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Prospective Teachers’ Interactive Visualization and Affect in 
Mathematical Problem-Solving 

  
Inés Mª Gómez-Chacón1 

Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid 
 

Abstract: Research on technology-assisted teaching and learning has identified several 
families of factors that contribute to the effective integration of such tools. Focusing on 
one such family, affective factors, this article reports on a qualitative study of 30 
prospective secondary school mathematics teachers designed to acquire insight into the 
affect associated with the visualization of geometric loci using GeoGebra. Affect as a 
representational system was the approach adopted to gain insight into how the use of 
dynamic geometry applications impacted students’ affective pathways. The data suggests 
that affect is related to motivation through goals and self-concept. Basic instrumental 
knowledge and the application of modeling to generate interactive images, along with the 
use of analogical visualization, played a role in local affect and prospective teachers’ use 
of visualization. 
 
Keywords: problem-solving strategies, visual thinking, interactive learning, drawing, 
diagrams, teacher training, visual representations, reasoning, GeoGebra. 
 

1. Experimental conditions and research questions addressed  

At present, the predominant lines of research on problem-solving aim to identify 

underlying assumptions and critical issues, and raise questions about the acquisition of 

problem-solving strategies, metacognition, and beliefs and dispositions associated with 

problem-solvers’ affect and development (Schoenfeld, 1992; Lester and Kehle, 2003). 

Problem-solving expertise is assumed to evolve multi-dimensionally (mathematically, 

metacognitively, affectively) and involve the holistic co-development of content, 

problem-solving strategies, higher-order thinking and affect, all to varying degrees 

(English & Sriraman, 2010). This expertise must, however, be set in a specific context. 

                                                 
1 igomezchacon@mat.ucm.es 
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Future research should therefore address the question of how prospective teachers’ 

expertise can be holistically developed. 

The research described here was conducted with a group of 30 Spanish 

mathematics undergraduates. These future teachers took courses in advanced 

mathematics in differential and Riemannian geometry, but worked very little with the 

classical geometry they would later be teaching. They were accustomed to solving 

mathematical problems with specific software, mainly in areas such as symbolic 

calculation or dynamic geometry, but were not necessarily prepared to use these tools as 

future teachers. Research on teaching in technological contexts (Tapan, 2006) has shown 

that students are un- or ill-acquainted with mathematics teaching, i.e., they are unaware 

of how to convey mathematical notions in classroom environments and find it difficult to 

use software in learning situations. Hence the need to specifically include the classroom 

use of software in teacher training. 

This paper addresses certain understudied areas in problem-solving such as 

visualization and affect, with a view to developing discipline awareness and integrating 

crucial elements for mathematics education in teacher training. As defined by Mason 

(1998), teachers’ professional development is regarded here as development of attention 

and awareness. The teacher’s role is to create conditions in which students’ attention 

shifts to events and facts of which they were previously unaware. Viewed in those terms, 

teaching itself can be seen as a path for personal development. 

The main aim of this essay is to explain that in a dynamic geometry environment, 

visualization is related to the viewer’s affective state. The construction and use of 

imagery of any kind in mathematical problem-solving constitute a research challenge 



  TME, vol9, nos.1&2, p.63  
 

 
 

because of the difficulty of identifying these processes in the individual. The visual 

imagery used in mathematics is often personal in nature, related not only to conceptual 

knowledge and belief systems, but laden with affect (Goldin, 2000; Gómez-Chacón, 

2000b; Presmeg, 1997). These very personal aspects are what may enhance or constrain 

mathematical problem-solving (Aspinwall, Shaw, and Presmeg, 1997; Presmeg, 1997), 

however, and as such should be analyzed, especially in technological contexts.  

Gianquinto (2007) and Rodd (2010) contend that visualization is “epistemic and 

emotional”. Giaquinto suggests that visual experience and imagining can trigger belief-

forming dispositions leading to the acquisition of geometrical beliefs that constitute 

knowledge. According to Rodd (2010), the nature of belief-forming dispositions is not 

confined to perception, but incorporates the results of affect (or emotion-perception 

relationships). Hence, the belief-forming dispositions that underlie geometric 

visualization are affect-laden. 

The present study on teaching geometric loci using GeoGebra forms part of a 

broader project involving the design, development and implementation of multimedia 

learning scenarios for mathematics students and teachers2. The solution of geometric 

locus problems using GeoGebra was chosen as the object of study because a review of 

the literature revealed that very little research has been conducted on teaching that aspect 

of geometry. A recent paper (Botana, 2002) on computational geometry reviewed current 

approaches to the generation of geometric loci with dynamic geometry systems and 

compared computerized algebraic systems to dynamic symbolic objects. However, it did 

not address the educational add-ons needed by teachers. Several authors have compared 

                                                 
2 Complutense University of Madrid Research Vice-Presidency Projects PIMCD-UCM-463-2007, PIMCD-
UCM-200-2009; and PIMCD-UCM-115-2010  
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the visual (and sometimes misleading) solutions generated by dynamic geometry systems 

to the exact solutions obtained using symbolic computational tools (Botana, Abánades 

and Escribano, 2011). The approximate solution problem affects all dynamic geometry 

systems, due to the numerical nature of the calculations performed. The GeoGebra team 

has been working on improving this feature as part of the GSoC3 project. In the 

meantime, however, external tools must be used to obtain accurate solutions4.  

