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Editorial: Opening 2011’s Journal Treasure Chest 
 

Bharath Sriraman, Editor 
 

 
Over the years, people have described different journal issues of The Montana Mathematics Enthusiast, as pulling a 
rabbit out of a hat, always surprising readers by its variety and content. One wishes that putting together an issue 
were as simple as that! Most TMME issues are planned 10-12 months in advance and require a convergence of 
numerous elements- first and foremost of which is a healthy submission rate. I have been proactive about 
promoting the journal at institutions in numerous countries I have lectured at as a visiting Professor, as well as 
relied on the support of collaborators and colleagues for suggesting the journal as an avenue of publication at 
research conferences and symposia.  
 
 
In 2010 the journal received 109 manuscripts, out of which 27 were accepted for publication, 70 were rejected, 12 
required reworking and resubmission. Out of the 70 manuscripts that were rejected, 9 were found inappropriate 
in terms of the aims and scope of the journal. Another 6 of the rejected manuscripts eventually found other 
outlets for publication. The acceptance rate is thus around 25%. Some editorial board members suggested 
increasing the frequency of the journal from 3 to 4 issues per year. However, due to very limited resources the 
journal is unable to do so. The Montana Mathematics Enthusiast is a grass roots enterprise in which the bulk of the 
work is done by the Editor, with help from the editorial assistant [Linda Azure], hundreds of ad-hoc reviewers, 
and a cadre of language checkers and copy editors scattered around the world. It operates very much like a 
complex system, with numerous lower order agents unknowingly acting in chorus and contributing to the end 
product, namely journal issues.  
 
 
Instead of thinking of a journal issue as a rabbit pulled out of a hat, it is much more like an anthill requiring 
hundreds of hours of slow and steady work. It is also fascinating to watch articles from the journal and 
monographs cited in other mathematics education journals, books and conference proceedings in addition to 
myriad disciplines such as pure mathematics, exact sciences, history, philosophy, physics, cultural studies and 
even aesthetic plastic surgery! The skeptical reader can go into Google Scholar or Google Books and enter “The 
Montana Mathematics Enthusiast” and verify for themselves. As a testimony to the eclectic nature of the journal 
and its ability to publish mathematical articles of interest and quality, Princeton University Press selected 
Wagner’s (2009) “If mathematics is a language, how do you swear in it?” (from TMME, vol6, no3) in its The Best 
writing on Mathematics 2010.  
 
 
The journal continues to remain free online with the option of purchasing print copies from Information Age 
Publishing.  The Montana Monograph series also continues to thrive and released its 11th volume entitled 
“Interdisciplinarity for the 21st Century” in the Fall, and two additional monographs are in development for release 
in 2011 and 2012.  
 
I wish to thank several colleagues who have been in the art of editing longer than I have from whom I have 
learned a lot. First and foremost, Lyn English (Australia), the editor of Mathematical Thinking and Learning for 
teaching me to identify potential and quality in submissions; Ian Winchester (Canada), the editor of Interchange: 
A Quarterly Review of Education, and Don Ambrose (USA), the editor of Roeper Review, individuals from whom 
I have learned the art of eclectics, challenging philosophical assumptions and interdisciplinary initiatives; and last 
but not least Gabriele Kaiser (Germany), the editor of ZDM-The International Journal of Education from whom I 
have learned the art of patience and revision to improve quality of manuscripts, and compiling theme issues. 



  Sriraman 

Indeed I feel fortunate to be able to roam in a variety of disciplinary circles and combine the editorial styles and 
approaches of different journals to make the journal what it is.  
 
The current double issue that opens up 2011 is a veritable treasure chest – I will not elaborate on this and simply 
let the table of contents speak for itself! Not too many journals can claim a line up with articles from Hyman 
Bass, Reuben Hersh, Wolff-Michael Roth, Klaus Hoechsmann, Thomas O’Brien, and many other illustrious 
colleagues from Canada, Israel, Iran and other countries. Indeed the journal may be one of the few places where 
one notes a synergy between colleagues from Iran and Israel, untainted and far different from the vitriol and 
rhetoric of the popular media and the continuation of Realpolitik in the world today. 
 
Finally, I wish to pass my condolences to family, friends and colleagues who mourn the passing of Thomas 
O’Brien on December 6. We hope the present article that was in the pipeline but sadly appears posthumously in 
this issue carries on his Polya-esque vision for the teaching and learning of mathematics.  
 
I have received requests to start a Letters from Readers section in 2012 and urge those interested in seeing this 
happen to send their correspondence to me. I hope the 9360+ readers of the journal from 110+ countries enjoy 
the New Year offering of The Montana Mathematics Enthusiast. 
 

Reference 

Pitici, M. (Ed) (2011). The Best Writing on Mathematics 2010. Princeton University Press. 
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A Vignette of Doing Mathematics:  A Meta-cognitive Tour of the  
Production of Some Elementary Mathematics 

 
Hyman Bass 

University of Michigan 
 
 

I. INTRODUCTION 
 
What is this about? 
 
Mathematics educators, including some mathematicians, have, in various ways, urged that the 
school curriculum provide opportunities for learners to have some authentic experience of doing 
mathematics, opportunities to experience and develop the practices, dispositions, sensibilities, 
habits of mind characteristic of the generation of new mathematical knowledge and 
understanding – questioning, exploring, representing, conjecturing, consulting the literature, 
making connections, seeking proofs, proving, making aesthetic judgments, etc. (Polya 1954, 
Cuoco et al 2005, NCTM 2000 - Standard on Reasoning and Proof).  While this inclination in 
curricular design has a certain appeal and merit, its curricular and instructional expressions are 
often contrived, or superficial, or no more than caricatures of what they are meant to emulate.  
One likely source of the difficulty is that most mathematics educators have little or no direct 
experience of doing a substantial piece of original mathematics, in part because the technical 
demands are often too far beyond the school curriculum.  Studying the history and evolution of 
important mathematical developments can be helpful, but provides a less immediate and direct 
experience. 
 
This paper is written from the ambivalent space that I inhabit, as a practiced mathematician who 
is also seriously inquiring into the problems of teaching and learning at the school level.  It 
exploits my experience and sensibilities as a mathematician, but it is addressed to some of the 
challenges and concerns of school mathematics teaching and learning.  It tells a story that 
happened in the sometimes conflicted, but potentially fruitful zone between those two worlds. 
 
My intention is to offer the reader a first hand and accessible account of the generation of an 
interesting and elementary piece of new mathematics.  The mathematics itself, while of some 
modest interest, serves here mainly as context, or backdrop.  The main story is the meta-
cognitive narrative of the mathematical trajectory of the work.  Several features of the event 
recommend it for this purpose.  First, the initial question grew from a topic in the elementary 
mathematics curriculum, in the teaching of fractions.  The mathematical work illustrated here is 
launched by asking a “natural question” that is precipitated by this elementary context.  From 
that start, explorations, discoveries, and new questions proliferate, some within easy reach of the 
standard repertoire of the school curriculum, perhaps mobilized in some novel ways, and others 
seeming to demand some new idea or perspective or method.  But, importantly for our present 
purposes, the ideas and methods invoked never transcend the reach of a secondary learner who 
is prepared to think flexibly about some less familiar ways of combining elementary ideas. 
 
In summary then, what is presented here is a narrative of a small mathematical journey, meant 
to give the reader a palpable and authentic, yet accessible, image of what it means to do 
mathematics.  I have tried to scaffold the mathematical work to ease the reading as much as 
possible, but it would be foolish to pretend that this will be an “easy read.”  That cost is perhaps 
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inevitable in an undertaking like this, which is therefore, in a way, a part of the message that this 
is meant to convey.  While I am uncertain of the natural audience for this, I would hope that at 
least it might be of interest to mathematics educators, to mathematics teachers, elementary as 
well as secondary and perhaps to undergraduate mathematics majors.   
 
Many authors have written about the nature of mathematics, and of mathematical practice.  
Some have focused on the psychological aspects of creative mathematical discovery (Poincaré, 
Hadamard).  Polya has insightfully articulated much of the craft and heuristics of creative 
problem solving.  Others (Lakatos, Davis and Hersh, Cuoco et al,) have provided some images or 
descriptions of the nature of mathematical practice and experience.  This paper can be viewed as 
a reflective case study in this general tradition, but with an orientation toward knowledge for 
instruction. 
 
Some of the things entailed in doing mathematics 
 
It will be helpful to name and (at least partially) specify some of the things – practices, 
dispositions, sensibilities, habits of mind – entailed in doing mathematics, and to which we want 
to draw attention in our story.  These are things that mathematicians typically do when they do 
mathematics.  At the same time most of these things, suitably interpreted or adapted, could 
apply usefully to elementary mathematics no less than to research.  Though we offer them as a 
list, it must be emphasized that they interweave and mutually interact in practice. 
 
Also I must make it clear that this is a personally constructed list.  Other mathematicians would 
likely come up with somewhat different categories and descriptions, but I would expect there to 
be much in common.  The first person plural “we” in this discussion refers to “mathematicians.” 
 
 

1. Question:  We ask what we like to call “natural questions” in a given mathematical 
context. 

 
Here is a partial repertoire of frequent questions.  The most basic question we ask is “Why?,” 
whenever we see some claim, or witness an interesting phenomenon.  Given a well-posed 
problem, we ask questions like: Does it have a solution?  (Existence) Is the solution unique, or 
are there others?  (Uniqueness)  Can we find/describe all of them?  Can we prove that we have 
all of them?  If the number of solutions is large, perhaps even infinite, does the solution set have 
some natural (for example geometric or combinatorial or algebraic) structure?  Which solutions 
optimize some property (for example being largest, if the solutions are numbers)?  Do the 
answers to any of these questions generalize, to broader contexts? How are the answers to these 
questions affected by variation in the parameters of the context?  Etc.  Which of these questions 
is most appropriate, or most interesting, in a given context is in part a matter of mathematical 
judgment and sensibility, which develop with practice and experience. 
 

2. Explore:  We explore and experiment with the context. 
 
Initially, this may be relatively unguided but eyes-open playing around with the context. If the 
context is arithmetic or algebraic, one may experiment with numerical or algebraic calculations, 
to get a feel for the size and shape of things, looking for patterns.  Hand drawn diagrams and 
pictures can often be helpful as well. If the context can be modeled and manipulated on a 
computer, this may allow for some visual exploration, using graphs or dragging figures in 
dynamic geometry. 
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3. Represent:  We find ways to mathematically model or represent the context, and we 
examine the representation.  We may choose alternative representations, to highlight or 
foreground particular aspects or features of the context. 

 
This is a particularly important process.  We need some way to look at, examine, manipulate, 
transform the problem at hand, and we need ways of portraying, or representing the problem to 
enable this.  For example, a rational number might be written as a fraction, if you are a number 
theorist, or as a decimal if you are an analyst or statistician. A portrait might be a picture, a 
graph, a diagram, an equation, or even some general kind of mathematical structure.  Or the 
representation may be symbolic, formally naming key variables and relationships in a problem.  
Typically, more than one representation will be deployed, for each one will make certain features 
visible, and leave others obscure.  Some will be amenable to certain kinds of manipulation, for 
which others may be more cumbersome.  Judicious choice of representations can be crucial to 
successful analysis and understanding.  This is the site of some of the most artful aspects of 
problem solving (and of teaching). 
 

4. Structure:  We look for some kind of organizing structure or pattern or significant 
feature.  This may lead to conjectures (or new questions). 

 
Mathematics is not merely a descriptive science.  It seeks simple, general, unifying principles that 
provide insight and explanatory power for phenomena or data of great variety or complexity.  
These principles, sometimes called “patterns,” or “structures,” might take the form of a formula 
(like a closed form expression of a partially or recursively defined function, or like the 
Pythagorean formula, c2  =  a2 + b2).  Or they might express some (hidden) symmetries or other 
relations in a data set or geometric object.  Or they may provide a structured way (for example 
linear or Cartesian) of representing some data set.  If such patterns or structures are only 
suspected, but not verified, they take, once precisely formulated, the form of conjectures. 
 

5. Consult:  If we get stuck, or are not sure about something, we can consult others (expert 
friends or professionals), or the literature.  Often Google (or Advanced Google, or Google 
Scholar) can be quickly helpful for this.  It can often expedite some otherwise long library 
searches. 

 
In doing mathematical research, unlike school work, we don’t want to expend great effort trying 
to solve a problem that has already been solved, (unless our intention is to find a simpler solution 
or proof).  So, once a question we confront resists our first serious efforts, it is wise to consult 
the literature, or expert colleagues, to find out what is already known about the problem.  This is 
also appropriate in school mathematics if working on an open-ended and long-term mathematical 
project.  Mathematics is a hierarchical subject, and we don’t want to constantly reinvent the 
wheel.  But of course this means learning to interrogate and learn from the expert knowledge of 
others.  Google provides a remarkably effective and congenial instrument for such inquiry, and it 
tolerates very informal versions of your questions.  But be prepared for (and welcome) some 
interesting but time consuming scientific browsing.  You will find more things than you sought, 
but surprisingly many of these will eventually turn out to be fruitful.  And you will likely learn to 
see your problem in a larger context than first envisaged, and the potential for applications and 
ramifications of a possible solution.  Mathematicians learn much new mathematics this way. 
 
 

6. Connect:  Such searching, or perhaps just reflection, may help us see connections, or 
analogies, with other mathematics (questions or results) that we know, that may suggest 
useful ways to think about the problem at hand. 
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Some of the most powerful, and satisfying, mathematical insights and discoveries arise from 
seeing some significant connection established between two a priori unrelated mathematical 
situations.  Mathematicians are disposed to be alert to finding such connections, and they 
develop the sensibilities to see and value them when they are present.  For example, these might 
take the form of finding two fundamentally different representations of the same mathematical 
context.  Or, the situation of the problem you are working on may remind you of a similar 
situation you encountered in some previous problem, and the way you dealt with that problem 
might suggest useful ways of treating the one at hand. 
 

7. Proof seeking:  We seek proofs, or disproofs (counterexamples) of our conjectures.  
Often this proceeds by breaking the task into smaller pieces, for example by formulating, 
or proving, related, hopefully more accessible, conjectures, and showing that the main 
conjecture could be deduced from those. 

 
Once faced with a well-articulated mathematical claim or conjecture, we or course seek to show 
whether, and why, it is true.  All of the above processes can be mobilized in the search of 
evidence, an explanation, and, eventually, a proof.  Or, failing that, we may come to doubt the 
truth of the claim, and seek a counterexample, or disproof.  There are no general algorithms for 
this.  Otherwise, the question would already have been answered, and there would be no 
adventure to the enterprise. 
 

8. Opportunism: Sometimes the mathematics seems to be leading you, rather than the 
other way around.  Mathematicians will often take a cue from this, and follow these 
inviting trails with unknown destination. 

 
For example, the quest for a proof may seem to be making good progress, but, on close 
examination, it appears to be answering a different question than the one you started with.  It is 
a good idea to “listen to the math.”  The new question may be more interesting or natural than 
the original.  Lots of good math is fallen upon by such serendipity.  Mathematicians are disposed 
to welcome this when it happens, and seize the opportunity that it presents.  
 

9. Proving:  Writing a finished exposition of the proof (if one is found), using illuminating 
representations of the main ideas, meeting standards of mathematical rigor, and crafted 
to be accessible to the mathematical expertise of an intended audience. 

 
If one finds, or believes one has found, a proof of the claim, there remains the task of providing 
a precise and compelling exposition of the argument that can convince – oneself, one’s expert 
friends, impartial experts (peer review), and, eventually, one’s students or the profession or 
some public.  The “granularity” of the exposition will depend on the audience and purpose of the 
communication. 
 

10. Proof analysis:  Proofs are conceived of as a means to an end (a theorem).  But the 
proof itself is a product worthy of note and study, since the theorem typically distills only 
a small part of what the proof contains. 

 
First, of course, proofs must be examined for their correctness.  But also, study of the proof may 
show that the full strength of a hypothesis was never used, and that a weaker form of the 
hypothesis suffices.  Making that substitution gains added generality to the theorem with no 
extra work.  In fact there have been cases where a hypothesis in a theorem is never used in the 
proof.  If one knows, for external reasons, that the hypothesis is essential, then that is a signal 
that the proof is faulty. 
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If examination of a number of results shows a strong similarity in their proof methods, then that 
raises the suspicion that they are all special cases of one general result, which a synthesis of the 
proof methods may uncover. 
 

11. Aesthetics and taste: As in any profession, mathematicians are diverse in their styles and 
tastes.  Still, in mathematics, there is a remarkable degree of shared aesthetic sensibility 
– associated with words like elegance, precision, lucidity, coherence, unity, …  – that 
affects not only how they appreciate, but even how they do mathematics. 

 
There are many ways in which this shows up concretely.  For example, the statement of a 
theorem may involve a hypothesis that seems extraneous to the conclusion, and which is 
therefore seen to ‘disfigure’ the statement, and invite the suspicion that it is not really necessary.  
Or, in dealing with geometric reasoning, there is a natural desire to have some visual image of 
the claims and processes used.  This creates an urge to provide geometric interpretations of 
highly algebraic or analytic arguments.  In choosing representations of mathematical situations, 
mathematicians will aim for something that resolves the need to capture important information 
with the desire for simplicity and manipulability or for conceptual transparency. 
 
Now we proceed to the mathematics of our story.  The ‘meta-discussion’ will be interspersed, 
indented and in italics. 
 
 
 

II. THE MATHEMATICAL STORY – PART 1:  CAKE DISTRIBUTIONS 
 
The initial mathematical problem, and first explorations 
 
Division is often introduced in school in the context of sharing problems, say some students want 
to (equally) share some cookies, or cakes; we’ll talk here about cakes, just to fix ideas.  At first, 
in the whole number world, say 2 students want to share six cakes.  Then each student gets 3 
cakes, the 3 being the answer to 6 ÷ 2.  Later, when introducing fractions, we first ask how 2 
students might share 1 cake; each receives ½ cake, which is accomplished by cutting the cake in 
half.  But 3 students sharing 2 cakes is already a bit more complicated.  Each student receives 
2/3 of a cake.  But how is that to be distributed?  Children generally come up with these two 
ways to do this.  One is to cut each cake into thirds, and to give each student a third of each 
cake.  But a more efficient (fewer pieces) way to do this is to cut 1 third from each cake, and 
give these 2 thirds to the first student, and then give the remaining (2/3)-cake pieces to the 
remaining 2 students.  The first distribution involves 6 cake pieces, and the second involves 4. 
 
[Insert pie charts illustrating the 2 cakes for 3 students distributions] 
 
What about other cases?  Say 3 cakes for 5 students, or 5 cakes for 7 students, or for 12 
students?  (We shall look below at 5 cakes for 7 students.)  In general, suppose that c cakes are 
to be equally shared by s students.  One general way to do this is to cut each cake into s equal 
pieces, and then give one piece from each cake to each student.  This requires c•s cake pieces, 
and, when s is large, will pretty much physically ravage the cakes.  What is a less invasive way of 
cutting up the cakes for this distribution?  More precisely,  
 

If c cakes are to be equally shared by s students, what is the smallest number, 
call it  p  =  p(c, s),  of cake pieces needed to make this distribution? 

 
This is our first “natural question.”  It has been formulated right away for general c and 
s, though it might well have been first explored for small numerical values of c and s.  At 
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first, it is not clear whether this is a ‘mathematically interesting’ question, nor what the 
answer might look like.  We can get a feel for this by exploring the problem a bit.  Notice 
that we have already inserted some helpful algebraic notation into the problem 
formulation, expressing that p is a function of c and s. 
 

The distribution described above shows that that p  ≤  c•s.  Also p  ≥  s, since each student gets 
at least one piece.  So we have right away, 
    s   ≤ p(c, s)  ≤ c•s 
 
If c  =  1, then we can cut the one cake into s equal pieces for the distribution, and so  
 
     p(1, s) = s 

 
Let’s look at a more interesting case – 5 cakes shared by 7 students: (c, s)  =  (5, 7) 
So each student receives 5/7 of a cake.  What is an efficient way to distribute these shares? …  
After a bit of reflection and experiment you might come up with one or both of the following 
methods. 
 
The “Linear Distribution:”  Line up the cakes, and the students.  From the first cake, cut out a full 
share (5/7 of the cake) for the first student.  Give the remaining 2/7 of the first cake to the 
second student, and then cut 3/7 of the second cake to complete the second student’s share.  
Then give the remaining 4/7 of the second cake, plus 1/7 of the third cake, to the third student.  
Etc.  Here is a picture of this distribution, where the 7 student shares are identified by colors. 
 

5 circular cakes.   7 student shares: Red, blue, tan, purple, black, yellow, green 
 
The Linear Distribution 
Pieces: 
        1       2  3      4     5     6      7       8       9       10 

      
          11 
 
The “Euclidean Distribution:”  In this case we start by removing a full share (5/7) from each of 
the 5 cakes, and we distribute these full shares to 5 of the students.  What remains are 5 small 
cakes (of size 2/7 of the original) to be equally shared by the remaining 2 students.  Thus, the 
(5, 7) distribution problem has been reduced to a (5, 2) distribution problem.  We start the latter 
by giving each of the 2 students 2 of the (small) cakes.  There remains 1 small cake that we cut 
in half to be equally shared by the 2 students. 
 
Here is a picture of this distribution; 
 
“Euclidean Distribution” 
 
Pieces:   1     2  3      4        5         6 

      
 7     8      9       10         11 
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Notice that, though these distributions are quite different, they both lead to 11 cake pieces.  Is 
this a coincidence?  Is 11 pieces the minimum possible? In other words, is p(5, 7)  =  11?   Do 
these two distribution methods make sense for any (c, s)?  If so, how could one describe them in 
general? 
 

Ok, there are several important things to notice here.  First, we identified two fairly 
natural methods to distribute the cake shares, resulting from an initial exploration.  And 
we invented a representation scheme to make visible these distribution processes that 
might be less clear from a purely verbal description.  We used colors to visually identify 
the different student shares.  Student names would have been somewhat more 
cumbersome, and numbers might have conflicted with the numbering of the cake pieces, 
which we wanted in order to be able to count them.  Finally, we asked several “natural 
questions” precipitated by examination of the two representations.  In particular, the 
appearance of 11 pieces for both distributions may hint at a general pattern.  We 
experiment with these ideas below. 
 

To check what this pattern might be, we could examine some smaller cases.  For example, 
starting with the first two cases we considered, we find that  
    p(1, s)  = s 
 
    p(2, 3)  = 4 
 
    p(3, 5)  ≤ 7 
 
For, in the case of 2 cakes for 3 students, the Linear and Euclidean Distributions coincide and 
give 4 pieces, and it is clear that the two cakes cannot be cut into 3 equal pieces (all of size 2/3); 
so p(2, 3)  =  4. 
 
In the case of 3 cakes for 5 students, the Linear and Euclidean Distributions both give 7 pieces. 
 
If we believe that p(3, 5)  =  7, and also that p(5, 7)  =  11, then what might we guess is a 
general formula for p(c, s)?  We tried, optimistically, the nice formula: 
 
    p(c, s)  = c  +  s  -  1 ? 
 
This was quickly defeated already in the case of sharing 4 cakes among 6 students, when 4 + 6 – 
1  =  9.  In this case we can split the problem into two 2-cakes-among-3-students problems.  
Each of these produces 4 pieces, and so altogether 4 + 4  =  8  < 9 pieces. 
 
To better understand what is going on it will be convenient to choose a more illuminating 
representation of our distributions. 
 
 
From round to rectangular food 
 
In the Linear Distribution we are measuring off successive pieces of the cakes, lined up one after 
another, so the cakes are functioning mathematically like successive intervals on a number line.  
To capture this aspect and yet keep them “cake-like” we can take our cakes to be long thin 
rectangles.  Since we are only interested in the length (they are functioning as ‘thickened 
intervals’) we can simply assume that they have width 1.  As for the length, it will be convenient, 
as we shall see, to assume that they have length s, the number of students.  In other words, we 
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can assume that the units of length are chosen so that each cake is a (1 x s)-rectangle.  And the 
cake pieces will again be sub-rectangles of width 1. 
 
Now for the Linear Distribution, we place the cakes end to end to form a long (1 x c•s)-rectangle 
of cake, where the boundaries between successive cakes occur at the multiples of s.  Let’s look at 
the case (c, s)  =  (5, 7) studied above.    
 
The Linear Distribution of 5 cakes for 7 students 
 
First we line up the 5 cakes. 
 
Cake 1 Cake 2 Cake 3 Cake 4 Cake 5 
 
Next we ignore the cake separations, and view this as one long cake (of length 5•7 = 35) to be 
shared equally by the 7 students.  The cuts to create their (equal) shares will occur at the 
multiples of c = 5. 
 
 
Cake 1 Cake 2 Cake 3 Cake 4 Cake 5 
S1             S2 S3 S4 S5 S6 S7 
 
 
Finally, we combine the cake separations with the student share cuts to obtain the combined 
division of the cakes into pieces for the distribution. 
 
Cake 1 Cake 2 Cake 3 Cake 4 Cake 5 
S1             S2 S3 S4 S5 S6 S7 
1                     
                     5/7 

2  
  2/7 

3        
         3/7 

4              
               4/7 

5
1/7  

6
                     5/7 

7
1/7 

8
               4/5 

9
         3/7 

10 
  2/7 

11 
                    5/7 

 

 
Row 1:  Cakes (5). Row 2: Student shares (7). Row 3: Cake pieces (11). 
 
 # pieces = 11 (= 7  +  5  -  1) 
 
 
The Linear Distribution of c cakes for s students 
 
In general, the cake separations occur at multiples of s:  s, 2s, 3s, … , (c-1)s.  There are c-1 of 
these.  The student share cuts occur at multiples of c:  c, 2c, 3c, … , (s-1)c.  There are s-1 of 
these. So this makes altogether (c-1) + (s-1) cuts, except that some of the two sets of cuts 
coincide.  The common cuts occur at common multiples of c and s.  These are just multiples of m  
=  lcm(c, s), the least common multiple of c and s.  We have the greatest common divisor, 
   d  =  gcd(c, s)  = cs/m, 
so the cuts common to the two sets are: m, 2m, … , (d-1)m.  There are d-1 of these.  Thus the 
total number of cuts is: 
 
 # cuts  = (c-1)  +  (s-1)  -  (d-1)  = c  +  s  -  d  -  1, 
 
and so the total number of cake pieces for this “Linear Distribution” is one more: 
 
 # cake pieces = c  +  s  -  d,  where d  =  gcd(c, s) 
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Of course we see here a significantly new (rectangular) representation of the Linear 
Distribution, one that better coordinates the geometry of the representation with the 
arithmetic of the distribution.  Moreover, this representation makes easily available (and 
visualizable) an analysis of the number of pieces, as a function of c and s.  We could see 
the structure in the (5, 7) case, and this guided the analysis in the general case. (Notice 
also that, from the point of view of this analysis, there is a certain symmetry in the roles 
of c and s.)  And it raises the “natural next question:”   “Can we do something similar for 
the Euclidean Distribution?” 
 
 
 
 
 
 

The Euclidean Distribution of 5 cakes for 7 students 
 
For the Euclidean Distribution of 5 cakes for 7 students, we began by cutting off 5/7 of each 
cake.  To do this all at once, it would be convenient to arrange the cakes not end-to-end, but 
rather side-by-side, so as to form, this time, a (5 x 7)-rectangle of cake.  This done, the 
Euclidean Distribution looks as follows: 
 
 

S1 
P1 
5/7 

S6 
P6 
2/7 

S2 
P2 
5/7 

S6 
P7 
2/7 

S3 
P3 
5/7 

S6 
P10 
1/7 

S7 
P11 
1/7 

S4 
P4 
5/7 

S7 
P8 
2/7 

S5 
P5 
5/7 

S7 
P9 
2/7 

 
 
  The students:  S1, … , S7; their shares are color coded. 
  The pieces:   P1, … , P11 
  The fractions indicate fractions of a cake; each cake is one of the 5 rows of the  
   rectangle. 
 
So, while the Linear Distribution is an essentially 1-dimensional (length) representation, we see 
here that the Euclidean Distribution appears to exhibit something more like a 2-dimensional 
(area) phenomenon.  Moreover, a little reflection suggests that this is closely related to the 
Euclidean Algorithm (for finding the gcd of two numbers, using successive division with 
remainder).  Explicitly, the Euclidean Algorithm for calculating gcd(5, 7) (= 1) looks like: 
 
  7 = 15  +  2 (1  5x5 square consisting of 1•5 = 5 pieces) 
  5 = 22  +  1 (2  2x2 squares consisting of 2•2 = 4 pieces) 
  2 = 21  +  0 (2  1x1 squares consisting of 2•1 = 2 pieces) 
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  # pieces = 5 + 4 + 2 = 11 
 
 
 
 
In fact, (see the picture below) we can interpret the Euclidean algorithm (for finding gcd(c, s)) 
geometrically as successively filling up the (c x s)-rectangle with maximal size squares so that 
what remains at each stage is still a rectangle.  And so we can interpret the result as a “square 
tiling” of the rectangle, in the sense that the rectangle is covered by the squares, and any two 
square intersect at most along an edge of each.  And in fact, the Euclidean Algorithm is a kind of 
“greedy algorithm” for producing a square tiling of a (c x s)-rectangle, in the sense that, at each 
stage, it inserts a square ‘tile’ of maximum possible size. 
 
 

  

  

 

 
 # square tiles  =  1 (5x5)  +  2 (2x2)  +  2 (1x1)    = 5 
 
A natural (side) question here is,  
 
Is the “Euclidean tiling” of a (c x s)-rectangle optimal in some sense?   
For example, does it produce a square tiling with the smallest possible number of tiles? 
 
We’ll come back to this question later. 
 

So several interesting things happened here.  First we found a new (area model) 
representation of the Euclidean Distribution which makes visible its connection with the 
Euclidean Algorithm, and also exhibits the geometric connection of the latter with ‘square 
tilings’ of rectangles.  This new context in turn suggested new natural questions about 
the “Euclidean tiling,” albeit pointing in a direction somewhat orthogonal to our original 
interest.  Such “side tracks” are not uncommon when doing mathematics, and some of 
them turn out to be helpful, or independently interesting, in unexpected ways.  But first 
we return to our initial question. 

 
A closer look at the Euclidean Distribution, and the number of pieces it produces 
 
The Euclidean Algorithm applied to a pair of whole numbers, (c, s) (not both = 0), proceeds as 
follows:  Take the larger of the two numbers, divide it by the smaller, and replace the larger one 
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by the remainder in this division.  After a finite number of such steps, one of the two numbers 
will be zero, and then the non-zero remaining number is the gcd(c, s).  More explicitly, and with 
interpretation for the cake distribution, we have the following cases: 
 

If c ≥ s, write c  =  qs  +  r, with 0 ≤ r < s.  (Euclidean division with remainder; q, the 
quotient, is the number of times you can remove s from c, and r < s is the remainder.) 
Then we give q cakes to each student, making qs pieces distributed, and then continue 
by applying the Euclidean Distribution to (r, s): r cakes among s students.  If s divides c, 
then r = 0, and we are done. 
 
If c < s, write s  =  qc  +  r, with 0 ≤ r < c (Euclidean division again).  In this case we 
cut off q pieces, each of size c/s of a cake, from each cake, and distribute one each of 
these (full) shares to qc of the students.  There remain c small cakes, each of size r/s of 
the original, to be equally shared among the remaining r  (=  s – qc) students.  Thus we 
are reduced to a distribution of c (small) cakes among r students, with r < c, to which we 
apply the first step above.  (In case c divides s, then r = 0, and we are done.) 
 

To count the number of cake pieces that the Euclidean Distribution produces, let us denote this 
number by E(c, s).  We claim that, just as for the Linear Distribution,  
  E(c, s)  = c  +  s  -  d,  where d  =  gcd(c, s) 
 
To prove this claim, note first that this is true if there are no cakes.  For then there are no pieces, 
i. e.  
  E(0, s)  = 0 = 0  +  s  -  gcd(0, s) 
 
In the first case above, c ≥ s, we have 
  c   =   qs  +  r,  with   0 ≤ r < c,  and then we see that 
  E(c, s)  =   qs  +  E(r, s) 
 
Since r < c, we can assume by (mathematical) induction that E(r, s)  =  r  +  s  -  gcd(r, s).  But 
it is easily seen that gcd(r, s)  =  gcd(c – qs, s)  =  gcd(c, s)  =  d, and so  
 
  E(c, s) = qs  +  E(r, s) = qs  +  r  +  s  -  d 
   = c  +  s  -  d 
 
In the second case above, c < s, we have  
  s   =   qc  +  r, with 0  ≤  r  < c, and then we see that 
  E(c, s) = qc  +  E(c, r) 
 
Since r < s, we can apply induction to conclude that E(c, r)  =  c  +  r  -  gcd(c, r).  Just as 
above, we see that gcd(c, r)  =  gcd(c, s – qc)  =  gcd(c, s)  =  d.  Thus 
  E(c, s) = qc  +  c  +  r  -  d  = c  +  s  -  d 
 
This completes the proof, by induction, that  
 
 
 

 
What we have just seen, though a bit technical, is a rather straightforward inductive 
analysis of the number of pieces produced by the Euclidean Distribution.  The inductive 
method here is quite natural, since the Euclidean Algorithm is itself an inductive (or 
recursive) procedure.  In particular, this offers a proof of the remarkable, and perhaps 
unexpected, fact that the Linear and Euclidean Distributions, though quite different, 

The Euclidean Distribution, just like the Linear Distribution, produces 
c +  s  -  d pieces, where d  =  gcd(c, s)
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produce the same number of pieces, c  +  s  -  d, thus establishing an interesting 
connection.  This makes the number c + s – d seem quite special to the cake distribution 
problem, and strongly tempts us to make the: 
 

 
In other words, the smallest number, p(c, s), of cake pieces you can use to share c cakes among 
s students is c  +  s  -  d.  We have already seen, with the Linear and Euclidean Distributions use 
exactly c  +  s  -  d pieces, and so  
 
  p(c, s)  ≤ c  +  s  -  d 

Side comment on the Euclidean Algorithm:  The school curriculum often gives diminished 
attention to ‘long division’ (here called Euclidean division), and therefore also small 
attention (if any) to the Euclidean Algorithm for finding the gcd(c, s) = d of two whole 
numbers c and s, which is based on Euclidean division.  The method generally offered is 
to first find the prime factorizations of c and s, and then simply inspect these to find d.  
And in fact, for small numbers, this is likely most efficient.  However, if nothing more is 
said, this deprives students of the awareness, in comparing the two methods – Euclidean 
Algorithm vs. prime factorization – in general, that for large numbers (say > 6 digits), the 
problem of prime factorization becomes an intractably difficult computation, whereas the 
Euclidean Algorithm, despite appearances, is relatively straightforward and can be done 
in practical (‘polynomial’) computational time relative to the size of c and s.  This 
phenomenon is fundamentally important in cryptography.  Thus, ironically, neglecting 
long division, often done on the grounds that we have calculators to do such 
computations, will deprive students of exposure to an important idea about complexity of 
computations that is central to modern computer science. 

 
 
Seeking a proof of the Conjecture:   A side trip into graph theory 
 
It remains to show (in order to prove the Conjecture above) that we can’t do better, i.e. 
distribute c cakes to s students with fewer than c + s – d pieces.  In other words, it remains to 
show that, 
 
  p(c, s)  ≥ c  +  s  -  d 
 
How can we possibly show this?  It is here that we shall push the envelope of school 
mathematics a bit.  So far, we have been using fairly basic, though substantial, mathematical 
ideas and tools of High School mathematics.  I think it is fair to say that most mathematicians 
who spent some serious time thinking about this question would arrive eventually at the point we 
are at now.  But the next steps seem less predictable. At this point, after considerable reflection, 
I had to reach for a new connection. 
 
 
The graph of a cake distribution 
 
The problem now is that we have to consider any possible distribution D of c cakes to s students, 
and show that D must consist of at least c + s – d pieces.  In contrast with our discussion of the 
Linear and Euclidean Distributions, we have no special information about D.  So let’s think a bit 
about what D is.  D distributes cake pieces to students.  So one way to picture this schematically 
is as follows.  For each cake piece, draw a line from the cake from which it came, to the student 

Main Conjecture:   p(c, s)  = c  +  s  -  d, where  d  =  gcd(c, s) 
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to whom it is given.  If we forget that the cakes are cakes, and that the students are people, and 
simply represent them abstractly as dots, then what we have is a collection of dots, together with 
some lines (corresponding to the cake pieces) connecting various pairs of these dots.  This is in 
fact a familiar kind of mathematical object, called a (combinatorial) graph.  We shall call this the 
graph of the distribution D, and denote it (D). To see what this looks like, consider the graphs 
of the Linear Distribution DL and the Euclidean Distribution DE, for c = 5 and s = 7.  We shall 
represent the students by dots, and the cakes by short horizontal line segments instead of dots, 
just to be a bit more suggestive of the context. 
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 Graph of the Linear Distribution, (DL): 
 
     o      o        o       o       o                   o       o 
 
 
   

_______ _______ _______ _______ _______ 
 
 
 

Graph of the Euclidean Distribution, (DE): 
 
  o  o        o   o  o 
 
 
 
   

_______ _______  _______   _______  _______ 
  
 
 
            

 o 
 
 

Here the graph of a distribution brings into play a dramatically new representation of our 
problem.  What are its pros and cons?  Well, it captures rather well, and elegantly, the 
“combinatorial structure” of a cake distribution.  But it loses the geometric and metric 
aspects.  For example, in the graph, a cake piece becomes an undifferentiated line 
segment, independent of the size of the piece.  So, what does this graph do for us?  At 
first we’re not sure.  But at least this is a familiar and widely used kind of mathematical 
object, so we can ‘consult graph theory’ to see if it has anything useful to offer.  
 
 

A tip-toe into graph theory 
 
Mathematically, a graph  is defined to consist of a set V (called vertices, or nodes), a set E 
(called edges), and a specification of a pair of endpoints (which are vertices) for each edge.  The 
vertices are generally depicted as dots, and the edges as line segments joining their endpoints.  
(These lines do not have to be drawn straight; they may be curved.  All that is essential is 
specifying the vertices that they connect.)  Here is an example, from our School of Education, 
with 16 vertices and 16 edges. 

 
 o  o o  o o  o 
 
 
 o  o    o o 
 
 
 o  o o  o o  o 
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This graph is said to be connected, since you can get from any vertex to any other along an 
edge-path.  In general, a graph is a disjoint union of connected sub-graphs, called its connected 
components.  A graph is called a tree if there is a unique edge path (without backtracking) from 
any vertex to any other.  In particular, a tree is connected.  The above graph is not a tree, since 
you can go around the “O” in two ways. 
 
We are going to make use of one basic fact from graph theory:  What does it take to make a 
graph connected?  Well, if there are lots of vertices, then you will need lots of edges to connect 
them all.  How many edges do you require? 
 
PROPOSITION.  (The “Basic Inequality”)  If a graph  is connected then  
 
#E ≥ #V   -   1, 
 
with equality if and only if  is a tree. 
 
This is easy enough to prove, inductively, as follows.  We can build a connected graph by starting 
with a single vertex, and then successively attach edges, by either one or both of their endpoints, 
to what we already have.  (You might try to picture doing this on the graph displayed above.) 
 
If  consists of a single vertex and no edges, then  
 
  #E = 0 = #V  -  1, 
 
and  is a tree. 
 
Next suppose that  is obtained from a connected graph ’ (with vertices V’ and edges E’) by 
attaching a new edge e.  We assume, by induction on #E, that  
 
 #E’ ≥ #V’   -   1,  with equality if an only if ’ is a tree 
 
Case 1:  We attach only one end point of e to ’.  Then  
 
 #E   =   #E’   +   1  and  #V   =   #V’   +   1,  so 
 #V  -  #E = #V’  -  #E’ ≤ 1 
 
and  clearly remains a tree if ’ was one. 
 
Case 2:  We attach both end points of e to ’.  Then 
 
 #E   =   #E’   +   1,  but #V   =   #V’, so 
 #V  -  #E = #V’  -  #E’  -  1  < 1. 
 
Moreover,  is not a tree, because we can connect the end points of e either using e itself, or 
using a path in the (connected) graph ’. 
 
We shall see next that the Basic Inequality above can be applied to the graph of a cake 
distribution to get the lower bound we seek on the number of pieces in a cake distribution. 

 
 
Here we have ‘consulted graph theory’ to find some resource that can give us new 
traction on our cake distribution problem.  Also we have provided an accessible proof of 
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the basic graph theoretic inequality that we will need.  In doing this we needed to give 
precise mathematical definitions to the graph theoretic concepts being used.  The 
representation of a cake distribution by its graph gives us the bridge of access to this 
resource.  Of course it took some exploration and experimentation (lengthy, but not 
described here) to discover what from graph theory might be useful for this purpose.  
But with this in hand, we are now in a position to finish the proof of the main conjecture.  
 
 

Proof that:  p(c, s)   ≥   c  +  s  -  d 
 
Suppose that D is a ‘minimal’ distribution of c cakes to s students, i.e. one that involves the least 
possible number p  =  p(c, s) of cake pieces.  Let   =  (D) be the graph of the distribution D.  
Then its vertex set is 
 V = {cakes}   {students}, 
and so 
 #V = c  +  s 
Its edges are just the set  
 E = {cake pieces}, 
and so  
 #E = p 
 
We would like to apply the Basic Inequality above to .  However, we are not entitled to do this 
since we do not know that  is connected.  So, instead, let’s look at a connected component, call 
it ’, of .  Now the vertex set V’ of ’ consists say of c’ cake vertices and s’ student vertices, and 
its edges E’ are just the cake pieces taken from cakes in V’ and given to students in V’.   
However, the fact that ’ is a connected component of  implies that every piece taken from a 
cake in V’ is given to a student in V’, and, conversely, students in V’ receive pieces only from 
cakes in V’.  It follows that  
  ’ is itself the graph of a distribution D’ of c’ cakes to s’ students.   
Moreover, D’ must also be minimal, i.e. involve the minimal number p’  =  p(c’, s’) of pieces; 
otherwise we could replace D’ by something using fewer pieces, and this could be embedded in D 
to reduced the number of pieces in D, contrary to our assumption that D was already minimal. 
 
Ok, now we are in a position to deploy all that we have learned.  Let d’  =  gcd(c’, s’).  Then the 
Linear and Euclidean Distributions (for (c’, s’)) show us that 
 
(1) p’ ≤ c’  +  s’  -  d’ 
 
On the other hand, since ’ is connected, the Basic Inequality of graph theory tells us that  
 
 p’ = #E’ ≥ #V’  -  1,  i.e. 
 
