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Abstract 

Starting from the study of the orthoptic curves of parabolas and ellipses, we 
generalize to the case of isoptic curves for any angle, i.e. the geometric locus of 
points from which a parabola or an ellipse are viewed under a given angle. This 
leads to the investigation of spiric curves and to the construction of these curves as 
an actual intersection of a self-intersecting torus with a plane. The usage of a 
Computer Algebra System facilitated this investigation. 

        
       Keywords: Computer algebra systems; algebraic curves; conics; torics  

 
I. Orthoptic curves. 
Given a plane curve C, the orthoptic curve of C is the geometric locus of points from 
which C can be viewed under a right angle, i.e. the locus of points through which 
passes a pair of perpendicular tangents to the curve C. For example, the orthoptic 
curve of a parabola P is a line, called the directrix of P, and the orthoptic curve of an 
ellipse is a circle whose center is the center of the ellipse. 
 
Take a parabola with the canonical equation pxy 22  . We wish to find whether there 

exist tangents to the parabola through a given point with coordinates  YX , in the 
plane. For that purpose we explore the set of solutions of the following system of 

equations: 







YmXmxy

pxy 22

.   

We find the following classification (see Figure 1): 
 For a point out of the parabola (i.e. for which the inequality pxy 22   

holds), there exist two tangents; 
 Through a point on the parabola, there exists a single tangent;  
 There is no tangent to the parabola through an interior point (i.e. a 

point for which the inequality )22 pxy  . 
As already mentioned, the directrix of the parabola is the geometric locus of the 
points from which the parabola is seen in a right angle (Figure 1a). We check 
graphically and justify geometrically that the directrix divides the exterior of the 
parabola into two regions. We illustrate this in Figure 1 for the ellipse whose equation 
is 14 22  yx . One of them is the locus of points from which the parabola is seen 
under an acute angle (Figure 1b), the other one is the locus of points from which the 
parabola is seen under an obtuse angle (Figure 1c).  
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(a)                                       (b)                                    (c) 

Figure 1: Viewing angles of the parabola  

 
The last result intrigued the authors and the in-service teachers who attended a 
professional development course in Analytic Geometry. In order to obtain more 
details, we explored the locus of points from which the parabola is seen under a given 
angle. To our surprise, for specific angles we found branches of hyperbolas (see 
Figure 2, for the same ellipse as above): an unfamiliar relationship between parabolas 
and hyperbolas! 

 

 

Figure 2: An unfamiliar relationship between parabolas and hyperbolas 

 
Conic sections are an important domain in classical Mathematics. Within this domain, 
there exist topics which drew little attention in the past. We wish to shed light on one 
of these topics. Specifically, we are interested in geometric loci of points from which 
a given conic section is viewed under given angles. This means to look for points 
from which originate pairs of rays which are tangent to the conic and create a given 
angle θ.  
The orthoptic curve of a parabola, i.e. its directrix, is displayed on Figure 3a, and in  
Figure 3b the orthoptic curve of an ellipse is shown. Actually, the orthoptic curve of 
an ellipse is the whole of a circle concentric with the ellipse. In the case of a 
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hyperbola, finer tuning is necessary: first, an orthoptic curve may not exist and 
second, when it exists, holes appear.  
 

                   
(a) Parabola                                                            (b) Ellipse 

Figure 3: Orthoptic curves. 
 
 
Given a curve C and an angle θ, the geometric locus of points through which passes a 
pair of tangents to the curve C making a angle of θ is a curve called a θ-isoptic curve. 
This curve can adopt very different forms. It happens that a θ-isoptic curve is given by 
a polynomial equation of higher degree (up to degree 4 for conics) in two real 
variables x and y.  

Our study demands the usage of a couple of general tools from the theory of plane 
algebraic curves. A central tool used is Bezout's theorem (Kirwan 1992, page 54). For 
the situations described in the paper, the theorem states that the intersection of a line 
(a plane curve of degree 1) and a conic (a plane curve of degree 2) contains at most 
two points, possibly identical. The point of contact of a tangent to a conic with the 
conic itself is of multiplicity 2, thus there is nothing left for another point of 
intersection. As the points of intersection of a conic and a line are determined by the 
solutions of a quadratic polynomial, the fact that a line is a tangent to a conic is 
determined by the vanishing of a certain discriminant.  

