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Developing problem solving experiences in practical action projects 
  

François Pluvinage 
Departamento de Matemática Educativa, Cinvestav - I.P.N., México 

 
Abstract: Problem solving doubtless is an essential element of mathematical learning, so 
that mathematics educators often are satisfied when finding situations that lead their 
students to such activity. But in many cases, the chosen situations and the ways to guide 
students' works are not sufficiently analyzed from a didactic point of view. Our goal in 
the present analysis is to underline the possible ways for managing the situations, and to 
exhibit the parameters that educators have at their disposition within their role as 
mediator between students and mathematical knowledge and know-how.  
 
Keywords: Problem solving, problem for investigating, project based learning, a priori 
analysis, mediation. 
  

1. Classical problem solving 

Problem solving at its broad extent is clearly exposed by Alan Schoenfeld 

(Schoenfeld, 2006, p.41): “[Problem solving] includes a child’s actions in interacting 

with its parents, a student working on a mathematics problem in class or in the 

laboratory, and a teacher’s decision-making while teaching a mathematics (or other) 

lesson.” In this paper, we will only consider problem solving in mathematics instruction. 

Nevertheless, what we mostly found in mathematics educational literature and in learning 

material designed for students is a restricted use, with sometimes a reduction to drill for 

improving skills. In our opinion, this approach is too limited. Thus we first analyze some 

typical situations used in mathematics education with a problem solving purpose. 

Our goal in the following analysis is to underline the possible ways for managing 

the situations, and to exhibit the parameters that educators have at their disposition within 

their role as mediator between students and mathematical knowledge and know-how.  

1.1. Too easy… and how to do it better 
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The following Math Problem Solving example comes from a worksheet of Rhl 

School. We may consider it as a representative of certain trend in exploiting problem 

solving in mathematics education. 

 

“Ryan’s Class 

There are exactly twelve children in Ryan’s class. Only four of the children are 

boys. The following questions refer to a time when all the children are present in the 

class. There are no visitors in the class. There might be more than one correct answer to a 

question. 

1. Which of the lettered statements must be true? 
2. Which of the lettered statements cannot be true? 
3. Which of the lettered statements could be true or not true?  
a. There are twice as many girls as boys in Ryan’s class. 
b. There are eight more girls than boys in Ryan’s class. 
c. There are four more girls than boys in Ryan’s class. 
d. If Ryan is sitting at a table with all the girls, there are exactly nine 
children at that table. 
e. If only three of the boys are standing on their heads, one of the boys is 
not standing on his head.” 

 

Math Problem Solving, Vol. 8, No. 1, May 5, 2003. Retrieved from 

http://www.rhlschool.com/math8n1.htm  

Comments about the task: Giving an answer to the lettered statements a, b, c and e 

only supposes to understand them. The only true problem here comes from the fact that 

we don’t know Ryan’s gender (while mostly used for boys, Ryan has been used for girls 

in the United States since the 1970s). And for the lettered statement d, if Ryan is a boy, 

the statement is true, and if Ryan is a girl, the statement is false; then the correct answer 

for us is the answer 3, but the correct answer would be different for somebody who 
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knows Ryan’s gender. So we note that there is a subtle semantic distinction in that 

statement; nevertheless, in terms of mathematics knowledge, we will say that the 

proposed task is too easy. That means that the mathematical activity for answering is 

poor, even though understanding the statements may have a relatively high intellectual 

cost for the students. Compare with the situation that would result from the following 

questions, without changing the data (i. e. a class of 12 students, four of them being 

boys): 

We try to form groups, all having the same number of students (for 
instance two groups of six students each), or all having the same numbers 
of girls and boys (for instance two groups, each one composed of four 
girls and two boys). What numbers of groups can we form in each case? 
 

For such reasons, researchers later followed in France by official curricular 

commissions, introduced precisions about problem solving, considering open problems 

and problem for investigating. What follows is translated from a French text by Roland 

Charnay (Charnay, 1993). 