(2) p’ ≥ c’  +  s’  -  1 
 
Combining (1) and (2) we see that 
 
 d’ = 1, i.e.  c’ and s’ are relatively prime, 
and  
 p’ =  c’  +  s’  -  1, and  ’ is a tree. 
 
Now the students in V’ each get c’/s’ of a cake.  But they must receive the same share, c/s, as all 
of the other students.  Thus 
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 c’/s’ = c/s,  which is independent of the connected component ’ 
 
Let  
 c0/s0  =  the reduced form of the fraction c/s, 
so that  
 c = dc0 and s = ds0,  where  d  =  gcd(c, s) 
 
Then the discussion above shows that c’  =  c0  and s’  =  s0, independent of ’.  Moreover it 
follows that  
 
  is a disjoint union of d trees, each with c0  +  s0 vertices and c0  +  s0  -  1 edges, 
and so 
 p  = #E = d(c0  +  s0  -  1)  = c  +  s  -  d 
 
This completes the proof of our main conjecture, which is now a theorem. 

 
 
We have presented here a reasonably formal, yet I hope accessible, proof of this result.  
The argument combines information coming from different sources (different 
representations) and so can be viewed as establishing some interesting connections.  
Moreover, the graph theory even gives us a bonus, in the way of more detailed 
information about the combinatorial structure of a minimal cake distribution. It is also 
worth noting how the imported concepts and language of graph theory (‘connected,’ 
‘connected components,’ ‘trees’) fit so comfortably and conveniently with our cake 
distribution context.   With our new theorem in hand, it is “natural to ask:” What is the 
significance of this result?  What might it be good for?  This is a kind of ‘debriefing’ stage 
of the reasoning. 
 
 
 

III. THE MATHEMATICAL STORY – PART 2:  SQUARE TILINGS OF RECTANGLES 
 
Square tiling of rectangles 
 
In our analysis of the Euclidean Distribution (of c cakes for s students) we saw that the Euclidean 
Algorithm, on which it is based, could be interpreted geometrically as producing a “square tiling” 
of the (c x s)-rectangle.  We raised, in passing, the question of whether this “Euclidean tiling” is 
optimal in some sense, for example whether it uses the smallest possible number of square tiles.   
 
Let’s pause here to say more precisely what we mean by a square tiling T of a rectangle R.   By T 
we understand a set (here assumed to be finite) of squares in the plane such that their union is 
exactly R, and any two of them intersect at most along an edge of each one.  (Here we are 
treating squares and rectangles as two-dimensional regions, not just their one-dimensional 
boundaries.) 
 

CAKE DISTRIBUTION THEOREM  Let D be an equal distribution of c cakes among s students.  Then  
 
  # (cake pieces in D) ≥ c  +  s  -  d,  where d  =  gcd(c, s) 
 
For the Linear Distribution and the Euclidean Distribution, we have equality above in place of ≥. 
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In the course of thinking about the above questions, I did a Google search under the heading 
“Square tilings of rectangles.”  This produced a wealth of references, showing that there is in fact 
a minor industry around this and related topics.  In particular, one of the references (Kenyon, 
1994) shows that the answer to the above question is negative.  (In special cases the Euclidean 
tiling is minimal for the number of tiles, for example when c and s are consecutive terms in the 
Fibonacci sequence.)  To see that the Euclidean tiling is not minimal in general we can take s  =  
c + 1, in which case the Euclidean tiling consists of 1 (c x c)-square together with a column of c 
(1 x 1)-squares, for a total of c  + 1  =  s tiles.  Consider the case c  =  8, so s  =  9. 
 
The Euclidean tiling of the (8 x 9)-rectangle, with 9 tiles 
         

      
 
 
 
 
 
 
 

 
A square tiling of the (8 x 9)-rectangle with 7 tiles 

So this ‘wishful thinking’ guess did not pan out.  Still, since, as we have shown above, the 
Euclidean Distribution minimizes the number of pieces for cake distributions, we have the feeling 
that the corresponding Euclidean tiling of the (c x s)-rectangle should also be minimal, in some 
sense to be determined.  Well, a natural approach to this might be to: 
 
Find a geometric interpretation of the minimal number 
p  =  p(c, s)   =  c  +  s  -  d 
of cake pieces in the Euclidean distribution of c cakes to s students. 
 

Here we are opportunistically picking up on some side issues that appeared in the course 
of the work, but were not central to it.  The interest here, beyond the fact that these are 
interesting new questions in their own right, is that the connections noticed earlier might 
lead the way to some possible elaborations or applications of the result proved above.   
Also note that, as we engaged more seriously with these ideas, it was important to give a 
precise mathematical definition of the main terms (like ‘square tilings’) being used. 

 
In fact it is not so hard to see a geometric interpretation of the number of cake pieces.  Imagine 
the rectangular area picture of the Euclidean distribution.  We reproduce below the illustration for 
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c = 5 and s = 7.  Each cake piece is a horizontal slice of one of the squares in the tiling, and the 
number of these slices in a given square is clearly just the side length of that square. Thus, for 
each square of side length l, we get l pieces, and so the total number of pieces will be the sum 
of the side lengths of all the squares in the Euclidean tiling of the rectangle.    
 

S1 
P1 
5/7 

S6 
P6 
2/7 

S2 
P2 
5/7 

S6 
P7 
2/7 

S3 
P3 
5/7 

S6 
P10 
1/7 

S7 
P11 
1/7 

S4 
P4 
5/7 

S7 
P8 
2/7 

S5 
P5 
5/7 

S7 
P9 
2/7 

 
  The students:  S1, … , S7; their shares are color coded. 
  The pieces:   P1, … , P11 
  The fractions indicate fractions of a cake; each cake is a row (of width 1) of the  
   rectangle. 
 
This leads us to define the following quantity associated with any tiling T of a (c x s)-rectangle.  
Here T is understood to be a set of squares whose union is exactly R and such that any two of 
them intersect at most along an edge of each.  If  is one of these (square) tiles, i.e.    T, we 
shall write s() for its side length.  Then we define p(T) to be the sum of these side lengths. 
 

  p(T) =   T    s()  
 
With this notation, our observation about the Euclidean tiling, TE , can be expressed by the 
formula,  
  p(TE)    = p(c, s)  = c  +  s  -  d 
 
So we might thus be led to make the following: 
 
 

 
 
 

 
 
 
 
 
 
This passage illustrates some important kinds of ‘mathematical moves.’  We are 
navigating between two mathematical worlds, one the world of cake distributions, the 
other the world of square tilings of rectangles.  We saw (earlier) that the Euclidean 

Conjecture.  For any square tiling T of a (c x s)-rectangle, p(T)  ≥  c  +  s  -  d. 
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Distribution established a bridge between these two worlds, the Euclidean Distribution at 
one end, the Euclidean tiling at the other.  We proved that the Euclidean Distribution has 
a minimizing property in the cake distribution world, so we were tempted to ask if (or 
suspect that) the Euclidean tiling has some analogous minimizing property.  This is a kind 
of reasoning by analogy that mathematicians often use, to guess what might be true, by 
developing a relation of some new situation to an old one, about which we already know 
something.  It can be viewed as another kind of pattern seeking.  The procedure we 
followed was to try to build up the dictionary of translation from the cake world to the 
tiling world.  Given that [Euclidean Distribution] translates to [Euclidean tiling], we ask, 
[# pieces] translate to [???].  What we seek here is something that we can measure 
geometrically for all tilings in the tiling world, and so that, when applied to the Euclidean 
tiling, gives something closely related to the number (c + s – d) of pieces.  We found 
p(T) as the answer to that question, and accordingly we gave it a name, p(T), so that we 
could talk about and work with it. 
 

 
The Conjecture above, if true, would indeed show that the Euclidean tiling minimizes p(T), and 
so it is geometrically optimal among tilings, in this sense.  Can we prove this Conjecture?  The 
geometric statement is not so obvious.  Perhaps, instead of directly attacking it geometrically, we 
can use our Cake Distribution Theorem to help.  In other words, perhaps we can interpret any 
square tiling T of a (c x s)-rectangle as arising somehow from a cake distribution of c cakes 
among s students, and in such a way that p(T) is the number of cake pieces.  If we can do that, 
then we will have proved the above conjecture by reducing it to the Cake Distribution Theorem. 
 
 

So here we are proposing to show that our dictionary is (at least partly) reversible; in 
other words we can go back from a square tiling to a cake distribution.  In this way, we 
can use our dictionary to import our theorem on cake distributions to the tiling world, 
where it translates into a geometric theorem.  
 

 
Making a cake distribution from a square tiling 
 
For this argument, let us assume that not only c and s, but also the side lengths of all of the 
square tiles in T, are integers.  To help follow the argument, let’s illustrate what happens with 
the square tiling of the (8 x 9)-rectangle that we saw above: 
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Let us cut the rectangle into c horizontal (1 x s)-rectangles, that we consider to be the ‘cakes.’  
Then the vertical sides of the square tiles can be viewed as cuts through some of these cakes.  
The result is that each square tile , say of side length s(), will consist of s() horizontal cake 
pieces, each of size 1 x s().   
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
It remains to explain the distribution of these pieces to the s students.  For this let us label the 
size-(c x 1)-columns of the big (c x s)-rectangle R, by the numbers 1, … , s, one for each 
student.  So student j corresponds to column j.   
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      1    2     3    4     5    6    7     8    9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For each tile  through which column j passes, give student j one of the cake pieces from .  (In 
the following picture, the numbers indicate the student to whom that piece is given.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since exactly s() columns pass through , and since  is composed of exactly s() cake pieces, 
this distribution of the cake pieces from  is possible.  Now we have distributed all of the pieces 
to the s students.  To see that this is an equal distribution, we need to see that each student 
receives the same share, c/s of a cake.  In other words, student j should receive an amount of 
cake equivalent to that cut out by the (c x 1) column j.  But, for each square  through which 
column j passes, student j receives a horizontal cake piece of size 1 x s(), while the intersection 
of column j with  is a rectangle of size s() x 1, of the same area.  Thus, the area of column j, 
being the sum of the areas of its intersections with the squares through which it passes, also 
equals the total share received by student j.  And this is what we needed to show. 
 
We have thus proved: 

         

         

         

         

         

         

         

         

1 6 

      2       7 

           3            8 

                  4 9 

5 6 

1 3       7 

2      4             8 

1 2 5 9 

SQUARE TILING THEOREM.  If T is a tiling of a (c x s)-rectangle by squares of integer side 
length, then  
 
  p(T) ≥ p(c, s) = c  +  s  -  d, where d  =  gcd(c, s) 
 
This is an equality for the Euclidean tiling TE. 
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So this is a satisfying outcome, but with the one caveat that we had to restrict attention 
to square tiles of integer side length.  We’ll come back to that issue later, but just take 
note of it now.  The proof has, I think, a very nice ‘fit’ to it.  It shows I think a close 
structural relation between square tilings and cake distributions, so that results about the 
latter have applications to the former. The proof above seems ‘natural enough,’ even 
though it is a bit tricky to explain (especially without the pictures). The key was finding 
the idea for the proof, not its execution.  I have not found a direct geometric proof of the 
theorem above. 
 
 

The “complete perimeter” 
 
One geometrically un-aesthetic feature of the theorem is the fact that p(T) is not a ‘visually 
obvious’ quantity.  For example, if we look at a square tiling, 
 

  

  

 

 
we can’t ‘see’ p(T).  Of course we can just add up all of the side lengths of the squares, but 
many geometrically visible pieces of this are counted twice, and this happens in slightly 
complicated ways.  A more visually obvious geometric quantity is the total length of all of the 
boundary lines seen in this picture, viewed as a partition or (cartographic) ‘map,’ of the rectangle 
(with the squares as “countries”).  Let’s call this the “complete perimeter” of the tiling T, the sum 
total of the lengths of all the boundaries, and denote it CP(T).  A more precise, but less intuitive, 
definition could be given as follows: 
 
  CP(T) = the total length of the (set theoretic) union of the sides  
    of all of the square tiles in T 
 
This union is exactly the set of line segments that we see in the picture.  An intuitive way to think 
of CP(T) is that it measures “the amount of ink needed to draw the picture of the tiling.”  Then, 
with this more geometrically natural quantity, we can ask,  
 
Does the Euclidean tiling also minimize CP(T)? 
 
Put another way, does the Euclidean tiling, among all square tilings of R, minimize the 
‘boundary’?  In this form, question reminds us of what are called “isoperimetric problems,” which 
are about enclosing a given area with minimum perimeter. 
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The motivations in play here are partly aesthetic.  The cake distribution world is primarily 
algebraic/combinatorial, while the tiling world is primarily geometric.  But when we 
translated the number of pieces into the quantity p(T), the p(T) was still mainly an 
algebraic expression, with no visible geometric meaning.  So there was a mathematical 
impulse to seek some more visibly geometric quantity that we could relate to the number 
of pieces in a cake distribution.  This would make the theorem more interesting or 
natural from a purely geometric point of view.  We shall see now in what follows that this 
is easily achieved from what we have already done. 

 
 
Instead of trying to directly answer the question of whether the Euclidean tiling minimizes CP(T), 
let’s first just try to calculate CP(T).  One way to do this is to first sum the perimeters of all the 
square tiles, and then compensate for things we have counted twice.  So we begin with  
 

 4p(T) =   T   4s()  
 
  = the sum of the perimeters of all of the square tiles 
 
The sides that are not counted twice are those on the boundary of R, and their lengths add up to 
the perimeter of R, which is 2(c + s).  All of the other square side lengths are effectively counted 
twice.  It follows that  
 
 CP(T) = 2(c + s)  +  ½ [4p(T)  -  2(c + s)], so 
 
  
 
 
It is worth noting in passing here that this calculation was purely geometric, and did not require 
c, s, and the square side lengths to be integers.  They could be any real numbers > 0. 
 
The formula above shows that, for a fixed (c x s)-rectangle R, CP(T) is a linear function (with 
slope 2) of p(T), as T varies over all square tilings of R.  Thus, a tiling T minimizes CP(T) if and 
only if it minimizes p(T).  In particular therefore, the Euclidean tiling TE minimizes CP(T), in which 
case we have 
 
 CP(TE) = (c + s)  +  2(c + s  -  d),  so 
  

   
 
 
So we have proved the geometric result that we sought: 
 

 

CP(T) = (c + s)  +  2p(T) 

CP(TE) = 3(c + s)  -  2d

PERIMETRIC SQUARE TILING THEOREM   For any tiling T of a (c x s)-rectangle R by squares with 
integer side lengths, we have 
 
  CP(T) ≥ 3(c + s)  -  2d,    where d  =  gcd(c, s) 
 
For the Euclidean tiling, TE, we have equality in place of ≥ above. 
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Misgivings, new questions, and generalizations 
 
While the theorem above seems to offer a pretty happy state of affairs, there remain some issues 
in the background that are puzzling, if not troubling.  First of all, it seems mathematically 
unpleasant that we had to assume that our tilings used only squares of integer side lengths, 
while the statement of the conclusion requires only that c and s be integers.  What happens if a 
tiling T involves squares not of integer side length?  Is it still true that  
 
  CP(T) ≥ 3(c + s)  -  2d? 
 
And, more generally, the notion of square tiling is purely geometric and makes perfectly good 
sense for any rectangle, say c x s, where c and s can be any real numbers > 0, not necessarily 
integers.  What is the story for these?  In this case, CP(T) above still makes sense, but what 
about d  =  gcd(c, s)?  How could that possibly be interpreted?  In fact this raises in turn an 
existence question:  If c and s are not integers, how do we know that there even exists any tiling 
of R by squares? 
 

In short, we are here asking questions about the “natural mathematical boundaries” of 
what we have done, and about ways to frame our results in their “natural mathematical 
generality.”  These are the kinds of questions that a mathematician would typically be 
disposed to ask, before even thinking hard about their likely outcome.  Such questioning 
repertoires are an important resource in mathematical practice (just as in teaching). 
 

Let’s begin with the last question:   
 
Which rectangles can be tiled by squares? 
 
First observe that this is a property that is invariant under rescaling.  If we change everything by 
a scaling factor, then a square tiling gets transformed into another one (of a different size).  Now 
if a (c x s)-rectangle has rational side lengths, c and s, then we can scale up by a common 
denominator of c and s to get a rectangle with integer side lengths, which can clearly be tiled, for 
example by (1 x 1) squares, and thus so also can R be square tiled, after scaling back down.  
More generally, if a (c x s)-rectangle admits a square tiling, then so also does a (rc x rs)-
rectangle, for any real number r > 0, as we see by rescaling with the factor r.  (So the side 
lengths don’t even have to be rational numbers.)  Thus, a (c x s)-rectangle R can be square tiled 
if, for some number r > 0, rc and rs are both rational. But then the ratio c/s  =  rc/rs is also 
rational.  Conversely, if c/s is rational, say c/s  =  a/b with a and b integers, then, setting r  =  
a/c  =  b/s, we have rc = a and rs = b, which are both rational. Two non-zero real numbers c 
and s are said to be commensurable if the ratio c/s is a rational number.  With this terminology, 
the discussion above shows that,  
 
A rectangle can be square tiled if its side lengths are commensurable. 
 
I wondered if the converse might be true, believing that it is.  I asked some colleagues, and 
finally was led to the answer, in the (old) literature. 
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In fact, more can be said: 

 

 

                                         
 

THEOREM (Max Dehn, 1903)   
 
 A rectangle can be square tiled if and only if its side lengths are commensurable. 

HISTORICAL NOTE.  Max Dehn (1878-1952) was a German mathematician who studied under 
David Hilbert at Gottingen.  Dehn did deep and fundamental work in geometry, topology, and 
group theory.  He was the first to solve one of Hilbert’s famous list of 23 problems.  Giving a 
negative solution to Problem #3,  Dehn showed that a cube and a regular tetrahedron of the 
same volume could not be cut into polyhedra that are pairwise congruent.  This contrasts with 
what happens in the plane, where two polygons of the same area can be decomposed into 
triangles that are pairwise congruent. 
 
In 1938 Dehn, a Jew, was forced by the Nazis to leave his professorship in Frankfurt.  In 1945 
he became the unique math professor at Black Mountain College in North Carolina, where he 
remained till his death.  There was no opportunity there to teach advanced mathematics, but he 
also taught Latin, Greek, and Philosophy. The Black Mountain faculty included such figures as 
John Cage, Merce Cunningham, Willem de Kooning, Buckminster Fuller (of whom Dehn became 
a close friend), Walter Gropius, and many other artists. 

THEOREM   If the side lengths of a rectangle R are rational numbers, then a square tiling  
 
  of R must involve only squares of rational side length. 



                                                                                                       TMME, vol8, nos.1&2, p .29 

 

Consulting the literature in pursuit of the questions above was the occasion for learning 
some very interesting mathematics (old, but much of it new for me), and I welcomed the 
opportunity to thereby gain new knowledge and techniques, as well as culturally broaden 
my mathematical horizons.  I did not hesitate to take in more than was needed for the 
questions that motivated my search.  I’ll report on some of the highlights below, 
providing mathematical details only when they are within reach of high school 
mathematics. 
 

 
If we import Dehn’s Theorem from the literature for our use, then we can give a version of our 
theorem on square tilings of rectangles in more natural mathematical generality.  First we need 
to interpret gcd(c, s) when c and s are any real numbers. 
 
A generalized meaning of gcd and lcm 
 
Let c be any real number.  By a multiple of c we shall mean a number of the form q•c, where q is 
an integer. A number d is called a divisor of c if c is a multiple of d. Now let s be another real 
number.  Then a common multiple of c and s is just that; it is a number that is a multiple of both 
c and s.  We similarly define a common divisor of c and s.  Note that these definitions agree with 
those we already know when c and s are integers.  Here are some exercises that we leave to the 
reader. 

 
With these definitions we can now state our theorem in its natural generality. 
 

EXERCISES.  Let c and s be real numbers, not both 0, and let r be a real number > 0. 
 
1. 0 is a common multiple of c and s. 
 
2. m is a common multiple of c and s   if and only if   rm is a common multiple of rc and rs.   

d is a common divisor of c and s   if and only if   rd is a common divisor of rc and rs. 
 
3. The following conditions are equivalent.  
 

(a) c and s are commensurable, i.e. rc and rs are rational for some r > 0 
(b) c and s have a common multiple ≠ 0 
(c) c and s have a common divisor 

 
4. Under the equivalent conditions of #3, c and s have a greatest common divisor, denoted 

d  =  gcd(c, s), and a least common multiple > 0, denoted m  =  lcm(c, s).  Moreover,
  c•s = d•m 

 
5. We have gcd(rc, rs)  =  r•gcd(c, s) and lcm(rc, rs)  =  r•lcm(c, s).   
 (This follows from #2 and #4.) 

PERIMETRIC SQUARE TILING THEOREM (GENERALIZED)  Let R be a (c x s)-rectangle, and let T be a  
 
square tiling of R.  Then c and s are commensurable, and  
 
 CP(T)   ≥ 3(c + s)  -  2d,  where  d  =  gcd(c, s), 
 
with equality when T is a ‘rescaling’ of the Euclidean tiling. 
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The discussion above was designed just to give meaning to the quantity “gcd(c, s)” in 
the theorem.  The definitions and exercises are a fairly typical example of how a 
mathematician may try to find a natural general framework for some mathematical 
concept.  With some elementary concepts from “group theory” (out of bounds in the 
present discussion) one could give a more conceptual and more precise formulation to 
these ideas.   

 
The proof of the Generalized Perimetric Square Tiling Theorem goes as follows.  The 
commensurability of c and s is just Dehn’s Theorem.  So, after rescaling R and T, we can assume 
that c and s are rational.  Then the sequel to Dehn’s theorem tells us further that the tiles in T all 
have rational side length as well.  Choosing a common denominator for c and s and all the side 
lengths of tiles in T, we can use this to rescale the situation again and arrange that c and s are 
integers, as are the side lengths of all the tiles in T.  Now we are in a position to quote the 
Perimetric Square Tiling Theorem we proved above under these conditions.  Finally, we scale 
back to the original R and T.  Exercise #5 above is used to see that gcd(c, s) behaves 
consistently in each of these rescalings.  
 
 

Dehn’s Theorem tells us that square tileable rectangles are commensuarable, i.e. their 
side lengths are rational after rescaling.  A further rescaling makes the side lengths 
integers, where we can apply the earlier Perimetric Square Tiling Theorem.  To scale 
back to the original rectangle and tiling, we need to know how to give meaning to a 
rescaling of the gcd(c, s) that appears in the earlier theorem.  That is what we worked to 
accomplish in the discussion preceding the generalized theorem.  So finding the 
“mathematical boundary” of our result had two ingredients.  First, Dehn’s Theorem 
restricts the geometric boundary of the set of rectangles for which it is meaningful to 
discuss square tilings.  Second, we conceptually expanded the algebraic notion of   
gcd(c, s) so that it has meaning in the full geometric context defined by Dehn’s Theorem. 

 
The only ‘gap’ in our story now, i.e. the only component that we have not mathematically 
derived from essentially High School level mathematics, is Dehn’s Theorem itself.  Can 
we make that also accessible? 

 
 
Proofs of Dehn’s Theorem 
 
There are several proofs of Dehn’s Theorem, but I have not found one that stays within the 
mathematical bounds that I have tried to maintain here. Dehn’s original proof (Dehn, 1903) was 
quite complicated.  Later proofs (see for example, Freiling and Rinne, 1994) are short and 
elegant, but make use of some abstract linear algebra, and the Axiom of Choice.  An ingenious 
proof was devised by Brooks et al, (1940).  From a square tiling of a rectangle, they constructed 
an electrical circuit, and used Kirchoff’s Laws to deduce Dehn’s Theorem, as well as many 
interesting generalizations. This method is also described in Blackett’s book on Elementary 
Topology (1982). 
 
For mathematical completeness, but outside the framework of the exposition above, we provide 
here a proof of Dehn’s Theorem as used here.  First a preliminary on “area functions.” 
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Area functions on rectangles 
 
Consider a plane rectangle  
 
  R  =  [x, x’] x [y, y’], 
 
with vertices the points (x, y), (x, y’), (x’, y) and (x’, y’); here x < x’ and y <y’.  We call these 
“coordinate rectangles” (the sides are parallel to the coordinate axes), and assume that all 
rectangles in what follows are such.   
 
Let f(x,y) be any function on R2.  We define the “f-area” of R to be 
 
  A(R)  (or Af(R))  = f(x’, y’)  -  f(x, y’)  -  f(x’, y)  +  f(x, y) 
 
LEMMA.  If a rectangle R is partitioned by a line parallel to one of its sides into two rectangles R’ 
and R”, then  
 
  A(R) = A(R’)  +  A(R”). 
 
Proof.  We show this in the case that the dividing line is vertical.  The horizontal dividing line 
case is similar. 
 

(x, y’) 
 
 
R’ 
 
(x, y) 

(x’, y’)                              (x”, y’) 
 
 
R” 
 
(x’, y)                                 (x”, y) 

 
We have 
 A(R’)  +  A(R”)  =        f(x’, y’)  -  f(x, y’)   -  f(x’, y)  +  f(x, y) 
            +  f(x”, y’)  -  f(x’, y’)  -  f(x”, y)  +  f(x’, y) 
 
    = f(x”, y’)  -  f(x, y’)  -  f(x”, y)  +  f(x, y)  
   
    = A(R) 
 
 
5.3 PROPOSITION.  If a rectangle R is tiled by rectangles R1, R2, . . . , Rn then  
 
   A(R) = A(R1)  +  A(R2)  + . . .  +  A(Rn) 
 
 
Proof.  Say R  =  [a, a’] x [b, b’].  If the tiling is the coordinate tiling resulting from partitions of 
the intervals [a, a’] and [b, b’], then the result follows easily from the Lemma, for example first 
summing over the tiles in a given row, to replace the row of tiles by a single row tile, and then 
summing over the rows. 
 
In general, we can extend the edge lines of all the tiles to refine the tiling to a coordinate tiling, 
and note that, by the Lemma, the sum of the areas in the refined tiling agrees with the sum over 
the original tiles, as well as with A(R). 
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Bilinear area functions.  Suppose now that the function f(x, y) is bilinear, in the sense that 
f(x+x’, y)  =  f(x,y) + f(x’, y), and f(x, y+y’) = f(x,y) + f(x, y’) for all numbers x, x’, y, y’.  Then 
for a rectangle 
 
  R = [x, x + a] x [y, y + b] 
we have 
  A(R) = f(x+a, y + b)  -  f(x, y + b)  -  f(x + a, y)  +  f(x, y) 
 
   = f(x, y)  +  f(x, b)  +  f(a, y)  +  f(a, b) 
           -  f(x, y)  -   f(x, b) 
           -  f(x, y)     -    f(a, y) 
           + f(x, y) 
 
   = f(a, b) 
 
Thus, when f is bilinear, the Proposition above can be formulated as: 
 
PROPOSITION.  Suppose that f is bilinear.  If a rectangle R of side lengths (a, b) is tiled by 
rectangles with side lengths (a1, b1) , . . . , (an, bn), then  
  A(R) = f(a, b) 
   = f(a1, b1) + . . .  +  f(an, bn). 
 

 
 
Proof of (a)  (See Freiling and Rinne, p. 549):  If c/s is not rational, choose a Q-vector space 
basis of the real numbers, R (a “Hamel basis”) containing c and s.  Then there exists a Q-linear 
function g:R   Q such that g(c)  =  1  =  -g(s).  Put f(x, y)  =  g(x)g(y), a bilinear function on 
R2, and use f to define an area function A  =  Af  as above.  Then (Proposition above)  

A(R)   =   f(c, s)   = g(c)g(s)  = -1 
 = T  g(s())2  > 0, 

which is a contradiction.  (Here, for    T, s() denotes the side length of .) 
 
 
Proof of (b):  Decompose R as a Q-vector space –  R  =   Q    W.  Take a Q-basis B of R 
consisting of 1, followed by a Q-basis of W.  Let g(x,y) be a symmetric Q-bilinear form (inner 
product) on R for which B is an orthonormal basis.  Hence g is positive definite.  For x    R,  we 
can write x  =  x0  +  x’, uniquely, with x0    Q  and x’    W.  Choose a real parameter t, define 
the Q-bilinear function 
  f(x, y)  = x0y0  +  tg(x’, y’), 
and let A  =  Af  be the corresponding “area function.” 
 
We are given a finite set T of squares that tile the rectangle R with rational base c and height s.  
Then, as above, we have 
 

DEHN’S THEOREM (GENERALIZED).  Let R be a rectangle of height c and base s, and let T be a 
finite set of square tiles that tile R. 
 

(a) (Dehn)  c/s  is a rational number. 
 
(b) Suppose that c and s are rational (which we may achieve by rescaling, thanks to 

(a)).  Then all squares in T have rational side lengths. 
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A(R)   =   f(c, s) = cs > 0 
 
 = T  f(s(),s()) = 1≤i≤r  f(s(i),s(i)), 
   

where s(1), s(2), . . . , s(r) is the list of side lengths of the square tiles in T.  We can write  
 s(i)   =   s(i)0  +  s(i)’,   with   s(i)0     Q and   s(i)’    W. 
Then 
 f(s(i), s(i)) = s(i)0

2   + tg(s(i)’, s(i)’) 
 
These f(s(i), s(i)) are linear functions of t, with t-coefficient  ≥  0, and  >  0 if s(i) is irrational.  
Since their sum, A(R), is a constant (independent of t) it follows that none of the s(i) can be 
irrational. 
 
 

IV. CONCLUSION 
 
I have tried to provide a vivid image of a small piece of ‘mathematics in the making,’ accessible 
(apart from this last section on Dehn’s Theorem) with only a base of High School level 
mathematics. The main agenda, carried by the interleaved meta-discussion, was to make explicit 
some of the moves, dispositions, and motivations that guided the mathematical work.  My hope 
is that this can help illuminate some of the resources that mathematicians deploy in the course of 
their work, and that many of these will resonate with and prove helpful to teachers and learners 
of school mathematics. 
 
 
 

V. REFERENCES 
 

 
Blackett, D. W. (1982).  Elementary Topology: A Combinatorial and Algebraic Approach, 
 Academic Press, New York. 
 
Brooks, R. L., Smith, C. A. B., Stone, A. H., and Tutte, W. T. (1940).  The Dissection of 
 Rectangles into Squares,  Duke Mathematics Journal, 7, 312-340 
 
Cuoco, A., Goldenberg, E. P., and Mark, J. (2007).  Habits of Mind (in preparation, for the 
 Connected Geometry curriculum, Educational Development Center, Newton, MA) 
 
Davis, P. J. and Hersh, R. (1981).  The Mathematical Experience, Birkhauser Boston. 
 
Dehn, Max (1903).  Über die Zerlegung von Rechtecken in Rechtecke, Mathematische Annalen, 
 57, 314-332. 
 
Freiling, C. and Rinne, D. (1994).  Tiling a square with similar rectangles, Mathematical Research 
 Letters, 1, 547-558 
 
Hadamard, J. (1973). The Mathematician’s Mind:  The Psychology of Invention in the 
 Mathematical Field, Princeton University Press.  Originally published (1945) as, The 
 Psychology of Invention in the Mathematical Field, Princeton University Press.  
 
Kenyon, R. (1994).  Tiling a rectangle with the fewest squares, arXiv:math.CO/9411215 v1, 28 
 Nov 1994 
 



Bass 

 

Lakatos, Imre (1976).  Proofs and Refutations, Cambridge University Press. 
 
National Council of Teachers of Mathematics (2000).  Principles and Standards for School 
 Mathematics. 
 
Poincaré, H. (2003) Science and Method, Dover, New York.  Translated from Science et 
 Méthode, (1908), Flammarion, Paris. 
 
Polya, G. (1954), Mathematics and Plausible Reasoning, Vols. I & II, Princeton University Press.  
 
Stein, S. K. (1999).  Mathematics: The Man-Made Universe, Dover Pubilications, Inc. New York 
 
 
 



  TMME, vol8, nos.1&2, p .35 

 

 

The Montana Mathematics Enthusiast, ISSN 1551-3440, Vol. 8, nos.1&2, pp.35- 50            
2011©Montana Council of Teachers of Mathematics & Information Age Publishing 

 

Mathematical Intuition (Poincaré, Polya, Dewey) 
 

Reuben Hersh 
University of New Mexico 

 
 

 
   

Summary: Practical calculation of the limit of a sequence often violates the definition of 
convergence to a limit as taught in calculus. Together with examples from Euler, Polya and Poincare, this 
fact shows that in mathematics, as in science and in everyday life, we are often obligated to use knowledge 
that is derived, not rigorously or deductively, but simply by making the best use of available information—
plausible reasoning.  The “philosophy of mathematical practice” fits into the general framework of 
“warranted assertibility,” the pragmatist view of the logic of inquiry developed by John Dewey. 
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In Rio de Janeiro in May 2010, I spoke at a meeting of numerical analysts honoring the 80th 

anniversary of the famous paper by Courant, Friedrichs and Lewy.  In order to give a philosophical talk 
appropriate for hard-core computer-oriented mathematicians, I focused on a certain striking paradox that is 
situated right at the heart of analysis, both pure and applied.  (That paradox was presented, with 
considerable mathematical elaboration, in Phil Davis’s excellent article, “The Paradox of the Irrelevant 
Beginning.”)   In order to make this paradox cut as sharply as possible, I performed a little dialogue, with 
help from Carlos Motta.  With the help of Jody Azzouni, I used that dialogue again, to introduce this talk in 
Rome.   

To set the stage, recall the notion of a convergent sequence, which is at the heart of both pure 
analysis and applied mathematics.  In every calculus course, the student learns that whether a sequence 
converges to a limit, and what that limit is, depend only on the “end” of the sequence--that is, the part that 
is “very far out”—in the tail, so to speak, or in the infinite part.  Yet, in a specific instance when the limit is 
actually needed, usually all that is considered is the beginning of the sequence—the first few terms--the 
finite part, so to speak.  (Even if the calculation is carried out to a hundred or a thousand iterations, this is 
still only the first few, compared to the remaining, neglected, infinite tail.)   

In this little drama of mine, the hero is a sincere, well-meaning student, who has not yet learned to 
accept life as it really is.  A second character is the Successful Mathematician--the Ideal Mathematician’s 
son-in-law.   His mathematics is ecumenical: a little pure, a little applied, and a little in-between.  He has 
grants from federal agencies, a corporation here and there, and a private foundation or two.  His 
conversation with the Stubborn Student is somewhat reminiscent of a famous conversation between his 
Dad, the Ideal Mathematician, and a philosophy grad student, who long ago asked, “What is a 
mathematical proof, really?” 

The Successful Mathematician (SM) is accosted by the Stubborn Student (SS) from his Applied 
Analysis course. 

 

 
SS: Sir, do you mind if I ask a stupid question? 
SM: Of course not.  There is no such thing as a stupid question. 
SS: Right.  I remember, you said that.  So here’s my question. What is the real 

definition of “convergence”?  Like, convergence of an infinite sequence, for 
instance? 
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SM: Well, I’m sure you already know the answer.  The sequence converges to a 
limit, L, if it gets within a distance epsilon of L, and stays there, for any 
positive epsilon, no matter how small. 

SS: Sure, that’s in the book, I know that.  But then, what do people mean when 
they say, keep iterating till the iteration converges?  How does that work? 

SM: Well, it’s obvious, isn’t it?  If after a hundred terms your sequence stays at 
3, correct to four decimal places, then the limit is 3. 

SS: Right.  But how long is it supposed to stay there?  For a hundred terms, for 
two hundred, for a hundred million terms? 

SM: Of course you wouldn’t go on for a hundred million.  That really would be 
stupid.  Why would you waste time and money like that? 

SS: Yes, I see what you mean.  But what then?  A hundred and ten?  Two 
hundred?  A thousand? 

SM: It all depends on how much you care.  And how much it is costing, and how 
much time it is taking. 

SS: All right, that’s what I would do.  But when does it converge? 
SM: I told you. It converges if it gets within epsilon— 
SS: Never mind about that.  I am supposed to go on computing “until it 

converges,” so how am I  supposed to recognize that “it has converged”? 
SM: When it gets within four decimal points of some particular number and 

stays there. 
SS: Stays there how long?  Till when? 
SM: Whatever is reasonable.  Use your judgment!  It’s just plain common sense, 

for Pete’s sake! 
SS: But what if it keeps bouncing around within four decimal points and never 

gets any closer? You said any epsilon, no matter how small, not just point 
0001.  Or if I keep on long enough, it might finally get bigger than 3, even 
bigger than 4, way, way out, past the thousandth term. 

SM: Maybe this, maybe that.  We haven’t got time for all these maybes.  
Somebody else is waiting to get on that machine.  And your bill from the 
computing center is getting pretty big. 

SS: (mournfully) I guess you’re not going to tell me the answer.   
SM: You just don’t get it, do you?  Why don’t you go bother that Reuben Hersh 

over there, he looks like he has nothing better to do. 
 

 
SS: Excuse me, Professor Hersh.  My name is--- 
RH: That’s OK.  I overheard your conversation with Professor Successful over 

there.  Have a seat. 
SS: Thank you.  So, you already know what my question is. 
RH: Yes, I do. 
SS: So, what is the answer? 
RH: He told you the truth.  The real definition of convergence is exactly what he 

said, with the epsilon in it, the epsilon that is arbitrarily small but positive. 
SS: So then, what does it mean, “go on until the sequence converges, then 

stop”? 
RH: It’s meaningless.  It’s not a precise mathematical statement.  As a precise 

mathematical statement, it’s meaningless. 
SS: So, if it’s meaningless, what does it mean? 
RH: He told you what it means.  Quit when you can see, when you can be pretty 

sure, what the limit must be.  That’s what it means. 
SS: But that has nothing to do with convergence! 
RH: Right. 
SS: Convergence only depends on the last part, the end, the infinite part of the 

sequence.  It has nothing to do with the front part.  You can change the first 
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hundred million terms of the sequence, and that won’t affect whether it 
converges, or what the limit is. 

RH: Right!  Right!  Right!  You really are an A student. 
SS: I know…. So it all just doesn’t make any sense.  You teach us some fancy 

definition of convergence, but when you want to compute a number, you 
just forget about it and say it converges when common sense, or whatever 
you call it, says something must be the answer.  Even though it might not be 
the answer at all! 

RH: Excellent.  I am impressed. 
SS: Stop patronizing me.  I’m not a child. 
RH: Right. I will stop patronizing me, because you are not a child. 
SS: You’re still doing it. 
RH: It’s a habit.  I can’t help it. 
SS: Time to break a bad habit. 
RH: OK.  But seriously, you are absolutely right.  I agree with every word you 

say. 
SS: Yes, and you also agree with every word Professor Successful says. 
RH: He was telling the truth, but he couldn’t make you understand. 
SS: All right.  You make me understand. 
RH: It’s like theory and practice.  Or the ideal and the actual.  Or Heaven and 

Earth. 
SS: How is that? 
RH: The definition of convergence lives in a theoretical world.  An ideal world.  

Where things can happen as long as we can clearly imagine them.  As long 
as we can understand and agree on them.  Like really being positive and 
arbitrarily small.  No number we can write down is positive and arbitrarily 
small.  It has to have some definite size if it is actually a number.  But we 
can imagine it getting smaller and smaller and smaller while staying 
positive, and we can even express that idea in a formal sentence, so we 
accept it and work with it.  It seems to convey what we want to mean by 
converging to a limit.  But it’s only an ideal, something we can imagine, not 
something we can ever really do. 

SS: So you’re saying mathematics is all a big fairy tale, a fiction, it doesn’t 
actually exist? 

RH: NO! I never said fairy tale or fiction.  I said imaginary.  Maybe I should 
have said consensual.  Something we can all agree on and work with, 
because we all understand it the same way. 

SS: That’s cool.  We all.  All of you.  Does that include me? 
RH: Sure.  Stay in school a few more years.  Learn some more.  You’ll get into 

the club.  You’ve got what it takes. 
SS: I’m not so sure.  I have trouble believing two opposite things at once. 
RH: Then how do you get along in daily life?  How do you even get out of bed 

in the morning? 
SS: What are you talking about? 
RH: How do you know someone hasn’t left a bear trap by your bedside that will 

chop off your foot as soon as you step down? 
SS: That’s ridiculous. 
RH: It is.  But how do you know it is? 
SS: Never mind how I know.  I just know it’s ridiculous.  And so do you. 
RH: Exactly.  We know stuff, but we don’t always know how we know it.  Still, 

we do know it. 
SS: So you’re saying, we know that what looks like a limit really is a limit, even 

though we can’t prove it, or explain it, still we know it. 
RH: We know it the same way you know nobody has left a bear trap by your 

bedside.  You just know it. 
SS: Right. 
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RH: But it’s still possible that you’re wrong.  It is possible that something 
ridiculous actually happens.  Not likely, not worth worrying about.  But not 
impossible. 

SS: Then math is really just like everything else.  What a bummer! I like math 
because it’s not like everything else.  In math, we know for sure.  We prove 
things.  One and one is two.  Pi is irrational.  A circle is round, not square.  
For sure. 

RH: Then why are you upset?  Everything is just fine, isn’t it? 
SS: Why don’t you admit it?  If you don’t have a proof, you just don’t know if 

L is the limit or not. 
RH: That’s a fair question.  So what is the answer? 
SS: Because you really want to think you know L is the limit, even if it’s not 

true. 
RH: Not that it’s not true, just that it might not be true.  
 

 End of dialogue 

 
Thanks for your kind attention.  What is supposed to be the meaning of this performance?  What 

am I getting at?  In this talk I am NOT attempting to make a contribution to the “problem of induction.”  
Therefore I may be allowed to omit a review of its 2,500-year literature.  I am reporting and discussing 
what people really do, in practical convergence calculations, and in the process of mathematical discovery.  
I am going into a discussion of practical knowledge in mathematics, as a kind of real knowledge, even 
though it is not demonstrative or deductive knowledge.  I try to explain why people must do what they do, 
in order to accomplish what they are trying to accomplish.  I will conclude by arguing that the right broader 
context for the philosophy of mathematical practice is actually the philosophy of pragmatism, as expounded 
by John Dewey. 

But first of all, just this remarkable fact.  What we do when we want actual numbers  may be 
totally unjustified, according to our theory and our definition.  And even more remarkable—nobody seems 
to notice, or to worry about it! 

