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Framing the use of computational technology in problem solving 
approaches  

  
Manuel Santos-Trigo      Matías Camacho Machín  

Cinvestav-IPN, Mexico   University of la Laguna, Spain 

Abstract: Mathematical tasks are key ingredient to foster teachers and students’ 
development and construction of mathematical thinking. The use of distinct 
computational tools offers teachers a variety of ways to represent and explore 
mathematical tasks which often extends problem solving approaches based on the use of 
paper and pencil. We sketch a framework to characterize ways of reasoning that emerge 
as result of using computational technology to solve a task that involves dealing with 
variation phenomena.     
 
Keywords: problem solving, framework, the use of computational tools. 
 

 

Introduction 

It is widely recognized that the use of computational technology offers teachers 

and students different ways to represent and explore mathematical problems or concepts. 

There is also evidence that different tools might offer learners different opportunities to 

think of problems in order to represent, explore, and solve those problems. What tools 

and how should teachers integrate them in their teaching environments? What 

instructional goals should teachers aim with the use of technology? In accordance to 

Hegedus & Moreno-Armella (2009) “technology is here to transform thinking, and not to 

serve as some prosthetic device to prop up old styles of pedagogy or curriculum 

standards” (p. 398). Thus, it becomes important for teachers to discuss approaches to use 

technology in order to guide their students to develop ways of thinking that favour their 

comprehension of mathematical concepts and problem solving experiences. In particular, 

teachers should discuss the extent to which the use of the tools helps them represent and 
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explore mathematical tasks in ways that enhance and complement problem solving 

processes that rely on the use of paper and pencil environment.  The use of computational 

tools in learning scenarios implies that teachers need to pay attention to and reflect upon 

aspects that involve:  

(a) The process shown by the subject to transform the artefact (material object) 

into an instrument to represent, to comprehend mathematical ideas, and to solve 

problems;  

(b) The type of tasks used to foster students’ mathematical thinking;  

(c) The ways of reasoning exhibited by the subjects during problem solving 

activities;  

(d) The role of teachers during problem solving sessions; and in general, 

(e) The structure and dynamics of scenarios that promote the use of different tools 

to learn mathematics and solve problems.  

We introduce a pragmatic framework for teachers to organize learning activities 

that promote the systematic use of technology. The framework provides teachers with the 

opportunity to discuss aspects related to the presentation and exploration of mathematical 

tasks through the use of a dynamic software in problem solving environments. The aim is 

to identify and reflect on possible routes that teachers or researchers can follow to 

structure and organize problem-solving activities that enhance the use of technology with 

the purpose of furthering mathematics learning. We highlight a set of questions that 

teachers can think of as a way to delve into the problem through the use of technology. 
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To this end, we chose a generic1 task that involves a variation phenomenon to illustrate 

how the use of the tool fosters an inquiring approach to make sense of the posed 

statement and to promote different ways of reasoning to explore and solve the task 

(NCTM, 2009). Thus, focusing on ways to represent a variation phenomenon through the 

tool demands that teachers identify, express, and explore mathematical relationships in 

terms of visual, numeric, graphic, and algebraic approaches. “Conceptualization of 

invariant structures amidst changing phenomena is often regarded as a key sign of 

knowledge acquisition” (Leung, 2008, p. 137). Thus, teachers need to work on tasks 

where the use of the tools provides them a set of affordances to identify and perceive 

what parameters vary and what are maintained invariant within the problem structure.  

 

Background and Rationale  

Lester (2010) quotes the online Encarta World English Dictionary to define a 

framework: “a set of ideas, principles, agreements, or rules that provides the basis or the 

outline for something that is more fully developed at a later stage” (p. 60). Our notion of 

framework includes initial arguments that describe patterns associated with the use of a 

dynamic software in mathematical problem solving. “ A framework tells you what to 

look at and what its impact might be” (Schoenfeld, 2011, p. 4). It is a pragmatic 

framework that consists of episodes that could help practitioners re-examine and contrast 

those frameworks that explain learners competences exhibited in paper and pencil 

environments. It becomes a scaffolding tool to reflect on issues related to the use of tools 

in learning scenarios.  