This article specifically explores the role of technological environments in the 

development of students’ competence as geometricians and future teachers. More 

precisely, it focuses on the relationship between technology and visual thinking in 

problem-solving, seeking to build an understanding about the affect (emotions, values 

and beliefs) associated with visualization processes in geometric loci using GeoGebra. 

The questions posed are: how does affect impact visual thinking through dynamic 

geometry software (GeoGebra)? and how does interactive visualization impact affect in 

learning mathematics? The difficulties encountered in training students to build strategic 

knowledge for the classroom use of technology, which weaken personal problem-solving, 

are also explained. 

The rest of the paper is organized as follows. A description of the scientific theory 

underlying the research is followed by a presentation of the training and research 

methodology used. A subsequent section discusses the results of all the analyses, 

including tentative answers to the questions formulated above. A final section addresses 

the preliminary conclusions of the study and suggestions for future research. 

2. Theoretical considerations 

                                                 
3 http://www.geogebra.org/trac/wiki/Gsoc2010 
4 http://nash.sip.ucm.es/LAD/LADucation4ggb/ 
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Different theoretical approaches to the analysis of visualization and representation 

have been adopted in mathematics education research. In this study the analysis of the 

psychological (cognitive and affective) processes involved in working with (internal and 

external) representations when reasoning and solving problems requires a holistic 

definition of the term visualization. Arcavi’s proposal (Arcavi, 2003: 217) has 

consequently been adopted: “the ability, the process and the product of creation, 

interpretation, use of and reflection upon pictures, images, diagrams, in our minds, on 

paper or with technological tools, with the purpose of depicting and communicating 

information, thinking about and developing previously unknown ideas and advancing 

understandings”. 

Analysis of those two complementary elements, image typology and use of 

visualization, was conducted as per Presmeg (2006) and Guzmán (2002). In Presmeg’s 

approach, images are described both as functional distinctions between types of imagery 

and as products (concrete imagery (“picture in the mind”), kinesthetic imagery, dynamic 

imagery, memory images of formula, pattern imagery). In Guzman they are categorized 

from the standpoint of conceptualization, the use of visualization as a reference and its 

role in mathematization, and the heuristic function of images in problem-solving 

(isomorphic visualization, homeomorphic visualization, analogical visualization and 

diagrammatic visualization5). This final category was the basis adopted in this paper for 

addressing the handling of tools in problem-solving and research and the precise 

                                                 
5 Isomorphic visualization: the objects may correspond ”exactly” to the representations. Homeomorphic 
visualization: inter-relationships among some of the elements afford an acceptable simulation of the 
relationships between abstract objects They serve as a guide for the imagination. Analogical visualization: 
the objects at hand are replaced by that are analogously inter-related. Modeling process. Diagrammatic 
visualization: mental objects and their inter-relationships in connection with aspects of interest are merely 
represented by diagrams that constitute a useful aid to thinking processes. (Guzmán, 2002). 
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distinction between the iconic and heuristic function of images (Duval, 1999; Souto and 

Gómez-Chacón, 2011) to analyze students’ performance. The heuristic function was 

found to be related to visual methods (Presmeg, 1985) and cognitive aspects as part of 

visualization: the effect of basic knowledge, the processes involved in reasoning 

mediated by geometrical and spatial concepts and the role of imagery based on analogical 

visualization that connects two domains of experience and helps in the modeling process. 

The reference framework used to study affective processes has been described by 

a number of authors (DeBellis and Goldin, 1997 & 2006; Goldin, 2000; Gómez-Chacón, 

2000 and 2011), who suggest that local affect and meta-affect (affect about affect) are 

also intricately involved in mathematical thinking. Goldin (2000: 211) contends that 

affect has a representational function and that the affective pathway exchanges 

information with cognitive systems. According to Goldin, the potential for affective 

pathways are at least in part built into the individual. Both these claims were 

substantiated by the present data. For these reasons, while social and cultural conditions 

are discussed, the focus is on the individual and any local or global affect evinced in 

mathematical problem-solving in the classroom or by interviewees. This aspect of 

students’ problem-solving was researched in terms of the model summarized in Figure 1 

and used in prior studies (Goldin, 2000: 213; Gómez-Chacón, 2000b: 109-130; Presmeg 

and Banderas-Cañas, 2001: 292), but adapted to technological environments. 

Affective pathway 1 (enabling problem-solving): curiosity →puzzlement→ bewilderment 
→encouragement→ pleasure →elation →satisfaction →global structures of affect 
(specific representational schemata, general self-concept structures, values and beliefs) 

Affective pathway 2 (constraining or hindering problem-solving): curiosity → puzzlement 
→ bewilderment → frustration → anxiety → fear/despair → global structures of affect 
(general self-concept structures, hate and rejection of mathematics and technology-aided 
mathematics) 
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Figure 1. Emotions and meta-affective aspects in problem-solving 

This idealized model illustrates how local affect might influence the heuristic 

applied by a problem solver. This model was used in individual case studies because it 

provides insight into how visual processes, emotions and cognitive strategies interact. It 

also helps detect mental blocks and emotional instability where confusion and perceived 

threat are significant, generating high anxiety levels, and therefore conditioning visual 

thinking and attitudes. Here, emotions are not mere concomitants of cognition, but are 

intertwined with and inseparable from it. Most importantly, they are bound up with the 

individual’s self-image and self-concept and the global affective dimension where 

purpose, beliefs and goals have a substantial impact.  