Why is that?  Well, the definition of convergence taught in calculus classes, as developed by those 
great men Augustin Cauchy and Karl Weierstrass, seems to actually convey what we want to mean by limit 
and convergence.  It is a great success. Just look at the glorious edifice of mathematical analysis!  On the 
other hand, in specific cases, it often is beyond our powers to give a rigorous error estimate, even when we 
have an approximation scheme that seems perfectly sound.  As in the major problems of three-dimensional 
continuum mechanics with realistic nonlinearities, such as oceanography, weather prediction, stability of 
large complex structures like big bridges and airplanes….And even when we could possibly give a rigorous 
error estimate, it often would require great expenditure of time and labor.  Surely it’s OK to just use the 
result of a calculation when it makes itself evident and there’s no particular reason to expect any hidden 
difficulty.    

In brief, we are virtually compelled by the practicalities to accept the number that computation 
seems to give us, even though, by the standards of rigorous logic, there is still an admitted possibility that 
we may be mistaken.  This computational result is a kind of mathematical knowledge!  It is practical 
knowledge, knowledge sound enough to be the basis of practical decisions about things like designing 
bridges and airplanes—matters of life and death.   

In short, I am proclaiming that in mathematics, apart from and distinct from so-called deductive or 
demonstrative knowledge, there is also ordinary, fallible knowledge, of the same sort as our daily 
knowledge of our physical environment and our own bodies.  “Anything new that we learn about the world 
involves plausible reasoning, which is the only kind of reasoning for which we care in everyday affairs.”   
(Polya, 1954). This sentence of his makes an implicit separation between mathematics and everyday affairs.  
But nowadays, in many different ways, for many different kinds of people, mathematics blends into every-
day affairs.  In these situations, the dominance of plausible over demonstrative reasoning applies even to 
mathematics itself, as in the daily labors of numerical analysts, applied mathematicians, design engineers… 
Controlling a rocket trip to the moon is not an exercise in mathematical rigor.  It relies on a lack of malice 
on the part of that Being referred to by Albert Einstein as der lieber Gott.   
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(For fear of misunderstanding, I explain—this is not a confession of belief in a Supreme Being.  
It’s just Einstein’s poetic or metaphoric way of saying, Nature is not an opponent consciously trying to 
trick us.) 

But it’s not only that we have no choice in the matter.  It’s also that, truth to tell, it seems perfectly 
reasonable!  Believing what the computation tells us is just what people have been doing all along, and 
(nearly always) it does seem to be OK.  What’s wrong with that? 

This kind of reasoning is sometimes called “plausible,” and sometimes called “intuitive.”  I will 
say a little more about those two words pretty soon.  But I want to draw your attention very clearly to two 
glaring facts about this kind of plausible or intuitive reasoning.  First of all, it is pretty much the kind of 
reasoning that we are accustomed to in ordinary empirical science, and in technology, and in fact in 
everyday thinking, dealing with any kind of practical or realistic problem of human life.  Secondly, it 
makes no claim to be demonstrative, or deductive, or conclusive, as is often said to be the essential 
characteristic of mathematical thinking. We are face to face with mathematical knowledge that is not 
different in kind from ordinary everyday commonplace human knowledge.  Fallible!  But knowledge, 
nonetheless!   

Never mind the pretend doubt of philosophical skepticism.  We are adults, not infants.  Human 
adults know a lot!  How to find their way from bed to breakfast—and people’s names and faces--and so 
forth and so on.  This is real knowledge.  It is not infallible, not eternal, not heavenly, not Platonic, it is just 
what daily life depends on, that’s all. That’s what I mean by ordinary, practical, everyday knowledge.  
Based not mainly on rigorous demonstration or deduction, but mainly on experience properly interpreted.  
And here we see mathematical knowledge that is of the same ordinary, everyday kind, based not on 
infallible deduction, but on fallible, plausible, intuitive thinking. 

Then what justifies it in a logical sense?  That is, what fundamental presupposition about the 
world, about reality, lies behind our willingness to commit this logical offense, of believing what isn’t 
proved? 

I have already quoted the famous saying of Albert Einstein that supplies the key to unlocking this 
paradox. 

My friend Peter Lax supplied the original German, I only remembered the English translation.   
 
Raffinniert ist der lieber Gott, aber boshaft ist Er nicht.   
The Lord God is subtle, but He is not malicious. 
 
Of course, Einstein was speaking as a physicist struggling to unravel the secrets of Nature.  The 

laws of Nature are not always obvious or simple, they are often subtle.  But we can believe, we must 
believe, that Nature is not set up to trick us, by a malicious opponent.  God, or Nature, must be playing fair.  
How do we know that?  We really don’t know it, as a matter of certainty!  But we must believe it, if we 
seek to understand Nature with any hope of success.  And since we do have some success in that search, our 
belief that Nature is subtle but not malicious is justified. 

This problem of inferring generalizations from specific instances is known in logic as “the 
problem of induction.”  My purpose is to point out that such generalizations in fact are made, and must be 
made, not only in daily life and in empirical science, but also in mathematics. 

That is, in the practice of mathematics also we must believe that we are not dealing with a 
malicious opponent who is seeking to trick us.  We experiment, we calculate, we draw diagrams. And 
eventually, using caution and the experience of the ages, we see the light.  Gauss famously said, “I have my 
theorems.  Now I have to find my proofs.” 

But is it not naïve, for people who have lived through the hideous twentieth century, to still hope 
that God is not malicious?  Consider, for example, a people who for thousands of years have lived safely on 
some atoll in the South Pacific.  Today an unforeseen tsunami drowns them all.  Might they not curse God 
in their last breath?   

Here is an extensive quote from Leonhard Euler, by way of George Polya.   Euler is speaking of a 
certain beautiful and surprising regularity in the sum of the divisors of the integers.   

This law, which I shall explain in a moment, is in my opinion, so much more 
remarkable as it is of such a nature that we can be assured of its truth without 
giving it a perfect demonstration.  Nevertheless, I shall present such evidence for 
it as might be regarded as almost equivalent to a rigorous 
demonstration….anybody can satisfy himself of its truth by as many examples 
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as he may wish to develop.  And since I must admit that I am not in a position to 
give it a rigorous demonstration, I will justify it by a sufficiently large number 
of examples…I think these examples are sufficient to discourage anyone from 
imagining that it is by mere chance that my rule is in agreement with the 
truth…The examples that I have just developed will undoubtedly dispel any 
qualms which we might have had about the truth of my formula….it seems 
impossible that the law which has been discovered to hold for 20 terms, for 
example, would not be observed in the terms that follow.  (Polya, 1954).   

Observe two things about this quote from Euler.  First of all, for him the plausible reasoning in 
this example is so irresistible that it leaves no room for doubt.  He is certain that anyone who looks at his 
examples is bound to agree.  Yet secondly, he strongly regrets his inability to provide a demonstration of 
the fact, and still hopes to find one. 

But since he is already certain of the truth of his finding, why ask for a demonstrative proof?  The 
answer is easy, for anyone familiar with mathematical work.  The demonstration would not just affirm the 
truth of the formula, it would show why the formula MUST be true.  That is the main importance of proof 
in mathematics!  A plausible argument, relying on examples, analogy and induction, can be very strong, 
can carry total conviction.  But if it is not demonstrative, it fails to show why the result MUST be 
true.  That is to say, it fails to show that it is rigidly connected to established mathematics. 

At the head of Chapter V, Polya (1954) placed the following apocryphal quotation, attributed to 
“the traditional mathematics professor”:  “When you have satisfied yourself that the theorem is true, you 
start proving it.”  (Polya 1954)   

 This faith---that experience is not a trap laid to mislead us--is the unstated axiom.  It lets us 
believe the numbers that come out of our calculations, including the canned programs that engineers use 
every day as black boxes.  We know that it can sometimes be false.  But even as we keep possible tsunamis 
in mind, we have no alternative but to act as if the world makes sense.  We must continue to act on the 
basis of our experience.  (Including, of course, experiences of unexpected disasters.) 
 Consider this recollection of infantile mathematical research by the famous physicist Freeman 
Dyson, who wrote in 2004:   

One episode I remember vividly, I don't know how old I was; I only know that I 
was young enough to be put down for an afternoon nap in my crib…I didn't feel 
like sleeping, so I spent the time calculating. I added one plus a half plus a 
quarter plus an eighth plus a sixteenth and so on, and I discovered that if you go 
on adding like this forever you end up with two. Then I tried adding one plus a 
third plus a ninth and so on, and discovered that if you go on adding like this 
forever you end up with one and a half. Then I tried one plus a quarter and so 
on, and ended up with one and a third. So I had discovered infinite series. I don't 
remember talking about this to anybody at the time. It was just a game I enjoyed 
playing.  (Dyson 2004) 

 Yes, he knew the limit!  How did he know it?  Not the way we teach it in high school (by getting 
an exact formula for the sum of n terms of a geometric sequence, and then proving that as n goes to infinity, 
the difference from the proposed limit becomes and remains arbitrarily small.)  No, just as when we first 
show this to tenth-graders, he saw that the sums follow a simple pattern that clearly is “converging” to 2.  
The formal, rigorous proof gives insight into the reason for a fact we have already seen plainly.   
          Can we go wrong this way?  Certainly we can.  Another quote from Euler.  

There are even many properties of the numbers with which we are well 
acquainted, but which we are not yet able to prove; only observations have led 
us to their knowledge…the kind of knowledge which is supported only by 
observations and is not yet proved must be carefully distinguished from the 
truth; it is gained by induction, as we usually say.  Yet we have seen cases in 
which mere induction led to error.  Therefore, we should take great care not to 
accept as true such properties of the numbers which we have discovered by 
observation and which are supported by induction alone.  Indeed, we should use 
such a discovery as an opportunity to investigate more exactly the properties 
discovered and to prove or disprove them.  (Polya 1954, p. 3) 

Notice how Euler distinguishes between “knowledge” and “truth”!  He does say “knowledge,” not mere 
“conjecture.”   
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          There is a famous theorem of Littlewood concerning a pair of number-theoretic functions PI(x) and 
Li(x).  All calculation shows that Li(x) is greater than PI(x),  for x as large as we can calculate.  Yet 
Littlewood proved that eventually PI(x) becomes greater than Li(x), and not just once, but infinitely often!  
Yes, mathematical truth can be very subtle.  While trusting it not to be malicious, we must not 
underestimate its subtlety. (PI(x) is the prime counting function and Li(x) is the logarithmic integral 
function.) 
 
Mathematical Intuition 

 
We are concerned with “the philosophy of mathematical practice.”  Mathematical practice 

includes studying, teaching and applying mathematics.  But I suppose we have in mind first of all the 
discovery and creation of mathematics—mathematical research. We start with Jacques Hadamard, go on to 
Henri Poincare, move on to George Polya, and then to John Dewey. 
 Hadamard had a very long life and a very productive career.  His most noted achievement (shared 
independently by de la Vallee Poussin) was proving the logarithmic distribution of the prime numbers.  I 
want to recall a famous remark of Hadamard’s.  “The object of mathematical rigor is to sanction and 
legitimize the conquests of intuition, and there never was any other object for it.”  (Polya 1980) 
 From the viewpoint of standard “philosophy of mathematics,” this is a very surprising, strange 
remark.  Isn’t mathematical rigor—that is, strict deductive reasoning—the most essential feature of 
mathematics?  And indeed, what can Hadamard even mean by this word, “intuition”?   A word that means 
one thing to Descartes, another thing to Kant.  I think the philosophers of mathematics have pretty 
unanimously chosen to ignore this remark of Hadamard. Yet Hadamard did know a lot of mathematics, 
both rigorous and intuitive.  And this remark was quoted approvingly by both Borel and Polya.  It seems to 
me that this bewildering remark deserves to be taken seriously. 

 Let’s pursue the question a step further, by recalling the famous essay “Mathematical Discovery,” 
written by Hadamard’s teacher, Henri Poincare. (Poincare 1952) Poincare was one of the supreme 
mathematicians of the turn of the 19th and 20th century.  We’ve been hearing his name recently, in 
connection with his conjecture on the 3-sphere, just recently proved by Grisha Perelman of St. Petersburg.   
Poincare was not only a great mathematician, he was a brilliant essayist.   And in the essay “Mathematical 
Discovery,” Poincare makes a serious effort to explain mathematical intuition.  He tells the famous story of 
how he discovered the Fuchsian and Theta-Fuchsian functions.  He had been struggling with the problem 
unsuccessfully when he was distracted by being called up for military service:    

At this moment I left Caen, where I was then living, to take part in a geological 
conference arranged by the School of Mines.  The incidents of the journey made 
me forget my mathematical work.  When we arrived at Coutances, we got into a 
bus to go for a drive, and, just as I put my foot on the step the idea came to me, 
though nothing in my former thoughts seemed to have prepared me for it, that 
the transformations I had used to define Fuchsian functions were identical with 
those of non-Euclidean geometry.  I made no verification, and had no time to do 
so, since I took up the conversation again as soon as I had sat down in the bus, 
but I felt absolute certainty at once.  When I got back to Caen, I verified the 
result at my leisure to satisfy my conscience. (Poincare 1952) 

  What a perfect example of rigor “merely legitimizing the conquests of intuition”!  How does 
Poincare explain it?  First of all, he points out that some sort of subconscious thinking must be going on.  
But if it is subconscious, he presumes it must be running on somehow at random.   How unlikely, then, for 
it to find one of the very few good combinations, among the huge number of useless ones!  To explain 
further, he writes:  

If I may be permitted a crude comparison, let us represent the future elements of 
our combinations as something resembling Epicurus’s hooked atoms.  When the 
mind is in complete repose these atoms are immovable; they are, so to speak, 
attached to the wall…On the other hand, during a period of apparent repose, but 
of unconscious work, some of them are detached from the wall and set in 
motion.  They plough through space in all directions, like a swarm of gnats, for 
instance, or, if we prefer a more learned comparison, like the gaseous molecules 
in the kinetic theory of gases.  Their mutual impacts may then produce new 
combinations. (Poincare 1952)   
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 The preliminary conscious work “detached them from the wall.”  The mobilized atoms, he 
speculated, would therefore be “those from which we might reasonably expect the desired solution….My 
comparison is very crude, but I cannot well see how I could explain my thought in any other way.” 
(Poincare 1952) 

What can we make of this picture of “Epicurean hooked atoms,” flying about somewhere—in the 
mind?  A striking, suggestive image, but one not subject even in principle to either verification or disproof.  
Our traditional philosopher remains little interested.  This is fantasy or poetry, not science or philosophy.  
But this is Poincare! He knows what he’s talking about.  He has something important to tell us. It’s not easy 
to understand, but let’s take him seriously, too.  

To be fair, Poincare proposed his image of gnats or gas molecules only after mentioning the 
possibility that the subconscious is actually more intelligent than the conscious mind.  But this, he said, he 
was not willing to contemplate.  However, other writers have proposed that the subconscious is less 
inhibited, more imaginative, more creative than the conscious. (Poincare’s essay title is sometimes 
translated as “Mathematical Creation” rather than “Mathematical Discovery.”)   David Hilbert supposedly 
once said of a student who had given up mathematics for poetry, “Good! He didn’t have enough 
imagination for mathematics.”  Hadamard (1949) carefully analyzes the role of the subconscious in 
mathematical discovery and its connection with intuition.  It is time for contemporary cognitive psychology 
to pay attention to Hadamard’s insights. See the reference below about current scientific work on the 
creative power of the subconscious 

Before going on, I want to mention the work of Carlo Cellucci, Emily Grosholz and Andrei Rodin.  
Cellucci strongly favors plausible reasoning, but he rejects intuition.  However, the intuition he rejects isn’t 
what I’m talking about. He’s rejecting the old myth, of an infallible insight straight into the Transcendental.  
Of course I’m not advocating that outdated myth.  Emily Grosholz, on the other hand, takes intuition very 
seriously.  Her impressive historical study of what she calls “internal intuition” is in the same direction as 
my own thinking being presented here.  Andrei Rodin has recently written a remarkable historical study of 
intuition (Rodin 2010).  He shows that intuition played a central role in Lobachevski’s non-Euclidean 
geometry, in Zermelo’s axiomatic set theory, and even in up-to-date category theory.  (By the way, in 
category theory he could also have cited the standard practice of proof by “diagram chasing” as a blatant 
example of intuitive, visual proof.)  His exposition makes the indispensable role of intuition clear and 
convincing.  But his use of the term “intuition” remains, one might say, “intuitive,” for he offers no 
definition of the term, nor even a general description, beyond his specific examples. 

 
Polya   
 
My most helpful authority is George Polya.  I actually induced Polya to come give talks in New 

Mexico, for previously, as a young instructor, I had met him at Stanford where he was an honored and 
famous professor.   Polya was not of the stature of Poincare or Hilbert, but he was still one of the most 
original, creative, versatile and influential mathematicians of his generation.  His book with Gabor Szego 
(Polya-Szego 1970) made them both famous.  It expounds large areas of advanced analytic function theory 
by means of a carefully arranged, graded sequence of problems with hints and solutions.  Not only does it 
teach advanced function theory, it also teaches problem-solving.  And by example, it shows how to teach 
mathematics by teaching problem-solving.  Moreover, it implies a certain view of the nature of 
mathematics, so it is a philosophical work in disguise.   
 Later, when Polya wrote his very well-known, influential books on mathematical heuristic, he 
admitted that what he was doing could be regarded as having philosophical content.  He writes, “I do not 
know whether the contents of these four chapters deserve to be called philosophy.  If this is philosophy, it is 
certainly a pretty low-brow kind of philosophy, more concerned with understanding concrete examples and 
the concrete behavior of people than with expounding generalities.” (Polya 1954 page viii)  Unpretentious 
as Polya was, he was still aware of his true stature in mathematics.  I suspect he was also aware of the 
philosophical depth of his heuristic.  He played it down because, like most mathematicians (I can only think 
of one or two exceptions), he disliked controversy and arguing, or competing for the goal of becoming top 
dog in some cubbyhole of academia. The Prince of Mathematicians, Carl Friedrich Gauss, kept his 
monumental discovery of non-Euclidean geometry hidden in a desk drawer to avoid stirring up the 
Boeotions, as he called them,—meaning the post-Kantian German philosophy professors of his day.  (In 
ancient Athens, “Boeotian” was slang for “ignorant country hick.”)  Raymond Wilder was a leading 
topologist who wrote extensively on mathematics as a culture.  He admitted to me that his writings 
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implicitly challenged both formalism and Platonism.  “Why not say so?” I asked.   Because he didn’t relish 
getting involved in philosophical argument. 
 Well, how does Polya’s work on heuristic clarify mathematical intuition?  Polya’s heuristic is 
presented as pedagogy.  Polya is showing the novice how to solve problems.  But what is “solving a 
problem”?  In the very first sentence of his preface Polya (1980) writes, “Solving a problem means finding 
a way out of a difficulty, a way around an obstacle, attaining an aim which was not immediately attainable.  
Solving problems is the specific achievement of intelligence, and intelligence is the specific gift of 
mankind:  solving problems can be regarded as the most characteristically human activity.”  “Problem” is 
simply another word for any project or enterprise which one cannot immediately take care of with the tools 
at hand.  In mathematics, something more than a mere calculation.  Showing how to solve problems 
amounts to showing how to do research!   
          Polya’s exposition is never general and abstract, he always uses a specific mathematical problem for 
the heuristic he wants to teach.  His mathematical examples are always fresh and attractive.  And his 
heuristic methods?  First of all, there is what he calls “induction.”  That is, looking at examples, as many as 
necessary, and using them to guess a pattern, a generalization.  But be careful!  Never just believe your 
guess!  He insists that you must “Guess and test, guess and test.”   Along with induction, there is analogy, 
and there is making diagrams, graphs and every other kind of picture, and then reasoning or guessing from 
the picture.  And finally, there’s the “default hypothesis of chance”—that an observed pattern is mere 
coincidence.  

(Mark Steiner has the distinction among philosophers of paying serious attention to Polya.  After 
quoting at length from Polya’s presentation of Euler’s heuristic derivation of the sum of a certain infinite 
series, Steiner comes to an important conclusion: in mathematics we can have knowledge without proof!  
Based on the testimony of mathematicians, he even urges philosophers to pay attention to the question of 
mathematical intuition.)     

  I have two comments about Polya’s heuristic that I think he would have accepted.  First of all, 
the methods he is presenting, by means of elementary examples, are methods he used himself in research.  
“In fact, my main source was my own research, and my treatment of many an elementary problem mirrors 
my experience with advanced problems.”  (Polya, 1980, page xi).  In teaching us how to solve problems, 
he’s teaching us about mathematical practice: How it works. What is done. To find out “What is 
mathematics?” we must simply reinterpret Polya’s examples as descriptive rather than pedagogical.   

Secondly, with hardly any stretching or adjustment, the heuristic devices that he’s teaching can be 
applied for any other kind of problem-solving, far beyond mathematics.  He actually says that he is 
bringing to mathematics the kind of thinking ordinarily associated with empirical science.  But we can go 
further.  These ways of thinking are associated with every kind of problem-solving, in every area of human 
life!  Someone needed to get across a river or lake and had the brilliant idea of “a boat”—whether it was a 
dugout log or a birch bark canoe.  Someone else, needing shelter from the burning sun in the California 
Mojave, thought of digging a hole in the ground.  And someone else, under the piercing wind of northern 
Canada, thought of making a shelter from blocks of ice.   

How does anyone think of such a thing, solve such a concrete problem?  By some kind of analogy 
with something else he has seen, or perhaps been told about.  By plausible thinking.  And often by a sudden 
insight that arises “from below.” 
               Intuitively, you might say. 
  

Mental Models 
  

It often happens that a concrete problem, whether in science or in ordinary daily life, is pressing 
on the mind, even when the particular materials or objects in question are not physically present.  You keep 
on thinking about it, while you’re walking, and when you’re waking from sleep.  Productive thought 
commonly takes place, in the absence of the concrete objects or materials being thought about. This 
thinking about something not present to sight or touch can be called “abstract thinking.”  Abstract thinking 
about a concrete object.  How does that work?  How can our mind/brain think productively about 
something that’s not there in front of the eyes?  Evidently, it operates on something mental, what we may 
call a mental image or representation.  In the current literature of cognitive psychology, one talks about “a 
mental model.”  In this article, I use the term “mental model” to mean a mental structure built from 
recollected facts (some expressed in words), along with an ensemble of sensory memories, perhaps 
connected, as if by walking around the object in question, or by imagining the object from underneath or 
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above, even if never actually seen in these views.   A rich complex of connected knowledge and conjecture 
based on verbal, visual, kinesthetic, even auditory or olfactory information, but simplified, to exclude 
irrelevant details.  Everything that’s helpful for thinking about the object of interest when the object isn’t 
here.  Under the pressure of a strong desire or need to solve a specific problem, we assemble a mental 
model which the mind-brain can manipulate or analyze.   

 Subconscious thinking is not a special peculiarity of mathematical thinking, but a common, taken-
for-granted, part of every-day problem-solving.  When we consider this commonplace fact, we aren’t 
tempted to compare it to a swarm of gnats hooking together at random.  No, we assume, as a matter of 
course, that this subconscious thinking follows rules, methods, habits or pathways, that somehow, to some 
extent, correspond to the familiar plausible thinking we do when we’re wide awake.  Such as thinking by 
analogy or by induction.  After all, if it is to be productive, what else can it do?  If it had any better 
methods, then those better methods would also be what we would follow in conscious thinking!  And 
subconscious thinking in mathematics must be much like subconscious thinking in any other domain, 
carrying on plausible reasoning as enunciated by various writers, above all by George Polya. This 
description of subconscious thinking is not far from Michael Polanyi’s “tacit dimension.” 
 When applied to everyday problem solving, all this is rather obvious, perhaps even banal.  My 
goal is to clarify mathematical intuition, in the sense of Hadamard and Poincare.  “Intuition” in the sense of 
Hadamard and Poincare is a fallible psychological experience that has to be accounted for in any realistic 
philosophy of mathematics.  It simply means guesses or insights attained by plausible reasoning, either 
fully conscious or partly subconscious.  In this sense it is a specific phenomenon of common experience. It 
has nothing to do with the ancient mystical myth of an intuition that surpasses logic by making a direct 
connection to the Transcendental. 
 The term “abstract thinking” is commonplace in talk about mathematics.  The triangle, the main 
subject of Euclidean geometry, is an abstraction, even though it’s idealized from visible triangles on the 
blackboard.  Thinking of a physical object in its absence, like a stream to be crossed or a boat to be 
imagined and then built, is already “abstract” thinking, and the word “abstract” connects us to the abstract 
objects of mathematics.   

Let me be as clear and simple as I can be about the connection. After we have some practice 
drawing triangles, we can think about triangles, we discover properties of triangles. We do this by 
reasoning about mental images, as well as images on paper.  This is already abstract thinking.  When we go 
on to regular polygons of arbitrarily many sides, we have made another departure.  Eventually we think of 
the triangle as a 2-simplex, and abstract from the triangle to the n-simplex.  For n = 3 this is just the 
tetrahedron, but for n = 4 or 5 or 6, it is something never yet seen by human eye. Yet these higher 
simplexes also can become familiar, and, as it were, concrete-seeming.  If we devote our waking lives to 
thinking about them, then we have some kind of “mental model” of them.  Having this mental model, we 
can access it, and thereby we can reason intuitively—have intuitive insights—by which I mean simply 
insights not based on consciously known reasoning.  An “intuition” is then simply a belief (possibly 
mistaken!) arising from internal inspection of a mental image or representation—a “model.”  It may be 
assisted by subconscious plausible reasoning, based on the availability of that mental image.  We do this in 
practical life.  We do it in empirical science, and in mathematics.  In empirical science and ordinary life, the 
image may stand for either an actual object, a physical entity, or a potential one that could be realized 
physically.  In mathematics, our mental model is sometimes idealized from a physical object—for example, 
from a collection of identical coins or buttons when we’re thinking about arithmetic.  But in mathematics 
we also may possess a mental model with no physical counterpart.  For example, it is generally believed 
that Bill Thurston’s famous conjectures on the classification of four-manifolds were achieved by an 
exceptional ability, on the part of Thurston, to think intuitively in the fourth dimension.  Perhaps Grisha 
Perelman was also guided by some four-dimensional intuition, in his arduous arguments and calculations to 
prove the Thurston program.   
 To summarize, mathematical intuition is an application of conscious or subconscious heuristic 
thinking of the same kind that is used every day in ordinary life by ordinary people, as well as in empirical 
science by scientists.  This has been said before, by both Hadamard and Polya.  In fact, this position is 
similar to Kurt Godel’s, who famously wrote, “I don’t see any reason why we should have less confidence 
in this kind of perception, i.e., in mathematical intuition, than in sense perception.”  Why, indeed?  After 
all, both are fallible, but both are plausible, and must be based on plausible reasoning.   
 For Godel, however, as for every writer in the dominant philosophy of mathematics, intuition is 
called in only to justify the axioms.  Once the axioms are written down, the role of mathematical intuition is 
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strictly limited to “heuristic”—to formulating conjectures.  These await legitimation by deductive proof, for 
only deductive proof can establish “certainty.”  Indeed, this was stated as firmly by Polya as by any 
analytic philosopher.  But what is meant by  “mathematical certainty”?  If it simply means deductive proof, 
this statement is a mere circular truism.  However, as I meant to suggest by the little dialog at the beginning 
of this paper, there is also practical certainty, even within mathematics!  We are certain of many things in 
ordinary daily life, without deductive proof, and this is also the case in mathematics itself.  Practical 
certainty is a belief strong enough to lead to serious practical decisions and actions.  For example, we stake 
our lives on the numerical values that went into the engineering design of an Airbus or the Golden Gate 
Bridge. Mainstream philosophy of mathematics does not recognize such practical certainty.  Nevertheless, 
it is an undeniable fact of life.   

 It is a fact of life not only in applied mathematics but also in pure mathematics.  For example, the 
familiar picture of the Mandelbrot set, a very famous bit of recent pure mathematics, is generated by a 
machine computation.  By definition, any particular point in the complex plane is inside the Mandelbrot set 
if a certain associated iteration stays bounded. If that iteration at some stage produces a number with 
absolute value greater than two, then, from a known theorem, we can conclude that the iteration goes to 
infinity, and the parameter point in question is outside the Mandelbrot set.  What if the point is inside the 
Mandelbrot set?  No finite number of iterations in itself can guarantee that the iteration will never go 
beyond absolute value 2.  If we do eventually decide that it looks like it will stay bounded, we may be right, 
but we are still cheating.  This decision is opportunistic and unavoidable, just as in an ordinary calculation 
about turbulent flow. 

 Computation (numerics) is accepted by purists only as a source of conjectures awaiting rigorous 
proof.  However, from the pragmatic, non-purist viewpoint, if numerics is our guide to action, then it is in 
effect a source of knowledge.  Dewey called it “warranted assertibility.”  (Possibly even a “truth.”  A 
“truth” that remains open to possible reconsideration.) 
 Another example from pure mathematics appeared on John Baez’s blog (Baez 2010) where it is 
credited to Sam Derbyshire.  His pictures plot the location in the complex plane of the roots of all 
polynomials of degree 24 with coefficients plus one or minus one.  The qualitative features of these 
pictures are absolutely convincing— i.e., impossible to disbelieve. Baez wrote, “That's 224 polynomials, 
and about 24 × 224 roots — or about 400 million roots! It took Mathematica 4 days to generate the 
coordinates of the roots, producing about 5 gigabytes of data.”  (Figure 1 shows the part of the plot in the 
first quadrant, for complex roots with non-negative real and imaginary parts.) 
 

 
Figure 1.  

              
There is more information in this picture than can even be formulated as conjectures, let alone seriously 
attacked with rigor.  Since indeed we cannot help believing them (perhaps only believing with 99.999% 
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credence) then (pragmatically) we give them “warranted assertibility,” just like my belief that I can walk 
out my door without encountering sudden death in one form or another.  The distinction between rigorous 
math and plausible math, pure math and applied math, etc, becomes blurred.  It is still visible, certainly, but 
not so sharp.  It’s a little fuzzy.  Purely computational results in pure mathematics, when backed up by 
sophisticated checking against a relevant theory, have a factual status similar to that of accepted facts from 
empirical science.  The distinction between what is taken to be “known,” and what is set aside as merely 
guessed or “conjectured”, is not so cut and dried as the usual discussions claim to believe.   

Mental Models Subject to Social Control 
  
“Plausible” or “heuristic” thinking is applied, either consciously or subconsciously, to mental 

models.  These mental models may correspond to tangible or visible physical objects in ordinary life and 
empirical science.  Or they may not correspond to any such things, but may be pure mental representations, 
as in much of contemporary analysis, algebra, and even geometry.  By pure mental models I mean models 
not obtained directly by idealization of visual or other sensual experience. 

 But what controls these mental models?  If they have no physical counterpart, what keeps them 
from being wildly idiosyncratic and incommunicable?  What we have omitted up to this point, and what is 
the crux of the matter: mathematical images are not private, individual entities.  From the origin of 
mathematics in bartering, buying and selling, or in building the Parthenon and the Pyramids, this subject 
has always been a social, an “inter-subjective” activity.  Its advances and conquests have always been 
validated, corrected and absorbed in a social context—first of all, in the classroom. Mathematicians can and 
must talk to each other about their ideas.  One way or the other, they do communicate, share and compare 
their conceptions of mathematical entities, which means precisely these models, these images and 
representations I have been describing.  Discrepancies are recognized and worked out, either by correcting 
errors, reconciling differences, or splitting apart into different, independent pathways. Appropriate 
terminology and symbols are created as needed. 

 Mathematics depends on a mutually acknowledging group of competent practitioners, whose 
consensus decides at any time what is regarded as correct or incorrect, complete or incomplete. That is how 
it always worked, and that is how it works today. This was made very clear by the elaborate process in 
which Perelman’s proposed proof of the Thurston program (including the Poincare conjecture) was vetted, 
examined, discussed, criticized and finally accepted by the “Ricci flow community,” and then by its friends 
in the wider communities of differential geometry and low-dimensional topology, and then by the prize 
committees of the Fields Medal and the Clay Foundation. 
 Thus, when we speak of a mathematical concept, we speak not of a single isolated mental image, 
but rather of a family of mutually correcting mental images. They are privately owned, but publicly 
checked, examined, corrected, and accepted or rejected.  This is the role of the mathematical research 
community, how it indoctrinates and certifies new members, how it reviews, accepts or rejects proposed 
publication, how it chooses directions of research to follow and develop, or to ignore and allow to die.  All 
these social activities are based on a necessary condition: that the individual members have mental models 
that fit together, that yield the same answers to test questions.  A new branch of mathematics is established 
when consensus is reached about the possible test questions and their answers.  That collection of possible 
questions and answers (not necessarily explicit) becomes the means of accepting or rejecting proposed new 
members. 

If two or three mathematicians do more than merely communicate about some mathematical topic, 
but actually collaborate to dig up new information and understanding about it, then the matching of their 
mental models must be even closer.  They may need to establish a congruence between their subconscious 
thinking about it as well as their conscious thinking.  This can be manifested when they are working 
together, and one speaks the very thought that the partner was about to speak. 

And to the question “What is mathematics?” the answer is “It is socially validated reasoning 
about these mutually congruent mental models.” 

What makes mathematics possible?  It is our ability to create mental models which are “precise,” 
meaning simply that they are part of a shared family of mutually congruent models.  In particular, such an 
image as a line segment, or two intersecting line segments, and so on.  Or the image of a collection of 
mutually interchangeable identical objects (ideal coins or buttons).  And so on.  To understand better how 
that ability exists, both psychologically and neurophysiologically, is a worthy goal for empirical science.  
The current interactive flowering of developmental psychology, language acquisition, and cognitive 
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neuroscience shows that this hope is not without substance.  (See, e.g., Carey, Dehaene, Johnson-Laird, 
Lakoff/Nunez, Zwaan.) 

 The existence of mathematics shows that the human mind is capable of creating, refining, and 
sharing such precise concepts, which admit of reasoning that can be shared, mutually checked, and 
confirmed or rejected. There are great variations in the vividness, completeness, and connectivity of 
different mental images of the “same” mathematical entity as held by different mathematicians.  And, also 
great variations in their ability to concentrate on that image and squeeze out all of its hidden information.  
Recall that well-known mathematician, Sir Isaac Newton.  When asked how he made his discoveries in 
mathematics and physics, he answered simply, “By keeping the problem constantly before my mind, until 
the light gradually dawns.” Indeed, neither meals nor sleep were allowed to interrupt Newton’s 
concentration on the problem.  Mathematicians are notoriously absent-minded.  Their concentration, which 
outsiders call “absent-mindedness,” is just the open secret of mathematical success. 

 Their reasoning is qualitatively the same as the reasoning carried out by a hunter tracking a deer 
in the Appalachian woodland a thousand years ago.  “If the deer went to the right, I would see a hoof print 
here.  But I don’t see it.  There’s only one other way he could have gone.  So he must have gone to the 
left.”  Concrete deductive reasoning, which is the basis for abstract deductive reasoning. 
 To sum up!  I have drawn a picture of mathematical reasoning which claims to make sense of 
intuition according to Hadamard and Poincare, and which interprets Polya’s heuristic as a description of 
ordinary practical reason, applied to the abstract situations and problems of mathematics, working on 
mental models in the same way that ordinary practical reasoning in absentia works on a mental model.   
(We may assist our mental images by creating images on paper—drawing pictures—that to some extent 
capture crucial features of the mental images.) 

 
Dewey and Pragmatism 

  
               Before bringing in John Dewey, the third name promised at the beginning, I must first mention 
Dewey’s precursor in American pragmatism, Charles Saunders Peirce, for  Peirce was also a precursor to 
Polya.  To deduction and induction, Peirce added a third logical operation, “abduction,” something rather 
close to Polya’s “intelligent guessing.” 

The philosophy of mathematics as practiced in many articles and books is a thing unto itself, 
hardly connected either to living mathematics or to general philosophy.  But how can it be claimed that the 
nature of mathematics is unrelated to the general question of human knowledge?  There has to be a fit 
between your beliefs about mathematics and your beliefs about science and about the mind.  I claim that 
Dewey’s pragmatism offers the right philosophical context for the philosophy of mathematical practice to 
fit into.  I am thinking especially of Logic—the Theory of Inquiry.  For Dewey, “inquiry” is conceived very 
broadly and inclusively.  It is “the controlled or directed transformation of an indeterminate situation into 
one that is so determinate in its constituent distinctions and relations as to convert the elements of the 
original situation into a unified whole.”  So broadly understood, inquiry is one of the primary attributes of 
our species.  Only because of that trait have we survived, after we climbed down from the trees. I cannot 
help comparing Dewey’s definition of inquiry with Polya’s definition of problem solving.  It seems to me 
they are very much pointing in the same direction, taking us down the same track.  With the conspicuous 
difference that, unlike Dewey, Polya is concise and memorable.  
             Dewey makes a radical departure from standard traditional philosophy (following on from his 
predecessors Peirce and William James, and his contemporary George Herbert Mead).  He does not throw 
away the concept of truth, but he gives up the criterion of truthfulness, as the judge of useful or productive 
thinking.  Immanuel Kant made clear once and for all that while we may know the truth, we cannot know 
for certain that we do know it.  We must perforce make the best of both demonstrative and plausible 
reasoning.   This seems rather close to “warranted assertibility,” as Dewey chooses to call it.   But Polya or 
Poincare are merely talking about mathematical thinking, Dewey is talking about human life itself.    

What about deductive thinking?  From Dewey’s perspective of  “warranted assertibility,” 
deductive proof is not a unique, isolated mode of knowledge.  A hunter tracking a deer in the North 
American woodland a thousand years ago concluded, “So it must have gone to the left.”  Concrete 
deductive reasoning, the necessary basis of theoretical deductive reasoning.  And it never brings certainty, 
simply because any particular deductive proof is a proof in practice, not in principle.  Proof in practice is a 
human artifact, and so it can’t help leaving some room for possible question, even possible error.  (And that 
remains true of machine proof, whether by analog, digital, or quantum computer.  What changes is the 
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magnitude of the remaining possible error and doubt, which can never vanish finally.)  In this way, we take 
our leave, once and for all, of the Platonic ideal of knowledge—indubitable and unchanging—in favor, one 
might say, of an Aristotelian view, a scientific and empirical one.  And while deductive proof becomes 
human and not divine or infallible, non-deductive plausible reasoning and intuition receive their due as a 
source of knowledge in mathematics, just as in every other part of human life.  Dewey’s breadth of vision--
seeing philosophy always in the context of experience, that is to say of humanity at large--brings a pleasant 
breath of fresh air into this stuffy room.  

Nicholas Rescher (2001) writes,  
The need for understanding, for ‘knowing one’s way about,’ is one of the most 
fundamental demands of the human condition….Once the ball is set rolling, it 
keeps on going under its own momentum—far beyond the limits of strictly 
practical necessity….The discomfort of unknowing is a natural aspect of human 
sensibility.  To be ignorant of what goes on about us is almost physically painful 
for us…The requirement for information, for cognitive orientation within our 
environment, is as pressing a human need as for food itself. (Rescher 2001) 

  The need for understanding is often met by a story of some kind.  In our scientific age, we expect a 
story built on a sophisticated experimental-theoretical methodology. In earlier times, no such methodology 
was available, and a story might be invented in terms of gods or spirits or ancestors.  In inventing such 
explanations, whether in what we now call mythology or what we now call science, people have always 
been guided by a second fundamental drive or need.  Rescher does not mention it, but Dewey does not 
leave it out.  That is the need to impart form, beauty, appealing shape or symmetry to our creations, 
whether they be straw baskets, clay pots, wooden spears and shields, or geometrical figures and algebraic 
calculations.  In Art as Experience Dewey shows that the esthetic, the concern for pleasing form, for 
symmetry and balance, is also an inherent universal aspect of humanity.  In mathematics this is no less a 
universal factor than the problem-solving drive.  In “Mathematical Discovery” Poincare takes great pains to 
emphasize the key role of esthetic preference in the development of mathematics.   We prefer the attractive 
looking problems to work on, we strive for diagrams and graphs that are graceful and pleasing.  Every 
mathematician who has talked about the nature of mathematics has portrayed it as above all an art form.  So 
this is a second aspect of pragmatism that sheds light on mathematical practice.    

Rescher’s careful development omits mathematical knowledge and activity.  And Dewey himself 
doesn’t seem to have been deeply interested in the philosophy of mathematics, although there are 
interesting pages about mathematics in Logic, as well as in his earlier books The Quest for Certainty and 
The Psychology of Number.  He may have been somewhat influenced by the prevalent view of philosophy 
of mathematics as an enclave of specialists, fenced off both from the rest of philosophy and from 
mathematics itself. 

But if we take these pragmatist remarks of Rescher’s seriously and compare them to what 
mathematicians do, we find a remarkably good fit.  Just as people living in the woodland just naturally 
want to know and find out about all the stuff they see growing—what makes it grow, what makes it die, 
what you can do with it to make a canoe or a tent—so people who get into the world of numbers, or the 
world of triangles and circles, just naturally want to know how it all fits together, and how it can be 
stretched and pulled this way or that. “Guess and test,” is the way George Polya put it.  “Proofs and 
refutations” was the phrase used by another mathematically trained Hungarian philosopher, following up an 
investigation started by Polya.  Whichever way you want to put it, it is nothing more or less than the 
exploration of the mathematical environment, which we create and expand as we explore it.  We are 
manifesting in the conceptual realm one of the characteristic behaviors of homo sapiens. 
  Even though we lack claws or teeth to match beasts of prey, or fleetness to overtake the deer, or 
.swimming, paddling and sailing, cooking and brewing and baking and preserving, and we expanded our 
social groups from families to clans to tribes to kingdoms to empires.  All this by “inquiry,” or by problem-
solving.  Dewey shows that this inquiry is an innate specific drive or need of our species.  It was manifested 
when, motivated by practical concerns, we invented counting and the drawing of triangles.  That same 
drive, to find projects, puzzles, and directions for growth, to make distinctions and connections, and then 
again make new distinctions and new connections, has resulted in the Empire of mathematics we inhabit 
today. 
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Abstract:  The  epistemologies  researchers  bring  to  their  studies  mediate  not  only  their 
theories  but  also  their  methods,  including  what  they  select  from  their  data  sources  to 
present  the  findings  on  which  claims  are  based.  Most  articles  reduce  mathematical 
knowing  to  linguistic/mathematical  structures,  which,  in  the  case  of 
embodiment/enactivist  theories, undermines  the very argument about  the special nature 
of  mathematical  knowing.  The  purpose  of  this  study  is  to  illustrate  how  different 
transcriptions  of  mathematics  lessons  are  generally  used  to  support  different 
epistemologies of mathematical knowing/competence. As part of our third illustration, we 
provide  embodiment/enactivist  researchers  with  an  innovative  means  of  representing 
classroom  interactions  that  are more  consistent with  their  theoretical  claims. We offer  a 
comprehensive  transcription, which, when  treated by  readers  in  the way musicians  treat 
their scores, allow them to enact and feel the knowledge that the article is about.  
 