“The team of the IREM of Lyon offers the following definition. 
An open problem is a problem that has the following characteristics: 
- The statement is short. 
- The statement does not induce either method, no solution (no 
questions intermediate or questions like "show that"). This solution should 
never be reduced to the use or the immediate application of the latest 
results presented in class. 
- The problem is in a conceptual domain to which students have 
enough familiarity. Thus, they can easily take "possession" of the situation 
and engage in testing, conjecture, draft resolution, counterexamples. 
Example 1 (extracted from "Rencontres Pédagogiques", n°12, INRP) 
I have 32 coins in my piggy bank. 
I only have coins of 2 F and 5 F. 
The total amount of my 32 coins is 97 F. 
How many coins of each value are in my piggy bank? 
Example 2 (extracted from "Situations problèmes", APMEP, Elem-
math IX). 
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What is the biggest product of two natural numbers that we can obtain 
using each digit from 1 to 9 once for writing the numbers?” 
 

The reader can find more precisions about Problem for Investigating in 

(Houdement, 2009), in particular a list of 24 representative statements, heuristic elements 

and perspective for research. 

 

1.2. OK but limited except for students at an advanced level… 

In this section, we present a situation well appropriate for sequences of 

investigation by 4 or 5 grade students. Thus it generates a good students’ training in 

numerical treatments. But its institutionalization in Brousseau’s meaning will be difficult 

until an advanced level, for instance undergraduate, because of the difficulty for 

enunciating and proving the general result. So in this case, the teacher can exploit the 

situation for younger students with an objective of arithmetical training or acquisition of 

methods, but not of learning new mathematics knowledge. 

“A statement for students of all levels: 
The number 23 can be written in many ways as a sum of natural numbers. 
For example: 
23 = 11 + 5 + 7. Among these sums, find the one whose product of the 
terms is the biggest (in our example, the product was 11×5×7 = 385). 
Other statement is: Among the additive decompositions of a natural 
number, find the one, whose product of its terms is the biggest.” 
 

Retrieved from http://educmath.inrp.fr/applet/exprime/plgrprge.pdf and from 

http://gilles.aldon.free.fr/ensemble/Ensemble/syplgrprtel.pdf 

In this situation, we can first discover the answer, either in particular cases (such 

as 23, that produces 4374 = 3×3×3×3×3×3×3×2 as highest product) or in the general case 

in a descriptive way. At more advanced levels, a new possibility is to deepen the 
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problem, and express and prove the general solution in an algebraic way. So does Gilles 

Aldon when he writes what follows. 

The Sloane Encyclopedia (the OEIS Foundation) gives some properties of 
this biggest product at http://oeis.org/A000792. It quotes a dozen of 
different definitions of the number a(n) equal to the biggest product 
obtained with partitions of n in sum. If we take a(0) = 1, then we obtain 
the induction formula: a(n) = max{(n-i)a(i), i<n}. This is the definition 
given in the Encyclopedia. 
 

In such a situation, a teacher does not have possibility to adapt the situation with 

some changes in the statement. He/she has only to know that the situation is convenient 

for arithmetic training of young students, and for improving the use of induction by older 

students. 

 

1.3. Too difficult because insufficiently explored by the interested teachers…  

Analyzing a problem of a mathematical contest: the “Math Rally of Alsace” 

We translate here the statement of one of the problems of a mathematical contest, 

the “Math Rally”, followed by the solution and comments given by the organizing team, 

retrieved from http://irem.u-

strasbg.fr/php/index.php?frame=.%2Fcompet%2Fcompet.php&m0=ral&categ=rallye. 

Exercise 3 (grade 11)  
In the Valley of Bruche River, a clearing has a circular shape. A treasure is 
buried near the clearing. An old parchment shows the location of the 
treasure: “From the great fir located on the circle, go to the poplar in the 
clearing. Then turn right at a right angle and walk to the edge of the 
clearing. Still turn right at a right angle and walk as many steps as from fir 
to poplar. There is buried treasure.” 
The clearing has a radius of 20 meters, and the only tree on the clearing is 
a poplar located at 4 meters from the centre. Unfortunately, on the edge of 
the clearing, firs disappeared long time ago. Can you find the distance 
between the centre of the clearing and the treasure? 
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Solution 

As is often the case in Math Rally, the statement tells a story, placed here in 

Alsace. The story is about a treasure, a fir tree, a poplar. Why not denote them T, S, P and 

label O the centre of the clearing, i.e. the circle. 