3. Training and the research methodology used  

The qualitative research methodology used consisted of observation during 

participation in student training and output analysis sessions as well as semi-structured 

interviews (video-recording). The procedure used in data collection was student problem-

solving, along with two questionnaires: one on beliefs and emotions about visual 

reasoning and the other on emotions and technology (one was filled in at the beginning of 

the study and the other after each problem was solved). All screen and audio activity on 

the students’ computers was recorded with CamStudio software, with which video-based 

information on problem-solving with GeoGebra could be generated. Consequently, at 

least four data sources were available for each student. 

Six non-routine geometric locus problems were posed, to be solved using 

GeoGebra during the training session. Most of the problems were posed on an analytical 

register (Table 1: for a fuller description see Gómez-Chacón and Escribano, 2011). 



  Gómez-Chacón 

 

Finding the solutions to the problems called for following a sequence of visualization, 

technical, deductive and analytical steps.  

Table 1: Geometric locus problems 

PROBLEM  

Problem 1: find the equation for the 
locus formed by the barycenter of a 
triangle ABC, where A = (0, 4), B = (4, 
0) and C is a point on circle x² + y² + 4x 
= 0. 

Level: basic 
Geometric locus: the wording of the 
problem determines the steps to be 
followed.  

Problem 2: assume a variable line r that 
cuts through the origin O. Take point P 
to be the point where line r intersects 
with line Y=3. Draw line AP from point 
A = (3,0), and the line perpendicular to 
AP, s. Find the locus of the intersection 
points Q between lines r and s, when r 
is shifted.  

Level: medium 
Geometric locus: in this problem, the 
difficulty is to correctly define a 
variable line. That done, the rest is 
fairly straightforward. The instructions 
for using GeoGebra are stated explicitly 
in the problem.  

Problem 3: assume a triangle ABC and 
a point P. Project P on the sides of the 
triangle: Q1, Q2, Q3. Are Q1, Q2 and 
Q3 on the same line? Define the locus 
for points P when Q1, Q2 and Q3 are 
aligned. 

Level: medium – advanced  
Geometric locus: the locus cannot be 
drawn with the “locus” tool in 
GeoGebra, because it is non-parametric. 
There is no mover point.  
 

Problem 4: the top of a 5-meter ladder 
rests against a vertical wall, and the 
bottom on the ground. Define the locus 
generated by midpoint M of the ladder 
when it slips and falls to the ground. 
Define the locus for any other point on 
the ladder. 

Level: medium – advanced  
Geometric locus: the problem does not 
give explicit instructions on the steps to 
follow. The situation is realistic and 
readily understood, but translation to 
GeoGebra is not obvious. An ancillary 
object is needed.  

Problem 5: find the locus of points such 
that the ratio of their distances to points 
A = (2, -3) and B = (3, -2) is 5/3. 
Identify the geometric object formed. 

Level: Advanced 
Geometric locus: the problem is simple 
using paper and pencil. The difficulty 
lies in expressing “distance” in 
GeoGebra. 

Problem 6: find the equation for the 
locus of point P such that the sum of the 
distances to the axes equals the square 
of the distance to the origin. Identify the 
geometric object formed. 

Level: Advanced 
Geometric locus: the problem is simple 
using paper and pencil. The difficulty 
lies in expressing “distance” in 
GeoGebra. 
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Geometric locus training was conducted in three two-hour sessions. Prior to the 

exercise, the students attended several sessions on how to use GeoGebra software, and 

were asked to solve problems involving geometric constructions. 

In the two first sessions, the students were required to solve the problems 

individually in accordance with a proposed problem-solving procedure that included the 

steps involved, an explanation of the difficulties that might arise, and a comparison of 

paper and pencil and computer approaches to solving the problems. Students were also 

asked to describe and record their emotions, feelings and mental blocks when solving 

problems.  

The third session was devoted to common approaches and the difficulties arising 

when endeavouring to solve the problems. A preliminary analysis of the results from the 

preceding sessions was available during this session.  

The problem-solving results required a more thorough study of the subjects’ 

cognitive and instrumental understanding of geometric loci. This was achieved with 

semi-structured interviews conducted with nine group volunteers. The interviews were 

divided into two parts: task-based questions about the problems, asking respondents to 

explain their methodologies and a series of questions designed to elicit emotions, visual 

and analytical reasoning, and visualization and instrumental difficulties.  

A model questionnaire proposed by Di Martino and Zan (2003) was adapted for 

this study to identify subjects’ belief systems regarding visualization and computers to 

study their global affect and determine whether the same belief can elicit different 

emotions from different individuals. In this study, students were asked to give their 

opinion of a belief and choose the emotion (like/ dislike) they associated with it, e.g.: 
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Table 2: Example of items of student questionnaire on beliefs and emotions 

‐ Visual reasoning is central to mathematical problem solving. 
‐ Visual reasoning is not central to mathematical problem solving. 
Give reasons and examples. How do you feel about having to use problem 
representations or visual imagery? 
   I like it.                                I don’t like it.                             I’m indifferent. 
…..Explain the reasons for your feelings. 
 