Keywords:  Transcribing • Epistemology • Enactivism • Performance  
 
 
1. Introduction 
1.1. The problematic: theories and research data 
  Our theories about knowing and learning mediate how we look at the world generally, 
and  at  the  data  sources  we  collect  as  part  of  mathematics  education  research  more 
specifically.  The  currently most  dominant  theories  have  come  to  us  through  a  lineage  of 
work from Kant to Piaget and (radical, social) constructivism. In these theories, knowing is 
thought  of  in  terms  of  a mind  that  constructs  itself  (e.g.,  von  Glasersfeld,  1991),  or  as  a 
“collection  of  minds”  that  first  construct  knowledge  together  before  constructing  it 
individually  (e.g.,  Cobb,  1999).  More  recently,  embodiment  (Lakoff  &  Núñez,  2000)  and 
enactivist  theories  (Davis, 1995) have been proposed  to mathematics educators.  In  these 
theories, knowing is not supposed to be reduced to the mind that constructs itself but is to 
be considered  in terms of mind that arises  from intentional bodily engagements with the 
world.1 Embodiment theorists tend to focus on the relation between sensorimotor schemas 
–  e.g.,  the  source‐path‐goal  schema  –  and  similar  structures  in  language.  The  transition 
between the two, that is, the transformation, is said to occur by metaphorization processes. 
Empirical support for each of these theories is provided by particular data produced in and 

                                                        
1 It has been shown that the very framing of embodiment/enactivist theories in terms of intentions, 
material body, and world gets us further into metaphysics and body mind distinctions rather than 
out of it (Henry, 2003). A way of framing a non‐metaphysical theory of mathematical cognition has 
been proposed (Roth, 2010a, in press). 
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through  mathematics  education  research,  presented  in  the  form  of  transcriptions  of 
communicative  situations  –  e.g.,  clinical  interviews,  classroom  conversations,  or  written 
tests.  In  this  article, we  show  that  some of  these  transcription  forms do not  support  the 
theories  they  are  intended  to  support  and  other  forms  of  transcriptions  contain 
interactional detail that some but not other theories can explain. In the following section, 
we provide an example of enactivist/embodiment theories. 
 
1.2. Data and epistemology: the case of enactivist/embodiment theories 
  Enactivist  scholars  tend  to  encapsulate  their  theories  around  the  diction  knowing  is 
doing. Many mathematics educators do not buy into enactivist/embodiment theories. Thus, 
for example, one critic (rightfully) questions the sources of the metaphors offered by Lakoff 
and Núñez:  “Do  they  really  form  a  natural  basis  for  our  thinking,  or  are  they  the  logical 
creations of the authors, who are trying to develop a consistent epistemology” (Dubinsky, 
1999,  p.  557).  For  embodiment/enactivist  theories  to  become  reasonable  alternatives  to 
going conceptualizations of mathematical knowing –  those  fundamentally based  in Kant’s 
analyses  –  they  have  to  show  that  there  is  a necessary  link  between moving  about  (and 
sensing)  in  the  world,  on  one  hand,  and  understanding  mathematical  concepts,  on  the 
other.  However,  the  nature  of  their  data  and  way  in  which  embodiment/enactivist 
mathematics educators present these works against them. This idea constitutes the starting 
point of the present article.   
  To  sharpen  the  problematic  of  the  relation  between  data  and  theory,  consider  the 
following  example.  The  paper  that  introduced  many  mathematics  educators  to 
embodiment presents the mathematical idea of continuity as a case study (Núñez, Edwards, 
&  Matos,  1999).  Paradoxically,  their  article  consists  entirely  of  text  and  mathematical 
formalism – e.g., the statements “limx→a f(x) = L” and “if 0 < |x – a| < δ, then |f(x) – L| < ε.” In 
that  article,  therefore,  knowing  mathematical  continuity  is  reduced  to  language  and 
language‐like  formulations.  That  is,  despite  the  rhetoric  about  the  embodiment  of 
mathematics,  the  authors  only  appeal  to  our mind  and  obliquely  point  to  the  embodied 
dimensions of knowing without directly addressing or appealing to them. Moreover, it may 
be  that  culturally  and  historically  these  formulations  have  been  derived  from  embodied 
experiences; but  this does not necessitate  similar experiences on the part of mathematics 
learners who live today (Husserl, 1997).  
  It  is  not  surprising,  therefore,  that  mathematics  educators  ask  what  embodiment 
theories  –  to  take  but  one  example  –  have  to  offer  to  the  teaching  and  learning  of 
mathematics (Dubinsky, 1999). Children may learn about cylinders without having had the 
same experiences as early Greek mathematicians and mathematics learners, for whom the 
concept  arose  from  the  experience  of  rolling  objects  metaphorically  extended  to  the 
concept  “cylinder.”  The  ancient  Greek  used  this  experience,  associated  with  the  word 
kúlindros, roller, derived from the verb kulíndein, to roll to develop the mathematical‐deal 
concept of the cylinder. In fact, the Greek word has even more ancient roots in the Proto‐
Indo‐Germanic  (s)kel,  to  bend,  crooked.  That  is,  for  the  Greek,  the  word  kúlindros 
(cylinder) was  an  active  rather  than  a  dead metaphor,  a  term  that  has  been  carried  (Gr. 
férein) across (Gr. meta) from the everyday experience of rolling things to the mathematical 
entity. 
  In our viewpoint,  the main argument of embodiment/enactivist researchers would be 
much  stronger  if  the  data  they  produce  actually  forced  readers  to  mobilize  forms  of 



  TMME, vol8, nos.1&2, p .53 
 

knowing  that  cannot  be  reduced  to  linguistic/mathematical  structures.  Similarly, 
perception  constitutes  a  form  of  consciousness  that  reflects  reality  differently  than 
intellectual (verbal) consciousness, leading to the fact that the former cannot be reduced to 
latter (Merleau‐Ponty, 1945; Vygotsky, 1986). A verbal transcription of an event, therefore, 
never  renders  those  aspects  in  which  perceptual  consciousness  differ  from  intellectual 
consciousness. On the other hand, more advanced forms of transcriptions just might exhibit 
structures that (radical, social) constructivist can no longer explain, or for which they need 
to  develop  extensions  of  their  theory  so  that  it  continues  to  provide  a  viable  account  of 
mathematical knowing. 
 
1.3. Purpose 
  In  this  article,  we  present  different  approaches  to  representing  mathematical 
communication  (knowing)  and we  show  how  the  resulting  transcriptions  offer  different 
forms of data that support some but not other epistemologies. Besides, , and most relevant 
to  our  own  work  and  theoretical  commitments,  we  develop  a  means  for 
embodiment/enactivist  mathematics  educators  to  show  which  aspects  of  the  body  are 
necessary for understanding formal mathematics. Our representations of lesson fragments 
relate to knowing mathematics as musical scores relate to the performance of a symphony. 
That is, we suggest that if someone is capable to read a score, this does not mean that the 
person knows, or knows how to play, the music with an instrument. This reader does not 
inherently  know  what  the  person  referred  to  in  the  score  has  exhibited  in  his/her 
performance.  Just  as  the  (practical)  performance  of  the music  cannot  be  reduced  to  the 
symbols  of  the  score  (notes,  figures,  etc.),  the  mathematical  performance  cannot  be 
reduced to the words that appear in transcriptions.  
 
2. Knowing and representations thereof  
  Historians  (e.g.,  Kuhn,  1970)  and  sociologists  of  scientific  and mathematical  knowing 
(e.g.,  Barnes,  Bloor,  &  Henry,  1996)  have  shown  that  there  exists  an  interactional 
relationship between theories and observation. This relationship has been captured in the 
diction that “If observation is  ‘theory‐laden,’ theory is  ‘observation‐laden’” (p. 92). Such is 
not only  the case  for mathematics and science but also  for research  in mathematics (and 
science)  education.  Our  (authors’)  own  commitments  are  to  embodiment  and  enactivist 
theories of cognition. But we have realized only of late that the real issue in the debate may 
be due  to  the nature of  the data: enactivist/embodiment  researchers do not produce  the 
kind of data that would show the necessity of the body in and to mathematical knowing. We 
therefore present the background to the present problematic of data and theory in terms of 
our own theoretical commitments. 
 
2.1. Practical understanding and formal knowledge 
  On  both  cultural‐historical  and  ontogenetic  scales,  knowing‐how  in  (practical 
understanding of) the world precedes formal theories. Thus, everyday understandings and 
the measurement  of  objects  and  places  preceded  and  constituted  the  grounds  of  formal 
geometry  in ancient Greece (Husserl, 1939). Children  learn  to speak their mother  tongue 
without  knowing  any  formal  grammar  whatsoever.  High‐performance  athletes,  such  as 
football or soccer players, do not have  to know an ounce of physics  to make a successful 
pass even under the most adverse, weather‐related conditions. Practical mastery generally 
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does  not  require  symbolic  mastery.  However,  when  tennis  or  golf  players  do  want  to 
change  the  way  in  which  they  play  their  balls,  then  they  often  seek  a  different  form  of 
understanding. They think about their play; and this thinking requires signs for a mediated 
access  to  their  practical  understanding.  Yet  it  is  also  widely  known  that  while  they  are 
conscious of their play, these athletes tend to play worse than they have done before or will 
afterward.  That  is,  symbolic  (conscious)  access  interferes  with  the  playing  itself,  which 
tends to be based on unmediated relations between players and their lifeworld. However, 
the symbolic access to practice is required to think about what one is doing.  
  In  the  history  of  human  practices,  these  symbolic  forms  of  knowing  –  i.e.,  symbolic 
mastery  –  began  to  separate  from  the  practical  understanding  of  the  world.  Thus,  for 
example,  formal  architecture  began  to  develop  and  separate  from master  craftsmanship 
around the time that the great Gothic cathedrals were built (Turnbull, 1993). Prior to the 
separation,  the  craftsmen  had  no  plans  or  knowledge  of  structural  mechanics.  The 
cathedrals were  built  based  on  the  bodily  embodied design  skills  of  the master  artisans, 
working with templates, strings, and embodied geometry in the context of a community of 
artisans.  From  the  occupation  of master  craftsmen  evolved  architects,  and  craftsmen  no 
longer did design. The new architects  concentrated on designing buildings,  including  the 
ways  in which  the  strength  and  stability  of  the walls  had  to  be  increased  to make  them 
larger  and  larger.  There  is  therefore  a  separation  between  practical mastery  of  building 
cathedrals and symbolic mastery underlying the construction thereof. In a similar way, the 
peoples around the world developed and played different forms of music before developing 
means  of  representing  music  in  a  formal  way  (Treitler,  1982).  The  point  that 
enactivist/embodiment and practice theorists make is that formal mastery requires some 
form of practical (embodied and enacted) understanding of the world that is always present 
and in fact required by formal mastery. However, it is precisely this latter part that scholars 
in the field do not make apparent and evident in their presentations. 
  In  the  theory  of  textual  interpretation,  it  is  well  known  that  explanation  requires 
practical  understanding  of  the  world  (e.g.,  Ricœur,  1991).  Thus,  the  practice  of  textual 
interpretation  involves  two moments  that mutually  constitute  each  other.  On  one  hand, 
there  is  practical  understanding  that  we  evolve  while  and  through  participating  in  the 
world.  For  example,  children  learn  to  speak  a  language  and  to  count  before  knowing 
grammar  or  arithmetic.  On  the  other  hand,  there  is  explanation.  The  point  theorists  of 
hermeneutics  make  is  that  explanation  cannot  occur  without  practical  understanding, 
which precedes, accompanies, and concludes explanation. That is, practical understanding 
completely envelops explanation; but it is through explanation that practical understanding 
is  developed.  Thus,  children  already  have  to  speak  language  before  they  can  engage  in 
explaining how  language works –  that  is, before  they  learn grammar.  It  is evident  that  to 
know formal grammar, one has to know language – without  language,  there would be no 
need to theorize something like language, there would be no way of asking the question of 
formal versus practical understanding, and so forth.  
  The  same  point  has  been  made  in  a  study  of  categorization  in  the  social  sciences 
(Garfinkel,  1967).  Graduate  students  in  sociology  had  been  asked  to  categorize  medical 
records  according  to  a  set  of  criteria  that  the  supervisors  of  the  research  project  had 
created.  The  purpose  of  the  project was  to  find  out  how hospitals worked  based  on  the 
records that the various personnel created in the course of a patient’s trajectory. It turned 
out  that  the  graduate  students,  in  their  classification  work,  drew  on  the  very  type  of 
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knowledge that the study was to yield from an analysis of the hospital records. That is, the 
graduate students drew on their practical understanding of hospital work and organization 
to  classify  the  records  such  that  the  researchers  could  find  out  about  the  practical 
understanding  that makes  hospitals  work  the  way  they  do.  The medical  records  simply 
constitute formal representations; and to understand them, the practical understanding of 
how hospitals work is required.  
 
2.2. Mathematical representation and mathematical work 
  The  relationship  between  practical  understanding  and  formal  representation  thereof 
has been conceptualized as the relation between practical action – i.e., work – and its formal 
representation  –  i.e.,  the  ways  in  which  it  is  accounted  for  (Garfinkel  &  Sacks,  1986). 
Formally,  this  relation,  for  the  proof  of  the  sum  of  the  interior  angles  of  a  triangle,  is 
represented in the form of “doing [proofing that the sum of the internal angles of a triangle 
is 180 degrees].” Here, “doing” designates the work for which “proofing that the sum of the 
internal  angles  of  a  triangle  is  180  degrees”  are  the  notational  particulars.  Take  the 
diagram in Figure 1. It can be taken as the notational particulars of a proof that the sum of 
the  internal angle of a  triangle  is 180 degrees. But  these notational particulars constitute 
only the formal representation. They do not denote the actual work of doing the proof. That 
is, the formal representations stand in as accounts of the work but do not denote the work 
itself,  and,  therefore,  they  do  not  denote  the  knowing  underlying  the  production  of  the 
account (Garfinkel, 1996). Knowledgeable readers will easily show, using Figure 1, why the 
sum of the internal angles of a triangle has to be 180 degrees. And it is precisely this bodily 
and embodied work they do in such a showing that constitutes practical understanding of 
mathematics (geometry). It is precisely this work that embodiment/enactivist mathematics 
educators  do  not  sufficiently  analyze,  show  the  structure  off,  and  theorize.  If  this  work 
requires forms of knowing that are not present in the account (e.g., Figure 1), especially, if 
it  involves  embodied  forms  of  knowing  (e.g.,  sensorimotor  knowing)  that  have  to  be 
enacted  in  the  process  of  doing,  then  there  exists  the  necessary  condition  for  formal 
mathematics.  But  these  are  precisely  the  kinds  of  data  lacking  in  current 
enactivist/embodiment  accounts  of  mathematical  knowing  because  the  transcriptions 
offered do not point readers to or require the enacting of the work. It is only in doing such 
work that a person can feel what it means to do mathematics. 
 
 

 
 
Figure 1. Account of proof that the sum of the internal angles of a triangle (on the Euclidean 

plane) is 180°. 
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  This  way  of  thinking  about  mathematics  also  allows  us  to  understand  the  debate 
between Núñez (e.g., 2009) and his critics (e.g., Goldin, 2001). The former points out that 
the structures of mathematics – e.g., the different notions of continuity – are the results of 
cultural‐historical  contingent  metaphorization  processes  whereby  practical,  bodily  and 
embodied understandings of continuity lead to formal, objective mathematics that anyone 
can  reproduce  anywhere  in  the  world.  The  critics  however  focus  on  the  formal 
representations, the diagram (Figure 1) and the fact that the sum of the internal angle of a 
triangle is 180 degrees. This representation is objective in the sense that the proof can be 
reproduced over and over again, and each time the result is 180 degrees. This constitutes 
the  objective  part  of  geometrical  science  (Husserl,  1939).  For  Núñez  it  is  the  embodied 
work that matters; but it is precisely the work that is not represented in or pointed to by 
his  transcriptions.  Thus,  we  (authors)  find  that  embodiment/  enactivist  mathematics 
educators have by and large failed to provide accounts in which the nature of this work has 
become available. They have failed because they offer up formal properties (e.g., Núñez and 
colleagues on continuity) and verbal descriptions rather than the non‐formal properties of 
mathematical  communication  that  underlie  and  ground  the  formal  ones.  What  such 
scholars must offer to be more convincing are representations of mathematical activity that 
allows access to and shows the necessity of the practical, bodily and embodied dimensions 
of mathematical work.  
  The  purpose  of  this  article  is  to  exhibit  a  form  of  transcribing  mathematical 
communication  that provides  readers with  access  to  the bodily  and embodied work  that 
one can feel when doing mathematics. We propose a kind of transcription that is something 
like a recipe, which does not in itself represent the work but provides guidance for action. 
In  doing  what  the  transcription  denotes,  through,  and  with  their  own  embodied 
performances,  readers  perform  the  mathematical  communication  presented  in  the 
transcription. Whether they have successfully followed the transcription can be established 
only after the fact. That is, like with any recipe or musical score, the formal representation 
is not a causal antecedent of the work, though it is a resource in and for the practical action 
(Suchman,  1987). A  simple word‐by‐word  transcript  of  a  lesson may not be  sufficient  to 
exhibit what students  in a mathematics classroom actually know.  It will exhibit even  less 
the didactical skill of a teacher, who may know, just because of the way a student speaks in 
an  interaction, whether  the  student  speaks with  certainty, whether  she  likely or unlikely 
knows, and so on. This, then, is precisely our point of departure for developing transcripts, 
which we suggest should be used as scores that readers have to enact rather than just read 
– much  like  a musician who  picks  up  the  instrument  and  plays  a  tune  rather  than  read 
sheet music  and much  in  the way  a  (hobby)  cook  actually makes  a dish  rather  than  just 
read a recipe book and marvel at the accompanying images. 
 
3. Representing mathematical communication/knowing 
  In  this  section,  we  provide  a  fragment  from  a  second‐grade  geometry  lesson  to 
exemplify  the  kinds  of  data  that  different  forms  of  transcriptions  make  available.  We 
provide  sample  analyses  that  the  proposed  transcription  supports  and  that  the  analyses 
can  explain.  We  show,  for  example,  how  a  particular  kind  of  transcription  supports 
constructivist  claims  about  stable  knowledge  structures; we also  show  that  this  requires 
particular  reductions where  any  temporality  is  removed  from  the  transcription. We  are 
specially  interested  in producing  transcription and transcription use  that  lead to a better 
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understanding  on  the  part  of  researchers  of  precisely  what  the  students’  knowledge 
consists  in. Our  contention  is  that  if  researchers only  focus on what  can be presented  in 
text, they know very little about what precisely the interaction participants know.  
  The  fragment was  randomly  selected  from 30  hours  of  recordings  in  a  second‐grade 
mathematics  class  in  the process of  completing  a unit  on  three‐dimensional  geometry.  It 
derives  from  a  lesson  in  which  children  were  provided  with  a  shoebox  containing  a 
“mystery object.” The object could be reached and touched through a hole in the shoebox 
but not seen, as there was a plastic bag taped to the inside. That is, the children could only 
touch/feel the object by sticking their hand through the hole and into the plastic bag, which 
separated their hands from the object. The video shows the three girls – Sylvia (S), Jane (J), 
and Melissa (M) – at a large, round table on which their shoebox is placed (Figure 2). The 
research  assistant  Lilian  (L)  videotaping  this  group  also  participates  in  the  conversation 
transcribed. From the beginning of the modeling task, Melissa has repeatedly said that she 
feels  a  cube;  and  she  has  built  a  cube  from  her  lump  of  plasticine.  Jane  and  Sylvia  have 
formed rectangular prisms of similar shape from their respective plasticine lumps. But the 
teacher explicitly has  instructed  the students  to produce one and  the same model and,  if 
there is disagreement about its shape, to discuss until they reach agreement. The fragment 
picks up when Melissa asserts once again that she “thinks it is a cube” just as she pulls her 
right hand back  from the shoebox after another  trial of  feeling  the mystery object.  In  the 
following,  we  provide  three  takes  on  the  fragment  leading  up  to  a  different  form  of 
representing  the events with  consequences  for  the kinds of  conclusion  that  can be made 
and are supported by the fragment.  

 
Figure 2. Sylvia, Jane, and Melissa (from left to right) are in the process of building models 

of the mystery object inside the shoebox.  
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3.1. Take 1: logocentrism 
  Most  transcriptions  that  appear  in  mathematics  education  journals  reduce  events  – 
lesson,  interviews,  or  problem‐solving  sessions  –  to  the  transcription  of  the words  said, 
augmented  by  ethnographic  descriptions  of  actions  and  context  where  necessary. 
Moreover, the words are not taken for and by themselves but rather as indices pointing to 
something else not directly present: “meaning,” “conception,” or “idea.” It is precisely these 
two  strategies  that  lead  to  the  separation  of  body  and  mind  and  lend  themselves  to 
Kantianism and other constructivist theories (Henry, 2003; Nancy, 2007).  
  Transcribing videotape by using only words flattens the observed events into language. 
The  ancient  Greek  originally  used  the  term  logos  for  language  and word;  they  later  also 
used it to denote reason, a use that has survived to the present day sedimented in the term 
“logic”  (Heidegger,  2000). By  transcribing  events  into words, we obtain  a  representation 
thereof where everything that exists is named and, being in the form of words, is reduced 
to  the  form  of  intellect  and  reason.  In  the  philosophical  critique  of  metaphysics,  this 
tendency to reduce everything to words and reason (i.e., logos) has come to be denoted by 
the term logocentrism (Derrida, 1967), a way of thinking about being that has its origin in 
the ancient Greek culture and has shaped the Western way of relating to the world. That is, 
the idea of rational thought apart and independent from the material world, metaphysics, is 
bound up with the practice of reducing complex situations to words and verbal description. 
 
3.1.1. Producing the transcription 
  To produce transcriptions of this first type requires little else than playing a video and 
noting the words heard. Generally, we produce such transcriptions using a digital video file 
(.mov  format)  and  then  transcribe  the  words  we  hear  directly  into  a  word  processing 
program. Where transcribers hear someone speaking but without being able to make out 
specific words, question marks are used to indicate the approximate number of words (e.g., 
<??>  to  indicate  two  words).  The  transcriber  also  inserts  verbal  descriptions  of  actions 
where  appropriate  or  necessary.  Many  transcribers/researchers  also  insert  punctuation 
that  follows  common  grammatical  practices.  That  is,  where  the  transcriber  hears  a 
question, a question mark will be  inserted at  the end of  the sentence  independent of  the 
fact  how  participant  listeners  have  heard  the  current  speaker  as  evidenced  in  their 
subsequent turns. 
 
Transcript 1  
01 M: ((after putting her hand in the box for a while)) I still think it is a 

cube.  
   ((The whole group pauses))  
02 S: Let me check ((puts her hand into box)). 
03 L: Why do you think it is a cube? 
04 M: Because it’s the same; it’s the same ((turns her model over in her 

hands)). 

 
3.1.2. Reading, analyzing, and theorizing the transcription 
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  Characteristic of this form of transcript is the removal of temporality of all dimensions 
of participants’  action, not only  regarding  the production of  their  talk but  also  regarding 
their physical behavior  (e.g.,  gestures,  body position,  transactions with physical  object/s, 
gaze  orientation).  As  readers  can  see,  the  transcript  presented  above  is  reduced  to  the 
order  in  which  words  have  been  pronounced.  The  verbal  description  of  the  hand/arm 
movement no longer renders the temporality of the movement and is not coordinated with 
the temporal unfolding of the speech. Because temporality has been removed, the forms of 
thought said to be “behind” the utterance are taken to be relatively constant over the length 
of a  typical  lesson or  interview. Such a description, by and  large static,  facilitates making 
claims  about  “conceptions”  and  “conceptualizations”  that  can  be  sampled 
unproblematically in an interview. Researchers tend to make no difference between some 
word used at the beginning, in the middle, or at the end of an interview. 
  Most mathematics education researchers take such transcriptions and infer “meanings” 
and “mental structures” that somehow are in the speakers’ minds and that have led them to 
say what they said. For example, a mathematics educator interested in our work took the 
video and  transcript,  concluding  from  the  episode  that  “Melissa  (initially)  conceptualizes 
the  mystery  object  as  a  cube.  She  bases  her  conclusion  on  the  tactile  observations  she 
makes  by  turning  the  object  over  and  ‘checking  the  sizes’  of  its  faces.”  Here,  the  verbal 
articulations  and  descriptions  of  movements  become  indices  for  something  that  is  not 
directly available. On one hand, there is Melissa saying, “I still think it is a cube,” and on the 
other the mathematics educator claims that “Melissa (initially) conceptualizes the mystery 
object as a cube.” The relation between word and thought (mind) is taken to be as a rather 
simple  one,  the  former  providing  access  to  the  latter.  Thus,  in  mathematics  education 
research, verbal transcriptions of interviews and classroom videotapes are regularly used 
to find out what and how students think, how they solve problems, or how they “construct” 
their mathematical mental structures (or, conceptions, representations, or even identities). 
 
3.1.3. Discussion 
  Nearly  80  years  ago,,  it  has  already  been  suggested  that  “thought  is  not  merely 
expressed  in words  .  .  .  the  structure  of  speech  does  not  simply mirror  the  structure  of 
thought  (Vygotsky,  1986,  p.  218–219).  All  three  –  speech,  thought,  and  the  relation 
between the two – are processes. We do not see any evidence for a conceptualization, unless 
simple word use is taken to be synonymous with conceptualizing something. Instead, there 
is  evidence  for  the  fact  that  students  and  adult  talk  about  phenomena  even  before  they 
have  thought  about  and  reflected  upon  some  idea  (phenomenon,  topic),  and,  therefore, 
could not have formed (i.e., “constructed”) a concept (Roth et al., 2008). Rather, thought is 
the consequence of speech, comes to existence through speech. Moreover, whereas it might 
be  appropriate  to  say  that Melissa  “turned over  the  cube,”  the  simple description of  this 
action in words may overstate the issue. For Melissa may have turned the cube in the way 
we walk or scratch an itchy spot: it does not require our conscious intentional thought. We 
also  do  not  know  whether  Melissa  was  intentionally  “‘checking  the  sizes’  of  its  faces.” 
Rather, we observe her using the thumb and index of the right hand in apparently the same 
or slightly changing configuration along three different edges of the cube while articulating 
that  some  “it”  –  which  we  do  not  know  whether  it  is  an  edge,  a  face,  her  cube,  or  the 
mystery object – “is  the same.” That  is, as soon as something  is articulated  in words,  it  is 
moved from the realm of Being, presence, and presentations into that of beings, present of 
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the present, and re‐presentations (Heidegger, 2000). Moreover, in this realm, it is subject to 
verbs that inherently embody intentionality (Henry, 2003). 
  This kind of transcript is consistent with a constructivist approach, which, at least since 
Kant, is concerned with abstractions and abstract thought. In Piaget’s theory, we find this 
gesture((what gesture??)) in the development from concrete operations that lead to formal 
thought  as  embodied  sensorimotor  schema  are  abstracted  and  become  the  pattern  for 
logical  thought.  It  is  also  a  description  that  runs  counter  to  the  epistemologies  of 
embodiment  and  enactivism  because  it  emphasizes  a  conscious  mind  and  mental 
structures  in  situations  that may not be appropriate. Thus, whereas  it  is  evident  that we 
would not characterize a person as consciously placing feet in walking, there is a tendency 
in  mathematics  education  research  to  use  an  intentionalist  discourse  when  it  comes  to 
describe what children/ students do  in  the mathematics classroom:  “construct meaning,” 
“develop  conceptions,”  “acquire  knowledge,”  “position  themselves,”  “construct  identity,” 
and so on.  Interestingly,  though, scholars  interested  in mathematical cognition  from both 
embodiment  and enactivist  camps,  too, make use of  such  transcriptions,  thereby doing a 
disservice  to  their  argument.  It  is  not  surprising  then  that many mathematics  educators 
opposed do not buy  into embodiment and enactivist  theory,  as everything  there  is made 
available in such transcription is at the verbal level itself an image of the concepts thought 
of in metaphysical, linguistic terms.  
 
3.2. Take 2: sequential analysis of turn taking 
  The  afore‐described  constructivist  inferences  are  inconsistent  with  social/cultural‐
historical  theory  that  theorizes  speech  (communication)  and  thought  as  continuously 
developing processes  that mediate  their  respective developments  (Vygotsky, 1986). That 
is,  thought and speech are different,  incompatible expressions of some higher order unit; 
and  they are processes. Thus,  from such a perspective we have  to  take Transcript 1 as a 
temporal event in which not only speech unfolds from top to bottom but thought as well. 
Moreover,  in  such  a  theory,  gesture  and  speech  are  dialectically  related;  they  are 
manifestations of a higher order communicative unit rather than precisely corresponding 
to  each other  (McNeill,  2002). That  is,  as  speech unfolds  so do gestures;  and  speech and 
gesture mediate  their mutual  development  in  the  same way  as  speech  (communication) 
and  thought.  In  this  section, we provide a  form of  transcription and approach  that  lends 
itself to viewing thinking, speaking, and their relation as processes. 
  We begin this second take by representing the fragment in an augmented way typical of 
conversation  analysis.  This  transcription  form  includes  all  the  sounds  produced,  pauses, 
hesitations,  respiration,  prosodic  information,  and  emphases  (see  Transcript  2).  The 
approach  is  grounded  in  a  history  of  ideas  of  language  philosophy  that what matters  to 
understand  language  are  not  “meanings”  but  the  ways  in  which  words  are  used 
(Wittgenstein, 1958). Subsequent developments in language philosophy focused on speech 
acts (Austin, 1962). A speech act consists of three parts: locution, illocution, and perlocution. 
Locution  refers  to  the  act  of  saying  something,  illocution  to  the  intent  (asking,  ordering, 
responding),  and  perlocution  to  the  effect.  In  any  concrete  analysis,  the  effect  that  a 
locution has on others in the setting is available only in and through their subsequent acts. 
Consequently,  to  understand  a  speech  act,  researchers  have  to  take  the  turn pair  as  the 
minimal unit of analysis. That is, it is no longer possible to attribute speech to an individual 
because  a  speech  act  is  inherently  spread  across  multiple  participants,  across 
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speakers/audiences. This is consistent with a conceptualization of discourse in which any 
utterance  straddles  speaker  and  listener,  where  any  word  –  spoken  for  the  benefit  of 
another  –  belongs  to  both  speaker  and  listener  (Bakhtine  [Volochinov],  1977;  Derrida, 
1996). This way of  approaching  transcription and  its  interpretation  therefore  focuses on 
understanding this event as unfolding event, as something living and lived, rather than on 
purported  structures  of  individual  minds  whose  contributions  to  the  conversation  are 
independent of those of others.  
 
3.2.1. Producing the transcription 
  Notice how Transcript 2 adds features that were not present in the first transcription. 
(The differences  in  the  text  itself  derive  from  the  fact  that  the original  transcription was 
done  by  someone  else,  and  subsequent  enhancements  revealed  problems  in  the  original 
hearing.)  For  example,  pauses  within  speaking  turns  and  between  speaking  turns  are 
measured  and  indicated  to  1/100th  of  a  second.  The  transcription  also marks  emphases 
(capitalization),  partial  sounds  (“sti”),  mispronunciations  (“cob”)2,  extended  sounds 
(colons), and trends of the pitch (punctuation). Thus, the transcription renders aspects of 
the  real  time  production  of  speech;  that  is,  it  contains  the  mumbles,  stumbles,  stutters, 
breathings,  malapropisms,  metaphors,  and  tics  characteristic  of  everyday  speech. 
Conventions to produce this kind of transcripts can be found in Appendix A. 
 
Transcript 2 
01 M: ((pulls rH out of box, pushes it away)) I sti (0.18) I s::TILL think it 

is a cube. 
02   (1.66) 
03 S: ((S picks the box, turns it, reaches in)) LET me CHECK. 
04 L: WHY do you think its a CJOB (.) CUBE. 
05   (0.20) 
06 M: CAUSE like (0.31) the SAME ((turns cube and has caliper grip with 

thumb/index)) (1.13) its the SA::ME shape.  
07   (1.55) 
08 S: WHERE i:s IT; ((reaches into the box)) 

 
  The  production  of  such  transcriptions  begins with word‐by‐word  renderings  such  as 
those  in  Transcript  1  but  with  punctuation  removed,  as  it  is  used  to  mark  the  pitch 
tendency within  the  locution. We  export  the  sound  from  the  video  into  an  audio  format 
(.aif)  so  that  it  can  be  imported  into  a  program  for  linguistic  analyses.  A  freely 
downloadable,  multi‐platform  package  frequently  used  by  linguists  is  PRAAT 
(www.praat.org).  It  allows  precise  timing  of  pauses  in  speech,  measurement  of  speech 
intensities (volume), pitch (F0) levels, and speech rates. Speech emphases can be heard and 
–  because  these  are  produced  by  means  of  changing  intensity,  pitch,  or  rate  –  can  be 
verified by visual inspection of the PRAAT display. The display also allows identification of 
pitch  jumps  and  within‐word  movements,  which  are  indicated  in  the  transcript  using 
specific  signs.  The  conventions  used  follow  published  conversation  analytic  conventions 
that are enhanced for the analysis of prosody (Selting et al., 1998). 

                                                        
2 The research assistant, Lilian, is a native Portuguese speaker. In that language, cube is cubo. An 
interference might have occurred between the pronunciations of cube (IPA: kju:b) and cubo (kubó).  
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  In those instances where visual  information is relevant, screen prints or drawings are 
imported  into  the  transcription  or  provided  in  an  accompanying  figure  (see  below).  The 
precise  timing of  the visual  information with  the speech  is  indicated  in  the  transcription. 
When  drawings  are  used  instead  of  screen  prints  –  which  may  be  to  implement 
confidentiality or  to  feature only essential  information while dropping gratuitous detail – 
the off print is imported into Photoshop. A second layer is created and an outline copy of 
the  essential  information  is  produced using  the  “paint brush”  (see Figure 2,  3).  To make 
essential elements stand out even further than they would in a pure line drawing, different 
degrees of shading may be used.  
 
3.2.2. Reading, analyzing, and theorizing the transcription 
  Focusing on the second transcript presented, we first note that the locution in turn 01 is 
not fluent. There is a beginning “I sti,” a pause, another beginning with drawn out “s” before 
the remainder of the word “still” is completed followed by “think it is a cube” that will have 
completed  the  locution.  (We  never  know  whether  some  word  constitutes  the  end  of  a 
locution  or  speaking  turn  until  some  next  speaker  begins  to  speak,  or  until  the  same 
speaker takes another turn at talk.) Both the repeated articulation of the personal pronoun 
“I” and the second part of the word “sTILL” are articulated with emphasis (as indicated by 
the  capitalization).  This  utterance  cannot  be  understood  on  its  own  because,  from  a 
conversation analytic and speech act  theoretic perspective,  it  is only the second part of a 
unit, the first part of which is not available in this transcription. In a fuller consideration of 
the entire episode, a researcher would focus on the emphases, which produce contrasts to 
the different  claims  that Sylvia and  Jane have made and which make  salient  that Melissa 
already has repeatedly made statements about the mystery object as a cube. 
  Melissa’s turn is the first part of what turns out to be two turn pairs. Sylvia says, “Let me 
check,” which allows us to hear the pair of turns as a constative/verification speech act. In 
fact, Sylvia not only says “let me check,” but also pulls the shoebox over close to herself and 
sticks her hand into it. Her verbal articulation is a formulation of the action: Sylvia not only 
reaches  into  the  box  but  she  formulates  for  others  what  she  is  doing,  that  is,  the  she 
articulates the intent. She makes explicit and available to her audience a verbal description 
of  the  illocutionary act. Her reaching  into  the box  is  formulated as an action  that has  the 
intent of checking. Because of the pairing of turns, the checking is heard with respect to the 
constative “it is a cube.”  
  The second turn pair exists  in the sequence with Lilian,  the research assistant, who is 
also acting as the teacher of this small group of students. We can hear turns 01 and 04 to 
constitute a sequence, because Lilian’s locution “Why do you think it is a cube” picks up on 
and  repeats  the  contents  of Melissa’s  utterance.  Interestingly,  the  transcription  indicates 
that  the  pitch  is  falling  toward  the  end  of  the  locution,  which  is  typical  for  constative 
phrases.  But  the  fact  that  the  interrogative  adverb  “why”  is  articulated  with  emphasis 
allows us to hear a constative/request‐for‐justification speech act: “I still think it is a cube” 
is followed by “Why do you think it is a cube?” This hearing is consistent with the next turn 
sequence, which we can hear as a question/response pair: “Why do you think it is a cube” is 
followed  by  a  coordinating  conjunction  “[be]cause,” which  introduces  a  reason,  “like  the 
same . . . it’s the same shape.” 
  This form of transcript in the hands of conversation analytically informed researchers, 
therefore, allows readings that focus on the unfolding nature of the event. Such researchers 
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also  focus  on  analyzing  pairs  of  turns,  that  is,  on  the  effect  a  locution  has  on  the  other 
participants  as  their  actions make  it  available  to  everyone  else.  There  is  a  focus  on  the 
sequential enchainment of locutions (utterances), where turn pairs constitute the minimal 
unit. This kind of analysis is process oriented, allowing us to understand the constitution of 
this segment. What matters is – consistent with Wittgenstein’s (1958) language philosophy 
– how words are used rather than purported and never accessible “meanings” behind the 
word.  Moreover,  from  a  discursive  psychological  perspective,  Melissa’s  and  Lilian’s 
reference  to  thought  processes  (“I  still  think,”  “Why  do  you  think?”)  are  taken  to  be 
everyday ways of reasoning where psychological concepts are invoked for the purposes at 
hand. Such researchers are little interested in purported contents of the mind; instead, they 
focus on  the mobilization of psychological discourses  for  the purposes of  the situation at 
hand (Edwards & Potter, 1992). 
  From  a  conversation  analytic  perspective,  Melissa’s  “I  think”  is  taken  to  be  a 
formulation of  the work  she  is/has been doing at  the  instant,  and Lilian  is  taking up  the 
self‐description as a way of referring to the same work description. It is not the researcher 
who  imputes  thought  processes  –  as  in  the  preceding  section,  where  a  mathematics 
educator imputes conceptions – but it is one of those ongoing descriptions that interaction 
participants  provide  to  articulate  the  situation  together  and  for  one  another  with  the 
content. Here,  the content  is  the nature of the model Melissa has built, and its relation to 
the  mystery  object.  It  is  the  situation  itself  that  suggests  the  use  of  the  “thinking”  as  a 
description, and  the available  language  form to describe what  she has been doing  is  that 
she is “thinking.” An alternative might have been to say, “I feel it to be a cube” or “I believe 
it to be a cube.” 
  In this transcript, because the gestures are described in words, their contribution to the 
communication comes to be evaluated purely in terms of the linguistic sense (“meaning”) 
that  researchers  attribute  to  them.  In  classical  conversation  analysis,  gestures  were  not 
attended to – in part because the research was based on audio‐recorded conversations on 
the  telephone.  But  many  conversation  analytically  and  ethnomethologically  oriented 
studies of this nature focusing on mathematics – following the ground‐breaking work of the 
applied linguistic Charles Goodwin (e.g., 2000) – now include precise studies of gesture. In 
our  own  work  on  the  role  of  gestures  in  science  learning,  we  precisely  coordinated 
information about gestures with speech because, as it turned out, the changes were related 
to  familiarity  and  expertise  of  the  speaker  within  the  domain  talked  about  (e.g.,  Roth, 
2000). These studies included transcriptions such as the following rendering of turn 06, in 
which vertical lines indicate at which point a particular hand/arm configuration occurred. 
(Vertical bars coordinate speech and image.) 
 
06 M: CAUSE like (0.31) the  

           
   SAME |      (0.66)     |     (0.47)  |       its the | SA::ME shape.  
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  In  this  transcript,  we  observe  the  rotation  of  the  cube  held  in  the  left  hand  and  an 
associated  movement  of  the  right  hand,  the  thumb  and  index  finger  of  which  grab  the 
plasticine “cube.”3 The transcription clearly shows that three bodily configurations precede 
the  articulation  of  the  predicate  “it’s  the  same  shape,”  and  the  fourth  configuration  also 
precedes  the  second,  key  part  of  the  predicate  “same  shape.”  This  key  part  is  further  of 
interest,  as  the word  “same”  is  drawn  out  (see  colons  in  transcription), which might  be 
heard – depending on context – as an emphasis or as a delay  in  the verbal performance. 
Psycholinguists  often  focus  on  the  relation between  gestures  and  the  contents  of  speech 
that  is  said  to  correspond  to  the  former  (Roth,  2003).  It  turns  out  that  developmental 
studies of mathematics,  for example, show that gestures expressing a new developmental 
level precede verbal expressions at the same conceptual level (Alibali, 1999). That is, words 
and gestures manifest very different forms of knowing. In fact, when the conceptual content 
of the gestures is different from those of speech, it is taken as an indicator of developmental 
readiness  (Church  &  Goldin  Meadow,  1986);  and  without  training  even  teachers  and 
undergraduate  students  glean  information  from  children’s  hands  (Alibali,  Flevares,  & 
Goldin‐Meadow, 1997). Using words instead of images to depict children’s communication 
falsifies what  they  are  communicating  to  the  teacher  or  researcher. Moreover,  studies  in 
science  education  show  that  the  alignment  between  gestures  and  corresponding  speech 
during  conceptual  transitions, which may  be  out  by  up  to  three  seconds,  decreases with 
students’  familiarity  in  the  domain  (Roth,  2002). When  alignment  is  achieved,  observers 
tend to assess as competent the explanations of the phenomena that are the current topic. 
It  matters  that  language  and  gesture  are  different  in  nature,  have  different  content  and 
form,  and  that  they  may  contradict  each  other.4  This  form  of  transcription  therefore 
provides  support  to  theoretical  approaches  that  assume  the  continuous  development  of 
both speaking and thinking at the moment‐to‐moment and ontogenetic scales, but they are 
inconsistent with those approaches that theorize stable mental structures. 
  In  this  instance,  the  hand movements  may  actually  not  be  purely  symbolic.  The  left 
hand  holds  the  cube  rather  than  gesturing  a  cube,  and  the  right  hand  produces  a 
configuration  that  is  applied with  little  change  to  the  cube  that  turns  underneath  it.  The 
situation does not symbolically represent the events that have occurred just seconds before 
while Melissa has had her right hand  in the shoebox, but her  left hand remained outside. 
We do not know what happened  inside  the shoebox, how and even whether  the mystery 
object has been turned. This is of particular importance later given that the mystery object 
turns  out  not  to  be  a  cube.  But  in  the  present  instance,  the  configuration  is  repeatedly 
applied  to  the  different  dimensions  (x,  y,  z)  of  the  plasticine  model  (“cube”).  The 
configuration,  therefore,  especially when  it  occurs  the  first  time,  constitute  an  epistemic 
(knowledge‐seeking)  movement  designed  to  “check  the  faces,”  as  the  mathematics 
educator  referred  to  above  suggested  to  us.  During  the  same  and  other  lesson  of  this 
geometry curriculum, we did observe purely symbolical movements when the same hand 
configurations were used in communication in the absence of cubes. 
 