Most of the computations and the drawings in this paper have been performed using a 
Computer Algebra System (generally denoted by the initials CAS), either Derive or 
Maple. Figure 1 has been drawn using GeoGebra1. 
 
II. Isoptic curves of an ellipse. 
 
We will work with the one-parameter equation 0,1222  kykx  . No loss of 
generality occurs because of this decision, as it can be easily shown that any ellipse is 
similar to one of the ellipses in the above one-parameter family. The algebraic 
computations will be easier than with the canonical 2-parameter presentation. 
We address now the following question: Given an angle θ, what is the geometric 
locus of all the points in the plane from which the ellipse is viewed under the 
angle θ? In other words what is the geometric locus of all the points in the plane 
through which passes a pair of tangents to the ellipse E making an angle of  θ?  
 

                                                 
1  http://www.geogebra.org 
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For 090 , the answer can be found in the literature, but we prefer to expose this 
situation as a particular example. First note that four pairs of perpendicular tangents to 
the given ellipse are trivially found, namely pairs of tangents parallel to the coordinate 
axes. In Figure 4 we show the ellipse corresponding to 2k  and its four tangents 
parallel to the axes. The points DCBA ,,,  belong to the geometric locus we are 
interested in. 
 

 
 

Figure 4: Tangents to the ellipse, parallel to the coordinate axes. 
 
We consider now the general case: none of the tangents in the pair is parallel to the y-
axis, therefore both have a slope. Take a point ),( 00 yxT ; a line L through T  and non-

parallel to the y-axis has an equation of the form 00 )( yxxmy  , where m is the 

slope of L. An ellipse has no singular point, thus Bezout's theorem (Berger 1996, 
section 16.4) ensures that the line L is tangent to the ellipse E if, and only if, it has a 
"double" point of intersection with the ellipse. The possible slopes are the following: 

(9)               2
0

00
22

0
2
0

1 1

1

xk

ykxkyx
m




    and    2

0

00
22

0
2
0

2 1

1

xk

ykxkyx
m




 ,  

where 122
0

2
0  kyx .  The tangents are perpendicular if, and only if, 121 mm , i.e.  

(10)                                                 .1
1

1
2
0

2

2
0

2





xk

yk
 

This equation is equivalent to 

(11)                                               










1,1

1
1

0

2
2
0

2
0

x
k

yx
. 

It follows that the geometric locus of points from which the ellipse is viewed under a 
right angle without a side being parallel to the y-axis is a subset of the circle Ck whose 
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center is at the origin and whose radius is equal to 2/11 k . Conversely, through 
every point on the curve defined by Equation (11) passes a pair of perpendicular 
tangents. Moreover, through the four points A, B, C, D one of the tangents to the 
ellipse  is parallel to the y-axis, therefore it cannot be described by Equations (10) and 
(11), but these four points complete the curve given by Equation (11) to be the circle 
Ck.  This circle is called the director circle or the orthoptic circle of the ellipse E 
(Spain 1963, page 79). Actually the director circle of the given ellipse is the 
circumcircle of the rectangle ABCD``. Figure 3 shows the ellipse and its director 
circle for 2k . 

 
Note that from a point exterior to the orthoptic circle, the ellipse is viewed under an 
acute angle, and from a point interior to the circle, the ellipse is viewed under an 
obtuse angle. The proof is easy to write; examples are displayed in Figure 5. 

 
(a) Acute angle                                     (b) Obtuse angle 

Figure 5: Acute and obtuse angle for viewing the ellipse. 
 
For tangents non parallel to the y-axis whose respective slopes are 1m  and 2m , the 

condition is equivalent to  tan
1 21

21 



mm

mm
.  

 
The requested geometric locus is determined by the equation 

(13)                                           tan
)1(1

12
2
0

2
0

2

2
0

2
0

2






yxk

xykk
. 