A second questionnaire, drawn up specifically for the present study, was 

completed at the end of each problem. The main questions were: 

Table 3: Student questionnaire on the interaction between cognition and affect 

Please answer the following questions after solving the problem: 
1. Was this problem easy or difficult? Why? 
2. What did you find most difficult? 
3. Do you usually use drawings when you solve problems? When? 
4. Were you able to visualize the problem without a drawing? 
5. Describe your emotional reactions, your feelings and specify whether you got stuck 
when doing the problem with pencil and paper or with a computer. 
6. If you had to describe the pathway of your emotional reactions to solving the problem, 
which of these routes describes you best? If you do not identify with either, please 
describe your own pathway. 

Affective pathway 1 (enabling problem-solving): curiosity →puzzlement→ bewilderment 
→encouragement→ pleasure →elation →satisfaction →global structures of affect 
(specific representational schemata, general self-concept structures, values and beliefs). 

Affective pathway 2 (constraining or hindering problem-solving): curiosity → puzzlement 
→ bewilderment → frustration → anxiety → fear/despair → global structures of affect 
(general self-concept structures, hate or rejection of mathematics and technology-aided 
mathematics). 
7. Now specify whether any of the aforementioned emotions were related to problem 
visualization or representation and the exact part of the problem concerned. 

 
The protocols and interviewee data were analyzed for their relationship to affect 

as a representational system and the aspects described in section two. 

4. Findings  

The results shown here attempt to answer the concerns formulated in the 

introduction. The affective pathways reported for each problem consistently showed: a) 
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the effect of subjects’ beliefs and goals on the preference and use of visual 

thought/knowledge in computerized environments; b) that students proved to have a poor 

command of the tools, especially the locus tool; c) that notwithstanding, beliefs on the 

potential of GeoGebra helped them maintain productive affective pathways. As a 

qualitative study, the aim here was to describe the findings in detail. Consequently, the 

cases that best exemplified the results that were consistent across the entire group (30 

students) and the nine volunteers were chosen and characterized by: gender, 

mathematical achievement, visual style, beliefs about computer learning, computer 

emotion, beliefs about visual thinking, feelings about visualization processes and global 

affect. 

4.1. Beliefs about visual reasoning and emotion typologies  

The data showed that all students believed that visual thinking is essential to 

solving mathematical problems. However, different emotions were associated with this 

belief. Initially, these emotions toward the object were: like (77%), dislike (10%), 

indifference (13%). The reasons given to justify these emotions were: a) pleasure in 

knowing that expertise can be attained (30% of the students)6; b) pleasure when progress 

is made in the schematization process and a smooth conceptual form is constructed 

(35%); c) pleasure and enjoyment afforded by the generation of in-depth learning and the 

control over that process (40%); d) pleasure and enjoyment associated with the 

entertaining and intuitive aspects of mathematical knowledge (20%); e) indifference 

about visualization (13%); f) dislike or displeasure when visualization is more 

cognitively demanding (10%). 

                                                 
6 Some students cited several reasons. 
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A similar response was received when the beliefs explored related to the use of 

dynamic geometry software as an aid to understanding and visualizing the geometric 

locus idea. All the students claimed to find it useful and 80% expressed positive emotions 

based on its reliability, speedy execution and potential to develop their intuition and 

spatial vision. They added that the tool helped them surmount mental blocks and 

enhanced their confidence and motivation. As future teachers they stressed that 

GeoGebra could favour not only visual thinking, but help maintain a productive affective 

pathway. They indicated that working with the tool induced positive beliefs towards 

mathematics itself and their own capacity and willingness to engage in mathematics 

learning (self-concept as a mathematical learner). 

 
4.2. Cognitive and instrumental difficulties: student's geometric constructions 

with GeoGebra  

This section describes the solution typologies for the six problems. 

Typology 1: static constructions (discrete treatment). In this typology, the 

students used GeoGebra as a glorified blackboard (Pea, 1985), but none of its dynamic 

features. They repeated the constructions for a number of points. To draw the geometric 

locus, they used the “5-point conic” tool. This underuse of potential appeared in problems 

1 and 4.  

Typology 2: incorrect definition of the construction. The students solved the 

problem (imprecisely), but with solutions that implied that the GeoGebra tools were 

unusable. The “locus” tool can only be used if the defining points are correctly 

determined (they may not be free points). Adopting this approach, at best the students 
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could build a partially valid construction, but since the GeoGebra tools couldn’t be used, 

no algebraic answer was obtained.  

This typology appeared in problems 2 and 4. In problem 2, the sheaf of lines had 

to be defined by a point on an ancillary object such as a line, and not as a free point. 

Otherwise, the approximate visual solution obtained was unusable with GeoGebra. The 

students concerned were absolutely convinced that their solution was right and wholly 

unaware of any flaw in the solution. 

The difficulty in problem 4 was to define a point that was not the mid-point. The 

locus tool could not be used for a free point on the ladder.  

Typology 3: incorrect use of elements. For example, in problems 1, 2, 4 and 6, 

some students used the “slider” tool to move the “mover point”. They realized that the 

“mover point” had to be controlled, which is what the slider is for. In GeoGebra, 

however, the slider is a scalar and can't be used with the locus tool.7 

Problem 2 is a case in point. Some students defined the sheaf of lines as the lines 

passing through the origin on a point in the circle, and this point in the circle was moved 

with the slider. For example, student 9 said: “This problem is similar to the one before it. 