                                                        
3 It is a cube but not in the sense of geometry, which only deals with ideal objects. Rather, it is a 
figure of the kind that preceded geometry (Husserl, 1997). 
4 In dialectical psychology and philosophy, speech and gesture inherently are contradictory, each 
manifesting the communicative content in a one‐sided way (e.g., Roth & Lee, 2007).  
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3.2.3. Discussion 
  Transcription 2 exhibits temporal features characteristic of human interactions; it also 
features  some  of  the  details  of  the  actual  production  of  communication,  including 
hesitations, false starts, emphases, and so on. This type of transcription – embodied in our 
conversation analytic reading above – lends itself to theories that include temporal features 
between  thinking  and  speaking  and  to  theories  that  focus  on  the  interactional  nature  of 
human life and its continually unfolding nature where subsequent states are unavailable to 
the  actors. Moreover,  theories  that  take  the  actor  perspective  on  social  events  find  such 
transcription useful, as these contain implicit and explicit information that participants use 
in  the pragmatic  conduct of  social/societal events,  including  interviews and mathematics 
lessons. 
  One  of  the  questions  one  might  ask  is  this:  Is  there  something  behind  these 
performances, some structures, that drive/cause what we observe? In other words, is there 
knowledge of some kind in the brain that causes the vocal track and the hands/arms to do 
what  they do  in order  to externalize something  that  is hidden  from direct observation  in 
the brain? Or should we take the verbal and gestural performances as the knowing itself? If 
the  second  is  the  case,  as  researchers  informed  by  embodiment  and  enactivist  theories 
claim, then this and the preceding form of transcription are insufficient in two ways. First, 
because  these  contain  too  little  information  about  the  communicative  productions  and 
expressions  themselves;  and,  second,  the  relation  between  knowing  as  represented  and 
knowing‐how of what the representation refers to is the same as knowing to read a recipe 
and  knowing‐how  to  make  the  dish. We  contend  that mathematics  educators  who  read 
transcripts do not (necessarily) have the know‐how of these performances; someone who 
reads  a musical  score  does  not  (necessarily)  know  how  to  play  the  tune  on  the musical 
instrument it was intended for. And it takes precisely the cooking or playing to know what 
it feels to cook or play. In the following section, we address the first of these questions and 
then make a proposal about how to address the second. 
 
3.3. Take 3: interaction rituals 
  Recent developments  in philosophy and sociology (of emotions) focus on temporality, 
periodicity,  and  resonance  as  fundamental  phenomena  for  the  constitution  of  (common) 
sense  (Collins,  2004;  Nancy,  2007).  Thus,  we  can  observe  an  increasing  alignment  of 
prosody across speakers within turn pairs among teachers who are working together over 
several months; and these alignments are coextensive with the sharing of sense in and of 
the  situation  (Roth  et  al.,  2005).  For  example,  pitch  misalignment  is  associated  with 
conceptual dissociation and conflict; and rhythmic alignment across speakers and listeners 
can be observed even when listeners cannot see the speaker’s rhythmic body movements 
(e.g., Roth, 2010b). These  rhythmic alignments are  sources of emotional alignment and a 
sense of solidarity (Collins, 2004). Pitch and rhythm are of  interest because speakers are 
not conscious of it. That is, these features of speech and body movement determine sense, 
but, because consciousness is not  involved, words only one‐sidedly represent the content 
of communication. This also tends to be the case for speech intensity, though under certain 
circumstances  speakers  are  conscious  of  their  speech  intensity  and  increase  or  decrease 
their  volume.  In  contrast,  as  part  of  outbursts  of  anger,  they  do  not  voluntarily  control 
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speech intensity. Because these are non‐conscious features of communication, these cannot 
be  theorized  in  the  same  way  as  verbal  consciousness.  Transcriptions  including  these 
features  therefore  lend  themselves  to  provide  support  to  embodiment  and  enactivist 
theories and to theories that track the real‐time evolution of events from the perspective of 
the participants (Roth & Pozzer‐Ardenghi, 2006). 
  Our  recent work  in mathematics  classrooms  also  exhibits  the  importance  of  prosody 
and rhythmic features in the voice, gestures, and body movements. In Figure 3, we provide 
a  more  extensive  transcription.  In  the  following,  we  articulate  the  possible  readings  it 
affords  consistent  with  a  radical  approach  to  embodiment  that  has  been  termed 
“incarnation”  (Roth,  2010a). The  following dimensions are  represented  in  the  transcript: 
intensity and pitch of the participants’ talk, duration of their utterances (see black boxes), 
the sounds/words they pronounce, and other relevant embodied dimensions that emerged 
during the entire episode such as hand gestures performed with the object, body position, 
and  gaze  orientation.  Because  the  variable  “time”  is  the  main  criteria  to  display  our 
empirical  evidence,  we  suggest  below  that  this  transcript  is  to  be  treated  in  the  way 
musicians treat a musical score: as an occasion for playing a particular tune in a particular 
way.  In  this  way,  the  rate  and  total  time  of  playing  themselves  become  performative 
aspects. As a result, readers will feel the type of knowing observed when they re‐play the 
transcript rather than merely look at and read it.  
 

 
 
Figure  3.  The  extensive  “transcription”  includes  prosodic  features  (pitch,  volume,  rate), 

rhythm,  verbal,  and  visual  information.  The  “words”  are  transcribed  using  the 
conventions of the International Phonetics Association  
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3.3.1. Producing the transcription 
  As can be observed,  this  type of  transcription uses  information  that was presented  in 
the  preceding  types  of  inscriptions  (e.g.,  words).  In  addition,  the  transcription  directly 
maps  the  sound  (phonemes),  using  the  conventions  of  the  International  Phonetics 
Association, onto the prosodic  information (Figure 3). Because the phonemes are directly 
mapped against the prosodic  information, changing speech rates, emphases, and rhythms 
also  become  visible.  We  used  a  graphics  program  into  which  the  PRAAT  display  was 
imported. Using horizontal black bars, the length of the phonemes is indicated. Each word 
is  typed  at  a  specific  font  size  and  then  changed  in  horizontal  extension  until  the 
transcribed phoneme has the same length as the black bar. Moreover, as in a musical score, 
the melodic  line (pitch) and changes in intensity –  indicated in musical terms (e.g., piano, 
pianissimo, forte, diminuendo) in the second type of transcriptions – are given quantitative 
expression.  In  addition  to  the  coordination  of  visual  information  already  present  in  the 
augmented version of Transcript 2,  these now are associated with  the  information about 
repeat patterns. This,  therefore, allows exhibiting  the rhythmic aspects of a performance, 
which also would be available in a musical score. 
 
3.3.2. Reading, analyzing, and theorizing the transcription 
  This  transcription  (Figure  3)  exhibits  some  striking  differences  with  respect  to  the 
preceding Take 1 and Take 2. First, it makes explicit the temporality of all the dimensions 
of  the  students’  and  the  teacher’s  verbal/physical  action.  Not  only  is  speech  in  time,  it 
makes time as “words,” phonemes, and even individual letters are drawn out or speed up; 
there are pauses; and there are emphases that punctuate what is being said. For example, 
Melissa stresses “I,” “still,” “cube,” “cos,” “same,” “same,” and “shape.” These stresses with 
the  interspersed more  rapid  deliveries  punctuates  the  utterance  as  it  unfolds  in  time;  it 
gives  it  a  particular  rhythm.  In  actual  listening,  (a)  perceiving  the  rhythm  requires  a 
consciousness very different from intellectual consciousness and (b) perceiving the rhythm 
means  producing  the  rhythm  (Abraham,  1995).  In  Lilian’s  utterance,  the  “words”  run 
together making out of “do you think it’s a cube” one single sound complex.  
  We  note  that  the  pitch  moves  up  and  down,  sometimes  producing  spikes  with 
individual words (e.g., “”cos,” “like, “same”) and producing overall tendencies (e.g., the pitch 
drops with  the  production  of  “still  think  it  is  a  cube.”  Such  information  is  important,  as 
research shows that in harmonious exchanges, speakers tend to latch onto the pitch of the 
preceding  speakers, whereas  in  conflictual  situations,  the pitches  tend  to be  significantly 
apart.  In  fact,  in  conflict,  the  pitch  levels  tend  to  rise,  each  speaker  “trumping”  over  the 
preceding one  so  that  both may be  speaking with  fundamental  frequencies  three  to  four 
times  above  their  normal  pitch  (e.g.,  Goodwin,  Goodwin,  Yaeger‐Dror,  2002).  Thus,  for 
example, one study in a science classroom showed such a phenomenon as a teacher and her 
student  argue  about  chemical  valences,  and  their  argument  over  conceptual  differences 
come to be reflected in the differing pitch levels; appeasement was associated with falling 
pitch levels across a number of speaking turns also involving other students (Roth, 2010b). 
Speech  intensity,  too, contributes to  the way we understand what and how someone else 
speaks,  as  interaction  participants  tend  to  hear  much  louder  than  normal  speech  as 
“shouting,”  in many situations heard as an expression of  anger. Much  lower  than normal 
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speech intensity, in the case of a student who also speaks slowly, may be heard as a sign of 
timidity, not knowing the answer, or as a tentative exploration of ideas. Teachers use such 
hearings routinely in their assessments of teaching, yet at present, mathematics education 
research does not account for these embodied features. 
  The  transcript  includes  visual  information  similar  to  the  one  we  presented  in  the 
preceding  subsection.  For  example,  the  fourth  image  sequence  exhibits  the  same  four 

hand/finger configurations introduced previously. Here, however, we also mark with a “�” 
on the temporal axis the precise instant when the configuration is produced. The musical 
notation exhibits  the highly rhythmic  feature of  the gestural production. That  is,  the  four 
configurations that exhibit mathematical  features – sameness of the  length of the edges – 
are produced in a highly rhythmic fashion, which constitutes a very different manifestation 
of sameness across the dimensions. Melissa is transacting with a solid characterized by the 
idea  of  even  number  (such  as  4  and  2,  as  demonstrated  in  the  stresses  of  the  beats  she 
produces  on  the  table),  and  vice  versa  –  the  object  is  transacting with  her  as well.  To  a 
certain  extent,  it  might  be  argued  that  the  idea  of  “evenness”  emerges  from  Melissa’s 
physical action while she transacts with the plasticine model.  
  Comparison with the verbal production shows that the first gestural beat falls together 
with the emphasized “same”; the second beat falls at the beginning of the pause which in 
speech,  as  in  music,  is  an  important  feature;  the  third  gestural  beat  coincides  with  the 
restart  of  the  verbal  “melody”;  and  the  forth  beat  falls  on  the  second  “same.” We might 
expect  another  beat  corresponding  to  the  verbal  production  of  “shape”;  but,  as  our 
transcription shows  in  the change of  the bodily  configuration where  the gaze, heretofore 
exclusively oriented to the hands and cube, now is raised to meet that of Lilian, the person 
who has requested the justification Melissa has just ended producing. Melissa then turns to 
gaze at  Jane, and finally appears to complete her presentation by enclosing her cube  in a 
gathering movement that also brings the elbows close together. This, therefore, constitutes 
a continuation of the rhythm but in a different modality, that is, on a different “stave” of our 
“score of mathematical communication.” 
  Returning to the beginning of the transcription, we note that the changing orientations 
constitute a rhythmic phenomenon as Melissa orients from her cube to others and back to 
her cube (image sequences 1, 3, and 5). Between these sequences there are long pauses of 
speech. The second of these “pauses,” as shown above, occurs when Melissa rhythmically 
produces  the  four  gestures  that  constitute  an  integral  aspect  of  the  (unconscious) 
embodied/enacted  justification why the mystery object  is a cube. The  first “pause”  in  the 
shift  of  orientation  is  associated with  a pause  in Melissa’s  speech. There  is  a  long pause, 
which  Sylvia  breaks  announcing  that  she  is  going  to  check,  followed  in  turn  by  Lilian’s 
request for a reason. During this pause in speech, Melissa hits the table repeatedly with her 
plasticine model (in the sound wave, there are spikes that mark the precise instant that the 
cube hits the table). As our transcription shows (Figure 3), there is a rhythmic beat that is 
produced  and  that  we  can  perceive.  Not  only  is  this  performance  rhythmic,  but  the 
transcription  shows  that  the  beats  fall  together  with  the  beats  in  Sylvia’s  talk;  it  also 
coincides with  the  beginnings  of  the major  segments  in  Lilian’s  talk  as  exhibited  by  the 
speech  intensity  profile  (i.e., where  she  says  “deya  [do  you],”  “it’s  a,”  “cob,”  and  “cube”).  
That  is,  the same rhythm can be perceived in all  three speakers, or,  if Melissa were to be 
taken  as  the  main  figurant  in  this  instance,  the  others  would  be  found  to  have  aligned 
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themselves  with  the  beat  she  has  initiated.  But,  because  perception  of  rhythm  means 
production of rhythm, all of these rhythmic features produce interactive interference that 
leads to entrainment into the same rhythm. This is precisely what we have observed both 
in mathematics (Roth,  in press) and in science classrooms (Roth, 2010b) where there are 
rhythmic  features  in  speech  and  other  bodily  productions  across  individuals;  and  these 
beat  frequencies  change  across  individuals.  Thus,  it  is  not  that  the  same  beat  occurs  by 
chance. Rather, when the speaker changes  the beat, others  follow, sometimes  imitating  it 
and  sometimes  improvising  on  the  original  beat.  This  is  so  even  though  the  beat  is  not 
accessible  to verbal  consciousness but  constitutes a very different  form of  consciousness 
(Abraham, 1996; Nancy, 2007). The perception of beat  is a  form of active resonance  that 
allows for the alignment through entrainment.  
  The rhythmic aspects together with the prosody emphasize ritualistic aspects of human 
interactions.  Our  transcription  therefore  is  consistent  with  social  theories  that  focus  on 
interaction  rituals  (Collins,  2004)  and  sense  as  a  resonance  phenomenon  (Nancy,  2007). 
Sense cannot be reduced to words, as integral aspects of sense manifest themselves in and 
are  expressed  by  non‐verbal  means.  Moreover,  the  ritualistic  moments  also  are  tied  to 
emotion, finding both their expression in the performance and driving this performance.  
 
3.3.3. Discussion 
  Readers unfamiliar with  such  analyses might  ask why  this  is  important.  It  is  because 
these  changes  in  rate  and  intensity  are  associated  with  what  we  hear  as  main  and 
subsidiary  clauses  of  a  sentence  (Roth,  in  press).  Whether  something  is  a  main  or 
subsidiary  clause  goes  right  to  the  heart  of  competence  in mathematical  communication 
and mathematical understanding. Thus,  the prosodic and rhythmic aspects, which appear 
to  have  nothing  at  all  to  do  with  the  mathematical  content  –  they  do  not  appear  in 
mathematics textbooks – nevertheless are integral and irreducible aspects of mathematical 
communication  and  the  practice  of  mathematics.  That  is,  the  difference  between 
mathematical content and purely performative dimensions of communicative production is 
undecidable. They constitute one and the same phenomenon. These analyses therefore are 
important  for  those who  adhere  to  embodiment/enactivist  perspectives  on mathematics 
education. Mathematics is not embodied because bodily gestures (hands, hand/arm, other 
body  parts)  exhibit  logical  structures  that may  be  seen  as  parallel  to  and  exhibiting  the 
same  verbal‐conceptual  content.  Rather,  mathematics  is  embodied  because  there  are 
features in mathematical communication and practice that play integral and central role of 
producing mathematical distinctions, but they are not part of the verbal‐linguistic register. 
More importantly, the two registers are irreducible to each other, each constituting a one‐
sided  and  therefore partial manifestation of  a  higher‐order phenomenon of mathematics 
and mathematical  communication.  And  it  is  precisely  this  irreducibility  of mathematical 
linguistic  features  and purely  embodied  features  (prosody,  rhythm, bodily  gestures)  that 
support enactivist/embodiment theories. 
  We propose taking our transcription differently than transcriptions normally are taken 
in  the  literature.  We  suggest  that  our  transcription  relates  to  the  performative  of 
mathematical  communication  as  a  cookbook  recipe  relates  to  cooking  or  in  the  way  a 
musical  score  relates  to  a  musical  performance.  That  is,  to  really  feel  the  knowing  and 
understanding  in  Melissa’s  communication,  readers  need  to  perform  our  “score.”  Such 
performances  relate  to  Melissa’s  in  the  way  one  musician’s  rendering  relates  to  that  of 
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another;  this  relation  is  different  from  the  one  between  score  and  performance.  This  is 
especially  so  because  the  performative  dimensions  (such  as  prosody  and  the  rhythmic 
performances) are irreducibly involved in the mathematical sense even though they cannot 
be rendered  in  terms of  linguistic consciousness. Rhythm has  to be performed  to  involve 
and make it accessible to rhythmic consciousness in the same way that the visual aspects 
(e.g.,  hand  gestures)  require  a  form  of  consciousness  different  from  and  irreducible  to 
verbal  consciousness  (Vygotsky,  1986).  Performing  the  transcription,  therefore,  amounts 
to  a  process  of  reterritorialization  (Deleuze & Guattari,  1991/2005), whereby  something 
said to be transcendent and metaphysical comes to return to the real world. This very same 
thematic  exists  in  the  biblical  literature  under  the  phenomenon  of  incarnation  with  its 
image of the word (a representation) becoming flesh. It is precisely this idea of incarnation 
that  we  have  recently  offered  as  a  way  out  of  the  problematic  presentation  of  the 
enactivist/embodiment literature (e.g., Roth, in press).  
 
4. General discussion 
  There is a close relationship between the format in which researchers present the data 
(e.g.,  transcription)  they  extract  from  the  data  sources  (e.g.,  videotape)  and  the  theories 
they use to interpret or (try to) explain these data. Some data are such that they cannot be 
explained by particular theories. In such cases, researchers of the standard paradigm likely 
do  not  accept  the  data  as  valid,  explain  unwanted  effects  away,  or  introduce  hidden 
variables  to  the  theory  (Kuhn,  1970).  Here,  we  present  the  case  of  different  forms  of 
transcriptions that use classroom video as their source that researchers collect to develop 
their findings. Such transcriptions stand in a mutually constitutive relation with the claims 
that  researchers  (can) make. On  one  hand,  the  transcription  is  the  source material  from 
which claims are (inductively) developed. On the other hand, in research publications, the 
transcriptions function as evidence in support of the claims made. 
  In  this  study  we  show  how  different  forms  of  transcription  render  visible  different 
aspect of mathematical communication and therefore support different kinds of claims and 
the associated theories. We show that transcriptions that make use of words only and omit 
all information about the actual production of communication (Take 1) lend themselves to 
support constructivist arguments that make claims about stable knowledge (structures) in 
the  mind  somehow  abstracted  from  the  physical  world.  As  soon  as  gestures  and  other 
perceptual  aspects,  for  example,  are  rendered  in  terms  of  verbal  descriptions,  they  no 
longer constitute embodied dimensions. Aspects of a situation produced and recognized by 
perceptual consciousness have been reduced to the verbal consciousness. Even talk about 
sensorimotor  schemas  does  not  get  us  any  further  because  this  talk  is  consistent with  a 
Kantian position that makes mind a metaphysical entity – the embodiment theorist Johnson 
(1987)  acknowledges having  borrowed his  conception of  the  schema  from Kant  –  to  the 
point  that  there  is  nothing  outside  (verbal)  understanding  (Henry,  2003).  Because  “the 
presuppositions  of  the  Kantian  ontology  remain  closed  to  the  being  of  life”  (p.  45),  no 
constructivist account of knowing is able to capture the essence of embodiment/enactivist 
theory.  
  The  preceding  sort  of  claims  are  impossible  if  a  researcher  takes  the  stance  that we 
present  in Take 2  as  the  production  of  communication  that  can no  longer  be  reduced  to 
individuals. The minimum unit of analysis is the turn pair, which means – consistent with a 
range  of  theories  –  that  each  word  pertains  both  to  the  speaker  and  to  the  listener. 
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Moreover,  in  this  second  kind  of  approach  the  temporality  of  the  production  matters, 
because what is said at some time takes into account what has been said before but may be 
entirely inconsistent with what is said thereafter. The approach therefore is consistent, for 
example, with Vygotskian (1986) theory, which stipulates communicating and thinking to 
be continually changing processes. Any word uttered therefore no longer is the same when 
it is uttered again. Even an individual word repeated once or more no longer has the same 
function and  therefore  cannot be  analyzed  in  terms of  a  constant  sense or  “meaning.”  In 
fact,  researchers  taking  this  stance  no  longer  worry  about  “meaning”  that  somehow  is 
indicated  but  not  really  present  because  the  only  thing  that  counts,  consistent  with 
Wittgenstein’s position,  is word‐use and how consecutive speakers employ, re‐employ, or 
change  employment  of  words.  Because  temporality  and  time  are  important,  this  second 
approach much better  than the preceding one can account  for the continual changes that 
we  observe  in  language  and  culture  in  a mathematics  classroom over  time,  even  though 
individual students and teachers do not think about or are conscious of such changes.  
  If it is the case that others are entrained into the collective pitch and bodily rhythms – 
as our example here shows consistent with other research (Auer & Couper‐Kuhlen, 1994; 
Szczepek  Reed,  2010)  –  then  the  production  of  the  individual  locution  no  longer  is 
reducible to the speaker. Thus, more so than articulated in the context of the second case, 
where  the  word  is  a  feature  common  to  speakers  and  listeners,  the  production  of  the 
locution no longer is independent from other productions in the setting. Each locution then 
has  to  be  theorized  as  an  integral  part  of  a  more  complex  situation.  This  situation  that 
cannot be reduced to its parts,  for the parts are produced as a function of the whole, and 
this whole only exists in and through the production of the parts. In this manner, our work 
also suggests a link between the individual and the collective through completely embodied 
phenomena  inaccessible  by  and  irreducible  to  mental  phenomena  (mind).  Other  than 
articulated  by  the  enactivist  theorists,  bodily  phenomena  are  collective  rather  than  the 
result of individual sensorimotor actions. 
  The most difficult phenomenon to explain with (radical, social) constructivist theories 
is  real‐time  production  of  mathematical  communication.  This  is  so  because  there  are 
aspects  that  are  central  to  the  sense  that  participants mark  and  re‐mark  in  and  through 
their communicative contributions but  that have no place  in mathematics  in the  form we 
can find articulated in a textbook. But Kant (1964) did realize that the separation between 
the purely mental and the purely bodily may be impossible. Thus, at the very end of his life 
he wrote an analysis of  jokes where  the  intellectual  recognition of  the pun occurs  at  the 
same time and indistinguishable from laughter.5 His explanation involves both: The tension 
within  the  set  up  of  the  joke  that  addresses  the  senses  creates  a  disequilibrium  of  the 
innards, which, when released,  creates  laughter. The  two aspects are  irreducible because 
the mind does not need laughter because it could simply analyze the pun (and perhaps find 
nothing funny about the story). A “joke” that is not funny is not a joke and is not associated 
with  laughter.  We  suggest  that  precisely  the  same  irreducible  aspects  between  the 
conceptual  and  the  purely  bodily  come  to  be  sensed  and  experienced  when  readers 
perform our transcription (score). This transcription then is nothing other than an account 

                                                        
5 Actually, in the early part of his work, Kant (1960) thinks of wit only in mental terms and uses the 
example of the well‐known mathematician and founder of the mathematics curriculum in Germany, 
Christopher Clavius, to suggest that someone can be intelligent but dull (no wit). 
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(recipe,  plan; manual  of  instructions);  the  performance  involves  the  actual mathematical 
work. After the fact the performance can be judged to be a more‐or‐less adequate rendering 
of  the  account/score/plan  –  much  like  we  might  judge  a  musical  performance  to  be 
inconsistent  with  the  score  or  the  dish  to  be  inconsistent  with  the  recipe.  As  a  result, 
knowing to perform what the transcription refers to, readers are enabled to feel the work of 
mathematics  that  leads  participants  in  an  episode  to  produce  what  we  see.  But  the 
transcription  itself  does  not  get  us  to  this  feel.  The  purpose  of  the  present  article  is 
precisely  to  provide  “scores”  for  the  performance  of  the  mathematical  knowing  that 
researchers write about in their studies. This is especially important for those mathematics 
educators adhering to enactivist/embodiment theories, which require very different forms 
of data than the alternative constructivist‐cognitive accounts. 
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Appendix A 
Typical conventions used for transcriptions such as those presented in Take 2 
 
Notation  Description  Example 
(0.14)  Time without talk, in seconds  more ideas. (1.03) 

just

()  Pause of less than 0.10 seconds;   kay. () bert 
((turns))  Verbs and descriptions in double 

parentheses are transcriber’s 
comments 

((nods to Connor)) 

::  Colons indicate lengthening of 
phoneme, about 1/01 of a second 
per colon 

si::ze 

[ ]  Square brackets in consecutive 
lines indicate overlap 

S: s[ize  ] 
T:  [colby] 

this one  Underlined part coordinates with a 
gesture described; lH and rH 
indicating left and right hand, 
respectively 

this ones:? ((rH moves 
down, up, down right 
face, Fig 4.1b)) 

((:B))  Colon prior to letter in double 
parentheses: The speaker directly 
addresses another person “B” 

57 T: ((:B)) hOW did 

<<p>  >  Piano, words are uttered with less 
than normal speech volume 

<<p>um>

<<pp> >  Pianissimo, words are uttered with 
very low, almost inaudible volume 

<<pp>this>

<<f>  >  Forte, words are uttered with 
greater than normal speech volume 

<<f>that> makes 

<<ff>  >  Fortissimo, much louder than 
normal speech volume 

<<ff>hU:::::::ge.> 

<<all>  >  Allegro, faster than normal speech 
rate 

<<all>[whawould]> that 

<<len>  >  Lento, slower than normal speech 
rate 

<<len, drawn out>but 
() its like a 
flA:Tcube.> 

<<confidently>  
> 

Ethnographic description of speech 
that is enclosed in brackets 

<<confidently>because 
its like a sort of 
(0.60) vertex> 

ONE bert  Capital letters indicate louder than 
normal talk indicated in small 
letters.  

no? okay, next ONE 
bert. 

.h, hh  Period before “h” indicates in‐
breath; “h” without period is out‐
breath 

.hhi, hh hh 

(?cular)  Question mark with whole or part 
word in parentheses indicate 

(serial?), (?cular) 



Roth &Bautista 
 

possible hearings of words or 
missing sound 

(??)  Question mark(s) in parentheses: 
Inaudible word(s), the approximate 
number given by number of marks 

i (??) 

,?;.  Punctuation is used to mark 
movement of pitch toward end of 
utterance, flat, slightly and strongly 
upward, and slightly and strongly 
downward, respectively 

T: so can we tell a 
shape by its color? 

T: does it ‘belong to 
another ‘group 
(0.67) O:r. 

=  Phonemes of different words are 
not clearly separated 

loo::ks=similar 

↑↓  Arrow up, down: Significant jump 
in pitch up or down 

is ↑sort, ↓<<all>so 
thats 

`‘^ˇ  Diacritics indicate movement of 
pitch within the word that 
follows—down, up, up‐down, and 
down‐up, respectively 

`um; ‘sai:d; 
^Cheyenne; ˇsquare 
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Abstract: Zero is a complex and important concept within mathematics, yet prior research has 

demonstrated that students, pre-service teachers, and teachers all have misconceptions about 

and/or lack of knowledge of zero. Using a hermeneutic approach based upon Gadamer’s 

philosophy, this study examined how two elementary mathematics teachers understand zero and 

how and when zero enters into their teaching of mathematics. The results of this study add new 

insights into the understandings of teachers and students related to zero and the origins, 

relationships between, and consequences of those understandings.  Significant gaps and 

misconceptions within both teachers’ understandings of zero suggest the need for pre-service 

education programs to bring attention to the development of a more complete and meaningful 

understanding of zero. 

Key words: Zero; In-service teachers; Elementary teachers; Mathematics teachers; Prospective 

teacher development; Teacher research 

 

What is zero? When asked, many teachers and students will tell you that zero is 

“nothing” (Wheeler, 1987; Leeb-Lundberg, 1977; Wilcox, 2008; Crespo & Nicol, 2006; Wheeler 

& Feghali, 1983). For being nothing, though, it has gotten a lot of attention in mathematics 

education research.   Since the 1960s, various researchers have explored how students 

understand zero (Inhelder & Piaget, 1964, Pasternack, 2003; Evans, 1983; Baroody, Gannon, 
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Berent, & Ginsburg, 1983; Wheeler, 1987; Neuwirth Beal, 1983; Reys & Grouws, 1975; 

Allinger, 1980; Leeb-Lundberg, 1977; Whitelaw, 1984; Kamii, 1981; Crespo & Nicol, 2006) 

with findings including that students confuse zero with the letter “O”, believe that zero is not a 

number , believe zero is just a part of the symbol for the ‘digit’ ten (believe that zero is ‘nothing’ 

and therefore can be ignored, and have difficulties within arithmetic calculations (including, but 

not limited to, division by zero) when zero is involved. Much research has also focused on 

teacher’s and prospective teacher’s understanding of division by zero (Crespo & Nicol, 2006; 

Ball, 1990; Evan, 1993; Wheeler & Feghali, 1983; Even & Tirosh, 1995). What is remarkable 

and disheartening is that the same errors in thinking and understanding about division by zero are 

noted in Crespo & Nicol’s (2006) work as were noted originally by Wheeler & Feghali (1983) in 

their research. Given the extensiveness of student and teacher misunderstanding about zero, it is 

also notable that, other than Wheeler & Feghali’s (1983) research, no research designed to 

explore specifically teachers understandings of zero, other than those studies related to division 

by zero, has been done.  The research upon which this article is based was intended to help to 

begin filling in some of that void. 

 This article reports about a qualitative research study designed to explore how teachers 

conceive and preconceive of zero, both personally and within their classrooms. Through the use 

of Gadamer’s (1989) hermeneutic philosophy of understanding, two teachers were engaged 

though dialogue and explorations in the consideration of the questions: “How do you understand 

zero,” and “When and why does zero become a part of teaching and learning in your classroom”. 

Many of the results of this study parallel those found by Wheeler & Feghali, but because of the 

study’s qualitative design, the results also help to paint a picture of the thinking and reasoning 

behind those results for these two teachers. These insights could be used to begin developing 
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aspects within teacher education programs that would help prospective teachers to learn both the 

“that” and “why” knowledge (Shulman, 1986). related to zero and how to share that knowledge 

with future students  

 1. BACKGROUND 

 This study is informed by the history of the development and evolution of zero as a 

mathematical concept, research into student understanding of zero, and research related to 

teacher understanding of zero. These topics are discussed in the following sections. 

1.1 Evolution of zero 

The history of zero is one that has been well documented. Around the turn of the last 

century, and the millennium, three authors, Barrow, Kaplan, and Seife, each wrote detailed 

accounts of that history, and it is upon those three authors’ works that this section is based. The 

development of the mathematical concept of zero (including its roles as a place holder, a number, 

and a symbol) is one that happened quickly in some societies, such as India and the Mayan 

culture. In Greece, however, the acceptance of zero took more than 1000 years (Barrow, 2000). 

These variances in timing were the result of differences in the religious and philosophical beliefs 

of the societies themselves. Within India’s Hindu religion, there were many gods that 

represented different dualisms in life, one being that of the void and the infinite. Thus, when zero 

as a placeholder reached India, the extension of the concept to a quantity was natural because a 

related idea (the void) already existed in the religion. In Greece, however, the notion of zero as a 

number contradicted a mathematical proof that God existed (Kaplan, 1999). In addition, Greek 

philosophers were unwilling to accept that a symbol could be used to represent a void, since a 
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void is nothing and one cannot represent something that does not exist. Even the Greek 

mathematicians found zero challenging because it could not be represented by a shape as 

Pythagoras’ philosophy said that all numbers could (Seife, 2000). 

Once zero found its place in different societies, however, it quickly became integrated 

into mathematical thought and logic, and soon opened doors to formalized arithmetic, algebra, 

and calculus, to name just a few areas. Even mathematicians’ understanding and 

conceptualization of numbers began to evolve through their explorations of zero and its meaning, 

leading Newton, for one, to conclude that “…mathematical quantities [are]… not … consisting 

of very small parts, but as described by a continuous motion” (Kaplan, 1999, p. 156).  Thus, zero 

had evolved from being an arbitrary symbol used to denote a blank space to a quantity of such 

complexity and depth that it allowed mathematics to move into a realm that embraced asymptotic 

and limiting behaviors. 

Despite the discrepancies related to how zero was welcomed into the number and 

mathematical systems of different societies, zero has become a foundational, complex, and 

multi-functional concept in modern mathematics (Seife, 2000; Barrow, 2000; Kaplan, 1999). As 

such, it can be argued, a robust understanding of zero is a necessary part of students and 

teachers’ abilities to think and work mathematically with confidence and competence. 

1.2 Student understanding 

Given the revolutionary impact of zero on mathematics, it is surprising, yet 

understandable, to realize the limited understanding and many misconceptions that students have 

related to zero. Inhelder & Piaget (1964) found that children under the age of 10 or 11 do not 

recognize the null set (i.e., a set whose defining characteristic is the lack of a characteristic, such 

as the set of pictures with no birds versus the set of pictures with one bird) when sorting. 
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Research also reveals that students do not recognize zero as a number; they see it as only a part 

of the symbol for ten (Pasternack, 2003; Evans, 1983; Baroody et. al., 1983). In fact, many 

students believe that “[Zero] isn’t really a number … it is just nothing” (Wheeler, 1987, p. 42), 

with the implication that it can be ignored whenever it occurrs. As an alternative, some students 

recognize zero as a number that “develops and exists separately from other number rules” 

(Evans, 1983, p. 96). Similar results are also found in the research of Neuwirth Beal (1983) and 

Reys & Grouws (1975). All of these notions of zero were found to support students’ 

misunderstandings related to computations involving zero (Wheeler, 1987; Neuwirth Beal, 1983; 

Anthony & Walshaw, 2004; Evans, 1983). 

Students have also been shown to struggle with the mathematical concept of zero because 

of the inconsistent use of oral and written language related to zero within society. Baroody, et. al. 

(1983), Allinger (1980), and Whitelaw (1984) all report that students frequently confuse the the 

number “0” and the letter “O”. Society’s frequent use of “oh” when stating area codes, license 

plates, phone numbers, and room numbers is cited as a common source for the students equating 

of zero and the letter “O” by these researchers.  

Even the naming of numbers in the English language, zero is not mentioned within the 

name (e.g., 203 is read as two hundred three, and not two hundred zero three). This convention 

of mathematics can cause students to misunderstand and misuse zero. Students try to “spell” 

numbers in the same way they “spell” words, thus one hundred twenty is often written as 10020 

(Kamii, 1981). This “ignoring of zero” convention in the naming of numbers supports the student 

belief that zero is “nothing” and thus it can be ignored (Wheeler, 1987). 

Two researchers (Leeb-Luneberg, 1977; Wilcox, 2008), did demonstrate, however, that 

young students can develop an understanding of zero.  In Leeb-Luneberg’s (1977) research, the 
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students concluded that zero must be “… nothing  - of something!” (25), while Wilcox’s grade 1 

daughter told her mother: ”No [zero] means something. It means you don’t have anything” (204). 

In both studies, the children were able to resolve the Greek dilemma that zero cannot exist 

because it is nothing by refining their understanding of zero to be that it represents none of some 

item.  Cockburn and Littler’s (2008) Mathematical misconceptions: A guide for primary teachers 

includes an opening chapter (Chapter 0) that specifically addresses students’ misunderstandings 

about zero and how to correct and prevent them, with a number of the activities suggested 

mimicking those used by Leeb-Luneberg and Wilcox . 

1.3 Teacher understanding 

Consider first the area of research into teachers’ understandings of zero that is most 

prominent in the literature – that of division by zero. Even  & Tiroch (1995), found that when 

asked what 4 divided by zero was, most answered “undefined”, however, when the same 

teachers were asked to explain why “most could not supply any appropriate explanation” (9) 

beyond stating that it was a mathematics rule. A number of researchers, however, did not find the 

same results (Crespo & Nicol, 2006; Ball, 1990; Wheeler & Feghali, 1983).  Instead, these 

researchers found that most pre-service teachers did not even know that the answer should be 

undefined, let alone why. In some cases, the pre-service teachers recalled learning that anything 

divided by zero was zero, and in some others they reasoned out the answer of zero by thinking of 

zero as “nothing”. 

Wheeler & Feghali’s (1983) study of pre-service teachers’ understandings of zero, as 

noted earlier, is the only research that has explored this topic in breadth (beyond division by 

zero). The study revealed that pre-service teachers have many of the same misunderstandings 

and lack of knowledge as the above-mentioned research indicated for students. One such 
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similarity between teacher and student understandings of zero is in relation to the exchange of 

the word “oh” for the number “zero” (Baroody, et. al., 1983; Allinger, 1980; Whitelaw, 1984).  

Also like the students, many of the pre-service teachers that Wheeler and Feghali (1983) worked 

with believed that zero is not a number (Wheeler & Feghali, 1983), referring to it as ‘nothing’. 

The pre-service teachers in this research explained that it did not meet their criteria for what a 

number is, namely that a number represents ‘something’ and therefore it must be countable. This 

interplay between zero and numbers, and ‘nothing’ and ‘something’ is remarkably similar to 

some of the arguments made by Greek philosophers almost 2000 years ago (Kaplan, 1999),  , 

and plays a large role in both Leeb Luneberg’s (1977) Wilcox’s (2008) studies of how young 

children can come to understand zero. .  

Wheeler & Feghali (1983) also repeated Inhelder &Piaget’s (1964) earlier testing 

involving the null set with the pre-service teachers and found that, like the children decades 

before, the participants were not inclined to sort cards into sets that included a set of cards 

without particular characteristics. In following up with the pre-service teachers after the test, 

Wheeler & Feghali (1983) also found that some of the participants would not accept a null set 

even when it was presented as a possible solution to consider. 

The only other place that demonstrations of teachers’ understandings of zero (other than 

those related to division by zero), can be found is hidden within other research topics. One 

example of such research is Ma’s (1999) study, which compared the mathematical 

understandings of teachers in the US and Singapore. Ma demonstrated through this research that 

the teachers from Singapore possessed a much higher level of “profound understanding” of 

mathematics than did the US teachers. When considered through the lens of “what’s happening 

with zero”, her research also revealed that, in particular, the US teachers had misconceptions 
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about zero within  the concepts of place value and number decomposition. These misconceptions 

become evident through Ma’s study of the teachers’ understanding of two-digit subtraction and 

multi-digit multiplication. With respect to subtraction, the data collected revealed that the 

teachers did not understand the role of the decomposition of numbers into different groupings of 

tens and ones within the subtraction algorithm that they taught. As a result, these teachers also 

lacked understanding of place value and the role of zero within place value and the 

decomposition and subtraction of numbers. With respect to multiplication, the teachers were 

shown a students’ solution to a multi-digit multiplication question which included a common 

error made by students – that of failing to account for the place value of the individual digits in 

the multiplicand and multiplier (or “forgetting to put zeros at the end” of each partial product). 

Ma asked the teachers how they would correct the student. Although the teachers noted that the 

student “did not understand the rationale of the algorithm” (p. 29), the teachers’ own 

explanations of the student’s errors revealed that the teachers did not understand place value and 

its role in multiplication themselves. Some of the teachers even suggested that rather than putting 

zeros in the partial products, the student should be encouraged to use Xs to hold the places. 

These teachers argued that by using zeros as the place holders, the students would be led to 

believe that the partial products were actually larger than what they really were (e.g., 4920 versus 

492 which comes from multiplying 123 by the 4 in 645). Thus, in both subtraction and 

multiplication, the US teachers lacked understanding of number decomposition, place value, and 

zero. 

 1.4 Understanding of zero 

Whether the understanding of zero be considered from the perspective of students or 

teachers, there is clear evidence within mathematics education research that there is cause for 
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concern, not only in the upper middle-level grades of mathematics, when teachers are 

introducing students to the complexities of dividing by zero for the first time, but even within the 

earliest elementary grades, and with respect to the understanding of teachers in general. This 

study  was designed to explore the understandings of zero that elementary teachers have, how 

they came to have those understandings, and how they engage their students in understanding 

zero. 

 2. METHODOLOGY 

Given the nature of the research questions for this study, a qualitative approach was 

required in order to explore the nuances and contextualizations for the different participants’ 

understandings of zero. In this section, the methodology, method of data collection, and methods 

for analysis of the data are described. 

2.1 Gadamer’s hermeneutic philosophy 

In order to explore the understandings, often hidden, that teachers have of zero, and how 

these ideas developed, were supported by experiences, and the issues those ideas raised for the 

teachers, a qualitative methodology based upon Gadamer’s (1989) hermeneutic philosophy was 

used to frame the collection of data. In this hermeneutic approach, what and how one knows 

about an idea or concept is defined by one’s past and present horizons of understanding related to 

the idea.  In Gadamer’s theory, the past horizon is a cognitive construct that contains the 

historical knowledge and resulting traditions that define a concept. As well, every person also 

has a present horizon of understanding that encompasses everything that one believes and 

understands about the concept at a particular point in time. Gadamer argues that the past horizon 

easily influences one’s present horizon (with or without intention or recognition) and thus needs 
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to be exposed so that the present horizon can be better understood and evaluated. Through 

dialogue, the two horizons fuse together, with the past horizon remaining fixed, but the present 

horizon “continually … being formed because we are continually having to test all our 

prejudices” (Gadamer, 1989, p. 306). By engaging in a hermeneutic dialogue, Gadamer 

maintains that these prejudices are exposed and evaluated individually as the participants in the 

dialogue ask questions and seek to clarify their own understanding.   

Gadamer (1989) proposes that one cannot develop a rich understanding by one’s self. 

Rather, it is through dialogue with others that one becomes not only aware of one’s own horizons 

of understanding, but also of the understandings of others. Anyone involved such a dialogue is 

not expected to outright reject their own horizons, nor reject those of others. Instead, the dialogue 

is intended to help each person understand the horizons of others and, as a result, their own 

horizons expand with this understanding. The goal is not to seek an ultimate truth, which 

Gadamer argues cannot be attained, but rather to play with the possibilities of understanding.  