 

Figure 1: Geometric representation of the Math Rally problem 

In the Cartesian coordinate system (O, I, J) with x- axis parallel to the line (SP), 

let A and B the points obtained by orthogonal projection of P on the coordinate axes. We 

know that OP = 4, OS = OD = 20. As SPDT is a rectangle, SP = DT and PD = ST. Let a 

= OA, b = OB, c = PS and d = PD. Applying the Pythagorean Theorem to the triangles 

OBS, OAD and OAP, we obtain the relationships: 

OS2 = OB2 + BS2 = b2 + (a + c)2 = 202 (1) 

OD2 = OA2 + AD2 = a2 + (b + d)2 = 202 (2) 

OP2 = OA2 + OB2 = a2 + b2 = 42 = 1 (3) 

Computing (1) + (2) – (3), we obtain: 

(a + c)2 + (b + d)2 = 784. 
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Since (a + c)2 + (b + d)2 = OT2, then OT = 28. 

Thus the distance that we sought is 28 meters. 

 

Comments by the organizing team 

This is a geometrical exercise and it was the less successful for students. Yet 

its resolution only involves the Pythagorean Theorem, applied to several right 

triangles of course. 

Candidates who worked on this exercise drew a figure that includes letters 

often undefined. Didn’t they have the habit of labeling a figure in order to make it 

understandable? The resolution led them to the correct answer (28 meters), but most of 

them relied on a particular case – for example points S, O and P collinear – and they 

do not consider the general case. Some say that they were only considering a particular 

case, but many students seem not to realize it. (…)  

 

Our analysis 

Thus in its report, the organizing staff itself recognizes that this problem was 

unsuccessful. But we think that this poor result originates in a lack of mathematical 

analysis by the organizing team. The members of this team are very experienced teachers 

and competent mathematicians, but they were more preoccupied in this case by the 

design of an amazing story than by didactical considerations. As a matter of evidence, we 

refer to the solution given in the report, which is for us not satisfactory, because it is not 

convincing. It is like the rabbit that comes out of the hat of a magician: we measured 

lengths, and it appears that the final result does not depend on the variable elements. A 
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“good” solution of a problem produces a change in our mind with respect to the situation: 

from mysterious the result becomes evident for the reader. As an example, let us consider 

a classical result: The three altitudes of a triangle ABC intersect in a single point, called 

the orthocenter of the triangle. There are several proofs of this theorem, for instance by 

considering geocenter and circumcenter of the given triangle ABC, or studying angles 

and finding that the point of barycentric coordinates  ˆ ˆˆtanA, tan B, tan C  is the searched 

orthocenter of the triangle. These proofs are of interest, but their cognitive routes are 

relatively complex. In contrast, the proof illustrated by Figure 2 easily could produce the 

change of mind that we want to emphasize: We trace respectively by A, B and C the lines 

parallel to the opposite side of the triangle, that create a new triangle A’B’C’; the 

altitudes of ABC are the perpendicular bisectors of the sides of A’B’C’. Thus it is 

obvious that they intersect at the point O equidistant of the three vertices A’, B’ and C’. 

 

Figure 2: Altitudes of a triangle as perpendicular bisectors of a bigger triangle 

For the Math Rally problem, we present below a solution approach that intends to 

promote the reader’s mathematical reflection and analysis. Then we will consider what 

changes could produce a better result in implementing this problem in the classroom. 