I built the construction while reading the problem. The hardest step was to construct the 

variable line. First, I thought I’d use a slider for the slope of the line passing through the 

origin, but that way I never got a vertical line, so I used the slider as in the preceding 

problem to build point C that revolves around the origin, and then to build the line 

connecting C and O. After that, I just followed the instructions in the problem, and I was 

very careful about the way I named the elements” (student 9, problem 2).  

                                                 
7 http://www.geogebra.org/help/docues/topics/746.html 
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Typology 4: failure to use the locus tool. Here, the construction was correct, but 

the student did not use the locus tool. To use it, the point that projects the locus (tracer) 

must be distinguished from the point that moves the construction (mover). The mover 

must be a point on an object. Some students were apparently unable to make that 

distinction, which prevented them from using the tool correctly. 

This misunderstanding arose in problems 1, 2, 3 and 4. Student 8 exemplifies this 

type of reasoning: “The first thing I had to do was find the center and radius of the circle 

to draw, to complete the square in the equation: (x +2) ² + y ² = 4. Therefore, point C is in 

a circle with a center at (-2, 0) and a radius of 2. (I didn’t actually need this because in 

GeoGebra I could enter the equation directly and draw the circle). Now, to solve the 

problem I had to know what a barycenter was. I took point C on the circle (creating an 

angular slider so the point would run along the entire circumference of the circle) and 

drew the triangle ABC. I calculated the triangle barycenter (I drew the medians as dashed 

green lines to make it easier to see that G is the barycenter). Using animation to project 

point G gave me the locus. Since the locus was a circle, I was able to solve the equation 

by finding three points, G1, G2, G3, and activating the “circle through three points” tool. 

Then I entered the data in GeoGebra: (x-0.66) 2 + y-1.34) 2 = 0.44" (student 8, problem 

1). 

4.3. Maintaining productive affective pathways 

As noted in the preceding paragraph, the belief that visual thinking is essential to 

problem-solving and that dynamic geometry systems constitute a visualization aid, 

particularly in geometric locus studies, was widely extended across the study group. That 

belief enabled students to maintain a positive self-concept as mathematics learners in a 
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technological context and to follow positive affective pathways with respect to each 

problem, despite their negative feelings at certain stages along the way and their initial 

lack of interest in and motivation for computer-aided mathematics.  

A comparison of the affective pathways reported by the students revealed: a) 

concurrence between the use of visualization typologies and associated emotion; b) that 

the availability of and subsequent decision to use GeoGebra was often instrumental in 

maintaining a productive affective pathway. This section addresses three examples, in 

two of which the affective pathway remained productive and one in which it did not. It 

discusses the determinants for positive global affect and positive self-concept as 

mathematical learners. The key characteristics of the case studies are given in Table 4.  

Table 4: Three case studies: characteristics 

Case Gender Mathematical 
achievement 

Visual 
style 

Beliefs 
about 
computer 
learning 

Feelings 
about 
computers 

Beliefs 
about 
visual 
thinking 

Feelings 
about 
visualization   

Global 
affect 

Student 
19 

Male High 
 

Visualizing 
student 

Positive Likes Positive Likes Positive 
self-
concept 

Student  
20 

Female Average 
 

Non- 
visualizing 
student 

Positive Dislikes Positive Dislikes Positive 
self-
concept 

Student 
6 

Female Low 
 

Style not 
clear 

Positive Dislikes Positive Likes Negative 
self-
concept 

Problem 4 (Table 1) was chosen for this analysis. The students’ affective 

pathways for this problem are given in Table 5.  

Student 19 is a visualizer. In the interview he said that the pleasure he derives 

from visualization is closely associated with the mathematics view. He regards visual 

reasoning as essential to problem-solving to monitor and generate in-depth learning, to 

contribute to the intuitive dimension of knowledge and to form mental images.  
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When he was asked whether his feelings were related to visualization and 

problem-solving and to specify the parts of the problem where they were, he replied: 

“curiosity predominated in visualization. Since the problem was interesting and seemed 

to be different from the usual conic problems, I was keen on finding the solution. I had a 

major mental block when it came to representing the problem and later, as I sought a 

strategy. I was unable to define a good strategy to find the answer. I was puzzled long 

enough to leave the problem unsolved and try again later. When I visualized the problem 

in a different way, I found a strategy: construct a circle with radius 5 to represent the 

ladder and another smaller circle to represent the point in question. When I reached that 

stage, I felt confident, happy and satisfied” (student 19).  

Student 20 is a non-visualizing thinker with positive beliefs about the importance 

of visual reasoning. However, she claimed that her preference for visualization depends 

on the problem and that she normally found visualization difficult. It was easier for her to 

visualize “real life” than more theoretical problems (the difference between problems 4 

and 5, for instance). 

Her motivation and emotional reactions to the use of computers were not positive, 

although she claimed to have discovered the advantages of GeoGebra and found its 

environment friendly. She also found that working with GeoGebra afforded greater 

assurance than manual problem-solving because the solution is dynamically visible. 