Denote tant  and square both sides of this equation. We obtain the following 
equation: 

(14)                                              
2

22
0

2
0

2

2
0

2
0

22

)1(1

)1(4
t

yxk

xykk





. 

Actually, the vanishing points of the denominator are points though which pass a 
suitable pair of tangents, one of the tangents being parallel to the y-axis. Multiplying 
both sides by the common denominator, we obtain the following polynomial equation 
of degree 4: 
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 (15)                           
0)2(2)2(2

)2(22
22224222222

424222222224424





ttktkytktkk

ytkxttkkyxtkxtk
 

 
Equation (15) determines a plane curve called a spiric curve. See Wassenaar (2003a) 
and Ferréol (2001). A spiric curve is the intersection of a plane with a torus; see 
Wassenaar (2003b) and the appendix, at the end of the present paper. 
 
The geometric locus of points from which the given conic ellipse E is viewed under a 
given angle θ is a called  the θ-isoptic curve of the ellipse E for the given angle θ; we 
denote this curve by ).,( kOPT  The orthoptic curve of E is ).90,(kOPT  In Figure 6, 
we show the curves )45,2(OPT , )135,2(OPT  and )90,2(OPT . The equation 
describing together the first one and the last one is 

04110456163216 224224  yxyyxx . This equation can be written under 
the form 

(16)                               0
16

41

2

13

2

7 22222  yxyx . 

 
Figure 6: Examples of  isoptic curves of an ellipse. 

 
Note that the squaring before Equation (14) has an important consequence: the angles 
θ and 180o-θ are studied at the same time.  Therefore Equation (16) describes in fact 
the union of two isoptic curves, namely  ).,( kOPT and ).180,( kOPT We will call 

this union a bi-isoptic curve, and will denote it by ).,(2 kOPT  In Figure 6, the union 

of   )45,2(OPT  and )135,2(OPT  is )45,2(2OPT , which can be also denoted by 

)135,(2 kOPT . 
   
As an example, let us consider the case where 4k , i.e. a case with greater 
eccentricity than what we had previously. In Figure 7, we show the ellipse whose 
equation is 116 22  yx  and the  bisoptic curve for 45θ  and  135θ (recall that 
they are obtained simultaneously). Its equation is 

(17)                                 0
256

353

8

49

8

19
2 224224  yxyyxx .  
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Here too the isoptic curve is a spiric curve. In fact Equation (15) shows that it is this is 
a general situation. 
 

 
Figure 7: An ellipse with two isoptic curves 

  
 

Additional remark: take a variable ellipse, with fixed vertices on the major axis. When 
the length of the minor axis tends to 0, then the ellipse "tends to" a line segment (in a 
sense to be defined of course), and the isoptic curve "tends to" a form built as the 
union of two symmetric arcs of circles, recalling a well known theorem: let PQ be  a 
segment in the plane and let α be a given angle. The locus of points M in the plane 
such that PMQ   is the union of two symmetric arcs of circles whose endpoints 
are P and Q. 
 
 
III. Reconstruction of the bisoptic curve as a toric section. 
 
The equations we obtained in previous section for the bisoptic curves of an ellipse 
showed that these bisoptic curves are actually spiric curves, i.e. intersection a torus 
with a plane parallel to the torus axis. In this section we wish to reconstruct the torus 
and the plane from the knowledge of the spiric curve.  
 
   The general equation of a torus whose axis is the z-axis is as follows: 

(18)                           .0,0,04 222222222  rRyxRyrRzx  
If rR 0 , then the torus will be called a self-intersecting torus. See Figure 8 for 
two examples. 
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(a) Non self intersecting                                       (b) self-intersecting 

               R=5, r=2                                                            R=4, r=5 
Figure 8: Two tori. 

 
A self intersecting torus is a surface which comprises not only what is visible on 
Figure 8b, but also an internal part, as shown in Figure 9. As any torus, it is a surface 
of revolution generated by a circle being revolved about a line; in the case of a self-
intersecting torus, the line intersects the circle, whence the internal part, as shown on 
Figure 9b.   
 