To conclude that the distance between the center O of the circle and the point T 

does not depend on the location of S on the circle is the same as to affirm that the locus of 



  TME, vol10, nos.1&2, p .227 
 

 
 

T when S moves along the circle is a new circle with O as its center. This assertion does 

not seem easier than the given statement of the problem (Figure 3 left), but… 

 
Figure 3. Left: incomplete figure, right: completed figure 

If we observe that the situation is mathematically incomplete, our vision of the 

problem completely changes. And completing the figure is a natural idea when working 

with software such as Cabri or Geogebra. This involves drawing a complete line as a 

perpendicular to a given line or segment. After completing (figure above, right), a new 

statement is: “Given a circle and a point P inside the disk, we consider two perpendicular 

lines passing through P and respectively cutting the circle at D and D’, and at S and S’. 

Then the rectangle obtained by tracing by these points parallels to DD’ and SS’ has its 

center at O.” And this is a quite evident result, because the perpendicular bisectors of SS’ 

and DD’ are the axes of symmetry of the rectangle and pass through the center O of the 

circle. 

The given statement of the problem did not lead the candidates, of the 

mathematical contest, a way to focus on a geometric construction. But we see that a 

teacher in his (her) class can present the same mathematical situation through another 
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statement and in a different environment that changes the didactical situation and 

facilitates the students’ access to it. In this case, we pretend that a modified presentation 

could change the vision that students have of that geometric situation. 

As a conclusion at this point, we will assert that the kind of students’ work 

generated by dealing with a problem strongly depends on the way showed by the 

statement of the situation. But the form of working, particularly when using the 

technology, has an influence too. This enforces the role of mediator devoted to the 

teacher, not only when preparing the lesson but also during the class. 

 

2. Project based learning (PBL or PjBL) 

In the expression “Problem Solving” appears the word “Problem”, which is also 

present in the pedagogical method called “Problem Based Learning” and often designated 

by the initials PBL. This method is in use in various disciplines such as biology or 

medicine or engineering, but problems for the associated topics do not refer to the same 

kind of mathematical problems that we studied in §1. For our part, in empiric 

experiments, we studied the potential impact of projects of practical action on the 

teaching-learning process. We were applying a teaching strategy, presented in Cuevas & 

Pluvinage (2003), close to the method denominated Project Based Learning, which 

sometimes is also designated by the initials PBL. Here, like other authors, we use the 

letters PjBL in order to avoid confusions with Problem Based Learning. 

Important features of our teaching strategy lie in the systematic use of registers of 

representation according to Duval’s terminology (Duval, 1995): formation rules, 

treatments within a register, and conversions from one register to other. For this reason, a 
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first step in the study of a project of practical action is a descriptive phase, the objective 

of which being to introduce the formation in one register or various registers.  

 

2.1. A paradigmatic example: concrete and virtual Tangram 

Mexican educative institution presents Tangrams as a medium to organize 

learning activities at school. The Instituto Latinoamericano de la Comunicación 

Educativa (ILCE) has a web page on this subject at 

http://redescolar.ilce.edu.mx/educontinua/mate/imagina/mate3z.htm, with a link to 

instructions for cutting the puzzle. We retrieved the figure below from this web site. In 

English, for instance Wolfram’s project gives a version at 

http://demonstrations.wolfram.com/Tangram/. 

 
Figure 4: The seven pieces of a Tangram and shapes to be built 

 

The web page of ILCE presents both possibilities for using Tangrams: concrete 

and virtual (on line). Wolfram’s proposal is only a virtual one. We actually observed 
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some use of a concrete Tangram in class and related problems, but it remains to 

experiment the more extended use that we present in this section. 

There are many problems that the students are able to pose by themselves. For 

example: Can we build a triangle with the seven pieces? With the seven pieces, can we 

construct a triangle different from the preceding? Can we build with the seven pieces a 

rhombus different from a square? How many distinct rectangles can we build with the 

seven pieces? How many distinct rectangles can we build with some of the pieces, but not 

necessary all pieces? Etc. In that situation, teacher’s role can be to encourage the students 

to invent problems and not only to solve given problems. 

An interesting activity in a class might be to classify these distinct problems. 