Convincing trainees such as student 20 that mathematical learning is important to 

teaching their future high school students helps them keep a positive self-concept, even if 

they don’t always feel confident in problem-solving situations (Table 5). 
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Student 6’s visual thinking style could not be clearly identified. She expressed a 

belief in the importance of positive visual reasoning (“because visual reasoning helps 

gain a better understanding of the problem and consequently the solution”). This 

confirmed a liking for visualization and representation because it made it easier to 

understand the problem and she found formalization helpful. She added, however, that 

she felt insecure applying technological software to mathematics, although she believed 

GeoGebra, specifically, to be useful. In her own words, “I don’t like it and never will. I 

feel a little nervous and insecure, not because of GeoGebra but because computers 

intimidate me because I don’t understand them completely. But when I managed to 

represent the problem with GeoGebra, I felt more satisfied with the result than when I 

solved it with paper and pencil”. Although student-6’s pathway was essentially negative 

in problem 4, she persisted until she found the solution. In some cases students were 

unaware of their mistakes and misunderstandings, however. 

GeoGebra can be used to solve problem 4, although an average student cannot be 

expected to build the entire construction from scratch. The visual and instrumental 

challenge is to deploy the sliding segment, and that calls for an auxiliary circle (which 

may be concealed to simulate the effect of the ladder). The point in the ladder must be 

chosen with care to use the locus tool. Just any “point in segment” will not do; the 

“middle point” tool or a more sophisticated construction must be used.  

While none of the three students applied the “locus” command, student 19 used 

the visual power of the technology to gain a better mathematical understanding of the 

problem. That inspired a change in context which facilitated notion and property 

applications. He used GeoGebra as a genuine mathematical modeling tool. He did not 
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solve the problem with the geometric locus command, however, even though he came up 

with the right answer by modeling. A comparison of this student’s pathways in the six 

problems revealed that the interaction between visual reasoning and negative feelings 

arose around the identification of interactive representation strategies and the formulation 

of certain representations in which the identification of parametric variations plays a role. 

This student’s command of the use of concrete, kinesthetic and analogical images was 

very helpful and contributed to his global affect and his positive overall self-concept 

when engaging in computer-aided mathematics. 

An analysis of the relationship between these three students’ affective pathways 

(Table 5) and their cognitive visualization shows that visualization - negative feelings 

interactions stem essentially from students’ lack of familiarity with the tools and want of 

resources in their search for computer-transferable analogical images and their switch 

from a paper and pencil to a computer environment in their interpretation of the 

mathematical object.  

Behavior such as exhibited by student 6 denotes a need to include construction 

with locus tools in teacher training. Although no general methodology is in place, any 

geometric problem that aims to determine locus must be carefully analyzed. This calls for 

identifying three categories of geometric elements in such problems: fixed (position, 

length, dimension); mobile (position, length, variable points); and constant (length, 

dimension). 

The data also revealed the relationship between beliefs, goals and emotional 

pathways. The analysis of student 20’s responses showed that while she had no 

inclination to use computers, the importance she attached to mathematics and IT in 
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specific objectives and the structuring of her overall objective kept her on a productive 

affective pathway (McCulloch, 2011). Student 20’s solution to problem 5 (Table 1), for 

instance, constitutes a good example of a productive pathway: despite negative feelings:, 

she maintained a positive mathematical self-concept, which she reported when she 

explained her global affect. (Her self-reported pathway in problem 5 was: curiosity 

→confusion /frustration → desperation → puzzlement → satisfaction → a negative 

mathematical self-concept in terms of technology for problem 5, but a positive global 

affect regarding computer use in solving the six problems). Questions designed to elicit 

the reasons for her positive mathematical self-concept in terms of technology showed that 

objectives, purposes and beliefs were clearly interrelated. Her own words were: “I think 

that computers, not only the GeoGebra program, are an excellent tool for anyone 

studying mathematics. Nowadays, the two are closely linked: everyone who studies 

mathematics needs a computer at some point… mathematics is linked to computers and 

specifically to software like GeoGebra (if you want to teach high school mathematics, for 

instance. I at least am trying to learn more to be a math teacher) (student 20)”. 
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Table 5: Affective pathways and visual cognitive processes reported for this problem by 

three students 

 
Problem 4 

 
COGNITIVE-EMOTIONAL PROCESS 

 
Student 19 
Own pathway 

Curiosity Reading and understanding problem 

Confusion Drawing (patterns and lines/figure) 
Analytical 

Puzzlement. 
Mental block 

(Search for mental image) (specific figure/illustration and dynamic image)

Confidence Search for mental image

Perseverance-motivation Search for mental image

Excitement and hope Physical manipulation - kinetics 
Kinesthetic learning 
Mental image Identification mathematical object 

Confidence Technological manipulation with the computer 
Representing circle radius (specific illustrations) 

Confidence, joy 

 
Interactive image generation,  
slider (analogical) 

Joy and happiness Interactive image generation,  
slider (analogical) 

Perceived beauty Specific illustration with interactivity (analogical) 

Satisfaction Analytical-visual 
Memorized formulaic typology

GLOBAL AFFECT Positive self-concept 

Student 20 
Own pathway 

Curiosity Problem reading 

Frustration Global visualization of problem 
Pictorial image 

Confusion Search for mental image 
Inability to visualize the ladder as the radius of a circle 
 