 

               
(a) The torus                                     (b)View from inside 

Figure 9: Self-intersecting torus. 
 

For the reader's convenience, we presented here tori and self-intersecting tori with the 
z-axis as their axis of revolution. In what follows we will change our point of view in 
order for the 3D-geometry we explain to be coherent with the plane configuration that 
we studied in the previous sections. 
 
Note that any ellipse in the xy-plane is similar to an ellipse whose equation is 

1,1222  kykx . Therefore, WLOG, we consider an ellipse E with this equation. 
As 1k , the torus we are looking for has the x-axis as its axis or revolution. Thus, 
the equation of the torus has the following form: 
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(19)                             04 222222222  zyRrRzyx . 
Expanding the left-hand side, and multiplying by a suitable constant, w show that 
Equation (19) is equivalent to  

(20)              
 

     .0222

22
4224222424222224

4242222242224424





zzrrzrRRtkzrRytk

ytkzrRxtkyxtkxtk
  

Equation (20) is equivalent to Equation (15) if, and only if, the following system of 
equations holds: 

(21)           

   
   

    











422422242422224

222224222222

22222422222

2222

222

222

zzrrzrRRtkttktk

zrRytkytktkk

zrRxtkxttkk

. 

We simplify the first two equations, obtaining thus: 

(22)           
   

   






222222222

22222222

2

2

zrRtktktk

zrRtkttk
. 

By sidewise addition we obtain finally: 

(23)            
22

2
2 1

tk

k
R


 . 

By a sidewise substraction of the first equation from the third one in (21), we obtain 
after simplification 
(24)               122222222  tktkzrtk . 
 
Let 2rp   and 2zq  . Thus Equation (24) can be written under the following form 

(25)                1222222  tktkqptk , 
Whence 

(26)              
 

22

2222 11

tk

ttptk
q


 . 

 
A substitution into the third equation in (21) yields 
(27)           22242422224 2222 qpqpqpRRtkttktk  . 
We substitute for q using  Equation (26) and finally we obtain 

(28)                      
 
 1

1
22

22





kt

tk
p , 

which is equivalent to  

(29)                     
 
 1

1
22

22
2





kt

tk
r .  

It follows easily that 

(29)                     .1

1
222

2
2





ktk

t
z     

In conclusion we have: 
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(30)                       





























1

1

1

1

1

2

2

2

2

2

kkt

t
z

kt

tk
r

kt

k
R

           . 

It follows that 

(31)           

 

 


















kt

tk
zRr

kkt

tk
Rr

111

1

111

22

2

22

 

Therefore 0 Rr  and 0 zRr . This shows that the given bisoptic curve is the 
intersection of a self-intersecting torus with a plane parallel to the y-axis at distance z, 
such that we have a union of two loops. 
If we substitute now the values for the squares of R, r and z in the original equation of 
the torus we get a quartic equation showing that the bisoptic curve under study is 
actually a spiric curve: 

(32)           
   

44

2
2

22

22

22

2222
22 1414

tk

t
y

tk

k

tk

ttk
yx













 
 . 

For example, if  t=1 and k=2,  we have the following system of equations: 

(33)             
 









5.0375.1

14
2222

22

yyx

yx
 

The first equation represents the ellipse and the second equation represents the 
bisoptic curve for oo 135/45  in Figure 10. 
 

           
                    

Figure 10: An ellipse and one of its bisoptic curve: plane configuration 
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We show two views of the 3D-configuration in Figure 11. Note the internal part of the 
torus (consequence of the self-intersection). 

         
Figure 11: The 45/135 bisoptic of an ellipse as a toric intersection 

 
IV. Limiting cases. 
 
In this section we wish to show the internal coherence of what has been studied in the 
previous section. For this purpose, recall that the bisoptic curve under study is 
determined by two parameters: the positive parameter k determines the shape of the 
ellipse (namely its eccentricity), and the parameter t encodes the angle under which 
the ellipse is viewed. We study the behavior of a bisoptic curve when one of the 
parameters, either t or k , is fixed and the second one tends to infinity.  
 