Organizing principles for such a classification arise from considerations of shape 

resulting from values of lengths, angles and areas. For example, the shape of each piece is 

a polygon with angles 45º, 90º or 135º, and this leads us to a strength restriction for the 

possible shape of a triangle made with the seven pieces: a triangle necessarily is a right 

isosceles triangle. With exact lengths, we enter in the symbolic world, because the 

lengths of the sides of a piece in two distinct directions are incommensurable magnitudes. 

In the table below, we present the exact lengths of the sides of pieces with the choice of 

the length of the shortest side as unit. 
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Table 1. Names of the Tangram pieces and exact lengths of their sides 

Name Side 1 Side 2 Side 3 Side 4 

Square 1 1 1 1 

Parallelogram 1 2  1 2  

Triangle 1 1 1 2   

Triangle 2 1 1 2   

Triangle 3 2  2  2  

Triangle 4 2 2 2 2   

Triangle 5 2 2 2 2   

 

 

Figure 5: A shape impossible to construct with Tangram 

Then, for instance when studying the situation of a rhombus different from a 

square (Figure 5), we can first observe that its angles might be 45º and 135º and then use 

the algebraic register and employ inferences like 2 2 .
a c

a b c d
b d


     

 

 

 
We suggest that all the problems we have seen can be included into a project of 

practical action, and in order to do this, we will replace the concrete material by a virtual 

one. Then the first step is to construct the material. We used Cabri geometer for this 

Problem to be solved by the reader: Prove the impossibility of constructing a 
rhombus different from a square with the seven pieces of Tangram.
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purpose, but the design would be approximately the same if we were using Geogebra. 

Thus it is necessary to solve a first problem in our project: How to move a piece in the 

plane? 

There is a natural relationship between movements and geometric 

transformations. Nowadays, it is controversial if geometric transformations have a place 

in the curricula at elementary level. In our opinion, moreover with the reference to a 

genetic point of view, the geometric transformations are a topic of high interest in 

mathematics education. We suggest using the introduction of transformations in the 

learning of geometry at secondary level in order to facilitate the transition from Geometry 

I (natural geometry) to Geometry II (natural axiomatic geometry) (Houdement & 

Kuzniak, 1999).  

1 

 

2 

 

3 4 

 

Figure 6. Modeling the displacement of a quadrilateral in the plane: 1- Choosing a center 
(here the midpoint of two midpoints), 2- Translating the piece, 3- Rotating the translated 
piece around its center, 4- Showing only the final figure with the two director points 
(black and red) 
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Figure 6 illustrates a solution obtained by a Cabri program. For each piece, we 

choose a center point that is represented by a black dot, and a vertex that is represented 

by a red dot. When moving the black dot, we translate the piece, and when moving the 

red dot, we rotate the piece around the black dot. In order to do that, first we build each 

piece and mark the black and red dots. Then we define the translation and the rotation 

and apply them to the piece. Finally we hide the initial piece and only show its last 

image. 

The reader can imagine alternative possibilities, and also complete the universe of 

allowed transformations by adding the reflection of the parallelogram that we do not 

introduce in our program (with a concrete jigsaw puzzle, we can turn over the 

parallelogram). And one can find many interactive programs on line in Spanish and in 

English, but almost all such web pages are only game oriented. For example, we don’t 

see there any place for verbal descriptions or for problems whose solutions are 

“impossible” to achieve. So, in this case, it seems to us preferable to promote students’ 

work in classroom or at home. The teacher can construct a virtual Tangram and give 

his/her students a web page like that illustrated in the figure below, or ask them for 

constructing the virtual Tangram. 
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Figure 7: Virtual Tangram designed for students 

Assigning the task of constructing a virtual Tangram to students by using 

geometric software is a good example of what Martin Wagenschein (1977) presents as 

Exemplarisches Lehren. The translation “exemplary teaching” does not exactly reflect the 

meaning of this expression, which refers to a specific kind of case analysis. The 

specificity of this method is that the studied cases are chosen as representative of the 

situations to be mastered by the student at the end of the learning process. Here, we 

pretend that the achievement of the construction of Tangram is significant for 

acquisitions of certain level of competency in mastering geometric transformations.   