                                                 
1 Generic in the sense that the task represents a family of tasks where it is possible to 
explore or examine optimization behaviours of the parameters involved in the task.  
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Schoenfeld (1985) proposed a framework to explain students’ problem solving 

behaviours in terms of what he calls basic resources, cognitive and metacognitve 

strategies, and students’ beliefs. Schoenfeld’s framework came from analyzing and 

categorizing experts and students’ problem solving approaches that involve mainly the 

use of paper and pencil tools. What happens when subjects use systematically 

computational tools to make sense of problem statement, represent, explore and solve 

problems? We argue that the use of technology introduces new information to 

characterize the problem solver’s proficiency. For instance, one of the tasks used by 

Schoenfeld involves asking the students to draw with straightedge and compass a circle 

that is tangent to two intersecting lines where one point of tangency is a given P on one 

line. Schoenfeld reports that students formulated several conjectures about the position of 

the centre of such a tangent circle: (a) The centre of the tangent circle C is the midpoint 

of the line segment between P and the point Q, where P and Q are equidistant from the 

point of intersection V (Figure 1a); (b) The centre of the circle is the midpoint of segment 

of the circular arc from P to Q that has centre V and radius |PV| (Figure 1b), etc. 

(Schoenfeld, 2011, p. 31).  

 

Figure 1a: A student conjecture 

 

Figure 1b: Another student conjecture 

Schoenfeld stated that the students picked up the straightedge and compass, tried 

out their conjecture, and either accepted or rejected it on the basis of how good their 
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drawing looked.  With the use of a dynamic software “good drawing” doesn’t depend on 

subject’s skills to manage the straightedge and compass; rather, the tool provides the 

affordances (precision of drawings, parameter movement, quantification of parameters, 

loci, etc.) to deal or explore conjectures. That is, the use of a dynamic software provides 

teachers ways to initially visualize and test empirically conjectures and, they often access 

or develop relevant knowledge needed to verify and prove those conjectures (Moreno-

Armella & Sriraman, 2005; Santos-Trigo, 2010). For example, in Figures 2a and 2b, the 

dotted circle drawn with the software provides elements to reject the corresponding 

conjectures. Thus, the use of the tool offers relevant information to characterize and 

foster the students’ problem solving competences. For example, students can explore 

visually that the centre of the tangent circle lies on the perpendicular line to line PV at P 

(Figure 2c) and use that information to construct a formal approach based on properties 

embedded in that visual approach. 

Figure 2a: A student conjecture Figure 2b: Another student conjecture 
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Figure 2c: The centre of the tangent circle lies on the perpendicular to PV that passes 

through P. 

We argue that practitioners interested in using computational tools in their 

learning activities can find in the problem solving episodes described in the next section a 

quick reference to the type of mathematical discussions that might emerge during the 

problem solving sessions.  In addition, the episodes might provide directions to structure 

a lesson plan where empirical, visual, graphic, and formal approaches can be considered 

to organize a didactic route. We contend that the episodes can provide relevant 

information that relates to what Jackiw and Sinclair (2009) call first and second order 

effects of the use of the software (referring to The Geometer’s Sketchpad) in learning. 

“First-order effects are a direct consequences of the affordance of the environment; 

second-order effects are then a consequence of these consequences, and usually relate to 

changes in the way learners think, instead of changes in what learners do” (p. 414). That 

is, teachers could use the affordances associated with the software to encourage their 

students to think of novel ways to represent dynamically problem situations. Software’ 

affordances (dragging, finding loci, quantifying parameters, etc.) provide ways to observe 

changes or invariance of involved parameters. As a consequence, the use of the tool 

allows the problem solver to develop ways of reasoning to examine parameters 

behaviours that emerge as a result of moving mathematical objects within the task 

representation or configuration. Heid & Blume (2008) stated “[t]he nature of a 

mathematical activity depends not only on the mathematical demands of the task but also 

on the process of the task as constructed by the doer” (p. 425). Thus, teachers with the 
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use of the tool might guide their students to think about the problem in different ways and 

to discuss concepts and processes that appear during the exploration of the task. 

 

A problem-solving episodes to deal with phenomena of variation 

An example is used to illustrate, in terms of episodes, a route to think of the use of 

technology to represent and explore the area variation of an inscribed parallelogram. The 

first episode emphasizes the relevance for the problem solvers to comprehend the 

statement in order to construct a dynamic representation that can help them visualize 

parameter behaviours.  

 

The task 

Given any triangle ABC, inscribe a parallelogram by selecting a point P on one of 

the sides of the given triangle. Then from point P draw a parallel line to one of the sides 

of the triangle. This line intersects one side of the given triangle at point Q. From Q draw 

a parallel line to side AB of the triangle. This line intersects side AC at R. Draw the 

parallelogram PQRA (Figure 3). How does the area of inscribed parallelogram APQR 

behave when point P is moved along side AB? Is there a position for point P where the 

area of APQR reaches a maximum value? (Justify). 