Puzzlement Search for mental image 
Dynamic  and interactive image with GeoGebra 

Stimulus, motivation Technological manipulation with the computer 
Pictorial representation with GeoGebra 

Satisfaction Pictorial representation with “trace on” GeoGebra 
Full construction from scratch 
Come up with a final solution 

GLOBAL AFFECT Positive self-concept 

   

 
Student 6 
Pathway-2 

Curiosity Problem reading 

Puzzlement Global visualization of problem 
Pictorial image 

Bewildermen Search doe an instrumental image with GeoGebra 

Frustration Computer handling skills 

Anxiety Inability to visualize the ladder as the radius of a circle and using “trace on” 

Fear/despair Needing help to find the solution 

GLOBAL AFFECT Negative self-concept 
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Conclusion, limitations and further research 

The results of this study suggest that various factors are present in conjunction 

with visual thinking. The first appears to be the study group’s belief that visual thinking 

and their goal to become teachers would be furthered by working with technology (Cobb, 

1986). The data shows that all the student teachers believed that visual thinking is 

essential to solving mathematical problems. That finding runs counter to other studies on 

visualization and mathematical ability, which reported a reluctance to visualize (e.g., 

Eisenberg, 1994). However, different emotions were associated with this belief. The 

belief about using computers and that software is a tool that contributes to overcoming 

negative feelings has an impact on motivated behavior and enhances a positive self-

concept as a mathematical learner. Despite this advantage, however, student teachers may 

still misunderstand or misinterpret and therefore misuse computer information, 

unknowingly in some cases, and surrender all authority to the computer. 

While prospective teachers resort to GeoGebra software to help maintain a 

productive affective pathway and foster visual thinking, student 20’s experience with 

problem 5 is significant, for it shows that the tool by itself is not enough. If the software 

is unable to deliver the dynamic geometric capability that students want to use for the 

concepts at hand, it is useless and may even have an adverse impact on their affective 

pathway, possibly resulting in feelings of defeat such as reported by student 20. Her 

experience provides further evidence of the importance and complexity of mathematics 

teacher training, as documented by researchers studying the issue from an instrumental 

approach (e.g., Artigue, 2002). The mere provision of tools cannot be expected to 

necessarily raise the frequency of productive affective pathways. Rather, thought needs to 
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be given to how those tools are integrated into classrooms to support the development of 

visualization skills. Some students (as in item 4.2) think of graphs as a photographic 

image of a situation due to a primarily static understanding of functional dependence. 

That might be attributed to the fact that the pointwise view of mathematical objects tends 

to prevail in the classroom, where the dynamic view is underrepresented (institutional 

dimension of visualization). 

The results of this study bring to mind the progressive modelling in visual 

thinking notion introduced by Rivera (Rivera, 2011: 270). Furthering visualization 

processes in teaching involves more than just drawing “pretty pictures”: it requires 

sequenced progression of the thought process. This in turn calls for awareness of the 

transition in dimensional modelling phases from the iconic to the symbolic and the 

change of mindset. For the problem proposed, “geometric locus”, each transition can be 

associated with mathematical explanations and symbol notation and the proficient use of 

the visual tool to reify the mathematical concept. Therefore, one question that would be 

open for research is the definition of the components of an overarching theory of 

visualization for problem-solving in technological environments where this progression is 

explicit. While this study was conducted in a classroom context, it focuses on the 

individual only, not on interaction among individuals. Future studies might profitably 

explore the role of external affect and others’ (i.e., teachers’, community’s, institution’s) 

external affective representations. Such interaction impacts meta-affect and may 

potentially either help maintain or interrupt productive affective pathways.  

Finally, as explained in the introduction, the teacher training model pursues the 

development of students’ awareness and ability to apply their knowledge in complex 
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contexts, integrating knowledge with their own attitudes and values and therefore 

developing their personal and professional behavior. From this standpoint, teacher 

training programs should adopt a more holistic approach (cognitive, didactic, technical 

and affective). The present paper aims to provide a preliminary framework to help 

teacher educators or mathematical cognitive tool designers select and analyze interaction 

techniques. A secondary aim is to encourage the design of more innovative interactive 

mathematical tools. 

References 

Arcavi, A. (2003). The role of visual representations in the learning of mathematics, 

Educational Studies in Mathematics, 52(3), 215–24. 

Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a 

reflection about instrumentation and the dialectics between technical and conceptual 

work. International Journal of Computers for Mathematical Learning, 7, 245–274. 

Aspinwall, L., Shaw, K., & Presmeg, N. (1997). Uncontrollable mental imagery: 

Graphical connections between a function and its derivative. Educational Studies in 

Mathematics, 33, 301–317. 

Botana, F (2002). Interactive versus Symbolic Approaches to Plane Loci Generation in 

Dynamic Geometry Environments, Computational Science, Volume 2330/2002, 211-

218.  

Botana, F.; Abánades, M. A.; Escribano, J. (2011): Exact Internet accessible computation 

of paths of points in planar linkages and diagrams. Computer Applications in 

Engineering Education (to appear). 

Cobb, P. (1986). Contexts, Goals, Beliefs, and learning Mathematics, For the Learning of 

Mathematics, 6 (2), 2-9. 

De Bellis, V., & Goldin, G. (2006). Affect and meta-affect in mathematical problem 

solving: A Representational Perspective. Educational Studies in Mathematics, 63(2), 

131–147. 