 
2.2. Some didactic observations resulting from empirical studies using projects 

Most projects of practical action include spatial situations. So their modeling 

supposes to connect spatial geometry (3D-geometry) and 2D-geometry. This can be made 
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by perspective representations or plane sections and also by nets, a net being an 

arrangement of edge-joined polygons in the plane which can be folded (along edges) to 

become the faces of the polyhedron (see 

http://en.wikipedia.org/wiki/Net_%28polyhedron%29). A great family of projects of 

practical action is the construction of solids subject to certain constraints. 

The study of nets associated to polyhedra is a particular case of these spatial 

projects, which can be applied at high school or more advanced level. When we were 

experimenting in undergraduate classes, we realized that the majority of students do not 

master the easiest spatial situations, because of the lack of both knowledge and 

experience. For instance it was a great surprise for them to know that all convex 

polyhedron has a net, and that the “tower” made by the superposition of two cubes, the 

edges of the higher being a third of the edges of the lower, is a polyhedron whose 

construction with thin cardboard requires two disconnect nets. 

 
Figure 8. “Tower”: Non convex polyhedron that does not have a net 

The preceding example illustrates one of the natural problems that arise from 

studying the nets associated to polyhedra. Other problems are those of uniqueness: Can 

we obtain two different polyhedra with the same plane net? 
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Figure 9: Same net for two different polyhedra? 

Problem to be solved by the reader: The net above allows constructing a 
regular octahedron by folding paper. Try to find another (non convex) 
octahedron that the same net allows constructing. 

 
 

Modeling spatial situations goes further than 3D-geometry. There is a lot of 

possible projects about containers (glasses, bottles, cans, recipients, etc.). A task for our 

students of the Master degree in mathematics education is to design a didactical project, 

and some of them choose this kind of subject. We present below the statement of a 

problem, which is a part of such a project that a student presented in a Web site, followed 

by its English translation and the representation of the solution that we made with 

Geogebra. 

Optimización 

Escrito por Paulo Angel Garcia Regalado  

Domingo, 05 de Diciembre de 2010 01:32  

1. Se pretende fabricar una lata de refresco de 335 mililitros de capacidad. ¿Cuáles 
deben ser sus dimensiones para que se utilice el mínimo posible de metal? 

 
Retrieved from http://grupolycaon.com/matedu/ 

Translation of the statement to English: 

This image cannot currently be displayed.
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We want to make a soda can of 335 ml capacity. What should be its size in order to use 
the minimum amount of metal? 
 

 
Figure 10. Problem to be solved by the reader: In the solution 
represented above for the problem of constructing a can with minimal 
quantity of metal, it seems that the height of the can is equal to the 
diameter of both disks at the bottom and the top. Is that rigorously exact? 

 
In this last example, we saw calculus beside geometry. That is only a sample of 

the variety of mathematical domains and theories that the study of projects led us to 

encounter. Particularly, the project of modeling how recipients are filled by a regular 

flow of water has been a wealth field. 

For instance 15-year students in Germany and France were asking by Stölting 

(2008) to represent in this situation the height of water in the recipient as a function of the 

time. We reproduce below the answers given to Stölting by a student. The last figure on 

the right is very interesting, because it shows a trend to the discretization of the 
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phenomenon. Previously we emphasized the importance of verbal descriptions of a 

phenomenon to be studied. Here we observe another important step in an investigation 

process for a complex phenomenon: a qualitative approach with the help of a 

representation. Both verbal description and figural representation were actually present in 

Stölting’s research. Hence, students were interviewed to explain ways they drew the 

figures. 