 
A B

C

P

QR
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Figure 3: Drawing a parallelogram inscribed into a given triangle. 

 

Comprehension Episode 

Polya (1945) identifies the process of understanding the statement of a problem as 

a crucial step to think of possible ways for solving it. Understanding means being able to 

make sense of the given information, to identify relevant concepts, and to think of 

possible representations to explore the problem mathematically. The use of technology 

could help teachers focus on the construction of a dynamic model as a means to pose and 

explore questions that lead them to comprehend and make sense of tasks. 

The comprehension stage involves questioning the statement and thinking of the 

use of the tool to make sense and represent the task. For instance, what does “for any 

given triangle” mean and how this can be expressed through the software?, what 

information does one need to draw any triangle?, are there different ways to inscribe a 

parallelogram into a given triangle?, and how can one draw a dynamic model of the 

problem? are examples of questions where the problem solver could rely on the tool to 

explore and discuss the problem. Thus, a route to answer these questions might involve 

using Cabri-Geometry or The Geometer’s Sketchpad to draw triangle ABC (Figure 4) and 

from P on AB draw a parallel line to CB (instead of AC). This line intersects side AC and 

from that point of intersection, one can draw a parallel line to AB that intersects BC, thus, 

the two intersection points and point P and B form an inscribed parallelogram, the 

problem solver can ask: how is the former parallelogram related to the one that appears in 

Figure 3? Do they have the same area for the same position of P? How can we recognize 

that for different positions of point P the area of the parallelogram changes? This problem 
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comprehension phase is important not only to think of the task in terms of using the 

software commands, but also to identify and later examine possible variations of the task. 

For example, how does the area of a family of inscribed parallelograms, generated when 

P is moved along AB, change (Figure 4)? 

 
Figure 4: Another way to inscribe a parallelogram in a given triangle. 

 

Comment 

Making sense of the problem statement is a crucial step in any problem solving 

approach. The use of a dynamic software plays an important role in initially 

conceptualizing the statement as an opportunity to pose and explore a set of questions. 

That is, the use of the tool demands that the problem solver thinks of the statement in 

terms of mathematical properties to use the proper software commands to represent and 

explore the problem (Santos-Trigo & Espinosa-Pérez, 2010). In this case, teachers can 

work on the task in order to identify task’s sketches that can help their students focus 

their attention to particular concepts or explorations. Of course, the posed questions don’t 

include all possible routes to examine the statement; rather they illustrate an inquiry 

method to guide the problem solver’s reflection. 
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A Problem Exploration Episode  

Teachers can use the software to draw a triangle by selecting three non- collinear 

points and discuss conditions needed to draw it when for example three segments (instead 

of three points) are given (the triangle inequality). The use of the software allows moving 

any vertex to generate a family of triangles. This process broadens the cases for which the 

problem can be analyzed. Then, they can select a point P on side AB to draw the 

corresponding parallels to inscribe the parallelogram. With the help of the software it is 

possible to calculate the area of the parallelogram and observe area values change when 

point P is moved along side AB. Thus, it makes sense to ask whether there is a position of 

P in which the area of the inscribed parallelogram reaches either its maximum or 

minimum value. By setting a Cartesian system (an important heuristic) as a reference and 

without using algebra, it is possible to construct a function that associates the length of 

segment AP with the area value of the corresponding parallelogram. Figure 5 shows the 

graphic representation of that function. The domain of the function is the set of values 

that represents the lengths of AP when point P is moved along side AB. The range of that 

function is the corresponding area values of the parallelogram associated with the length 

AP. This graphic representation can be obtained through the software by asking: What is 

the locus of point S (the coordinates of point S are length AP and area of APQR) when 

point P moves along the side AB? It is important to observe that the graphic 

representation is obtained without defining explicitly the algebraic model of the area 

change of the parallelogram. 
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Figure 5: Representation and visual exploration of the problem. 