 Experiences play a large role in the defining of one’s horizons of understanding, so 

within dialogue it is important for those involved to share their own experiences, and to engage 

in new experiences. It is through openness to experience and consideration of other’s horizons of 

understanding that meaning can be clarified, sought, and expanded (Gadamer, 1989). The 

environment within which dialogue and experiences occur must be structured to be open and 

non-judgmental (Silverman, 1991). 

 Gadamer (1989) also emphasizes that at any given moment, and in relation to any given 

context, participants in dialogue access only a limited portion of their horizons of understanding. 

Thus, dialogue plays a final role to expand the portion of the horizons of understanding being 

engaged by the participants so that both speaker and listeners are engaging in the discussion with 
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broader, better defined, and more closely aligned horizons of understanding which include 

awareness of the beliefs and knowledge of everyone involved (Silverman, 1991). 

 2.2 Collection and analysis of data 

With Gadamer’s hermeuntic philosophy as the guiding methodology for this research, it 

was important for data to be collected dialogues and experiences that the participants were 

engaged in. These interactions were designed to allow the researcher to explore and come to 

understand the past and present horizons of understanding of zero held by the participants. In 

addition, the data collection also had to allow for the two teachers to help in giving direction to 

the next dialogues and experiences as a response to their own changing awareness and curiousity 

about their understandings of zero. 

Working within the above noted framework for the data collection, the study was 

comprised of three three-hour meetings of the two teachers and the researcher, an in-class 

teaching session in each of the teachers’ classrooms for one hour (during which the researcher 

explored the teachers’ students’ understandings of zero while the teacher observed and kept 

anecdotal records), and an interview with the teachers immediately following the in-class session 

with her students. Each of these interactions focused on questions and activities that sought to 

reveal more of and challenge each of the teachers’ present horizons of understanding zero and 

the relationship between those horizons to their past horizons of understanding.  To help expose 

some of the nuances of their past horizons, the two teachers were also encouraged to keep a 

journal of their memories of learning about zero, as well as of any experiences or dialogues that 

they had outside of our scheduled meeting times with colleagues, friends, or students regarding 

zero. These journals contributed greatly to helping direct the study’s conversations and 

explorations. Although the researcher was explicitly involved in the directing and redirecting of 
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the conversations and activities, great care was taken to not reveal aspects of her own present or 

past horizons. It must be acknowledged however, that the understandings of the researcher very 

likely influenced choices regarding activities and directions taken with the participants. 

 The specific research questions for this study were: “How do you understand zero” and 

“When and why does zero become a part of teaching and learning in your classroom”? These 

questions provided the initial direction for the group meetings, but with the acknowledgement 

that the questions might be modified or replaced in order to be responsive to the dialogue, and 

hence the horizons of understandings of the two teachers. 

Each of the three meetings was tape-recorded, transcribed, and the transcripts verified by 

the two teachers. In addition, the one post-classroom session interview (only one was done due 

to time restraints for the one participant) was also tape-recorded, transcribed, and verified by the 

teacher. The classroom visits were not recorded, but rather both the teachers and researcher made 

anecdotal notes of the experiences and these were discussed and reflected upon during the 

follow-up interview and the third group meeting. 

 Prior to the first group meeting, the two teachers were asked to reflect upon what they 

knew about zero, when they learned about it, and what language was used with respect to zero. 

These memories were a source of much of the dialogue during the first meeting, as was an 

exploration of works of children’s literature and their inclusion/exclusion of zero. Although 

much of the children’s literature used was familiar to the two teachers, the exploration of zero 

within the literature was a new experience for them and was a rich source for the ongoing 

dialogue. The dialogue that resulted from the teachers’ memories of learning about zero and 

from their analysis of the role in the children’s literature both sought to expose not only parts of 

their present horizon of understanding, but also to have the teachers consider what some of 
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society’s past horizon understandings of zero are and to reflect upon the validity and relevance of 

those understandings to their individual situations. 

The second meeting began with the sharing of experiences and recalled memories the 

teachers had had related to zero since the previous meeting. This meeting also focused on what 

the teachers believed about students and the number zero, including what students know about 

zero and what they should know about zero and why. The question of why students should learn 

particular facts or ideas about zero again helped to expose some of the past horizons of 

understanding for zero held within our society, while also engaging the teachers in revealing 

more of their present horizon of understanding zero. This information helped to inform the 

choice of activities that the researcher used in each of the classroom sessions with the 

participants’ students. 

The final group meeting involved the teachers sharing new ideas, recalled memories, and 

reflections on their observations of the in-class sessions, as well as a discussion of what they felt 

to be most important for elementary students and teachers to understand about zero and how 

those understandings might be developed. It was an opportunity to bring together many of the 

different facets of their present and past horizons of understandings of zero to develop a broader 

perspective of what each teacher knew and believed about zero, while also allowing for new 

ideas and connections to be made. The meeting ended with the researcher sharing some of her 

present horizon understandings of zero and teaching and learning about it, as well as how the 

dialogues and experiences had helped to reveal, clarify, change, and expand the researcher’s own 

horizons of understanding zero. 

The in-class teaching sessions were included in this study to provide a new experience for 

the teachers that could engage them in further reflection, discussion, and exploration of their 
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horizons of understanding. The activities used in each session were different, and were designed 

to engage with the students within the contexts that their current mathematics study was focused. 

In one classroom, the students were focusing on place value and its role in addition and 

subtraction, while in the other classroom, students were learning about two-digit multiplication. 

The activities in each session were designed to probe how the students in each classroom 

understood zero and to explore how the teachers interpreted and understood the students’ 

engagement and responses to the activities. The interview that was held immediately following 

one of the in-class session provided the researcher with an opportunity explore how that teacher 

placed the experience within her present horizon of understanding zero as it related to the 

understandings of both herself and her students. For the second session, this dialogue occurred in 

the final group meeting and involved both teachers.  

The analysis of the data involved the recognizing and codifying of common themes of 

agreement and/or disagreement within the two teachers’ horizons of understanding zero. Once 

the themes were defined, the researcher then compared those understandings with the historical 

development of zero and to the prior research findings related to student, pre-service teacher, and 

teacher understandings of zero.  

 3. RESULTS 

The analysis of the collected data revealed a number of links between the history of zero, 

past research findings related to student, pre-service teachers, and teachers understanding of zero 

and the two teachers horizons of understanding zero. However, there were ideas generated by the 

two teachers that had not previously been referenced in the literature. The main six themes that 

emerged from the data analysis are described in this section. In this discussion of the results, the 

pseudonyms Elaine and Nora will be used for the two teachers. 
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3.1 The start of knowing 

When first questioned about when and how they first learned about zero, both Nora and 

Elaine had very few memories, which resulted in much speculation and misgivings about what 

and how they had been taught. Elaine spoke of learning that zero was the starting point of 

numbers, but not a number itself. Then, in middle school, Elaine was told that zero was the 

“middle of the integers”, like a type of physical divider. These two meanings were irresolvable 

for Elaine as a student. Without knowing of the social construction and evolution of zero and the 

integers, as well as not knowing that zero defines a quantity, Elaine’s learning about zero, as well 

as about whole numbers and integers, was relegated to points of trivia to be remembered, but not, 

necessarily, understood. Elaine’s view of zero as not being a number correlates with findings 

from Wheeler & Feghali’s (1983) study of pre-service teachers and with research involving 

students (Evans, 1983; Anthony & Walshaw, 2004; Wheeler, 1987), however, the emphasis on 

zero being viewed as a starting point is one that was not put forward in prior research. 

Nora quickly came to the conclusion that her memories of learning about zero were in 

fact memories of not learning about zero. As had been the case for many students in Wheeler’s 

(1987) study and for many of the pre-service teachers in Wheeler and Feghali’s (1983) research, 

all that Nora could recall was being told that “zero is nothing”. Nora struggled with this 

definition of zero. She frequently spoke of how it gave rise to her belief that zero was not 

important and as a result could be ignored. Throughout our discussions, Nora regularly returned 

to this definition and trying to remedy it was a major motivation for her seeking of a 

philosophical and theoretical understanding of the concept of zero. Eventually, Nora expanded 

her definition to “nothing of some thing”. This modification to her definition parallels the 

conclusion by the students in Leeb-Lundberg’s (1977) research: “Zero is nothing – of 
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something!” (25) and that of Wilcox’s  (2008) daughter’s statement that: “… [zero] means 

something. It means you don’t have anything” (204). This modification to her definition allowed 

Nora to later create a philosophical understanding of zero that made sense of the technical roles  

and rules for zero that she had learned as a student. 

The students in both teachers’ classes also perceived zero as “nothing” and said it could 

be ignored. This concerned both Nora and Elaine, and Nora was particularly troubled to hear her 

declare zero was not a number. The students reasoned that if zero was a number, then they would 

have been taught it when they were taught about one to ten and that it would be said in number 

names (e.g., we say “twenty” and “twenty-one”, but if zero was a number, we would say 

“twenty-zero”). Although some of the past research had demonstrated students’ confusion over 

the naming of numbers containing zeros (Kamii, 1981; Baroody et. al., 1983), these explanations 

about their thinking about number naming revealed that the students were generalizing patterns 

and ideas from the mathematics that they had learned which were causing them to come to 

invalid conclusions (zero is not a number). 

3.2 Memories related to computations 

With respect to zero within computations and computational procedures, Nora’s 

memories again focused on the lack of inclusion of zero. Her memories were primarily about 

addition and subtraction, and specifically being taught about “carrying” and “borrowing” the “1” 

(see Figure 1).  
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Figure 1. Carrying the one 

As a student, Nora was perplexed by this procedure because she did not understand where the 

“1” came from. As an adult, Nora realized that the “1” actually represented “10”, but she 

questioned why the procedure had been described as “carry the 1” and not “carry the 10”. She 

argued that by dropping the zero off the ten, this procedure had confirmed her belief that zero 

could be ignored. Nora questioned what she really understood about the role of zero in any 

computation, and if she was ignoring it everywhere.  

Similarly, Elaine spoke of learning to divide questions such as  and being told to 

“just knock off the zeros”. Elaine did not know why she could do this, only that ignoring the 

zeros made things easier.  

Nora and Elaine’s descriptions of their limited and misconstrued understandings of 

computations involving zero reflect many of those by Ma (1999) with the teachers from the 

United States’ understandings of subtraction and multiplication and of those identified in 

Neuwirth Beal’s (1983), Evans’ (1983), Anthony & Walshaw’s (2004), and Wheeler’s (1987) 

research involving students. Both teachers had learned to do computations involving zero as 

procedures without any basis of understanding. Over time, they had come to theoretically 

understand some of the computational procedures they had been taught, but many of the 

procedures had remained unquestioned until our meetings. 
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3.3 Zero Outside the Classroom. 

Elaine and Nora both spoke of how much of their understanding of zero developed 

outside the classroom. Elaine recalled having an aunt who used the word ‘aught’ in place of zero, 

and both teachers spoke of how ‘oh’ was frequently used when saying the number zero in 

different contexts, such as postal codes. Such uses of “oh” was also frequently noted in other 

research (Wheeler & Feghali, 1983; Allinger, 1980; Baroody et. al., 1983; Whitelaw, 1984). This 

avoidance of the word zero had reinforced many of Nora and Elaine’s mathematically incorrect 

beliefs about zero, including that it can be ignored. 

Elaine and Nora also talked about how, while regularly avoided in numerical contexts, 

the word “zero” was frequently used in non-numerical contexts. Elaine remembered zero being 

associated with people in ways that indicated they were defective or substandard, and Nora 

provided the example of the novel Holes (Sachar, 2000) and its central character, Zero, as 

verification. Both teachers agreed that these experiences gave them the belief that “zero” 

somehow indicated a deficiency or disapproval and that they did not have such a pessimistic (or 

emotional) attitude towards other individual numbers. Although Allinger (1980) mentions the 

occurrence of this type of use of the word zero, Nora and Elaine proposed that this non-

mathematical contextualization of zero influenced how they view and think about the 

mathematical concept of zero. Whether it be the casual replacing of the word “zero” with “oh” or 

the use of zero as a qualitative descriptor, their everyday encounters with the quantity zero and 

the word “zero” presented the two teachers with incomplete and often misleading facts that 

contributed to their lack of theoretical understanding of zero within the context of mathematics.  
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3.4 Marginalization and legitimatization of zero 

Throughout this study, Elaine and Nora struggled with their understanding of zero in 

terms of what they had been taught as a student, in making sense of what they teach to their 

question that emerged through our dialogues: “why do I think I was taught about zero in the way 

that I was,” led Nora and Elaine to seek for and identify ways in which zero had been 

marginalized, not only for themselves, but within society as a whole. The natural consequence 

was that they both then sought ways in which this marginalization could be corrected and zero 

could become a legitimate and valued number. In both cases, Elaine and Nora returned to their 

earliest memories of knowing zero to define where and how this legitimatization could take 

place. 

Nora began by looking for where zero was ignored, with her first concern emerging from 

students’ learning of oral and symbolic representation of numbers and letters. She spoke of how, 

“in public it’s acceptable to switch ‘zero’ and ‘oh’,” and that “when kids are starting to read, they 

get confused with “1” and “l” … but it’s not viewed acceptable to confuse them.” Nora said that 

she felt that little or no attention was given to students not confusing the letter “O” and the 

numeral “0”. This inconsistent use of words and the failure to give equal status and time to the 

number zero as was given to other numbers and letters bothered Nora. This concern regarding 

equity for all numbers in the classroom became a frequent perspective that she brought to the 

discussion. In order to legitimatize zero within the context of numbers, Nora felt that it was 

important that a deliberate attempt be made at using the correct vocabulary when speaking in 

contexts involving zero, and to put an emphasis on distinguishing between the written letter “O” 

and the numeral “0”.  
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During the in-class session with Nora’s students, another representational confusion 

emerged that surprised both Nora and the researcher. When asked to identify objects that they 

had zero of, Nora’s students pointed to the objects as they said “clock”, “fan”, and “my 

earrings”, all three of which were circular in shape and were present in the room, if not in the 

direct possession of the student identifying the object.. After some discussion, it became evident 

that the students thought that “zero” meant “having the shape of a circle”. For Nora, this 

confusion of the shape of a circle with the meaning of zero added an additional source of 

marginalization of zero in that zero. She argued that this too was an aspect of teaching and 

learning about zero that must be prevented. Although there were references to the shape of the 

letter “O” and the digit “0” in some of the research related to students (Baroody, et. al., 1983; 

Allinger, 1980), Nora’s students identified a more extensive misunderstanding and point of 

confusion, that of extending beyond the letter “O” to any object that is circular, which has not 

been discussed prior in the research.  

When considering children’s literature related to numbers, Nora was concerned that in 

many of the works we explored, the only inclusion of zero was through the numeral “10” and not 

as a number in its own right. Nora also felt that in those works where zero was presented, the 

ways in which it was shown and described was inconsistent with that of other numbers. As an 

example, in Zero is not enough (Zimmermann, 1990), Nora was very concerned because 

although zero was defined in words, it was not on any of the placards held up by the monsters in 

the illustrations, whereas, all of the numbers from 1 to 10 were on placards. Nora argued that 

because the book did not present zero in exactly the same way it did all other numbers that the 

book wasn’t doing zero justice. In order to correct this injustice, and give zero equal standing and 
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importance with the other numbers in the book, Nora suggested the addition of a monster holding 

a placard with zero on it.  

Nora raised the concern that teachers marginalize zero in their teaching of mathematics. 

Nora began the discussion by admitting that, “honestly – I [have] never taught zero,” adding that 

she felt that “teachers just aren’t… aware of incorporating zero into lessons”. Nora went on to 

reflect that, “I think maybe I don’t understand zero the way I should… If I can’t explain it 

myself, how am I explaining it to the children?” This marginalization of zero through the 

teaching and learning process was one that Nora felt was continuing from when she had been a 

student. She argued for more emphasis on zero in university education methods classes and in 

resources as ways to legitimatize and bring zero into the classroom. 

Nora noted that zero was not included as a number in the hundreds charts used in 

elementary classrooms. Although there do exist commercially produced charts that include the 

numbers of 0 to 99 rather than 1 to 100, Nora proposed a unique change to the chart in which 

zero would be added above the column containing multiples of tens. Nora argued that by placing 

the 0 above the 10, the students would see the connection between the two quantities in terms of 

both having zero-ones. In this way, zero was being placed in its equitable position in relation to 

the other numbers. 

Nora’s focus on where zero is ignored also brought her to consider many situations and 

contexts that sit outside the realm of theoretical mathematics. For example, Nora was concerned 

that in naming streets and avenues, “you have First Avenue, Second Avenue, Third Avenue, but 

no Zero Avenue”. Again, Nora felt that this was an error that could and should be corrected. 

Nora also struggled with recording time. She noted that between 12:59 and 1:00 there 

should be a time called 0 to signify starting the cycle over again: “zero would be the millisecond 
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between 12:59 and 1:00.” Similarly, Nora proposed that there should be a year 0 between 1 BC 

and 1 AD. In both cases, Nora was suggesting that these infused zeros were more of a movement 

to 1 than a quantity. Although fundamentally different, it is interesting to note how this new 

conceptualization that Nora had for zero was similar in some respects to the understanding of 

zero as a process, motion, or change that emerged during the development in calculus (Kaplan, 

1999). In her suggested inclusion of zero into time on clocks and the calendar years, Nora did not 

recognize that her approaches were not giving zero the same status or role as other numbers and 

thus did not help in her search for that particular type of legitimatization of zero. 

For Elaine, the marginalization of zero occurred in situations in which there was a 

starting point, but no zero. Her attempts at legitimatizing zero began with her proposal of a 

solution to the issue of zero not being a starting point for integers. By viewing the integers as two 

separate sets of numbers, positive and negative, she argued that zero was in fact the starting point 

for both sets. Elaine was not aware that by doing this, she was taking the stance that the integers 

can only be viewed as two distinct sets, and not as one cohesive set of numbers. There is some 

question as to whether she viewed the zero she defined (as the starting point for positive and 

negative numbers) as a single entity or two distinct ones. 

Elaine then moved the conversation to changes outside of the specific realm of 

mathematics that needed to be made in order to incorporate zero in meaningful contexts as a 

starting point. First, Elaine spoke of baseball, and of changing “home” base to “zeroth” base: “Its 

home base, but you’re going to first – so where are you starting from? … They’re not calling it 

zero, but it’s your staring point”. Elaine did not recognize that, by the same logic, the home base 

would then have to become “fourth” base at the desired completion of a batter’s run.   
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Elaine also argued that timers should always count up from zero, rather than down from a 

specified time because zero is where timing starts. Elaine explained that she tended to interpret 

the passage of time “from a moment in the future” back to the present time rather than from the 

present to a point in the future. The history of the Mayan society includes a similar notion of 

counting back in time to zero (Seife, 2000). 

Next, Elaine asked “does zero gravity exist?” to which Nora replied that zero gravity was 

“buoyancy – it’s when you float”. Together, the two teachers concluded that zero must be the 

lowest value for a measurement of gravity. The discussion of the two teachers around gravity 

demonstrated that their understanding and conceptualization of zero had a definite link and 

impact on other understandings outside the context of mathematics. 

Elaine’s final recommendation was to change the role of zero with respect to temperature, 

She argued that zero should be the starting point of, or lowest possible, temperature. Nora 

disagreed with this proposal, because she valued 0º C as the freezing point of water. Nora’s 

argument can be seen as supporting her goal to make zero something that cannot be ignored, 

while Elaine’s argument supported her belief that zero should always be a starting point. 

Interestingly, Elaine did not argue for zero being the starting point of both the positive and 

negative temperatures as she had done for the role of zero in integers. Both teachers were 

unaware of the Kelvin system of measuring temperature.  

In all these cases, Nora and Elaine were attempting to bring zero to the attention of the 

public eye, to make it “something” rather than “nothing”, and to bring consistency to the “world” 

of zero. Their arguments were almost exclusively based upon and in reaction to the technicalities 

that they remembered learning about zero and were rarely supported by an understanding of the 

theoretical and socially constructed aspects of zero.  
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3.5 Representing zero 

As Elaine and Nora formed a sense of importance for zero, they began to argue for 

purposeful and meaningful teaching about zero to students. Both teachers felt that students 

should learn about zero as soon as they started learning about whole numbers, but Elaine 

struggled with finding a way that students so young could understand a concept as abstract as 

zero. Nora, on the other hand, proposed three different types of activities that young children 

could engage in to begin their understanding of zero: through the absence of specified objects, as 

an empty set that proceeds one, and as the result of subtraction. 

One of Nora’s suggestions was to highlight the absence of a specific type of object on a 

page in a literature book. For example, in the book Ten friends (Goldstone, 2001) the description 

of an illustration as showing “2 teachers, 2 trolls, and 2 tycoons…” could be modified to read “2 

teachers, 2 trolls, 0 frogs…”. Nora explained that she specifically chose frogs because, although 

they did not appear on the current page, they were found on other pages in the book and thus had 

been a possibility for the situation and had connections to the students understandings of 

quantity. As an extension activity, Nora suggested that students could create their own pictures 

with statements describing the quantity of objects or things present; including what the students 

noticed that there was zero of. With respect to the historical development of the concept of zero, 

Nora’s suggested activities intended to engage students in understanding zero as a quantity, 

much in the same way that the mathematicians of India came to understand zero (Seife, 2000). 

A second type of representation for zero that Nora introduced was intended to help 

students understand zero as the quantity before one. She described how she could use 

manipulatives to represent the narrative of, “first I have zero, now I have one, now I have 

two…”. She explained that, by having no manipulatives present for the first part of the narrative, 
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students would come to understand that zero represents a set of objects that is empty. Although 

she did not refer to this notion as the “empty set”, her activity was an attempt to have student 

construct an understanding of zero as the “null set” as emerged through the history of zero 

(Kaplan, 1999). Based upon the research of Inhelder and Piaget (1964), as well as Wheeler and 

Feghali (1983), the understanding that Nora sought to have students gain was one that students 

and pre-service teachers would have great difficulty in attaining; however, according to Leeb-

Luneberg’s (1973) and Wilcox’s (2008) research would indicate that in fact young students 

could understand zero in this way.  

Nora also extended this notion of the empty set to understanding place value. In Anno’s 

counting book (Anno, 1977), Nora noted how the inclusion of an empty set on the page about 10 

could be used to support the students’ learning of place value. In the book, 10 x 1 grids are 

shown on each of the pages associated with a number between 0 and 11. For example, on the 

zero page, none of the grid is coloured in, while on the page for 11, two grids are shown, one 

completely coloured in and one with only one square coloured. On the page for 10 Nora noticed 

that only one grid was shown and it was completely coloured in. To connect the students’ 

understanding of zero being a null set to its role in the place value system, Nora argued that the 

page for 10 should in fact have two grids on it – one completely coloured in and one with no 

colour. In this example, Nora was brining together the roles of zero as a quantity and as a place 

holder, just as the development of the Hindu-Arabic number system historically did (Seife, 

2000). 

Finally, Nora reasoned that students could represent and understand zero in relation to 

subtraction. In this case, Nora described an activity she would use in which students would tell 

the subtraction story that could have resulted in a particular picture that she shows to them. For 
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example, the story for a picture of trees without birds might be that “five birds were there and 

then flew away”. This understanding of zero is one that also emerged in India, and became very 

important centuries later in the advent of the two-column bookkeeping system (Kaplan, 1999). 

As well, Leeb-Lundberg’s (1977) research demonstrated that elementary students were capable 

of understanding zero as the subtraction of equal quantities. 

Elaine liked Nora’s suggestions as activities that students could do, but questioned 

whether the students would actually understand zero from these experiences. Elaine spoke of 

young students being at a concrete stage, yet all of Nora’s forms of representation required 

students to abstract the notion of zero from concrete representations of quantities that are not 

zero. Elaine wondered how students could learn about zero concretely, in which they were able 

to “see” and “touch” zero. This quandary was one of the root causes for Greek society’s struggle 

with accepting zero as a quantity for hundreds of years (Barrow, 2000; Kaplan, 1999; Seife, 

2000).  Leeb-Luneberg’s (1977) and Wilcox’s (2008) research demonstrates instances in which 

young students could understand the abstract nature of zero, and Cockburn’s and Littler’s (1977) 

chapter 0 includes a number of activities and ideas for teachers to use that are similar in intention 

to those proposed by Nora. 

 3.6 Zero and student learning 

When contemplating the current role of zero in elementary students’ mathematical 

learnings, Nora and Elaine focused on zero within place value and number compositions, and 

within computations. With respect to place value and number composition, Nora reflected that if 

she gave her students the numbers 45, 54, and 37, “they’ll see the 7 and think that the 37 is the 

bigger number”. Nora explained that this showed her that the students did not understand place 

value. This discussion prompted Elaine to add that when showing students numbers on a place 
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value mat “If [it was] a number in which there was something in every place value [the students 

had] no problem. But as soon as I removed something off the matt,” then the students believed 

that nothing existed there. Elaine explained that it was because the students do not understand 

zero as a quantity that they don’t know how to deal with zero in place value in numbers. Nora 

agreed and said that this was the root of her students not being able to order the numbers 

correctly. Pasternack (2003), Evans (1983), and Baroody et. al. (1983) all provided similar 

evidence related to, but gained through different tasks, students’ misunderstanding of zero in 

place value. 

Nora and Elaine hypothesized that their students’ lack of understanding about the role of 

zero in place value was also the source of their problems with naming numbers. They stated that 

the students were merely relying on procedures that they had memorized to name numbers. 

Elaine spoke of how many of her students “just lose [the zero]” when naming numbers, such as 

204 being called twenty-four. Interestingly, Nora’s students had said in the in-class session that 

zero was not a number, and one of the arguments that they provided was “you don’t say it when 

you read numbers, but you say all the other number”. One student then provided the example of 

20 (twenty) and 21 (twenty-one). This student argued that if zero was a number, then it would be 

called 20 “twenty-zero”. Previous research, such as that of Baroody et. al. (1983) and Kamii 

(1981), spoke of students ignoring the zero in naming numbers as Elaine had noticed, but the 

previous research did not indicate that students’ reasoning in this regard might actually be a 

result of our naming conventions for numbers and the way that it treats zero differently. 

Elaine and Nora generated a number of suggestions for what they believed to be 

important in students’ development of an understanding of zero. First, Elaine stated that students 

must learn that although zero can act as a place-holder, it cannot be ignored because it indicates 
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something about the size of the quantity. Nora agreed and added that place value should receive 

more emphasis in grade one. Both teachers felt that there was too much emphasis in the earlier 

grades on addition with not enough emphasis on number decomposition. Elaine commented “9 + 

1 = 10 or ten plus one more is 11 … we’re not teaching [place value] – we’re teaching addition”. 

Elaine continued to provide examples, circling the addition sign (+) in every statement she wrote, 

explaining that the emphasis was on that sign and not on knowing the numbers.  

In discussing the four operations on whole numbers, both Elaine and Nora argued for the 

standard procedures and algorithms to be deemphasized and left until later in the students 

learning. Instead, the two teachers felt that it was important that the students use their 

understanding of place value and number decomposition, as well as of the operations, to develop 

strategies for performing different types of calculation. Their concerns about student and teacher 

misconceptions were reflective of the findings in Ma’s (1999) study involving US and Shanghai 

teachers. Repeatedly throughout their discussions about the teaching and learning of the 

operations, the two teachers kept revisiting the importance of students being flexible in their 

understanding of the decomposition of numbers (e.g., recognizing 204 as 20 tens and 4 ones, 19 

tens and 14 ones, etc) and the role of zero in place value. Both teachers also emphasized the 

importance of never giving the students the impression that zeros were being ignored or dropped 

off. 

 4. DISCUSSION 

The past and present horizons of understanding that emerged from the dialogues and 

experiences that Nora and Elaine engaged in during this study had many parallels as well as 

some departures from what previous literature had noted for students, pre-service teachers and 
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teachers. This section summarizes those similarities and differences and then proposes a 

framework that could be applied to future research that is analyzing one’s understanding of zero. 

4.1 Results summary 

Through the dialogues and experiences the uncovering of the past and present horizons of 

understanding of zero for both Nora and Elaine highlighted understandings that were both 

correct and incorrect. Just as had been previously noticed for students (Baroody, et. al., 1983; 

Allinger, 1980; Whitelaw, 1984) and pre-service teachers (Wheeler & Fegahli, 1983) Nora 

struggled with her understanding of zero as “nothing”, but she was able to adjust her definition to 

“nothing of something” as had also been done by Leeb-Lunburg’s (1977) students. Alternatively, 

Elaine sought to make sense of zero being a starting point in all situations, resulting in zero not 

necessarily being a number, just as pre-service teachers argued in Wheeler & Feghali’s (1983) 

research.  

For both teachers, zero in computations was not well understood and was a source of 

frustration in trying to teach students. Many of these same issues had been raised by Ma (1999), 

Neuwirth Beal (1983), Evans (1983), Anthony & Walshaw (2004), and Wheeler (1987) with 

respect to teachers and students involved in their research. Nora and Elaine’s emphasis on the 

importance of understanding zero as part of place value and number decomposition was also a 

finding of Pasternack (2003), Evans (1983), Baroody et. al (1983), and Kamii (1981). 

Elaine and Nora brought forward the use of the word “oh” in the place of “zero” and the 

resulting confusion between the two concepts by students which was a finding in the research of 

Wheeler and Feghali, (1983) for pre-service teachers as well as for students in the research of 
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Allinger (1980), Baroody et. al. (1983) and Whitelaw (1984). The negativity associated with the 

word zero that Nora and Elaine noted can also be found within the research of Allinger (1980). 

The two teachers engagement in the dialogues and experiences also revealed insights and 

ways of perceiving zero that did not emerge in previous reported research. The use of a 

hermeneutic approach allowed the teachers to explore the reasons why they held the beliefs that 

they did about zero, and as a result caused them to also question the validity of what they knew 

and had been told. The result was that the teachers sought to identify cases where zero had not 

been included, both within their learning as a student and in society in general, and to propose 

ways to rectify the situation. In many of these instances, the teachers were not aware of the 

cultural history that had led to the marginalizations of zero that they perceived. Elaine and Nora 

also grappled with how zero could be represented and understood by elementary students, taking 

them into an exploration of their beliefs about cognitive readiness and pedagogy with relation to 

zero.  

Finally, Nora’s students brought forward an understanding of zero which had not been 

reported previously – that zero is the same thing as any circle. Although some research (Allinger, 

1980’ Baroody et. al., 1983; Whitelaw, 1984) mentions the exchange of the word “oh” for 

“zero”, there is no discussion of students assuming that because the symbol for zero was circular 

in nature that zero must be in itself a circle.  

4.2 A way to conceptualize the understandings 

As the group meetings and in-class sessions proceeded, it became evident that the 

teachers were exploring and struggling with knowledge that had evolved over time and that had 

resulted in two different, yet related categories of understandings: procedural and technical 

understandings of zero, and philosophical and theoretical understandings of zero (see Figure 2). 
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The philosophical and theoretical understandings of zero are the result of both societal 

conventions related to zero as well as the theories and axioms of meaning given to zero by past 

and contemporary academic mathematicians. On the other hand, the technical and procedural 

understandings of zero are the routines carried out in mathematical situations that involve zero. 

These two categories are related to each other in that the technical and procedural understandings 

of zero can be directly explained by the philosophical and theoretical understandings of zero. For 

example, why one puts zeros in when doing multi-digit multiplication is a direct consequence of 

the theoretical definition of the place value of the quantities being multiplied.  

 

Figure 2. A Conceptual Framework for Viewing Teachers’ Conceptions of Zero 

 

Initially, it was the researcher’s view that one’s procedural and technical understandings 

would be supported by one’s philosophical and theoretical understandings of zero, however, 

Nora and Elaine tended to have procedures and techniques that they used, but they did not have 

the understanding of why they should use those procedures and techniques. Consider even where 
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the two teachers began in their memories of learning about zero. Nora believed it was nothing 

(something to be ignored) and Elaine believed it was the starting point. Both conceptions of zero 

were based on nothing more than a single “fact” that had been stated without any evidence of 

reasoning or support.  

As adults, they had begun to construct possible philosophical and theoretical 

underpinnings for their procedures and techniques. In many cases, such as Nora’s desire to write 

“10” rather than just “carry the 1” in addition, and Elaine’s emphasis on number decomposition 

before starting in on operations, can be seen to be developing conceptualizations of the 

theoretical and philosophical foundations of understanding zero. However, there are many cases 

where the two teachers’ attempts at building theoretical and philosophical reasoning for their 

technical and procedural understandings conflicted with the true theoretical and philosophical 

understandings of zero within mathematics. This often caused the two teachers to venture into 

“reforms” to the way zero is used and known that, although interesting, are neither practical nor 

informative from a mathematical perspective. Elaine, believing that zero must be a starting point, 

which it need not be, becomes trapped in an exploration to “convert” the world around her, while 

Nora, believing that zero should be everywhere where any other number is, seems ready to begin 

a crusade to bring zero to its rightful place of respect. Neither teacher is aware of the 

conventions, defined by society over time, that have brought rise to these situations that they 

desire to change. As a result, their efforts in trying to get to understand zero better become 

derailed by their imaginations and misconceptions. Thus, it would seem that the interplay, or 

lack thereof, between the two categories within understanding of zero, philosophical and 

theoretical, and technical and procedural, can impact the depth and accuracy of understanding 

that one has about zero.. 
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5. CONCLUSION 

The concept of zero is a complex mix of social evolution, theoretical mathematics, and 

procedures. As a result, the interplay between these aspects of the understanding of zero is of 

great importance in developing a cohesive and mathematically correct understanding of the 

concept. Reflecting once more upon the research related to students’ and teachers’ understanding 

of zero done prior to this study, it appears that Nora and Elaine’s abundance of procedural and 

technical understandings, without strong philosophical and theoretical understandings of zero, 

may be the status quo for students and teachers alike.  

Understanding zero is foundational to understanding mathematics. Whether it be place 

value and whole number computational situations as Nora and Elaine discussed, or other topics 

such as locating fractions on a number line or understanding division by zero and asymptotes of 

functions, misconceptions about zero can lead to students failing to learn key ideas in 

mathematics and teachers struggling to try to correct the situation without understanding it 

themselves. Research such as Leeb-Luneberg (2003) and Wilcox (2006), and this study have 

shown that given interactive, contextualized, and meaningful learning experiences, both students 

and teachers can learn to better understand zero. Zero needs to become more than “nothing” 

within the classroom and in pre-service education programs. 

The research that this article is based upon considered a very limited sample, only two 

teachers; however, it does reveal some findings that are new, promising, and as such, warrant 

further investigation. Such future research, involving a larger and similar population, may very 

well provide insights into teachers’ philosophical and theoretical as well as procedural and 

technical understandings of zero, which in turn could help to better inform pre-service teacher 
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education programs and in-service teacher professional development in relation to the creation of 

robust understandings of zero by pre-service and in-service teachers.  
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Problem-Based Learning in Mathematics 
 

By Thomas C. O’Brien (posthumously) 
with Chris Wallach and Carla Mash-Duncan 

 
 
A teacher of mathematics has a great opportunity. If he fills his allotted time with 
drilling his students in routine operations, he kills their interest, hampers their 
intellectual development, and misuses his opportunity. But if he challenges the 
curiosity of his students by setting them problems proportionate to their knowledge 
and helps them to solve their problems with stimulating questions, he may give 
them a taste for, and some independent means of, independent thinking.  
 
George Polya, preface to the first edition, How To Solve It, Princeton 
University Press, 1945. 
 
 
 
 For years problem-solving has been an aspect of the American school 
mathematics curriculum. But for most children— contacts with math educators 
around the country suggest 80 to 90 per cent of children—problem solving is 
limited to “word problems”, i.e. computational exercises couched in words. 
 
Word problems are a pretty narrow subset of the universe of problems. We can say 
with some authority that we have not solved a word problem outside a math 
classroom in many decades. 
 
A more general definition of “problem” is a situation with a goal and the means to 
the goal is not known in advance. As the great mathematician George Polya said, 
[private conversation] “A problem is when you are hungry late at night and you go 
to the refrigerator and the refrigerator is empty. Then you have a problem.” 
 
In 2000 the National Council of Teachers of Mathematics’ Principles and 
Standards for School Mathematics defined problem solving as follows: 
 

Problem solving means engaging in a task for which the solution method is 
not known in advance. In order to find a solution, students must draw on 
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their knowledge, and through this process, they will often develop new 
mathematical understandings. [Note 1] 

 
Polya suggested two aims for elementary school mathematics. First are the “good 
and narrow aim of education.”  
 

… the good and narrow aim of the primary school: to teach the 
arithmetical skills — addition, subtraction, multiplication, division, 
perhaps a little more. Also to teach fractions, percentages, rates, and 
perhaps even a little more. … Arithmetical skills, some idea about fractions 
and percentages, some idea about lengths, areas, volumes, everybody must 
know this. This is a good and narrow aim of the primary schools, to 
transmit this knowledge, and we shouldn’t forget it.   

 
And then there is a higher aim: 
 

But I think there is one point which is even more important. Mathematics, 
you see, is not a spectator sport. To understand mathematics means to be 
able to do mathematics. And what does it mean doing mathematics? In the 
first place it means to be able to solve mathematical problems. To solve 
certain problems of multiplication or addition, this belongs to the good 
and narrow aim.  To the higher aims about which I am talking now, is 
some general tactics of problems. To have the right attitude to problems. 
To be able to be prepared to attack all kinds of problems —  not only the 
very simple problems, which you can right away solve with the skills of the 
primary school, but more complicated problems, problems of engineering, 
physics and so on. This will be, of course, farther developed in the high 
school, still farther for those who take a technical profession at the 
university, but the foundations should be prepared already in the primary 
school. And so I think an essential point in the primary school is introduce 
the children into the tactics of problem solving. Not to solve this or that 
kind of problem, not to make just long divisions or some such thing, but to 
develop a general attitude, a general aptitude to the solution of problems. 
Well, so much about the general aim of the teaching of mathematics on the 
primary school level. [Note 2] 

 
 
Since Polya’s death in 1985 there has been a burgeoning movement involving 
problem solving as a fundamental aspect of education which incorporates and goes 
beyond the development of problem solving tactics and attitudes. 
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Problem solving has become to be seen as a method of causing learning to take 
place. 
 
At the heart of problem-based learning (PBL) is collaborative work among 
students in devising and solving problems involving conceptually complex 
material. [Note 3] 
 
PBL, said to have been originally developed for the training of physicians at 
McMaster University in the late 1960s, has been incorporated into over sixty 
medical schools and other health-related programs such as nursing, dental and 
veterinary schools. Moreover, PBL is said to have been adopted by numerous 
disciplines including business, chemistry, biology, physics, mathematics, 
education, architecture, law, engineering, social work, history, English and 
literature, history, and political science. [Note 4] 
 
The implementation of problem-based learning (PBL) entails not only the re-
design of curriculum but also the development of effective facilitation-cum-
coaching approaches. PBL curricula innovation typically involves a shift in three 
loci of educational preoccupation: from what content to cover to what real-world 
problems to present; from the role of lecturers to that of coaches; and, from the 
role of students as passive learners to that of active problem-solvers and self-
directed learners. [Note 5] 
 
 
What does this have to do with the mathematical education of children? PBL, it 
seems to us, is intimately related to the Piagetian notion that knowledge is a 
personal construction, not a set of fixed entities transmitted to be stored until text 
time. In classrooms, this means that interesting tasks, problems, and investigations 
should be actively engaged by learners.  
 
The British mathematician Alfred North Whitehead hinted at PBL when he said, 
90 years ago, “In training a child to activity of thought, above all things we must 
beware of what I will call ‘inert ideas’—that is to say, ideas that are merely 
received into the mind without being utilized, or tested, or thrown into fresh 
combinations.” [Note 6] 

 
It is a complex task but teachers need to find out where the learner is in order to 
challenge the learner with problems and investigations which have a moderate 
mismatch with the learner's present status. Thus challenged, the child will revise or 
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extend or generalize his/her present fabric of ideas and relationships. This is what 
learning is all about, not the storage, rehearsal, and production-upon-command of 
inert facts. 
 
Our task as educators is to come up with appropriate provocation, i.e., good 
problems and investigations to engage children's minds and imaginations. 
 
That is to say, much of learning takes place by provoked adaptation.  This is a 
message especially appropriate to mathematics education.  
 
Recent Work with Children 
 
During the past five years or so O’Brien has worked in with local teachers in 
elementary school math classrooms. The work was undertaken from a provoked 
adaptation point of view (which we now know is intimately related to PBL). That 
is, no teaching took place, problems were posted for children working 
collaboratively, and children were almost universally successful in their work. 
 
Not the least, children’s enthusiasm was such that we sometimes had to exert 
“crowd control” in the sense of giving children poker chips (two to each child) to 
be spent to in order to address the entire class, so energetic was their desire to share 
their findings. 
 
In general, the tasks involved necessary inference—an utterly basic aspect of 
mathematical thinking—and in general the problems involved games devised by 
the author. By “inference” is meant the deriving of new information from old 
information.   
 
(Suppose I hide a penny in one fist and don’t tell you which fist, I show both fists, 
closed, to you.  You choose one of the fists and find out that it is empty. You can’t 
see it, but your mind can see that the penny is on the other fist.  
 
(Or suppose I show you 8 pennies. You count them. Then I ask you to close your 
eyes and I cover some of the pennies with my hand. I ask you to open your eyes 
and tell me how many pennies are under my hand, You relate the three classes of 
chips—the original chips, the showing chips and the hidden chips—to infer the 
number of pennies under my hand, Interestingly, many teachers will predict that 5 
and 6 year olds will subtract to get an answer. They don’t.)  [Note 7] 
 
The results have been widely reported in the US and the UK. [Note 8] 
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The latest work was undertaken with first and fourth grade children in a private 
school in the midwestern USA. 
 
First Grade 
 
The activity is called Mystery Person. It was invented, so far as we know, by 
O’Brien. 
 
A number of people are asked to sit in a circle and their initials are drawn on a 
large paper pad that everybody can see. In the diagram that follows, C is for 
Charles, etc. 
 
       C 
B           N 
R           L 
       T 
 
The teacher secretly writes down the name of a Mystery Person. The players have 
to gather clues and infer who the Mystery Person is. 
 
They ask the person who chose the Mystery Person about a particular person. If the 
person is the Mystery Person OR if it is next to the Mystery Person, the feedback 
from the teacher is “Hot.” Otherwise, the feedback is "Cold." 
 