 
Figure 11: Answers of a (high achiever) French student 

Interviews with high school students in order to deepen these observations with 

learning objectives are reported by Pluvinage & Marmolejo (2012) (see an illustration on 

next page), who describe the application in a class of the collaborative method 

ACODESA (Hitt, 2007), characterized by distinct phases of work: individual, group and 

collective, for exploiting the complete situation of filling recipients. We observed that a 

first step is important, namely to consider various cylindrical recipients. Indeed, many 
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students think that, in the case of a cylindrical recipient, diameter and height play the 

same role for the volume. So it is important to pay attention to this case studying the 

volumes of various cylindrical recipients, for instance as pouring water from one 

recipient to another that has double diameter and half height. Many students are surprised 

by the fact that the second recipient is not full. Moreover the same behavior as that 

related before was observed with our students. With access to the convenient 

mathematical tools, this would lead us to use an ordinary differential equation for solving 

the problem. 

Nevertheless there is another easier way for modeling the phenomenon, changing 

the theoretical frame of reference. It is the consideration of reciprocal function. Indeed, 

the volume of a truncated cone of height h, radio of lower disk a, and radio of upper disk 

b, is given by  2 2V
3total

h
a ab b


   . Thus we can represent the volume as a function 

of the height, and then by symmetry we can conversely obtain the height as a function of 

the height. We used Geogebra in the illustration. But, and we do not know the precise 

reason, students do not spontaneously go on that way. This needs a help to the students 

from the teacher. 
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Figure 12. Answer given by an interviewed high school Mexican student: “The same 

amount a of water produces a rise that always diminishes when the height increases” 

 
Figure 13: Solution resulting from consideration of the reciprocal function of volume as 

function of height 
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How could a teacher exploit these reported observations and considerations, for 

designing a possible instructional route? The first stages to do this are common to many 

practical action projects: 

(a) A diagnostic, here with a sheet of questions as we have seen about 
comparing volume of different cylindrical recipients and representing 
how various recipients are filled by a regular flow; 

(b) Some concrete experiment, for instance here to pour water or sand 
from a recipient to another and observe if the second is fulfilled or 
not. In our environment it is easy to get recipients that have the 
required characteristics: shape approximately cylindrical and 
respective diameters and heights approximately having simple ratios 
(for instance a box of coarse salt and a glass, or tin cans of varying 
size). 

 
At the end of each stage, a discussion and a synthesis (e.g. volume of cylinder) 

will be useful. For the following stages, with the use of computation, the knowledge of a 

truncated cone and its volume formula are necessary. The teacher has the choice between 

giving the students these elements, and asking the students to obtain them by searching 

on Internet. Then the stages are: 

a) Figural representation of the transversal section of a truncated cone of 
varying height and diameters of upper disc and lower disc (see figure 
on the preceding page), and graphical representation of its volume V as 
a function of the height h of liquid in the recipient; 

b) In order to find now the inverse of the obtained function, i.e. the height 
h of liquid as a function of the volume V, first observe the difficulty to 
work only with a formula and, as a consequence of this difficulty, 
introduce the students into the work with geometric register, 
particularly with the use of reflection. Construction depends on 
software in use, for instance Cabri could reflect the graph of the 
function V(h) and Geogebra not, so with Geogebra we had to locate a 
point on the graph and then to reflect this point and eventually obtain 
its locus. 

 
The time devoted to this project is a good investment with the objectives of 

improvement of the functional thinking and acquisition of the difficult procept (amalgam 
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of process, mathematical object and symbol introduced by Eddie Gray and David Tall) of 

an inverse function. 

 

3. Concluding 

Teaching ways that we found rich of learning perspectives for the students consist 

in managing practical action projects at school, particularly in collaborative environment, 

for instance with the so called ACODESA method (Hitt, 2007). An important feature of 

these teaching ways is that the teacher is not the only one who is posing problems or 

ideas of problems. Nevertheless, his/her experience is essential for redacting in a correct 

mathematical language the statements suggested by students. And this step of writing 

mathematics also is extremely important for the students in terms of improvement of their 

mathematical experience. 

 

The author is grateful to the reviewers, whose pertinent suggestions allowed to improve 
the first version of this paper. 
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