1. Fixed ellipse and variable angle. 
We recall that an ellipse E whose equation is 0,1222  kykx ,  is viewed under an 
angle θ such that ttan from all the points on a curve whose equation is  

0)2(2)2(2

)2(22
22224222222

424222222224424





ttktkytktkk

ytkxttkkyxtkxtk
 

as shown in Equation (15). 
  
The case  t=0 corresponds to points through which passes only one tangent to the 
ellipse, i.e. the points of the ellipse itself. For the general case, i.e. 0t , we can 
divide out the left-hand side of Equation (15) by t2. We obtain: 

(34)                              

 

1
)2(2

2
)2(2

22
22

2

22
422

2

224

44
2

2422444














t

tk
kyk

t

tyk

yk
t

tkx
xkyxkxk

                                          

 
If t tends to infinity, i.e. the angle tends to o90 (and note that 90o=180o-90o, whence 
the two components of the bisoptic tend to the same curve), then the equation 
becomes 
(35)         1222222 24222444222422444  kkykykykxkxkyxkxk                                
 
which is equivalent to: 

(36)                                       01
22222  kyxk . 



  Dana-Picard, Zehavi & Mann 

 

This equation can be written as follows: 

(37)                     
2

2
22 1

k

k
yx


 , 

                                     
which is the equation of the director circle (v.s. Equation (11)). 
 
Figure 12 shows the bisoptic curves (always in red) for the ellipse E whose equation 

is 1
9

4 22  yx  (always in blue) and 10,5,1t  from left to  right, the rightmost figure 

showing the limiting case for t going to infinity, i.e. the ellipse  with its director circle. 
We can see how the two components get closer and look more and more circular. At 
the limit, they coalesce into one circle. 

 
Figure 12: Fixed ellipse and variable angle 

 
 

2. Variable ellipse and fixed angle. 
 
If k→∞, then the limit configuration for the ellipse is the segment AB on the x-axis, 
where A has coordinates (-1,0) and B has coordinates (1,0). A well known result of 
plane geometry is that the bisoptic becomes the union of two circles from which that 
segment  AB is seen by an angle whose tangent is t, the two points A and B being 
excepted. We can check this with Equation (15), when k→∞. 
Following a method similar to the previous subsection, we divide out the left-hand 
side of Equation (15) by k2; we obtain: 
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Now, if k→∞, we obtain the equation: 
(39)           04222 2222422222242  tyytytxtyxtxt  
 
which is equivalent to: 

(40)                               
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The left-hand side of Equation (40) can be written as the product of two quadratic 
polynomials, namely Equation (40) is equivalent to the following equation: 
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This is the equation of the union of two symmetric circles going through the points A 
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(-1,0) and B (1,0) and having the points C1(0,1/t) and C2(0,-1/t) as their centers, 
respectively. 
Figure 13 shows two examples for 1t , i.e. o45 , and 5,2k , and at the 
rightmost the limiting case for infinite k. 
 

 
Figure 13: Fixed angle and variable eccentricity 

 
 
V. Final remarks. 
 
The work in this paper originated in a course in Analytic Geometry for in-service 
teachers, based on the usage of technology. The study of isoptic curves of ellipses led 
to the study of plane curves of higher degree, a topic which is not studied in a regular 
curriculum for teacher trainees. A byproduct was the development of mathematical 
activities based on the usage of a Computer Algebra System and of other kinds of 
mathematical software. The usage of technology enabled the participants to work 
according to an experimental method in order to develop new mathematical 
knowledge. 
The consideration of these curves yielded the participants in the course a more 
profound insight into the geometry of plane curves and more understanding of the 
interplay between different mathematical fields, such as 2D geometry, 3D geometry, 
algebra and computer algebra. Introducing the spiric curves in the context of locus of 
viewing angles opens up opportunities for students to view and explore analytically 
curves of degree higher than 2.  
With a broader scope than what has been presented in the course, the present study 
helps to enhance the understanding of isoptic curves and of spiric curves, as it 
introduces a spiric curve as the union of two connected components appearing 
together as the intersection of a self-intersecting torus with a plane parallel to its axis 
of revolution. The visualization provided by a Computer Algebra System gave a 
strong added value to the topic, and is an important component of the revival of the 
topic in recent years.  
The isoptic curves present sometimes points of inflection, but not always. This can be 
studied by letting the angle θ vary for a fixed value of the parameter k, or by enquiring 
the influence of variations of parameter k for a fixed angle θ. The authors address this 
issue in a companion paper. 
Other teams work in this field, from another point of view; for example, see 
(Miernowski and Mosgawa, 2001), (Szałkowski, 2005) and the papers referenced 
there. Together with the study of bisoptic curves of ellipses, the authors worked on 
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bisoptic curves of hyperbolas. This case is more complicated and new phenomena 
appear. This is the topic of a subsequent paper.  
 