This graphic approach to solve the problem provides an empirical solution. Both 

visually and numerically it is possible to observe that in the given triangle the maximum 

area of the inscribed parallelogram is obtained when P is situated at 2.30 cm from point 

A. At this point, the area value of the parallelogram is 8.56 cm2. Based on this 

information a conjecture emerges: When P is the midpoint of segment AB, then the 

corresponding inscribed parallelogram will reach the maximum area value. Graphically 

the behaviour of tangent line to the curve behaves at different points can be observed 

(Figure 5). It can be seen that when the slope of the tangent line to the area graph is 

positive the function increases, but when the slope is negative the function area 

decreases.  

Are there other ways to inscribe a parallelogram in triangle ABC? Figure 6 shows 

three ways to draw an inscribed parallelogram and all of them have the same area for 

different positions of point P. Also, Figure 7 shows that when point P is the midpoint of 

side AB then triangle ABC can be divided into four triangles with the same areas. 
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Figure 6: Inscribing three parallelograms in triangle ABC. 

 
Figure 7: When point P is situated at the midpoint of segment AB, then triangles APR, 

PQR, PBQ, and RQC have the same area. 

From Figures 6 and 7 two conjectures emerge: (i) the three inscribed 

parallelograms always have the same area for different positions of point P, and (ii) when 

point P is the midpoint of segment AB, the four triangles always have the same area and 

the maximum area of the inscribed parallelogram is half the area of the original or given 

triangle. Thus, the use of the tool provides an opportunity for the problem solver to 

simultaneously examine properties of figures that within the configuration. These 

conjectures are proved further down. 

 

Comment 
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The dynamic representation becomes a source that generates mathematical 

conjectures as a result of moving objects within the configuration. Exploring different 

ways to inscribe the parallelogram leads to formulate two related conjectures. In addition, 

the use of the tool allows graphing the area’s variation without defining explicitly an 

algebraic model. Thus, it is possible to think of a functional approach, without defining 

the function algebraically, that associates the position of point P (for example, the 

distance between AB, BP or AC) with the corresponding area value. Figure 5 provides a 

visual and numerical approach to describe the parallelogram’s area behaviour. 

 

The Searching for Multiple Approaches Episode  

We argue that if students are to develop a conceptual understanding of 

mathematical ideas and problem solving proficiency, they need to think of different ways 

to solve a problem or to examine a mathematical concept. In this context, the visual and 

empirical approaches used previously to explore the problem provide a basis to introduce 

other approaches. We argue that each approach to the problem demands that the problem 

solver not only think of the problem in different ways; but also to use different concepts 

and resources to solve it. 

 

Analytical approach  

In this approach, the use of the Cartesian system becomes important to represent 

the objects algebraically. The problem can be thought in general terms as shown below.  
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Figure 8: Using a Cartesian system to construct an algebraic model of the problem 

 

General case 

Without loosing generality, we can always situate the Cartesian system in such a way 

that one side of the given triangle can be on the x-axis and the other side on line 

y  m1x (Figure 8). Point P will be located on side AB and its coordinates will be 

P(x1,0). Point B(x 2 ,0)is vertex B of the given triangle (Figure 8). The general goal 

is to represent the area of parallelogram APQR in terms of known parameters.  This 

process leads to represent the area in terms of one variable ( AP  x1) as: 

A(x1) 
m1m3 x1

2  x 2 x1 
m1 m3 . The roots of A(x1) (a quadratic function) are 0 and x2. 

Also, this function has a maximum value if and only if 

m1m3

m1 m3

 0
. We are 

assuming that m1  0. The assumption on the triangle location guarantees that 

m3 and m1 m3 have opposite signs. By a symmetric argument, A(x1) reaches its 

maximum at the midpoint of the interval 0, x2 , that is, at 
x1 

x2

2 .  

1
x

1

y y = m1x

y = m1(x - x1)

y = m3(x - x2)

A
B(x2, 0)

C

P(x1, 0)

QR
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Another way to determine the maximum value of this expression is by using calculus 

concepts:
A' (x1)

m1m3 (2x1  x 2 )

m1 m 3 , the critical points are obtained when A' (x1)  0, 

we have that
x1 

x2

2  which is the solution of the equation, then the function A(x1)

will reach its maximum value at 2
2

1

x
x 

. This is because A ''(x1) 
m1m3

m1  m3

 0 . Thus, 

this result supports the conjecture formulated previously in the graphic approach. 

 

General case 

It is possible to use a hand-held calculator to find the maximum area for the case 
shown in Figure 9. In this case, we have that m1  72 /85; m3  10.33; and 

x2  6.6cm.  

 
Figure 9: Finding the equations of lines with the use of the tool. 

