 1 0 

 
 
Conclusions 

In this study, we have demonstrated a new characteristic associated with two-step 

word problems: the number of connections between the two simple structures that 

compose the problem, which we have called “node.” We have established a specific class 
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of two-step arithmetic word problems that contain only two known quantities in their 

wording. We have shown that these problems have a common characteristic: they are 

formed of additive and/or multiplicative structures connected by two nexus or nodes. Our 

starting hypothesis is that the number of nodes affects the difficulty of translating the 

wording of the problem into a mathematical representation. With a sample of students in 

the last two grades of elementary school in Spain, we have confirmed this hypothesis, in 

the sense that the two-step arithmetic word problems with two nodes are more difficult to 

translate into arithmetic expressions than similar problems with one node. Further, we 

have significant evidence that the result is not influenced by other variables that also 

influence the difficulty of translating arithmetic expressions, such as whether the 

relationship of comparison is expressed in consistent or inconsistent language or whether 

the additive and multiplicative relationships are of increase or decrease. The result is also 

independent of the combinations of additive and multiplicative structures that compose 

the scheme of the two-step problem. Although there is significant interaction between the 

factor node and the factor that represents the combinations of additive and multiplicative 

structures, the analysis of this interaction shows that the order of difficulty in the two-step 

problems remains the same.  

Likewise, from an analysis of the errors committed by the children, we have 

found that in addition to the errors already identified in one-step problems and reviewed 

in the literature, there are patterns of error associated with two-step problems; that is, 

errors that do not occur in one-step problems. We stress the presence of three of these: 

performing only one operation, working with the data in the order in which they appear in 

the statement of the problem, and using one piece of information twice, in the two 
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operations, when in reality it should be used only once in one operation. The error of 

performing one operation occurred with greater frequency in the two-node problems, 

whereas the error of working with the data in the order in which they appear occurred 

more often in one-node problems. Therefore, the number of nodes is an issue that enables 

us to differentiate between types of problems and to explain part of the difficulty that 

two-step arithmetic word problems pose to children. When the students have to solve 

word problems, the number of nodes in a two-step problem is shown to be a cognitive 

variable that influences the problem-solving process.  

 
The limitations of the study performed are related to the kind of problem, the 

students’ level, and the research focus adopted. Within the different semantic categories 

of the problems identified in the additive and multiplicative structure, our study imposed 

the restriction that the first relationship stated in the problem corresponds to the semantic 

category of additive or multiplicative comparison. Likewise, the second relationship 

always corresponds to an additive combination or a multiplicative combination. These 

conditions can mediate the results obtained in terms of difficulty, kind of error, and 

frequency of error. The results obtained must also be restricted to the students’ level. In 

our case, these are students at the end of their elementary education. The results cannot 

therefore be extrapolated to lower levels, although similar results could emerge in the 

first year of the next educational level, the first year of secondary education. Although the 

methodology employed is valid for achieving the goal we proposed and the evidence 

shows the representations that the students produce in response to the two-step word 

problems, they are sensitive to the presence of one or two connections between the 

relationships. This is already a significant result from the point of view of the 
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development of the school curriculum. This study could be continued by tackling from a 

qualitative point of view the psychological reasons for the different student errors in 

problems with one and two nodes. 
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