The reader is asked to play this game with one or more adults. Then turn the tables; 
a different player hides the Mystery Person and the person who originally hid the 
Mystery Person has to gather clues and find the Mystery Person. 
 
Once the reader has played the game several times, the challenge is to solve these 
problems with the list of people C-N-L-T-R-B as configured above. Mathematics 
is not a spectator sport. 
 
In the circle above, C is cold. T is Hot. 
 
Is there enough information to figure out who the Mystery Person is? If so, who is 
it? If not, what question would you ask next? The answers are given at the end of 
this article. 
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Up to now, you have played Mystery Person with one person hidden. We ask 
readers to go back to the C-N-L-T-R-B configuration above and challenge friends 
to a game. 
 
We tried the Mystery Person game with first-graders at the beginning of the school 
year and were pleased to see that they succeeded. They enjoyed the games so much 
that Tom was accosted by a stranger in a super market. “You’re working with my 
little Jamie with the Mystery Person game, yes? I want you to know that Jamie 
loves the games and insists that we play the games at home around the dinner 
table.” 
 
We stayed with the one-person game for two sessions, each about 25 minutes, and 
it was clear that the children were successful. There was rarely a wasted question 
and children knew when a conclusion had been reached. Children worked together 
enthusiastically and cooperatively. It was also clear to Chris that at their young age 
and at this early time in the school year, their attention span was such that that they 
needed a change of pace and so we took a break for other activities. 
 
It was not until January that we got back to the Mystery Person games. We had 
done similar work with fifth graders in the past (Cite “What is Fifth Grade?) and 
we were keen to find out how children at this age would do with two Mystery 
Persons. 
 
The group, as before, was Chris’s math class, 14 children selected from three first 
grade classes in the school. 
 
Chris asked 7 of the children to sit in a circle on the floor and she asked the rest of 
the children to sit in chairs in a circle surrounding them. She put the inner-circle 
children’s names on the board. 
      J 
S         K 
Ke      L 
  E    C      
 
First we played for one Mystery Person. Tom secretly wrote the name of one of the 
children in the inner circle and gave out data while Chris selected children from the 
entire group to ask questions and explain why they were asking about this or that 
person. 
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The only bit of “teaching” that took place, aside from reminding children of the 
rules of the game at the outset, was to ask children to note the consequences of the 
data they were given.  
 
But Chris had an extra arrow for her bow. She commonly asked children to explain 
their thinking to her and to the class. And, unlike many American classrooms 
where the teacher moves on once a correct answer or a sensible explanation is 
given by one child, Chris asked several people to share their solutions and/or their 
thinking and often she chose a child whose solution was weak or incorrect. “What 
do you think of that?” was Chris’s question to the class. Never did Chris say or 
imply that a child was incorrect. 
 
Here is the way the game went. The consequences were placed in the pad by 
children taking turns. 
 
A ring of fire meant hot. An ice cube meant cold. 
 
A check meant that the person was a possible Mystery Person and an X meant that 
they had been ruled out as a Mystery Person. 
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Child    Chris    Consequences 
1. Tell me about L? L is cold   J 

                 S         K 
                                    Ke          L 
               E    C 
 
2. C?                                  2. Hot            J 

                 S         K 
                                    Ke          L 
               E    C 
 
3. We’re finished, It has to be E. 
 
This was for warm-up. (Noteworthy, only this one game was needed.) We were 
pleased that, unlike much of the school curriculum, children were successful four 
months later. 
 
Chris exchanged inner- and outer-circle children and the game went like this: (We 
won’t provide a Consequences chart in order to provoke readers into following 
children’s tactics.) 
      H      C 
I                 Je 
R                L 
          N 
 
Child    Chris  
 
1. Tell me about L? L is hot. 
2. C?     Hot 
3. Je?    Hot 
4. R?`    Cold 
5. H?    Hot 
6. I?    Hot 
7. We only need one more question and the game is finished, 
 
What do you think about children’s thinking? Did you infer both Mystery Persons? 
Try some of this with kids? 
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Fourth Grade 
 
We worked with Carla’s class of 14 fourth graders for 50-minute sessions for ten 
or so Thursdays staggered throughout the year by Tom’s travel and school holidays 
and events. 
 
For several of these sessions we worked with a game called Find It, also invented 
by Tom. [Find It is available for Palm PDAs from Handango: See 
http://www.professortobbs.com/software.htm] 
 
As with the first graders, the sessions involved the whole group, with children 
encouraged to work out certain issues (such as “What’s the best place to start? 
What are the consequences? What’s a good next step?) in small groups. 
 
Find It involves a 4 by 4 grid. Players can opt for 1-12 diversions to be placed 
randomly in the grid and the task is to infer where the diversions are. The player 
launches a probe from position 1 though 16 to look for the diversion. 
                           1         2        3        4 
                    16                                     5 
 
                    15             6 
 
          14             7 
 
          13             8 
                           12      11      10       9 
 
There are three games, Righties, Righties and Lefties, and Randoms. In the Rightie 
game, a probe makes a right turn when it hits a diversion. Righties and Lefties are 
a random mix of the two types of diversion and Randoms are randomly Righties or 
Lefties. 
 
When a probe is launched, the destination and the number of diversions are 
reported. For example, suppose a player is playing Righties and has chosen that 
only one Rightie be hidden. 
 
And suppose that the player shoots Probe 1 and finds that it exits at 12 with 0 hits. 
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This means that no Righties have been encountered. And thus four boxes in the 
grid can be eliminated.    
 
                             1       2        3        4 
 
                    16       x                                5 
 
                    15      x               6 
 
          14       x      7 
 
          13       x      8 
                            12      11      10       9 
Suppose the next shot is 16. And suppose the probe exits at 11 with 1 hit. You 
know with logical necessity that there is a Rightie in the 16-2 (or 16-11) box, The 
game is finished. 
 
Here is a game involving 5 Righties. Can you locate the Righties? The answer is 
given below. This game took fourth graders 13 minutes to solve. 
 
Start 
 
Exit  
 
Number  
of Hits 
 
 
After two or three 20-minute sessions with Righties, the children were both 
efficient and confident. They had equilibrated. As is the case in most situations 
involving equilibration, they wanted to move higher. 
 
Here are the data for 12 Righties. Fourth graders took 20 minutes. The answer is 
given below. 
 
 
 
 

9 

7 

1 

10 

 3 

 0 

11 

 6 

 1 

12 

9 

2 

16 

 1 

 3 

  1 

15 

 1 
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Start 
 
 
Exit  
 
Number  
of Hits 
 
Summary 
 
The results we report here are consistent with the previous five years’ work. 
Children constructed important ideas in the face of a problem situation. They did 
so collaboratively, they respected one another’s thinking, and their overall 
enthusiasm and eagerness to go further was at all times impressive. 
 
The results here are consistent with the constructivist notion that moderate conflict 
(i.e., a problem which involves a moderate mismatch between the learner’s original 
network of ideas and abilities and those needed to solve the problem) leading to 
provoked adaptation is at the heart of learning. 
 
Perhaps most important, the activities here go somewhere. Polya said [private 
conversation], “First, a good problem must be difficult enough for the student, else 
it is an exercise and not a problem. Second, it should be interesting to the student. 
And most, important, it should go somewhere. Inference is an important 
“somewhere. “ It is the glue that holds mathematics—and in fact, much of life— 
together. 
 
The results here are consistent with the principles of problem-based learning. 
 
Certainly problem-based learning is not entirely new to math teachers. Surely some 
teachers have used the principles of PBL in their classrooms from time to time, but 
no concerted and continuous thrust has been given PBL in American mathematics 
education in either research or practice.  
 
The fact that PBL has been used widely and apparently successfully in a wide 
variety of fields is heartening. It is reasonable to suspect that leaders in a wide 
variety of disciplines, including medicine, do not adopt new polities and practices 
without good reason. 
 

 1 

16 

1 

2 

1 

 2 

3 

 2 

 2 

4 

5 

3 

6 

 4 

 2 

  7 

6 

 2 

8 

9 

3 

11 

10 

 2 

10 

 8 

 1 

12 

11 

2 

14 

14 

 6 
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More important, the results are consistent with the Piagetian emphasis on 
equilibrium. Equilibrium and homeostasis are fundamental not only to the 
biological world but to the world of education. 
 
Perhaps this is the time for American mathematics education to make some small 
starts away from the parrot-training that is so common and so fruitless. 
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Answers 
 
1. In the one-person Mystery Person game, the data are inconclusive. 
  
2. Children’s work (including answers) on the 5 Righties and 12 Righties tasks is 
shown below.  
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This special section of vol8,nos1&2 of The Montana Mathematics Enthusiast is a result 

of tremendous enthusiastic team work of many outstanding mathematics educators 

worldwide who are concerned with the issues related to mathematical giftedness and 

devoted to share with the international community their ideas, research results and best 

practices. The idea of the special issue on mathematical giftedness arose during the Topic 

Study Group 6 (TSG6) meeting at the 11th International Congress on Mathematics 

Education (ICME-11) in Monterrey, Mexico, in 2009 led by Viktor Freiman and Ali 

Rejali in collaboration with Mark Applebaum, Pablo Dartnell, and Arne Mogensen. More 

than 60 participants and 20 presentations resulted in invitations to scholars to share their 

findings in extended papers that meet the high standards of The Montana Mathematics 

Enthusiast.  Each paper was rigorously reviewed by at least two renowned scholars. As a 

result of our work, we present 11 papers in this issue, 8 of which arise from the TSG6 

work and 3 others are original papers written especially for this issue.   

Dealing with the topic of mathematical giftedness is a very delicate and complex task 

because of the existence of multiple views, cultural perspectives, and pedagogical 

approaches to the subject. There is a growing interest of the mathematics education 

community in the field of giftedness and creativity that is supported by the intensive 

continuous work of the Topic Study Group on Activities and Programs for 

Mathematically Gifted at ICMI’s Congresses, International Conferences on Mathematical 

Creativity and Education of Mathematically Gifted, as well as several recent publications 
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(Leikin, Berman, and Koichu, 2009; Sriraman, 2008; Sriraman, Freiman, and Lirette-

Pitre, 2009; Sriraman and Lee, 2010). 

Students we talk about can be identified by means of different terms (gifted, talented, 

promising, etc.) and different tools (psychological tests, standard assessments, school 

marks, teachers’ observations, etc.) based on variety of criteria (problem solving 

behaviour, cognitive abilities, multiple intelligences, personal  attitudes, etc.) and (or) 

their combination. Researchers and practitioners mostly agree that those students have 

special needs, deserve particular attention and require a different teaching approach. 

 At the same time, it seems that many mathematically gifted students may remain 

non-identified and non-nurtured in regular classrooms; they may even have difficulties 

complying with regular school routine and, under certain circumstances, become 

underachievers. Thus, their high potential may not be realized and get lost for the society 

which is in odds with modern trends of more inclusive school systems that care of all 

students helping  them to become active, engaged and well-rounded  citizens  of the 

modern world.  Although separating those so called gifted students from the school system may 

change their natural growth and diminish their ability to work with others, and also damage the 

level of other schools (Hatamzadeh and Rejali, 2008).      

 The work of the similar Topic Study Group at the ICME-10 has identified four 

main issues related to activities and programs for mathematically gifted: 

1. Characteristics of giftedness and how such students can be identified.  

2. Having identified the group of gifted students, it is now necessary to consider how 

such students should be met both inside and outside of the classroom. 

3. Considering the materials that were presented to gifted students and discussed in 

particular, technology that might be of use. 

4. Specific examples of problems and investigations. 

By organizing our work at the ICME-11, we formulated following questions in order to 

pursue and extend our investigation: 
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a) What do we know from recent literature on the subject of mathematically gifted 

students?  

b) Who is a mathematically talented student? What are her or his characteristics? What 

are the differences between the terms “mathematically gifted, mathematically promising, 

mathematically talented, mathematically able, and mathematical genius and others used 

by researchers and practitioners? How does it vary from one country to another? 

(c) How can we identify them? What are the ways to search for mathematically gifted 

students at different ages and settings? 

(d) How do we deal with students and kids who think they are (or their family think they 

are) mathematically gifted, but they are not according to identification criteria? 

(e) What is the societal phenomenon of overreacting to mathematically gifted student and 

how it may affect the life and the future of these students? 

(f) How do mathematically gifted students work with mathematics? What are their 

strengths and weaknesses on the subject? What are their attitudes and performances? 

How should we take all this into account in our teaching and assessment practices? 

(g) What are special needs for mathematically gifted students (additional trainings, their 

school and everyday life experiences, their works at home, participation in extracurricular 

activities such as problem solving, mathematics clubs, mathematics houses, competitions, 

etc?) 

(h) What should educational systems do in order to meet the needs of mathematically 

gifted? What are the (positive or negative) effects of curriculum as well as its 

implementation in practice inside or outside school on the development of 

mathematically gifted students? 
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(i) How should we teach mathematically gifted students (at different levels) and provide 

extra curriculum activities for them? How can we, as educators or teachers, help them to 

be more creative? 

(j) How should we prepare teachers to work with mathematically gifted students? 

(k) What are the challenges for gifted students and their mentors and how can these 

challenges be addressed? 

(l) What is the future of mathematically gifted students and how can we help them realize 

their potential? 

(m) What are the resources on the subject? What role may technology play in providing 

additional resources for mathematically gifted? 

(n) What are other issues useful for further studies on the subject that are not mentioned 

in previous questions? 

Neither the work of the particular group nor a special issue on mathematical giftedness 

could cover all aspects raised above questions. However, papers presented in this issue 

bring new perspectives in theoretical and methodological work, as well as their 

implementation in practice.  Some other results have been presented at TSG6 in ICME-11 

(http://tsg.icme11.org/tsg/show/7).       

 The eleven papers feature four themes: state of the research in the field and 

promising paths (Roza Leikin), programs for gifted students in different educational 

settings and cultures  (Harvey B. Keynes and Jonathan Rogness; Arne Mogensen; Angela 

M. Smart; Mark Saul), teacher education and professional development (Mark 

Applebaum, Viktor Freiman, and Roza Leikin; Manon LeBlanc and Viktor Freiman), and 

mathematical content, teaching approaches, and assessment (Ed Barbeau, Paul Betts and 

Laura McMaster, Margo Kondratieva, Ildiko Pelczer and Fernando Gamboa Rodriguez). 

 We would like to thank the ICMI for inviting us to organize the Topic Study 

Group at the ICME-11, all participants of this group, all authors of papers for this issue 
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and reviewers who did a tremendous work of giving valuable comments and suggestions 

of how to improve the papers. We should acknowledge the help of Arne Mogensen and 

Mark Apelbaum as the associate editors, as well as many colleagues who acted as 

referees of the submitted papers for this issue: Agnis Andzans, Edward J. Barbeau, Scott 

A. Chamberlin, Lyn English, Sharade Gade, Gerald Goldin, Djordje Kadijevich, 

Alexander Karp, Petar Kenderov, Margo Kondratieva, Gregory Makrides, Peter Mitchell, 

Claus Michelsen, Sergey Pozdnyakov, Arthur B. Powell, Linda Sheffield, Peter J. Taylor, 

and Zalman Usiskin. All of them deserve special thanks.    

 Finally, we would like to thank Bharath Sriraman and the Editorial Board of the 

Journal for organising the special issue, the external reviews and hope the readers find the 

articles enjoyable and useful for future work on mathematical giftedness.  
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 The education of mathematically gifted students:  
Some complexities and questions 

 
Roza Leikin 

Faculty of Education, University of Haifa, Israel 
 
Abstract: In this paper I analyze some complexities in the education of mathematically gifted 

students. The list of issues presented in this paper is not inclusive; however, all of them seem to 

be typical on the international scope. Among these issues are: (1) the gap between research in 

mathematics education and the research in gifted education; (2) the role of creativity in the 

education of the gifted and the theoretical perspective on the relationship between creativity and 

giftedness, and (3) teaching the gifted and the teachers of gifted, including relationships between 

the equity principle in mathematics education and views on the education of gifted. In the paper I 

outline some actual research questions in the field of education of mathematically gifted. 

Key words: Educating the gifted, Mathematical creativity and giftedness, Research and practice 

 

INTRODUCTION 

Mathematics educators and researchers in mathematics education agree that any decisions made 

with respect to the education of mathematically talented children and adolescents should be 

based on research findings and on the deep understanding of mathematical thinking and learning. 

Following Schoenfeld (2000, 2002), who shed light on the two main purposes of research in 

mathematics education, I maintain that research in the field of mathematical giftedness and 

creativity must be carried out in two interrelated directions: 

 First (theoretical) is to understand the nature of mathematical giftedness and 

mathematical creativity from the perspectives of thinking, teaching, and learning 

 Second (applied) is to use such understanding to improve mathematics instruction in a 

way that helps realize mathematical giftedness and encourage mathematical creativity. 

I demonstrate the shortage of systematic research in the education of mathematically gifted 

students, and outline some complexities in the education of gifted that require systematic 

research. I present some research questions that can be seen as a research agenda in the field of 

teaching mathematically gifted students. 
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1. RESEARCH IN MATHEMATICS EDUCATION AND RESEARCH IN GIFTED 

EDUCATION1 

Educational literature related to the issues of high mathematical ability, mathematical talents, 

mathematical giftedness and mathematical creativity contains a variety of descriptive reports, 

instructional guidelines, and reference materials, but research reports in the field are less 

common. Analysis of the research literature in the fields of gifted education and mathematics 

education leads to the conclusion that the studies in these two fields moved in two tangential 

rather than intersecting directions. The following evidence clearly illustrates that mathematics 

education is underrepresented in the field of gifted education and, vice versa, the research on 

giftedness and gifted education is underrepresented in the field of mathematics education. 

1.1  Publications in Research Journals Devoted to Giftedness 

During the past decade seven key journals in the field of giftedness and intelligence (Gifted 

Child Quarterly, High Ability Studies, Journal for the Education of the Gifted, The Journal of 

Secondary Gifted Education, Creativity Research Journal, and the Journal for the Education of 

the Gifted) published only a few articles devoted directly to mathematical giftedness or 

creativity. The following twelve papers, from among more than 1,000 published in the past ten 

years, form an almost complete list: Chamberlin & Moon, 2005; Hodge & Kemp, 2006; Hong & 

Aqui, 2004; Koichu & Berman, 2005; Kwon, Park & Park, 2006; Mann, 2006; Nokelainen, Tirry 

& Merenti-Valimaki, 2007; Olszewski-Kubilius & Lee, 2004; Reed, 2004;  Sriraman, 2003; 

2005; Yim, Chong, Song & Kwon, 2008). Eight of the twelve studies are clearly connected with 

research in mathematics education.  

Mann (2006) and Sriraman (2005) perform a theoretical analysis of the relationship 

between mathematical creativity and mathematical giftedness. Koichu & Berman (2005), 

Sriraman (2003) and Yim, et al. (2008) analyze problem-solving strategies used by 

mathematically gifted students. Chamberlin and Moon (2005) and Kwon, Park and Park (2006) 

suggest developing mathematical creativity based on earlier advances in mathematics education. 

Reed (2004) suggests and tests approaches to teaching the gifted at geometry lessons in 

heterogeneous classroom. Other studies consider good performance in mathematics as one of the 

several characteristics of general giftedness (Hodge & Kemp, 2006; Hong & Aqui, 2004), one of 

                                                 
1If I overlooked any important publications in the course of the research, I apologize for the omissions. 
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the outcomes of attribution styles (Nokelainen, Tirry & Merenti-Valimaki, 2007) investigate the 

influence of attribution styles on the development of mathematical talent, and one of the subjects 

in extracurricular activities in and out of school (Olszewski-Kubilius & Lee, 2004). 

1.2  Publications in Research Journals in Mathematics Education  

A search of seven leading research journals in mathematics education (Journal for Research in 

Mathematics Education, Educational Studies in Mathematics, Journal of Mathematical Behavior, 

Focus on the Learning Problems in Mathematics, The International Journal on Mathematics 

Education – ZDM, Mathematical Thinking and Learning, and For the Learning of Mathematics) 

reveals that in the past decade only few publications were explicitly devoted to mathematical 

giftedness and creativity in these journals.  

Only one publication in these journals is explicitly devoted to learning process of 

mathematically talented students, namely, Amit and Neria (2008) explore problem-solving 

strategies of talented pre-algebra students. About 10 publications in these journals directly 

address mathematical creativity: Presmeg (2003) and Ernest (2006) analyze and emphasize the 

importance of creativity in the development of mathematical meaning, and Lithner (2008) 

suggests a framework for analysis of mathematical activity and describes creative thinking in 

mathematics as opposed to imitative thinking. Liljedahl and Sriraman (2006) conduct a 

discussion about the meaning of mathematical creativity and its role in activities of professional 

mathematicians vs. mathematical activities of school children. This work provides a theoretical 

view on mathematical creativity, with connections to works by Polya, Hadamard, and Poincaré 

(for details about this theoretical perspective, see Liljedahl, 2009).  

Sriraman (2009) argues that mathematical creativity is the main mechanism of the growth 

of mathematics as science. However he finds that the creativity "is a relatively unexplored area 

in mathematics and mathematics education." (p. 13). In his paper Sriraman provides a critical 

analysis of characteristics of mathematical creativity from different theoretical perspectives. 

Plucker and Zabelina (2009) stress the importance of defining creativity, admit the lack of 

literature that deals with the concept of creativity in mathematical education and provide their 

own definition of general creativity. Based on this definition they discuss domain-specific and 

domain-general creativity. Hoyles (2001) analyzes the role that a computer-based learning 

environment can play in navigation between skills and creativity in teaching mathematics. This 

analysis leads to observation that technology-based inquiry opens opportunities for the 
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advancement of students' mathematical creativity. Bibby (2002) provides a view from an 

elementary school mathematics classroom on the opportunities of simultaneous development of 

students' logical and creative reasoning. Shriki (2009) analyses pre-service mathematics teachers' 

views on mathematical creativity and demonstrates that their knowledge associated with 

mathematical creativity is insufficient for the discussion of the subject. Huckstep and Rowland 

(2000) review Creative Mathematics, a book by Upitis, Phillips & Higginson (1997), which 

provides insightful ideas for creative mathematical activities in school.  

Note that numerous publications in Mathematics Education journals, in the past ten years, 

use the words “creative”, “inventive,” and “original” in their descriptions of mathematical 

activities suggested to students and of students’ mathematical performance. Mathematics 

educators and researchers design, describe, and explore mathematical activities with a high 

potential for the development of mathematical creativity in school children. Works devoted to 

“doing mathematics” in classroom, to inquiry based classrooms and students' autonomy in such 

classrooms, to active construction of mathematical knowledge, and to students heuristics in 

problem solvingare implicitly related to mathematical creativity among students. However, in 

these works the words “creativity” and “inventiveness” are not part of terminology in the analysis 

of students’ mathematical reasoning and the teachers’ role in the classroom. Mathematics 

education must therefore pay more attention to research of different kinds of mathematical 

activities, with a clear focus on students’ creative thinking and giftedness.  

1.3  Other sources 

A small number of publications in other journals focused on specific issues in the mathematical 

reasoning and problem solving of the gifted population. Among them are Gorodetsky & Klavir 

(2003); Livne, Livne & Milgram (1999); and Chiu (2009), who examine students' creativity in 

mathematical problem solving and suggest ways for analyzing students' creativity.  

Several other research publications about students and adults with high mathematical 

abilities can be found in the Journal of Educational Psychology, Psychological Science Journal, 

and Journal of Applied Psychology. These studies, mostly by Lubinski, Benbow and their 

colleagues, are a part of larger longitudinal study that was precipitated by the study of 

Mathematically Precocious Youth (SMPY) at John Hopkins University which was initially 

spearheaded by Julian Stanley in earlier 1980s. For example, Lubinski, Webb, Morelock and 

Benbow (2001), on the basis of 10 years of observations, demonstrated that early identified 
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distinctions in intellectual strength predicted differences in the developmental trajectories and 

occupation pursuits of highly talented individuals. They also demonstrated the effectiveness of 

acceleration for individual cases in their 20-year follow-up study on 1975 mathematically gifted 

adolescents (top 1%). They demonstrate that earlier identified gender differences in 

mathematical reasoning of the participants predicted differential education and occupational 

outcome all of which were successful. Other publications by Lunibski and Benbow explore 

innovative evaluation tools for the identification of mathematical talents. For example, Lubinski 

& Benbow (2000) demonstrate that combination of theory of work adjustment concepts and 

psychometric methods facilitate positive development of talented youths. Another study (Webb, 

Lubinski & Benbow, 2007) demonstrates that spatial ability is significant for talent identification. 

Still, these studies focus mainly on general psychological characteristics of individuals and do 

not explore learning and thinking processes in mathematically gifted school students as 

associated with the contemporary theories of Mathematics Education (see elaboration and 

examples in Leikin, 2009a). 

Lately there were several edited volumes devoted to these issues. Sriraman's (2008) 

monograph Creativity, Giftedness, and Talent Development in Mathematics includes 

contributions devoted to creativity and giftedness in mathematics, offers new perspectives for 

talent development in mathematics classroom and gives insights into the psychology of creativity 

and giftedness. However, the editor stressed the lack of systematic research of talent 

development in mathematics education. Leikin, Berman and Koichu (2009) edited a volume 

entitled Creativity in Mathematics and the Education of Gifted Students. As a result of a 

consolidated effort of a group of experts in the fields of mathematics education, psychology, 

educational research, mathematics and policy making the book puts in the foreground 

mathematical creativity and mathematical giftedness as important topics in educational research. 

The book includes several reports on the empirical studies related to mathematical creativity and 

giftedness along with theoretical framework for the analysis of mathematical creativity and 

giftedness. The editors stress the importance of empirical research in the field that must be 

performed in various spheres related to the education and identification of mathematically able 

students (see Leikin, 2009a).  
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1.4  International forums  

At the international level one can see raising awareness of the importance of gifted education in 

mathematics. This awareness is reflected in a number of international forums that lately have 

focused their work on mathematical creativity and giftedness. ICME conferences twice included 

Topic Study Group (TSG) "Activities and programs for gifted students" (TSG-4 at ICME-10 in 

2004 http://www.icme-organisers.dk/tsg04/; TSG-6 at ICME-11 in 2008 

http://tsg.icme11.org/tsg/show/7). At ICME 11 Discussion group "Promoting creativity for all 

students in mathematics education"took place along with TSG-6 mentioned above (DG-9, 

http://dg.icme11.org/tsg/show/10). In summer 2008 ICMI Study-16 "Mathematical challenges in 

and beyond the classroom" discussed a variety of issues related to education of mathematically 

talented students. The results of the elaborated discussion by all the participants are expressed in 

the corresponding ICMI Study Volume (Barbeau & Taylor, 2009).  

Since 1999 the main forum (founded by Meissner and Sheffield) that unites educational 

researchers, mathematicians and mathematics educators interested in education of 

mathematically gifted and development of mathematical creativity has been International 

Conference on Creativity in Mathematics and the Education of Gifted Students. Each of the 5 

conferences (1999 – in Muenster, Germany; 2002—in Riga, Latvia; 2003—in Rousse, Bulgaria; 

2006 – in Budejovice, Czech Republic; 2008 – in Haifa, Israel) issued proceedings including the 

conference papers. Eventually in Riga, Latvia in summer 2010 the participants of the conference 

established the International Group for Mathematical Creativity and Giftedness (MCG) (for the 

information about the group and the conferences see http://igmcg.org) 

To sum it up, the discussion presented in this section of the paper underscores the need for 

advancement of the research-based perspectives on mathematical talent and mathematical 

creativity both in the direction of characterization of individuals with high mathematical ability 

(both analytical and creative) and the development of high mathematical abilities. Since 

Krutetskii's (1976) fundamental research on characterization of mathematical abilities in gifted 

students, there were performed several studies focusing very specifically on issues related to 

mathematics reasoning and problem solving of gifted students. Using the criteria suggested by 

Schoenfeld (2000, 2002) for theories and models in mathematics education, I argue that most of 

the existing works in the field must be further examined with respect to their explanatory and 

predictive power, scope, and replicability. The following sections in this paper describe several 
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complexities in the education of mathematically gifted student that can become focal points of 

the systematic research in the field of mathematics education. 

2.  MATHEMATICAL CREATIVITY AND MATHEMATICAL GIFTEDNESS 

One of the research questions that requires special attention of the mathematics education 

community is the relationship between mathematical creativity and mathematical giftedness.  

2.1  Creativity as property of professional mathematicians vs. creativity for all 

One of the complexities related to the relationship between mathematical giftedness and 

mathematical creativity is rooted in the contrast between viewing mathematical creativity as a 

property of the mind of the professional mathematicians (Subotnik, Pillmeier & Jarvin, 2009; 

Sriraman, 2005; Liljedahl & Sriraman, 2006) and the opinion that mathematical creativity must 

and can be developed in all students (Sheffield, 2009; Yerushalmy, 2009; Hershkoivits, Peled & 

Littler, 2009). 

According to Subotnik et al. (2009) creativity is fundamental to the work of a 

professional mathematician. In the course of their work, mathematicians find and solve problems 

that are substantive and challenging.  Subotnik et al. (2009) describe the development of ability 

into competence, expertise, and finally scholarly productivity/artistry and argues that 

mathematicians need an array of psychosocial skills to be successful in such a highly competitive 

intellectual arena. Similarly Ervynck (1991) considers mathematical creativity as one of the 

characteristics of advanced mathematical thinking. Ervynck connected mathematical creativity 

with advanced mathematical thinking and considered it as the ability to formulate mathematical 

objectives and find inherent relationships among them.  

Sriraman in his conversation with Liljedahl on the notion of mathematical creativity 

(Liljedahl & Sriraman, 2006) suggests that at the professional level mathematical creativity can 

be defined as "the ability to produce original work that significantly extends the body of 

knowledge (which could also include significant syntheses and extensions of known ideas)" or 

"opens up avenues of new questions for other mathematicians" (ibid. p. 18). Sriraman (2005) 

considers mathematical creativity as one of the characteristics of advanced research 

mathematicians. He defined seven levels of mathematical ability associated with mathematical 

creativity and giftedness. The abilities of professional mathematicians, according to this model, 

are at levels 5, 6, and 7, and he differentiated these levels with respect to the mathematicians' 
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measure of creativity: "Level 5" mathematicians are productive in mathematical research and 

have high levels of analytic and practical abilities, whereas creative mathematicians (levels 6 and 

7) have higher levels of synthetic abilities, which allow them to "open up new research vistas for 

other mathematicians" (ibid., p. 30).  

Sriraman (2005) stresses that creativity in school mathematics obviously differs from the 

creativity of professional mathematicians: "At the K–12 level, one normally does not expect 

works of extraordinary creativity; however, it is certainly feasible for students to offer new 

insights". Furthermore Silver (1997) and Sheffield (2009) address "creativity to all students" and 

consider solving problems and problem posing as main tools for the development of 

mathematical creativity in all the students. Along with this position Liljedahl and Sriraman 

(2006) argue that at school levels or even the undergraduate level "it is feasible for students to 

offer new insights/solutions" in mathematics. These insights/solutions are usually new with 

respect to mathematics the students have already learned and the problems they have already 

solved. Taking a developmental point of view, Sheffield (2009) suggests a continuum of 

mathematical proficiency through the development of creative ability in mathematics: 

innumeraters  doers  computers  consumers  problem solvers  problem posers  

creators.  

Viewing personal creativity as a characteristic that can be developed in schoolchildren 

requires distinction between relative and absolute creativity (Leikin, 2009). Absolute creativity is 

associated with "great historical works" (in terms of Vygotsky, 1930/1984), with discoveries at a 

global level. For example, examples of absolute creativity may be seen in discoveries of Fermat, 

Hilbert, Riemann and other prominent mathematicians (Sriraman, 2005). Relative creativity 

refers to discoveries of a specific person in a specific reference group. This type of creativity 

refers to the human imagination as it creates anything new (Vygotsky, 1930/1984).  

2.2  The relationship between mathematical giftedness and mathematical creativity  

While connecting between high mathematical abilities and mathematical creativity researchers 

express a diversity of views. Some researchers claim that creativity is a specific type of 

giftedness (e.g., Sternberg, 1999, 2005), others feel that creativity is an essential component of 

giftedness (Renzulli, 1978, 1986), while other researchers suggest that these are two independent 

characteristics of human beings (Milgram & Hong, 2009). Thus analysis of the relationships 
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between creativity and giftedness with specific focus on the fields of mathematics is important 

for better understanding of the nature of mathematical giftedness. 

Creative thinking includes finding different solutions and interpretations, making various 

mathematical connections, applying different techniques, and thinking originally and unusually. 

In this sense creativity is a part of the problem solving process and one of the outcomes of 

learning mathematics. Another (overlooked) perspective on creativity we find in works of 

Vygotsky who stresses the role of creativity in the process of knowledge development, 

abstraction and generalization. Vygotsky (1930/1984) argued that creativity (imagination) is one 

of the basic mechanisms that allow development of new knowledge. A child activates 

imagination when connecting new and previously known concepts, when elaborating the known 

constructs, and when developing abstract notions. Thus imagination (or creativity) is a basic 

component of knowledge construction. Thus we deduce as follows about the complexity in the 

relationship between creativity and knowledge development: to have knowledge is a necessary 

condition for a person to be creative while to have imagination is a necessary condition for 

knowledge construction. These relationships are one of the central issues for investigation by 

mathematics education researchers. 

Providing a precise and broadly accepted definition of mathematical creativity is an 

extremely difficult and probably unachievable task (Haylock, 1987; Liljedahl & Sriraman, 2006; 

Mann, 2006; Sriraman, 2005). Mann (2006) affirmed that analysis of the research attempting to 

define mathematical creativity revealed how the lack of an accepted definition for mathematical 

creativity hinders research effort. Following these observations, Leikin (2009a) suggested a 

model for the evaluation of creativity using Multiple Solution Tasks. The model includes 

operational definitions and a corresponding scoring scheme for the evaluation of creativity, 

which is based on three components: fluency, flexibility, and originality -- as suggested by 

Torrance (1974). For the evaluation of originality it utilizes Ervynk's (1991) insight-related levels 

of creativity in combination with conventionality of the solutions which comprises students' 

educational history in mathematics.  

In several recent studies, that accepted developmental perspective on mathematical 

creativity, I and my colleagues implement the model for evaluation of mathematical creativity 

through Multiple Solution Tasks (Leikin, 2009b). In two of the studies (Levav-Waynberg & 

Leikin, 2009 and Guberman & Leikin, in preparation; Leikin, Levav-Waynberg & Guberman, 
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accepted) we examine development of mathematical creativity through mathematical 

instructions. Among other findings, we discovered that as the result of systematic 

implementation of Multiple Solution Tasks in mathematical instruction, students' flexibility and 

fluency significantly increased. Students' originality, however, decreased non-significantly, and 

resulting in a non-significant decrease in the creativity. Findings related to flexibility and fluency 

are naturally desirable.  

Results related to originality have a reasonable explanation: when the students' flexibility 

increases, more students in the group produce more solutions and it becomes more difficult to 

produce a unique solution. Following these findings, we question the possibility of developing 

originality and hypothesize that in the fluency-flexibility-originality triad, fluency and flexibility 

are of a dynamic nature, whereas originality is a "gift".  

Finally, our findings demonstrate that originality appeared to be the strongest component in 

determining creativity and the strength of the relationship between creativity and originality can 

be considered as validating our model, being consistent with the view of creativity as invention 

of new products or procedures. At the same time, our studies demonstrate that this view is true 

for both the absolute and the relative levels of creativity. We also assume that one of the ways of 

identification mathematically gifted students is by means of originality of their ideas and 

solutions.  

Based on the above observations it is clear that systematic research should be performed to 

examine different ways of promotion of mathematical creativity in school students, identification 

of creative talents in school students, and between understanding of the relationship between 

mathematical creativity and mathematical giftedness.  

3 TEACHING THE GIFTED AND TEACHERS OF THE GIFTED  

3.1  Approaches and frameworks for teaching the gifted 

Subbotnik et al. (2009) stressed that during the past 25 years multiple educational programs for 

talented youths have been proposed. Examples include Parnes's creative problem solving method 

(Parnes, Noller & Biondi, 1977), Renzulli's enrichment triad model (Renzulli, 1978; Renzulli & 

Reis, 1985), Johns Hopkins University acceleration program (Fox, 1974; Stanley, 1991), 

Tannenbaum's (1983) enrichment matrix, and many others. According to Nevo and Rachmel 
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(2009) programs for gifted education can be ranked by the intensity of the program, the most 

intensive being found in special schools for mathematically gifted students (Vogeli, 1997).   

Usually characteristics of the effective learning environments for mathematically talented 

students follow specific characteristics of this population. These students tend to use self-

regulatory learning strategies more often and more effectively than other students, and are better 

able to transfer them to novel tasks. In their review of research on the thinking process of highly 

able children, Shore and Kanevsky (1993) argued that if the gifted think more quickly and make 

fewer errors, and then we need to teach more quickly. Shore and Kanevsky stress that this is not 

entirely the case; adjustments have to be made in methods of learning and teaching, to take into 

account individual thinking differences Nisbet (1990) suggested several approaches to promote 

self-regulation in learning in science teaching that seem to be applicable to mathematics 

education:  

• Talking aloud. According to this approach the teacher talks aloud while solving a problem so 

that the pupils can visualize work-out.  

• Cognitive apprenticeship. This approach requires the teacher to demonstrate to students the 

processes that experts use to handle complex tasks, guiding the pupil via experiences.  

• Discussion involves analysis of the processes of argument.  

• Cooperative learning, which requires that pupils explain their reasoning to each other.  

• Socratic questioning is based on careful questioning to force pupils to explain their thought 

processes and their arguments. 

Nevo (2004) distinguished the methods of nurturing gifted children that exist around the world, 

and classified them according to three basic approaches relating to the capabilities of gifted 

students: 

• Acceleration is usually defined as learning topics within the areas of studentsat accelerated 

pace. This can be expressed in early entrance into school, skipping grades, Advanced 

Placement, and/or earlier entrance to the university courses (Southern & Jones, 1991; Van 

Tassel-Baska, 2004a, b).  

• Broadening is considered as studying a additional topics and subjects simultaneously with 

usual school mathematics. For example, studying extra-curricula topics in mathematical 

circles relates to the broadening approach. (e.g., Fomin, Genkin & Itenberg, 2000), learning 

belong to this approach. .  
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• Deepening is usually associated with studying curricular topic at greater depth than prescribed 

by the curriculum or school textbooks. Deepening can include, for example, learning 

underlying rules for regular curricular topics. 

Some of these approaches are highly appropriate for in-school framework as special classes 

for students with high abilities in mathematics can differ in the manner in which ability grouping 

is managed: through subject-based streaming, the provision of special classes, or the availability 

of special schools. Other activities such as math clubs, competitions, and student conferences can 

be found both in school and out of school. The integration of students in university courses, 

virtual courses, and personal mentoring are typical out-of-school solutions (Leikin, 2009a). 

Despite the variety of frameworks for the education ofmathematically gifted students, there 

is lack of empirical data about this field. It is necessary to conduct systematic empirical studies 

on various programs to gain better understanding of their effectiveness and suitability for the 

realization of the students' mathematical potential and the development of their creativity. We 

lack theoretical characterizations of effective courses and programs for mathematically talented 

students. Research should be directed at the theoretical characterizations of programs for 

students with high mathematical abilities  

3.2 Equity principle and ability grouping 

Some educational communities have provided special ability-grouping-based frameworks for 

treating mathematically gifted students. Among them special schools, as, for example, 

Kolmogorov's Schools in Russia (Kolmogorov, 1965; Kolmogorov, Vavilov & Tropin, 1981), or 

centers for gifted and talented youth, as, for example, CTY at John Hopkins University 

(http://cty.jhu.edu/about/index.html). These schools have shown to be effective and exciting 

frameworks for the education of gifted students (e.g. Karp, 2009; Vogeli, 1997). Nevertheless, 

some opponents of ability grouping argue that it contradicts the equity principle in mathematics 

education pronounced by the National Council of Teachers of Mathematics (NCTM, 1989). 

According to this principle "all students, regardless of their personal characteristics, 

backgrounds, or physical challenges must have opportunities to study – and the support to learn – 

mathematics". At the same time, special schools and classes for gifted may be seen as the 

expression of the equity principle because education must provide equal opportunities to all 

students to learn, realize their potential, which is comprised of intellectual abilities, personality 

and affective characteristics (NCTM, 1995; Sheffield, 1999; Leikin, 2009a). The central function 
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of the educational system is providing each and every student regardless of his/her social and 

economical status with learning opportunities that match their potential and promote it to the 

maximal extent.  

Thus interpretation of the equity principle as associated with the education of 

mathematically gifted students is not trivial. In late 80th – earlier 90th the equity principle was 

(mis)interpreted as a recommendation to provide all students with identical instruction. The drive 

for social justice and the democratic view of education led to the cancellation of ability tracking 

in mathematics, and domination of heterogeneous mathematics education. Very often at a local 

level, school principles, mathematics coordinators or mathematics teachers echo this policy and 

held a mid-ability oriented position based on reasonable argument: If I will let high achievers 

learn "alone" then the average students will have nowhere to grow. 

This conception also received a research base when in late 80s heterogeneous classroom was 

shown as an effective learning environment especially for students with middle level of abilities. 

Cahan, Linchevski and Igra (1995), Cahan and Linchevski (1996) and Linchevski and Kutscher 

(1998) demonstrated that mixed-ability grouping is more beneficial for mid-level student that 

grouping with low achieving students and that high achievers do not differ in their learning 

outcomes as either kind of ability grouping. The debate on the necessity of ability grouping is 

legitimate, and both proponents and opponents of heterogeneous mathematics education use 

valid arguments to justify their positions. NCTM (2000) re-conceptualized the equity principle 

and stressed that "Equity does not mean that every student should receive identical instructions; 

instead it demands that reasonable and appropriate accommodations be made to promote access 

and attainment for all students" (ibid., p. 12).  

Ability grouping was shown as one of the ways of achieving the equity principle in the 

education of mathematically gifted students. Ability grouping may be essential for education of 

gifted both from cognitive and affective perspectives (Davis & Rimm, 2002), and it ought to 

supply special education to mathematically gifted students and prevent talent loss (Milgram & 

Hong, 2009). On the other hand ability grouping is still questionable both in light of the equity 

principle and of some research findings. For example, Shani-Zinovich and Zeidner (2009) report 

that gifted students in homogeneous (ability-level) classes demonstrated a higher degree of 

commitment than gifted students in heterogeneous classes. Homogeneous classes, however, can 

have a negative effect on students' self-evaluation, self-esteem, and emotional environment 
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In the light of the debate on ability grouping the following question demands careful and 

systematic investigation: What type of ability grouping is the most effective for mathematically 

gifted students?  