Figure 10 shows the algebraic operation carried out to get the point where the 

function reaches its maximum value and Figure 11 shows its graphic representation. 
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Figure 10: Using the derivative to find the maximum of the function area. 

 

 
Figure 11: Graphic representation of the function area. 

 

A Geometric approach  

The goal is to use geometric properties embedded in the problem’s representation 

to construct an algebraic model. In Figure 12, it can be seen that: 

Triangle ABC  is similar to triangle PBQ , this is because angle PQB is 

congruent to angle ACB (they are corresponding angles) and angle ABC is the same as 

angle PBQ. Based on this information, a

xah
h

)(
1




 and the area of APQR can then be 

expressed as 1xhA  , that is,
A(x)  x

h(a  x)

a




 . This latter expression can be written as

a

hx
xhxA

2

)( 
. This expression represents a parabola. 

A' (x)  h  2hx
a , now if 
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A' (x)  h  2hx
a

 0
, then x  a /2. Now, we observe that 0'' A  for any point on the 

domain defined for A(x), therefore, there is a maximum relative for that value.  

 

Figure 12: Relying on geometric properties to construct an algebraic model. 

During the comprehension and exploration episodes two conjectures emerged, the 

first one (area of parallelogram APQR is the same as area of parallelogram PBQ’R’) can 

be proved by considering parallelogram APTR’ (Figure 7).  It is observed that triangles 

APR’ and TR’P are congruent and triangles RR’T’ and TQQ’ are also congruent (SSS). 

Then, we have that quadrilaterals APT’R and T’QQ’R’ have equal areas, also, the area of 

triangle PQT’ is the same as the area of triangle PQB. Based on this information, we have 

that the area of APQR is the same as area of PBQ’R’.   

The second conjecture that involves showing that the four triangles have the same 

area can be proved by observing that the triangles are part of three parallelograms 

(APQR, PBQR and PQCR) that overlap each other (Figure 7). Then the overlapping 

triangle PQR has the same area as the others because they share a diagonal as a side of 

each corresponding parallelogram. Therefore, the maximum value of the inscribed 

parallelogram is half the area of the given triangle (∆ABC).  

 

Comment 

AB = a

AP = x

x a - x

h1

h

A
B

C

P

QR
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An important feature of the frame is that teachers should always look for different 

ways to solve and examine the tasks. The common goal in the task is to represent and 

explore the area model, however the approaches used to achieve this goal offer tearcher 

the opportunity to focus on diverse concepts and resources as a way to construct the 

model. For example, the algebraic model relies on representing and operating 

mathematical objects analytically while the geometric approach is based on using 

triangles’ properties to define the area model. It is also observed that the general model 

can be tested by assigning particular coordinates to the original triangle vertices. Thus, 

problem solvers have the opportunity to test their initial conjectures obtained visually and 

empirically by using now the general result (Figure 10 and 11). The use of a hand-held 

calculator, in general, makes easy to operate the algebraic expressions and as a 

consequence learners could focus their attention to discuss the meaning of the results.  

Each approach relies on using different concepts and ways to deal with the involved 

relations. As a consequence, the problem solver can contrast strengths and limitations 

associated to each approach. 

 

An extension  

In figure 13, we draw a line passing through points PR (vertices of parallelogram 

APQR).  With the use of the software, we ask for the locus of line PR (envelope) when 

point P is moved along side AB. Visually, the locus (tangent points) seems to be a conic 

section, the goal is to show that it holds properties that define that figure.  



  TME, vol10, nos.1&2, p .297 
 

 
 

 
Figure 13: What is the locus of line PR when point P is moved along side AB? 

Again, with the use of the tool it is shown that the locus is a parabola whose focus 

and directrix are identified in Figure 14. It is also shown that when point M is moved 

along the locus the distance from that point to the directrix (L) and to point F (focus of 

the parabola) is the same (this property defines a parabola). 

 
Figure 14: The locus of line PR when point P is moved along segment AB is a parabola. 

 

Comment 

Some serendipitous results or relations might appear as a result of introducing 

other objets within the configuration. In this case, adding a line PR to the configuration 

led to identify a conic section. Thus, the use of the tool offers a means to think of 
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mathematical connections that are not easy to identify with the only use of paper and 

pencil approaches. 

