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Daignault, Sprague & Mott 

With	odd	numbers	placed	along	the	lines	of	expansion	a	limitless	grid	of	numbers	is	
formed.			This	will	be	referred	to	as	an	Odd	Number	Single	Quadrant	Expanding	
Square,	ONSQES,	and	is	demonstrated	in	Figure	2	(Mersenne	primes	are	bold).		The	
numbers	in	the	first	column	will	be	referred	to	as	First	Column	Odd	Number	Single	
Quadrant	Expanding	Square	Integers,	FCONSQESI.		
	
	
	
	
	
	
	
	
	
	
	
	
	

Theorem:	Mersenne	primes	which	occur	in	the	first	column	of	the	ONSQES	will	be	of	the	form	
p 3mod4 ,	where	p	is	the	Mersenne	Prime	exponent.	

	
Proof:	Given	that	the	numbers	of	interest	in	the	first	column	of	the	ONSQES	follow	
the	equation:	 	

R  2
p1

2 ,	where	R	is	the	row	number	of	the	ONSQES	and	p	is	the	Mersenne	
prime	exponent.	
	

By	applying	the	Theorem	of	Quadratic	Residue	and	using	Legendre	symbols	

this	equation	becomes	
R

p











2
p1

2

p














.			So	when	the	statement	

2
p1

2

p
 1	is	true,	the	

statement	 p 3mod4 	will	also	be	true.		To	that	end,	observe	that	the	expression
p 1

2
	is	at	all	times	either	even	or	odd.	

If	
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is	even,	then		
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If	
p 1

2
	is	odd,	then	

2
p1

2

p
 1.		

Therefore,	 p 3mod4 	

	 Yet	for	the	case	
2
p1

2

p
 1	,	the	Law	of	Quadratic	Reciprocity	states:	

1	 3	 17	 19	 49	 51	 97	 99	
7	 5	 15	 21	 47	 53	 95	 101	
9	 11	 13	 23	 45	 55	 93	 103	
31	 29	 27	 25	 43	 57	 91	 105	
33	 35	 37	 39	 41	 59	 89	 107	
71	 69	 67	 65	 63	 61	 87	 109	
73	 75	 77	 79	 81	 83	 85	 111	
127	 125 123 121 119 117 115 113	

Figure	2	–	8	x	8	Odd	Number	Single	Quadrant	
Expanding	Square	(ONSQES)	
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Thus	there	now	exists	 p 3mod4 	and	 p5mod8 .	
This	creates	two	possibilities:	

	 Case	1:	 p 3mod4 	and	 p5mod8 3mod8 	
	 	 	 p 3mod4 	=	 p 3,7mod8 	
	 	 	so	 p 3mod4becomes	 p 3mod8	
	 Case	2:	 p 3mod4and	 p 5mod8 5mod8 	
	 	 	This	cannot	occur	because	

p 3mod4  3,7mod8	and	then	 p 5mod8	

Thus	to	achieve	
2
p1

2

p
 1,	p	must	be	of	the	form p 3mod4 	

	
Remarks	

Fundamentally	there	are	two	ways	to	increase	the	speed	of	the	search	for	Mersenne	
primes.		One	is	through	increased	speed	of	assessment	of	the	individual	candidates,	such	as	
with	faster	processors	or	with	more	efficient	verification	of	the	individual	candidates.		The	
second	is	by	decreasing	the	number	of	candidates	to	be	considered.		The	theorem	
described	above	is	meant	to	address	the	latter.	

Figure	2	lists	the	p	values	of	the	Mersenne	primes	discovered	at	the	time	of	writing.1		
In	this	table	the	primes	which	conform	to	 p 3mod4 	are	placed	in	bold.			Only	19	of	the	47	
known	primes	follow	this	form.			While	not	capable	of	capturing	all	of	the	Mersenne	prime	
numbers,	these	primes	are	significant	in	that	they	arise	from	a	much	smaller	set	of	integers.			

	
2	 61	 2281 21701 859433 24036583	
3	 89	 3217 23209 1257787 25964951	
5	 107	 4253 44497 1398269 30402457 
7	 127	 4423 86243 2976221 32582657	
13	 521	 9689 110503 3021377 37156667	
17	 607	 9941 132049 6972593 42643801	
19	 1279	 11213 216091 13466917 43112609	
31	 2203	 19937 756839 20996011 	

	

Figure	2	‐	List	of	the	p	values	for	all	known	Mersenne	Prime

A	summary	article	by	Schroeder	discusses	the	distribution	of	Mersenne	primes.	2		
When	the	sequence	of	Mersenne	primes	are	graphed	as	Log2p 	the	slope	is	0.59.		The	same	
graphic	can	be	applied	to	the	set	of	FCONSQESI	Mersenne	primes	which	yields	a	slope	of	
1.28	(Figure	3).		This	increased	rate	of	growth	is	compatible	with	the	smaller	number	
Mersenne	primes	that	fall	in	the	FCONSQESI	set.	

	

1	if	 p1mod8

‐1	if	 p5mod8
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In	conclusion,	arranging	integers	as	described	by	the	ONSQES	provides	a	novel	
method	to	analyze	the	distribution	of	Mersenne	primes.		Further	more	the	finding	that	the	
Mersenne	primes	which	fall	in	the	first	column	take	the	form	of	 p  3mod4 	is	just	one	
application	of	this	technique	to	the	search	for	Mersenne	primes.	While	the	overall	utility	of	
the	approach	remains	to	be	determined,	the	future	seems	promising.	
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Appendix		
PYTHON	code	for	FCONSQESI	
 
#!/usr/bin/python 
""" 
This PYTHON program provides the numbers necessary to form the 
sets describe in the above paper.  A primality test can be 
applied to them to verify which are primes. As written below, 
this program describes rows 4 to 512.  
 
A sample printout is: 
row, Mersenne_prime, p-value 
4 31 5.0               
6 71 6.16992500144 
8 127 7.0               
10 199 7.64385618977 
... 
 
""" 
import math 
FCONSQESI_2_rows_up = 7 
    #since we will start on row 4, this is for row 2 
print "row, Mersenne_prime, p_value" 
for row in range(4,513,2):#calc even rows 4 to 512 
    FCONSQESI=FCONSQESI_2_rows_up +2+((row // 2)*16)-10 
     #use integral division above since row always even 
    p_value = 1 + 2 * math.log(row) / math.log(2) 
    print row, FCONSQESI, p_value 
    FCONSQESI_two_rows_above = FCONSQESI 
exit() 
 
 
 
 
 
 
 



Daignault, Sprague & Mott 

 
 
 


	Evaluating Mersenne Primes Using a Single Quadrant Expanding Square
	Let us know how access to this document benefits you.
	Recommended Citation

	Microsoft Word - article11_Daignault