  Gómez-Chacón 

 

DeBellis, V. A., & Goldin, G. A. (1997). The affective domain in mathematical problem 

solving. In E. Pehkonen (Ed.), Proceedings of the twenty-first anual meeting of PME. 

Lahti, Finland: PME. 

Di Martino, P., & Zan, R. (2003). What does ‘positive’ attitude really mean? In 

Proceedings of the 27th Conference of the International Group for the Psychology of 

Mathematics Education (Vol. 4, pp. 451–458). Honolulu, Hawai. 

Duval, R. (1999), Representation, vision and visualization: Cognitive functions in 

mathematical thinking, Basic issues for learning, In F. Hitt y M. Santos (Eds.), 

Proceedings of the 21st North American PME Conference, 1, 3–26. 

Eisenberg, T. (1994). On understanding the reluctance to visualize. Zentralblatt für 

Didaktik der Mathematik, 26, 109–113. 

English, L., & Sriraman, B. (2010). Problem solving for the 21st century. In B. Sriraman 

& L. English (Eds). Theories of Mathematics Education: Seeking New Frontiers 

(pp.263-290), Springer Science and Business. 

Giaquinto, M. (2007). Visual thinking in mathematics: an epistemological study. Oxford: 

Oxford University Press. 

Goldin, G.A. (2000). Affective pathways and representation in mathematical problem 

solving. Mathematical thinking and learning, 2 (3), 209–219. 

Gómez-Chacón, I. Mª (2011). Mathematics attitudes in computerized environments. A 

proposal using GeoGebra. In L. Bu and R. Schoen (eds.), Model-Centered Learning: 

Pathways to Mathematical Understanding Using GeoGebra, (147-170). Sense 

Publishers. 

Gómez-Chacón, I. Mª & Escribano, J. (2011). Teaching geometric locus using GeoGebra. 

An experience with pre-service teachers, GeoGebra International Journal of Romania 

(GGIJRO), GeoGebra The New Language For The Third Millennium,2 (1), 209-224. 

Gómez-Chacón, I. Mª (2000a). Matemática emocional. Los afectos en el aprendizaje 

matemático. (Emotional Mathematics. Affects in Mathematics Learning) Madrid: 

Narcea. 

Gómez-Chacón, I. Mª (2000b). Affective influences in the knowledge of mathematics, 

Educational Studies in Mathematics, 43: 149-168. 



  TME, vol9, nos.1&2, p.85  
 

 
 

Guzmán, M. de (2002). The role of visualization in the teaching and learning of 

mathematical Analysis. Proceedings of the 2nd International Conference on the 

Teaching of Mathematics (at the undergraduate level). University of Crete. Greece. 

Lester, F. K. & Kehle, P. E. (2003). From problem solving to modeling: the evolution of 

thinking about research on complex mathematical activity. In R. Lesh & H. Doerr, 

(Eds) Beyond constructivism: Models and modeling perspectives on mathematics 

problem solving, learning and teaching (pp. 501-518). Mahwah, NJ: Erlbaum. 

Mason, J. (1998). Enabling teachers to be real teachers: necessary levels of awareness 

and structure of attention. Journal of Mathematics Teacher Education, 1, 243-267. 

McCulloch, A. W. (2011). Affect and graphing calculator use, Journal of Mathematical 

Behavior 30, 166–179. 

Pea, R. (1985). Beyond amplification: Using the computer to reorganise mental 

functioning, Educational Psychologist, 20 (4), 167-182. 

Presmeg, N. C. & Balderas-Cañas, P. E. (2001). Visualization and affect in nonroutine 

problem solving, Mathematical thinking and learning, 3 (4), 289-313. 

Presmeg, N. C. (1997). Generalization using imagery in mathematics. In L. D. English 

(Ed.), Mathematical reasoning: Analogies, metaphors, and images (pp. 299–312). 

Mahwah, NJ: Lawrence Erlbaum Associates, Inc. 

Presmeg, N.C. (2006). Research on visualization in learning an teaching mathematics, 

Handbook of Research on the Psychology of Mathematics Education: Past, Present 

and Future. PME 1976-2006. Ed. Sense Publishers, 205–235. 

Rivera, F. D. (2011). Toward a visually-oriented school mathematics curriculum. 

Research, theory, practice and issues. New York: Springer. 

Rodd, M. (2010). Geometrical visualization-epistemic and emotional, For the learning of 

Mathematics, 30, 3, 29-35. 

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, 

metacognition, and sense making in mathematics. In D. A. Grows (Ed.), Handbook of 

research on mathematics teaching and learning (pp. 334-370). New York: 

Macmillan. 

Souto, B. & Gómez-Chacón, I. Mª (2011). Visualization at university level. The concept 

of Integral, Annales de Didactique et de Sciences Cognitives, 16, 217 – 246. 



  Gómez-Chacón 

 

Tapan, M. S. (2006). Différents types de savoirs mis en oeuvre dans la formation initiale 

d’enseignants de mathématiques à l’integration de technologies de géométries 

dynamique. Thèse. Grenoble. 

 


	Prospective Teachers’ Interactive Visualization and Affect in Mathematical Problem-Solving
	Let us know how access to this document benefits you.
	Recommended Citation

	Microsoft Word - 3-GomezChacon_edited