 

The Integration Episode and Reflections  

It is important and convenient to reflect on the processes involved in the distinct 

phases that characterize an approach to solve mathematical problems that fosters the use 

of computational technology. Initially, the comprehension of the problem’s statements or 

concepts involves the use of an inquiry approach to make sense of relevant information 

embedded in those concepts or statements. This enquiry process provides the basis to 

relate the use of the tools and ways to represent dynamically the problem or situation. A 

dynamic model becomes a source from which to explore visually and numerically the 

behaviour of parameters, as a result of displacing some elements within the problem 

representation. In particular, it might be possible to construct a functional relationship 

between a variable, for example the variation of the side AP of the parallelogram and its 

corresponding area.  

 Two distinct ways to construct an algebraic model of the area variation 

were pursued; one involves the use of the Cartesian system to identify the equations 

associated with some elements of the model. The second way relies on identifying similar 

triangles in the inscribed parallelogram whose properties led to the construction of the 

area model. Both approaches, the analytic and geometric, converge in the search for the 

algebraic model. The algebraic model represents the general case and it can be 

“validated” by considering the information of the triangle used to generate the visual 

model.   In addition, it can be used to explore some of the relations that were detected 
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during the visual approach. For example, to identify the intersection points of line y  k 

and the area model
A(x1) 

m1m3 x1
2  x 2 x1 

m1 m3  (Figure 5) we solve the equation 

k 
m1m3 x1

2  x 2 x1 
m1 m3   for x1. Thus, the discriminant of this quadratic equation 

 provides useful information to interpret the 

relationship between line y  k and the graph of the area model 

A(x1) 
m1m3 x1

2  x 2 x1 
m1 m3 . When the discriminant is zero the line intersects the graph at 

the maximum point, when it is greater than zero, there are two intersection points and 

when the discriminant is less than zero, then the line does not intersect the area’s graph. 

 Concluding, the systematic use of computational tools in problem solving 

approaches led us to identify a pragmatic framework to structure and guide learning 

activities in such a way that teachers can help the students develop mathematical 

thinking. A distinguishing feature of the problem solving episodes is that constructing a 

dynamic model of the phenomena provides interesting ways to deal with them from 

visual and empirical approaches. Later, analytical and formal methods are used to support 

conjectures and particular cases that appear in those initial approaches. The NCTM 

(2009) recognizes that reasoning and sense making activities require for students to 

gradually develop levels of understanding to progress from less formal reasoning to more 

formal approaches.  

The use of computational tools provides a basis not only to introduce and connect 

empirical and formal approaches, but also to use powerful heuristics as dragging objects 
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and finding loci of particular objects within the dynamic problem representation. As 

Jackiw & Sinclair (2009) pointed out “Dynamic Geometry is revealed as a technological 

capability to produce seemingly limitless series of continuously-related examples, and in 

so doing, to represent visually the entire phase-space or configuration potential of an 

underlying mathematical construction” (p. 414). Throughout the problem solving 

episodes we show that it is important for teachers to conceive of a task or problem as an 

opportunity for their students to represent, explore and examine the task from diverse 

perspectives in order to formulate conjectures and to look for ways to support them.  The 

diversity of approaches allows them to contrast and relate different concepts and ways to 

reason about their meaning and applications. In this context, the use of the tools opens up 

new windows to frame and encourage teachers and students’ mathematical discussions 

 

Remarks 

Is there any way to characterize forms or ways of mathematical reasoning that 

emerge as a result of using computational tools in problem solving approaches? In which 

ways does this reasoning complement problem solving approaches that rely on the use of 

paper and pencil?  Thinking of the task in terms of the affordances provided by the tools 

demands that problem solvers focus their attention on ways to take advantage of the 

opportunities offered by the tool to represent and explore the problem. For example, the 

use of the tool to construct a dynamic model of a task not only becomes relevant to 

identify and formulate series of conjectures or mathematical relations but also to reason 

about the task in terms of graphic and visual approaches without relying, at this stage, on 

an analytic model. In addition, with the use of the software becomes natural and easy to 
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extend the analysis of a case to a family of cases. For example, by moving any vertex of 

triangle ABC, it is possible to verify that all the relations found during the analysis of the 

task are also true for a family of triangles that result when moving one the vertices. With 

the use of the tool it is often possible to generate loci of points or lines within the model 

or to identify parameter behaviours without defining the corresponding algebraic model. 

In addition, the empirical and visual approaches often provide important information to 

present formal arguments to support conjectures. In this context, it is clear that the 

software approach could play an important role to complement and construct formal or 

analytic approaches.    
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