 
Appendix: the spiric of Perseus 

 
The intersection of a torus with a plane parallel to the axis of the torus is called a 
spiric of Perseus. The first reference to Perseus is in the writings of Proclus, where he 
says that Perseus found the spiric in the same way Apollonius studied conics2 (see 
MacTutor). A spiric curve can have different forms according to the respective 
positions of the torus and the plane. It can be the union of two disjoint loops (Figure 
16 (a)), one self intersecting loop (Figure 16 (b)), one non intersecting loop without a 
point of inflection (Figure 16 (c)) or a non intersecting loop with four points of 
inflection (Figure 16 (d)). Figure 16 shows the intersections of the planes whose 

respective equations are 1 yx , 2 yx ,  2 yx  and 3 yx  with the torus 
given by the following parametric representation: 
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We begin with a 3D presentation. For each case, two different views of the torus and 
of the spiric curve are shown. 

 

 
 (a) The union of two disjoint loops  

 
 (b) A self-intersecting spiric curve 

                                                 
2  Other sources refer to Menaechmus as the discoverer of conic sections (see http://www-
groups.dcs.st-and.ac.uk/~history/Curves/Spiric.html). 



  TME, vol9, nos.1&2, p .73 
 

 

 

 
 

 (c) A non self-intersecting spiric curve without a point of inflection 
 

  
(d) A non self-intersecting non convex spiric curve 

 
Figure 13: Spiric curves 

The authors can also provide to the interested reader files of animations built using 
DPGraph. Please ask by email. 

 

                    
 

Figure 14: Plane cut of a self-intersecting torus 
 

Now we present the 2D situation. In the literature, spiric curves are generally 
presented as plane sections of a "regular" torus, i.e. a non self-intersecting one.  In this 
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paper, we show that the bisoptic curves of ellipses are plane sections of self-
intersecting tori, extending somehow the notion of a spiric curve. We include now the 
case where the curve has two disjoint components.  In what follows we show spiric 
curves, according to our new point of view. The notations are those of Section III. 
 
The equation of a torus with the x-axis as its axis of revolution is (Equation (15) 
above): 

    04 222222222  zyRrRzyx  
 
We show spiric curves obtained as plane sections of two different tori: T1 whose 
characteristics are R=3 and r=2, and T2 given by R=2 and r=3. 
 
The torus T1  is a regular one. His equation is     .0365 2222  zyzyx  
The curves shown in Figure 15 are the spiric curves corresponding to  z = 0, 0.4, 0.8, 
1.2, 1.6, 2, 2.4, 2.8, 3.2. 
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Figure 15: Spiric curves – plane sections of a regular torus 
 
The torus T2 is self-intersecting. His equation is     .0165 2222  zyzyx The 
curves displayed in Figure 16 are the spiric curves corresponding to the values z= 0, 
0.4, 0.8, 1.2, 1.6, 2, 2.4, 2.8, 3.2. If  z = 0 then the spiric curve is the union of two 
symmetric intersecting circles. If 0 < z < r-R, the spiric curve is the union of two 
distinct loops. 

 
 

 
 



  Dana-Picard, Zehavi & Mann 

 

 
 

Figure 16: Spiric curves – plane sections of a self-intersecting torus 
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