3.3 The centrality of mathematical challenge for the realization of mathematical 

potential  

A mathematical challenge is an interesting and motivating mathematical difficulty that a person 

can overcome (Leikin, 2007). Many authors recognize the centrality of mathematical challenge 

for the realization of mathematical promise and as a characteristic of the activities in which 

gifted mathematicians are involved. The importance of mathematical challenge, the approaches 

in teaching challenging mathematics, and the role of mathematical challenge in school curricula 

are analyzed from the international perspective in Barbeau & Taylor (2009). Taylor (2009) and 

Applebaum & Leikin  (2007) analyzed types of mathematical challenges for school mathematics 

classrooms and stress the importance of teachers' mathematical, meta-mathematical and 

pedagogical knowledge associated with teaching challenging mathematical tasks. Movshovitz-

Hadar and Kleiner (2009) consider mathematical challenge as one of the definitive conditions of 

mathematical courage that advances mathematics as science. They hypothesize that 

understanding of the underlying mechanisms of mathematical courage can shed light on the ways 

in which gifted students can be taught. Sheffield (2009) suggests ways in which mathematically 

promising students can be challenged, and stresses that challenges for students are differentiated 

according to their mathematical content knowledge, background, and interests.  

Mathematical challenge is a necessary condition for realization of mathematical potential. 

It can appear in different forms in mathematics classrooms. There can be proof tasks in which 

solvers must find a proof, defining tasks in which learners are required to define concepts, 

inquiry-based tasks, and multiple-solution tasks. Mathematical challenge depends on the type 

and conceptual characteristics of the task, for example, conceptual density, mathematical 

connections, the building of logical relationships, or the balance between known and unknown 

elements. From the research perspective some questions can be interesting for the future 

investigation: What are the types of challenging tasks more appropriate for mathematically gifted 

students? What challenges better develop mathematical creativity? For example, what is the 

relationship between Olympiad tasks and students' mathematical creativity?  
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3.4 Teachers and teacher education in the education of mathematically talented 

students 

The last and certainly not least important issue in the education of mathematically talented 

children and adolescents is the teacher's role in mathematics classroom, their ways of teaching 

and teacher preparation for the education of the gifted.  

According to Brousseau's (1997) one of the teacher's central responsibilities is the 

devolution of good (challenging) tasks to learners. It is almost obvious that teachers ought to 

provide each and every student with learning opportunities that fit their abilities and motivate 

their learning. Sheffield (2009) maintains that teachers have to challenge students who are ready 

to move to a higher level, and provide hints to students who may be frustrated. Mathematical 

challenges directed at students' development usually entail scaffolding provided by a teacher. 

Consequently in Leikin (2009a) I recommend hanging the following motto on the door of all 

mathematics classrooms: Exercises for homework – challenges for the classroom (ibid. p. 405). 

One way of helping teachers to use challenging mathematics in their classrooms is to 

provide them with appropriate learning material (e.g., a textbook) and make a large number of 

challenging tasks available to them (Barbeau & Taylor, 2009). However, merely providing 

teachers with ready-to-use challenging mathematics activities is not sufficient for the 

implementation of these activities. Teachers must be aware and convinced of the importance of 

mathematical challenges, and they should feel safe (mathematically and pedagogically) when 

dealing with this type of mathematics (Holton et al., 2008).  

Furthermore, teachers must have autonomy in employing this type of mathematics in 

their classrooms (Krainer, 2001; Jaworski & Gellert, 2003). They should be able to choose 

mathematical tasks themselves, create these tasks, change them so that they become challenging 

and stimulating, and, of course, must be able to solve the problems.To fulfill these conditions, 

teachers' mathematical knowledge should allow them to cope with challenges presented to their 

students and their pedagogical knowledge and skills should support scaffolding that teachers 

provide to their students (Evered & Karp, 2000; Even et al., 2009). Moreover, teachers have to 

be committed to the purpose of talent development and believe that this purpose is valuable. Last 

but not least important, teachers have to be provided with multiple opportunities to advance their 

knowledge, to develop commitment and belief. 
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Many more questions, such as who can be a teacher of mathematically talented students and 

how these teachers should be educated are open for systematic research. The following questions 

need our attention: Should the teachers of gifted be gifted? Should the teachers be creative in 

order to develop students' creativity? How teachers' creativity can be characterized both from the 

mathematical and from the pedagogical points of view? What are the desirable qualities of 

teachers' knowledge, beliefs and personality that make them creative and gifted teachers?  

CONCLUSION 

Education of mathematically talented children and adolescents is an extremely complex field. 

People hold different views over the education of gifted which are strongly dependent on their 

personal experiences and histories related to the education of the gifted. This is true of school 

students, parents, teachers, teacher educators, educational researchers and educational leaders 

and managers. Learning opportunities are the most critical factor for the realization of human 

intellectual potential. Leikin (2009a) pointed out the components that are crucial in developing 

the students' mathematical potential:  

• Parental support (not pressure) – both financial and intellectual; 

• Availability of special settings and frameworks for highly capable students in schools and out 

of schools; 

• The necessity of involving technological tools that promote mathematical creativity in 

students and support teachers' attempts to scaffold students mathematical inquiry; 

• Mathematical challenges as a central characteristics of learning environment that develops 

creativity and promotes mathematical talent;  

• Teachers' proficiency in choosing and managing mathematical challenges. 

In this paper I argue that each of these components should be a subject for the systematic 

research in mathematics education. 
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1. Introduction 
 
There is a wide variety of research into the many and multifaceted issues in providing 

opportunities for mathematically talented or gifted students, ranging from the identification of 

students to the best methods of instruction for the population. While these issues can 

separately be excellent sources for further discussion, the development and implementation of 

a large ongoing program involves addressing most of these concerns in a specific contextual 

and highly integrated fashion. This paper examines the evolution, success, and challenges of 

the 30-year old University of Minnesota Talented Youth Mathematics Program (UMTYMP), 

which continues to operate as the leading accelerated mathematics program in Minnesota. To 

our knowledge the program is unique in terms of number of students, scope of the curriculum, 

and the granting of college-level honors credit to students in middle or high school. 

UMTYMP was started in order to provide Minnesota’s most mathematically talented 

students with an alternative educational experience. Each year approximately 400 students in 

grades 6-12 take their mathematics courses through UMTYMP instead of their own schools. 

During their first two years of the program, students cover four years of standard high school 

curriculum: algebra I and II, geometry, and pre-calculus. The final three years of the program 

are comprised of honors-level collegiate courses in calculus, linear algebra, and vector 

analysis. Along the way, students must develop a strong work ethic and problem-solving 
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skills. Many continue on to upper-division and graduate level mathematics courses before 

finishing high school. 

 

 

Our significant historical perspective allows us to identify and discuss practices and 

issues which have remained unchanged, and those which appear to be quite different than just 

ten to fifteen years ago. Because any discussion of our program requires knowledge of the 

context, Section 2 gives a brief overview of UMTYMP’s design and goals; a more extensive 

description is given in [3]. In Section 3 we discuss the specific issues of student selection, 

retention, characteristics, and the evolution of the program over the past fifteen years. This is 

followed by a brief look in Section 4 at statistical data to see how well UMTYMP has 

achieved its goals. Section 5 describes how our internal assessments have resulted in changes 

to the UMTYMP structure, and some of the ways UMTYMP could be used in educational 

research. Finally, Section 6 discusses the inherent challenges in expanding or duplicating the 

program.            

  

2. Program Description 
 
2.1. Origins of UMTYMP. The idea of a mathematics program for talented students in 

Minnesota originated in the mid-1970s. Several faculty members, including one of the 

authors, had attended district-wide high schools for academically talented students during 

their childhoods and felt that their experiences were very positive influences on their 

mathematical success. In addition, a new faculty member in educational psychology who had 

actively participated in Julian Stanley’s Study of Mathematically Precocious Youth (SMPY) at 

Johns Hopkins University was a strong proponent of accelerated courses for gifted students, 

and advocated for an accelerated mathematics program in Minnesota. (See [4] and [5] for 

summaries of the SMPY findings on acceleration for students similar to those in UMTYMP.) 

While the formation of a new high school was not feasible for those faculty members, 

these ideas led the development in 1976 of a two-year program, located at Macalester College 

in St. Paul, Minnesota, which provided supplemental mathematics for talented students in the 

Minneapolis/St. Paul metropolitan area. It covered essentially the same material as the first 

two years of the current UMTYMP curriculum. While this program was quite successful, the 
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issue of providing additional advanced coursework in calculus for students entering ninth or 

tenth grade became evident.  

 

The head of the mathematics department at the University of Minnesota at the time 

was very sympathetic to the idea of providing high level courses for young students, and the 

department agreed to develop a calculus course for the Macalester program graduates. Very 

shortly thereafter, the Macalester program lost its funding and the mathematics departments at 

the University of Minnesota agreed to fund and administer the entire sequence of courses. In 

the fall semester of 1980, the first UMTYMP high school and calculus level courses were 

offered at the University. 

 

2.2. Program Overview. The overall goal of UMTYMP is to provide a challenging, stimulating 

and nurturing academic program for students who are exceptionally talented in mathematics.1 

In their home schools these students often face the stigma of being good at math; we provide 

them with a chance to immerse themselves in a culture of mathematics and meet other 

students with the same talents. We also emphasize how mathematics in general and UMTYMP 

in particular can increase their future opportunities. Family interest in college achievements of 

UMTYMP graduates seems to be a major factor in their support of the program; parents seem 

drawn to the fact that the schools most attended by our alumni include prestigious institutions 

such as MIT, Stanford, Harvard, the University of Chicago and Caltech. (See Table 2, Section 

4.) Unfortunately, we sometimes have uninterested and poorly performing students who were 

pushed to participate in UMTYMP because their parents (incorrectly) see our program as a 

way to get their children in their “dream school,” regardless of student performance. 

Many details of the actual implementation of the program are dictated by logistic and 

administrative constraints. Classes meet for a two-hour session once or twice per week after 

the regular school day, totaling about 35 sessions from September through May. This highly 

compressed schedule makes every moment of class time valuable and has a profound impact 

on the curriculum, teaching styles, and even the screening process to get into the program; see 

Section 3 for details. 

                                                 
1 See [7] for an overview of effective learning environments for mathematically talented students. 
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The first two years of UMTYMP comprise the “high school component,” and the 

content is aligned with Minnesota’s state standards for high school mathematics.1 In two years 

UMTYMP students cover four years’ worth of high school curriculum in algebra, geometry 

and pre-calculus. A single hour of our class time corresponds to about one week’s worth of 

material in a high school classroom. Our instructors are therefore forced to cover only the 

central ideas and techniques, leaving students to learn the computational details on their own 

while working on extensive homework assignments. This course structure led to initial 

concerns that high schools would not count UMTYMP courses towards their graduation 

requirements, but a state law passed in 1984 requires schools to grant high school credit on 

their transcripts for students who have completed our courses. 

After completing pre-calculus, students move on to the three year “calculus 

component,” which consists of honors level courses in single variable calculus, linear algebra, 

differential equations, multivariable calculus and vector analysis. The courses are more 

theoretical, and cover more topics, than the standard calculus sequence in our mathematics 

department. Students in this component receive honors level Institute of Technology credit for 

the courses on a University of Minnesota transcript; if they later choose to attend the 

University they will have already satisfied nearly half the requirements for a mathematics 

degree. If they enroll at a different undergraduate institution, the credits will either transfer or 

earn them placement into higher level courses there. Our intent is that no UMTYMP student 

would ever have to retake a course in the calculus sequences at any other institution and can 

proceed directly to post-calculus classes. 

Based on our years of observations, we take the approach that understanding can be 

challenging and fun, but that learning computation skills, algorithms and how to use 

conceptual reasoning takes serious effort. Lecturing on the main ideas and then handing the 

students a textbook to learn the material on their own is not enough [6]. Thus a central feature 

of UMTYMP is the broad, deep support system, designed to enable virtually all interested and 

motivated students to be successful; see Section 3.2 for details. Significant emphasis is placed 

                                                 
1 This helps m i n i m i z e  difficulties for students at their own high schoo l s . A Minnesota state law 
stipulates that if a student covers typical high school mathematics as part of an accelerated 
mathematics program at a college or university, the student’s high school must recognize the courses as 
fulfilling the mathematics graduation requirements. 
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on developing effective work habits and individual problem solving skills, so that students 

learn that these abilities are as important as performance on classroom examinations. To stress 

the importance of clearly communicating mathematical ideas, each calculus homework 

assignment includes one problem whose solution should be written in a “professional” 

manner, roughly comparable to an example problem in a textbook. Students quickly learn that 

they must organize their work and write coherent explanations if they wish to earn full credit. 

 

 

 
3. Specific Issues and Observations 
 
This section describes our approaches to specific programmatic issues such as selection, 

recruitment and retention of students, and our teaching approach, all of which have remained 

largely unchanged during the last decade. We also discuss the defining characteristics (or lack 

thereof) of our mathematically talented students, and examine historical trends in our 

program. 

 

3.1. Student Selection and Recruitment. Students who wish to enter either the high school or 

calculus components of UMTYMP must achieve satisfactory scores on entrance exams 

developed by our academic staff. In the past, we relied heavily on local schools to identify 

potential students. Before taking our entrance exam, a student would have to score in the 95th 

percentile or above on any national standardized mathematics examination and be 

recommended for their program by a teacher. In hindsight, however, this method of recruiting 

was too restrictive; in particular we discovered that teachers, whether through intentional or 

unintentional bias, tended to recommend male students over females of equal ability. In the 

interest of fairness our entrance exams are now open to any interested student in the 

appropriate grade levels. 

The qualifying exams measure computational ability, but they stress critical thinking 

and speed. The qualifying exam for the high school component, for example, has 50 multiple 

choice questions to be answered in only 20 minutes. In each question students are given two 

quantities and asked to determine if one is larger than the other, if they are equal, or if there is 

not enough information to decide; see Figure 1 for examples. A high score indicates a solid 
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command of pre-algebra skills and the ability to process mathematics quickly. This has proven 

to be an effective way to find computationally strong students who can also handle the rapid 

pace of the courses. This process is far from perfect; it probably excludes students who are 

quite talented but work slower. However, budget and staffing issues require us to offer only 

accelerated courses, and hence UMTYMP is (unfortunately) not appropriate for those 

students. 

While students who pass the entrance exams are invited to enroll in the program, we 

still ask parents and students to discuss the commitment with each other before accepting the 

offer.  

Since all students entering UMTYMP have mathematical talent, the best predictors for 

student success are enthusiasm about mathematics in general (i.e. beyond algebraic 

computation), and the willingness to put in the effort to comprehend the ideas. These 

observations are consistent with recent studies on success in school and beyond [1]. Many of 

our underperforming students have time conflicts in their busy schedules or are simply not 

interesting in thinking deeply about mathematics. 

We have found from earlier equity efforts that running mathematical enrichment 

programs throughout the academic year is a wonderful recruitment tool, since it introduces 

students to the type of mathematical thinking used in UMTYMP. Our Saturday morning 

classes are open to any students in grades 4-7 and cover subjects ranging from explorations of 

area and volume to spherical geometry and topology. Students who participate in the 

enrichment program are frequently eager to join UMTYMP, have better qualifying scores than 

general students, and are more successful in the program if they enroll. 

As with many mathematics programs, we have difficulty consistently attracting 

females and students from traditionally under-represented minority groups. At times we have 

launched major initiatives to increase their numbers, such as the Bush Foundation Initiative 

described in [3], which succeeded in raising our female enrollment to over 40%. These gains 

are difficult to sustain once initiative funding ends. While the percentage of female students 

for UMTYMP still remains high for comparable programs, it has decreased to between 20% 

and 30%. In recent years we have started a new enrichment program which currently serves a 

diverse population of over 250 girls in grades 4-6, with the hope that a good number will 

eventually qualify for and enroll in UMTYMP 
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(1) x and y are positive numbers and x < (x+y)/3. 
(a) x 
(b) y 

 
(2) The sum of the remainders when each of these numbers is divided by 3: 

(a) 3, 10, 12, 19 
(b) 6, 11, 25, 27 

 
 
 
Figure 1. Practice questions for the UMTYMP High School Component Entrance Exam. 
Students must determine the size relationship between the two quantities in each question.  
 

 
3.2. Retention. A major challenge in UMTYMP is the retention of students once they enter the 

program, since the work and learning expectations both in the classroom and at home are 

typically very different from anything encountered in their K-12 education. For example, the 

conceptual approach and work expectations in UMTYMP Calculus significantly exceed those 

of Advanced Placement or International Baccalaureate courses. Moreover, the once-a-week 

format requires students to focus more intensely on the classroom lecture and activities. Note-

taking skills are often nonexistent, causing difficulty when we cover concepts not in the 

textbook. Outside the classroom, students must learn to start their homework sufficiently early 

or risk turning in sloppy, half-finished assignments. 

To counteract these problems we have created an extensive support system for 

students. Although class time is precious, we spend time in Calculus I discussing note-taking, 

study habits, and other tips for success in a college level course. Each semester we have ten 

optional study sessions to help students with their homework or to prepare for exams. We 

monitor exam and homework scores and quickly notify students (and their parents) when their 

work is below expectations, and frequently require them to attend study sessions or make 

other special arrangements. Because our students are not generally on the University campus, 

our instructors hold “virtual office hours” in which they answer questions from students via 

phone and email. As a general rule, nearly every student in UMTYMP who is interested in 
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mathematics and is motivated to work is able to complete the entire five year program at a 

satisfactory level. 

Preventing UMTYMP students, especially females, from feeling isolated in class is 

another major retention concern. Our most successful strategy with females has been placing 

them in workshops which are 30%-50% female. When possible we also place them with 

female instructors or classroom assistants who are strong role models. This strategy has 

proven highly effective, and in recent years our retention rate with female students has been 

greater than or equal to the rate with male students. 

 

3.3. Student Characteristics. Having dealt with thousands of mathematically talented students, 

we can make one fascinating observation: beyond a shared affinity for mathematics, there are 

no particular characteristics which set UMTYMP students apart from their peers.  

 

 

In fact, our typical class is a microcosm of any American high school. We have 

musicians, athletes, and self-professed “computer geeks.” Many of our students are 

introverted and awkward around other people, whereas others are extroverted, charismatic, 

and revel in being the center of attention. Some UMTYMP students are highly gifted and 

could be successful in any subject, while others have no particular interest or ability outside of 

mathematics. Each group has its own set of challenges. The gifted students are often involved 

in so many advanced courses that putting enough emphasis on UMTYMP to meet the heavy 

work demands can be an issue. Many of the students who are focused only on mathematics 

have not distinguished themselves academically, and it can be challenging for them to 

understand the high quality of writing and organization we expect in their work. 

 

3.4. Classroom Instruction. UMTYMP can be a very challenging teaching assignment. In the 

high school component, for example, we cover a full year’s worth of high school mathematics 

in about 30 hours, including 6 hours of testing. This would be impossible except for the fact 

that the students can learn routine topics–which comprise a large portion of the curriculum on 

their own without any formal instruction. Teachers must focus on the central ideas and most 
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significant types of problems and trust their students to develop computational skills on their 

own. 

The range of students in our courses also has an effect on instructional practices. Sixty 

to seventy percent of the students in a typical algebra class are seventh graders, with the rest in 

sixth or eighth grade. Although they have an aptitude for mathematics, there can be a 

tremendous difference in learning styles and focus; anybody who has taught students at this 

level knows, for example, that an eighth grade female can be far more emotionally mature 

than a sixth grade male. Some of our students prefer to learn concepts through self-instruction. 

The end result is that the teacher does not always have the full attention of every student. 

Some may be working individually on a problem, or discussing it with their neighbor. Our 

instructors have to learn to deal with this apparent lack of focus, so long as it does not bother 

the other students in the classroom. The reader can find a full discussion of the challenges of 

teaching in UMTYMP in [3]. 

 
3.5. Historical Stability and Changes. The most notable stable feature of UMTYMP is the 

continuing high interest of extremely talented students and families to participate in a program 

of this scope and magnitude. This need has intensified in the current public school 

environment, in large part because of the recent emphasis on high-stakes standardized tests. 

Schools have been forced to focus their resources on the mainstream curriculum, with many 

fewer opportunities for mathematically talented students. As a result, students are drawn to 

UMTYMP but come with little mathematical exposure beyond routine (if excellent) 

calculation skills. Overall, the problem solving, study, and communication skills of incoming 

students are weaker than ten to fifteen years ago. 

Student attitudes have also changed significantly in the last decade. Students nowadays 

are generally much more involved in extracurricular activities, and try to squeeze UMTYMP 

into a packed lifestyle. Many of the supportive features of our program go unused by students, 

not for a lack of interest or need, but rather a lack of time. Despite repeated warnings from the 

program to students and parents about this issue, the unfortunate consequence is that we 

occasionally lose good students who could succeed with more time and focus. 

Although our students are busier, they are increasingly younger and younger. Through 

the year 2000, the median grade level of our Calculus I students was tenth grade. Now the 
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majority are in ninth grade, with a large contingent of eighth graders who started the high 

school UMTYMP program in sixth grade. This shift comes with a corresponding decrease in 

the overall maturity level of our students. Furthermore, our younger students are simply 

incapable of sitting still and staying focused for a long lecture. Whether this is a physiological 

fact or a byproduct of our cultural environment, we have had to adapt. Our class time has 

morphed from a rather traditional two hour lecture and workshop presentation to a more 

student-centered environment, with a blend of content presentation and student activities in 

small groups. The lectures focus on big ideas and central computations, while the workshops 

have group work specifically designed for UMTYMP students. This format remains effective 

even with the more mature students in their fourth or fifth year of the program. 

One recent difficulty is the wish to include formal proofs and reasoning as part of the 

conceptual work. There is a dearth of textbooks that can meet our needs: rigorous treatment of 

a broad number of topics, but readable by a high school student. Overall we spend 

considerably more time searching for suitable textbooks now than in the past; currently all 

three years of the calculus program are undergoing a textbook search. 

 

The high school program has some special issues. The time constraints and fast pace 

are more difficult for students in grades 6-8, and the difference in expectations between 

UMTYMP and their regular school work is more pronounced. The textbooks available at this 

level have also suffered more prominently in conceptual material and presentation. The so-

called “college algebra” text used today is clearly less challenging than the high school text 

used twenty years ago. The geometry textbooks are even more problematic; although we 

strongly believe in group work and constructivist learning, we do not have enough class time 

for the exploration/conjecture model which is common in today’s books. Our current text has 

evolved so far in this direction that it is now unsuitable for UMTYMP, and we are in the 

process of switching to a more traditional but well written book. However, this requires that 

the high-school instructors teach an UMTYMP course which will be significantly different 

than the courses and their own schools, causing an extra burden for them which was not 

present in 1995. 
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Field of Study UMTYMP Alumni %National %
Engineering 
Mathematics 
Physical Sciences 
Computer Science 
Biological

25.92% 
18.18% 
15.28% 
11.61% 
7.74%

5.80% 
1.05% 
1.50% 
2.75% 
5.35%

 
Table 1. Comparison of self-reported UMTYMP alumni degrees to national totals of all earned 
Bachelor’s degrees (using an average of 1996-97 and 2001-02 data from [2].) 
 
 
4. Outcomes 
 
By their very nature, UMTYMP students are highly intelligent, so it comes as no surprise that 

many of them go on to be extraordinarily successful in their undergraduate studies and 

subsequent careers. This makes it difficult to measure the effect UMTYMP has had on our 

alumni and their success, particularly given the lack of any control group; it is not feasible for 

us to tell parents, “Your child has qualified for UMTYMP, but we would like to keep her out 

of the program and track her future progress.” 

We are initiating a large scale project to contact a thousand or more of our alumni in an 

effort to evaluate the long term effects UMTYMP has had on their undergraduate studies and 

subsequent careers.  

 

 

In the meantime, although the absence of a control group makes it is difficult to make 

direct measurements of the program’s impact on participants, it is possible to use our alumni 

database to make some broad observations which indicate a deep influence on students. 

Anecdotal data from surveys and other information from our alumni strongly support these 

observations. 

One measure of the program’s influence is which majors and careers are chosen by our 

alumni. A significantly higher percentage choosing paths in science, technology, engineering 

and mathematics (STEM) related fields may indicate that UMTYMP motivates and 

encourages students to use their mathematical talents in their careers. Table 1 compares the 

self-reported degrees earned by UMTYMP alumni to the national averages of all Bachelor’s 

degrees. Even assuming our students’ natural preference for mathematical and scientific 

subjects, they are earning degrees in STEM fields at a phenomenal rate. Given their aptitude 
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and the number of math credits earned in UMTYMP, it should come as no surprise that 

mathematics is the most common degree. However, the percentage is striking: 18 times the 

national average. Other areas are also impressive: physical sciences are 10 times the national 

average, engineering 5 times the national average, and computer sciences 4 times the national 

average. Nearly 39% of our alumni also go on to earn master’s degrees, most commonly in 

mathematics, medicine, computer science and electrical engineering. About 19% of our 

alumni have earned doctorates in a wide variety of fields; including at least 18 Ph.D.’s in 

mathematics. 

The remaining degrees not included in Table 1 are distributed between the humanities, 

social sciences, and various technical/professional fields. We do not view it as a programmatic 

failure when students finish UMTYMP and continue to a non-STEM field, since breadth and 

scope of education is the cornerstone of the liberal arts philosophy common at colleges and 

universities throughout the United States. Our anecdotal evidence also indicates that the 

intellectual demands and conceptually heavy content of UMTYMP encourage students to use 

these skills in future careers. Alumni pursuing careers in fields as varied as law to music 

performance state that, although they may never need to compute the value of a flux integral, 

the work habits, qualitative reasoning and problem solving skills developed in UMTYMP are 

invaluable to their future careers. 

 

The program has had a profound impact at the University of Minnesota. A number of 

UMTYMP alumni have received graduate degrees in mathematics at the University of 

Minnesota, and two more are currently enrolled in the Ph.D. program. Our alumni permeate 

the department’s faculty and staff as well, including: a highly respected Full Professor who 

was a graduate of the very first UMTYMP class; a member of the advisory committee for our 

Masters in Financial Mathematics program; and the director of our computer systems 

administration staff. At the undergraduate level, UMTYMP has been responsible for a large 

number of very high quality students enrolling at the University of Minnesota. The school has 

made attractive accommodations with credit, placement and scholarships in an effort to recruit 

our students. As Table 2 shows, we have been very successful at retaining these students who 

might have otherwise attended one of the other prestigious schools on the list. 
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Institution Current Historical 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

University of Minnesota 

MIT  

Stanford  

Berkeley  

Harvard  

Northwestern 

University of Wisconsin 

Yale  

Columbia  

Caltech 

Carleton College

University of Minnesota 

MIT  

Stanford 

University of Wisconsin 

Harvard 

Berkeley  

Caltech 

University of Chicago 

Northwestern  

Carleton College 

Yale
 

Table 2. The fifteen most attended undergraduate institutions among our alumni, both current 

and historical. 
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5. Assessment and Research Perspectives 

A key component in attracting students and their families to participate in UMTYMP is the 

presentation of current data on student admissions to colleges and universities and subsequent 

successful careers. This requires maintaining and regularly updating a robust alumni database. 

Our statistical database was originally created in the late 1980’s to study the effect of certain 

programs aimed at increasing female participation in UMTYMP. It has since been updated to 

provide extended data about the undergraduate studies and career choices of our alumni. 

Maintaining the database requires real effort, but the current and potential usage far 

outweighs the costs. The database has been an extremely valuable resource for grant proposal 

data as well as an impressive statistical history of UMTYMP students’ achievements, 

including the data used in this paper. It has also provided evidence to help UMTYMP make 

effective programmatic decisions to better serve certain subgroups of our student populations. 

For example, careful analysis of female applicants who passed the high school entrance exam 

(see Section 3.1) showed that school teachers were doing a poor job of identifying quality 

female candidates for the program. This led us to develop new approaches to attract and retain 

female students, changes which have had a lasting effect on UMTYMP. 

UMTYMP regularly provides parents and the University with data on alumni degrees, 

college admissions, schools attended, majors achieved, career directions and related data. In 

addition, several questionnaires have been collection from alumni concerning the usefulness 

of UMTYMP coursework in college majors, the role of UMTYMP’s conceptual approach in 

college mathematics and science courses, and other similar questions. We are currently 

working to improve our data collection procedures and boost our response rate, so we can 

continue to perform detailed and accurate longitudinal analyses. 

Current UMTYMP students are also generally quite willing to be involved in 

qualitative studies on various issues. The program has informally gathered information on the 

work and study expectations of UMTYMP compared to their regular school work, on social 

and scheduling issues to be involved and successful in UMTYMP, and on parental pressure. 

These informal studies could be made more formal and handled in more traditional ways. 

In addition to these passive analyses, UMTYMP provides a relatively self-contained 

environment for researching pedagogical techniques or other educational issues. The courses, 

curriculum and examinations themselves allow interesting and longitudinal studies on 

understanding of important topics in single and multivariable calculus and linear algebra. For 

example, most exams are (covertly) broken into conceptual and computational components, 

and the sub-scores provide global pictures of student understanding as well as information to 
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help specific students improve performance. In a more formal approach, a current study of 

UMTYMP student understanding and misconceptions about series and sequences has 

provided some interesting initial results which could influence future instruction. This 

analysis will be continued for several years, and assess these concepts with the same students 

as they progress through the calculus program. More studies of this nature in the specific 

setting of UMTYMP students could be quite useful for other undergraduate issues in 

mathematics. 

 

6. Issues Concerning Expansion and Duplication 

 

The success of UMTYMP begs the obvious question: why has the program not been 

duplicated? To our knowledge nobody has ever tried to start a similar full-scale program at 

another location, although we have had modest success in expanding our own program to 

other sites throughout the state of Minnesota. This section describes those efforts and 

describes some of the challenges which would be faced by anybody interested in starting a 

similar program. Key aspects include long-term individual and institutional commitments 

along with the acceptance and support of local K-12 educational systems. 

 

6.1. Expansion within Minnesota. Because UMTYMP receives crucial financial support from 

state government funds, UMTYMP has always been expected to make efforts to serve 

students throughout Minnesota. In the past, portions of UMTYMP have been offered at 

various “satellite” sites in cities throughout Minnesota such as Rochester, Saint Cloud and 

Duluth. Yet all of these cities have struggled with maintaining a full program. Several major 

issues appear to be common to all of these sites. 

The demographics and geographic distribution of the population in Minnesota play a 

key role. About 65% (roughly 3.2 million) of Minnesotans live in the Minneapolis-Saint Paul 

(Twin Cities) Metropolitan Area. The satellite UMTYMP sites are all regional population 

centers, ranging from about 70,000 to 180,000 residents, which are surrounded by sparsely 

populated rural areas. The satellite programs have always begun with large classes – although 

still an order of magnitude smaller than the Twin Cities site – including some extremely 

talented students. As times passes, however, they inevitably experience lower and inconsistent 

enrollments. The smaller local populations force the sites to rely mostly on one major school 

district to provide the bulk of their students. When that district’s interests change or 

administrative support for such a program wanes, there is a very significant effect on 
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UMTYMP participation. This issue is avoided in the Twin Cities site, which draws from 

dozens of large school districts. Decreased interest in one district is usually counterbalanced 

by increased interest in another. 

The other major difficulty is finding high quality instructors who are both capable and 

willing to teach UMTYMP students. Because of the scope of the program and its curriculum, 

it requires both a dedicated high school teacher to handle the first component, and a college 

professor to teach the calculus courses.  

While the high school component is important, the program is even more dependent 

on the availability of quality college faculty. This is clearly reflected at the Rochester site, 

where a highly technological and well-educated population base3 ensures parent and student 

demand for the program; unfortunately, Rochester has no four-year college or university and 

hence no local mathematics faculty. The site has only been successful when University 

instructors travel from the Twin Cities to Rochester on a weekly basis to teach the UMTYMP 

courses. In contrast, St. Cloud and Duluth have large universities with faculty members who 

were once involved with UMTYMP in the Twin Cities and are enthusiastic about teaching the 

courses. However, the local economies and school districts in those cities are not producing 

enough students to sustain the sites indefinitely. 

 
6.2. Duplication outside of Minnesota. While there are several outstanding summer programs4 

and a few programs which provide an accelerated academic year program of high school 

mathematics, UMTYMP is the only program we know of which systematically provides a five 

year program including honors level college courses. Anybody wishing to start a similar 

program would face all of the issues involved in expanding UMTYMP within Minnesota, 

magnified by the lack of the central office providing administrative and curricular support. A 

complete analysis of all the requirements for a successful program would be beyond the scope 

of this article, but some key components are: 

• A long-term commitment of college mathematics faculty to create and teach the 

college-level courses. This also requires a commitment from the department chair and school 

administrators to support and professionally reward faculty for these efforts. 

                                                 
3 Rochester is home to both the internationally renowned Mayo Clinic and a major IBM facility. 
 
4 For example, see the programs supported by the American Mathematical Society’s Epsilon Awards. 
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• College faculty knowledge of K-12 students and school curricula. This is essential in 

designing high school courses which simultaneously satisfy school criteria and provide 

suitable preparation for honors calculus courses. 

• Prior experiences with K-12 schools and teachers in order to obtain their trust and 

confidence that the program will help bright students learn more mathematics, and not harm 

their own schools’ mathematics program by “removing” their best students. 

• An administrative office to handle complex issues such as qualifying exams, tuition 

and student fees, student transportation, and communication with students and parents. These 

issues cannot be effectively handled in an informal way, and can seriously undermine an 

otherwise intellectually exciting program. 

• The enthusiastic support of the students who attend the program and their parents. 

Attending such a program is a deep and fairly expensive commitment at several levels. Being 

able to provide accurate and compelling data on the value of this effort is absolutely critical to 

maintaining the program. 

There are a myriad of other issues which need to be addressed to run a successful program 

beyond the main items above. Yet UMTYMP has demonstrated that all of these issues can be 

successfully navigated and provide a unique experience for large numbers of mathematically 

talented students. The personal and academic pleasure of teaching students with these 

mathematical interests and capabilities is exceptional, with many instructors regarding these 

classes as highlights in their teaching careers. The sense of satisfaction of seeing these 

students grow mathematically and move onward to significant careers is comparable to 

watching one’s undergraduate and graduate advisees succeed. These are among the best 

reasons for urging other mathematicians to become involved in similar programs. Anybody 

interested in developing a similar program is invited to contact us directly for more 

information. 

 
References 
 

[1] Dweck, C. S. (2007). The secret to raising smart kids. Scientific American Mind, 
December, 36–40.  

 
[2] Goan, S. K., & Cunningham, A. F. (2006). Degree completions in areas of 

national need, 1996-97 to 2001-02. Retrieved August 23, 2010 from 
http://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2006154.  

 
[3] Keynes, H. (1995). Can equity thrive in a culture of mathematical excellence. In 

F. E. Secada, W. G., & L.B. Adajian (Eds.) New Directions in Equity for 
Mathematics Education, (pp. 57–92). Cambridge University Press.  



Keynes & Rogness 

 
[4] Lubinski, D., & Benbow, C. (2006). Study of mathematically precocious youth 

after 35 years. Perspective on Psychological Science, 1, 316–345.  
 

[5] Lubinski, D., Webb, R. M., Morelock, M. J., & Benbow, C. P. (2001). Top 1 in 
10,000: A 10-year follow-up of the profoundly gifted. Journal of Applied 
Psychology, 86 (4), 718–729.  

 
[6] Sheffield, L. J. (1999). Serving the needs of the mathematically promising. In L. J. 

Sheffield (Ed.) Developing Mathematically Promising Students, chap. 4, (pp. 
43–55). National Council of Teachers of Mathematics.  

 
[7] Wheatley, G. H. (1999). Effective learning environments for promising 

elementary and middle school students. In L. J. Sheffield (Ed.) Developing 
Mathematically Promising Students, chap. 6, (pp. 71–80). National Council of 
Teachers of Mathematics.  

 
School of Mathematics, Univ. of Minnesota, 206 Church St. SE, Minneapolis, MN 55455 
E-mail address : keynes@math.umn.edu 
E-mail address : rogness@math.umn.edu 
URL: http://www.mathcep.umn.edu 
 
 



  TMME, vol8, nos.1&2, p .207 
 

The Montana Mathematics Enthusiast, ISSN 1551-3440, Vol. 8, nos.1&2, pp.207- 226          
2011©Montana Council of Teachers of Mathematics & Information Age Publishing 

 

The proficiency challenge: An action research program on teaching of gifted math students 
in grades 1-9 

Arne Mogensen, VIA University College of Teacher Education, Aarhus Denmark 

 
 
 
Abstract: The paper describes design and outcome of a 3-year action research program on the 

teaching mathematics to gifted students in grades 1-9 in mixed ability classes in Denmark 2003-

2006. The intention was to combine ideas and experience of many teachers with theories and 

suggestions of researchers to test and develop useful recommendations for future teaching. 

Key words: Action research; mathematically gifted; proficiency; differentiation. 

Introduction 

Different ability of students has been an accepted challenge to schools and debate on 

teaching for years. Recently the discussion in Denmark has been extended to challenging the 

extent and possible handling of differentiation to gifted students. 

2003-06 the Municipal School Authority of Aarhus, Denmark in cooperation with VIA 

University College of Teacher Education initiated an action research program, where I was the 

researcher and also acted as the project manager. During this period we developed and tried out 

ideas on teaching of clever students in mathematics. Experience from this work and a sample of 

findings made in other countries was a platform to an extension from 5 teachers and 3 schools in 

the first year to 35 teachers at 13 schools in term 2004-05 and 18 teachers at 8 schools in term 

2005-06. Almost all teachers and schools were changed every year.  

Aim, target group and a proposed yearly schedule were sent with an invitation for taking 

part to all 52 primary & lower secondary schools in the municipal area. Almost every school has 

grades 1-9.  

Aim of the program 

The aim was to contribute to increased attention on the proficiency challenge in math 

teaching, and to develop and try out approaches, which first and foremost supports the 
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mathematically able. The assumption was that this can be done in an ordinary mixed ability 

classes and show profitable to all students. 

The target group was schools with desire to optimize conditions to students with 

proficient qualifications – and teachers with a proficient background for math teaching (this was 

not meant to be a course on mathematics).  

Yearly schedule and research design 

The research-design involved close connection to actual teaching practice. Five mutual 

meetings during the school year were mainly informative to, from and among the teachers, and 

combined with my research between the meetings. The meetings thus provided information, 

collected findings and kept everyone informed on progress. 

 

 August 

 

Start-up-meeting with presentation of earlier results, appointments for 

try-outs and reporting. 

 

The purpose of this first meeting was to ensure a common background to the collegial 

talks in the group. Second and third year of the project the teachers were shown two short Danish 

movies on gifted students and heard one of my taped interviews with a gifted student from the 

former year. A mathematical inlay was about the winning strategy in playing NIM. The outcomes 

were also these appointments and memos to participating teachers: 

1. Prepare information to students and their parents on the developmental work. 

2. Make appointment with coordinator, who will supervise 1-2 lectures. The purpose of my 

visit was to offer a concentrated collegial sparring on the routines or way teachers try to 

meet the mathematical challenging (gifted) students in their math teaching. Thus I visited all 

classrooms for at least one 45 minutes each and had a short talk afterwards with the every 

single math teacher on their strategies to the gifted students in their classes! Beforehand, the 

teachers were asked to point out the two (or some of the) most gifted students. I also 

suggested the teachers to be clarified on how to show the intended attention to these students 

when teaching them. 

3. Read the report/book (on results from former year) before coordinator visits at schools. 
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 October Full-swing-meeting with supplemental ideas and support. 

 

At this meeting I presented the group to an overview on different routines noted during 

my visits to classes. The project teachers were asked to comment and justify these, e.g.: 

 

Program of work of the lecture (day) on blackboard in class 

Mental math routines 

Connections to other subjects like P.E. and science 

Explanations for only part of class 

Teacher: ”I don’t expect everybody to do all problems”, hard extra assignments to some 

Mutual project with one number-able group among five (following the ideas of Howard 

Gardner) 

Number-stories, focus on oral presentation 

Guided discovery using concrete materials  

Confidence on students organizing own investigation 

IT as an extra possibility for differentiation 

As competitions might be a suitable challenge to students with extra time and efforts, the 

teachers were also informed of some national and international possibilities. The Nordic 

KappAbel competition www.kappabel.comin all Nordic languages takes place every year and is 

meant for grade 8. The Kangaroo competition: http://www.mathkangaroo.org is not in Danish 

language, but suited for many more grade levels.  

Every teacher was also asked to prepare an answer to one of these questions for the next 

meeting of the group: 
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1. Thoughts on goal setting 

    How do you make gifted students aware and conscious on own goals? 

2. Thoughts on student’s pre-understanding 

    How best to catch the special qualifications and experience of gifted students in a  

    concrete area (eventually before a certain teaching sequence)? 

3. Thoughts on planning 

    How can the gifted students take part? 

    How do I meet the expectations of these students? 

    How do these students become co-responsible for planning? 

4. Thoughts on way of organization 

    Experience with gifted students in whole class teaching, group work and individual  

    work?  

    When does an organizational form work and when not?  

5. Thoughts on differentiation of teaching 

    What have you been changing and done differently to different students?  

    Tasks, texts-formulations, materials, ...? 

    Bring an example of something, you consider very successful and try to explain  

    why? 

6. Thoughts on assessing with the students 

    How do you carry out a (mutual) evaluation, which also gives room to the gifted  

    student? 

    Give an example of a good method. 

 

Every teacher was asked to arrange to visit a colleague (at another school), and have a 

visit by a colleague (preferably another). Appointments were made at this meeting. 

 

 December 

 

Mid-term-meeting with evaluation so far and communication of 

new/more ideas. 

 

The meeting was about: 

 Impressions and considerations after the mutual sparring with colleague teacher 
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 Midway evaluation of the developmental work 

 Best practice, ideas and strategies for mutual inspiration (every teacher was asked to bring at 

least one) 

 Synopsis to the yearly report, year 3 this became a collection of recommended problems 

 Separation in ”writing-groups” – with responsibility for different grade levels 

 Presentation of my interview-guide and actual appointments on interviews. 

 

My interview-guide for interviews with 2 gifted students in every class was this: 

 

1. Are you good at mathematics? How do you know? 

2. When do you feel, you learn the most in math lessons? 

3. Give an example of a task, you find especially fruitful. Why do you find this task so good? 

4. Are you working especially well with others in your class? Who for example? 

5. How often do you talk with your math teacher about difficult tasks? 

6. Do you think your math-teacher is demanding enough of you? Or too much? 

7. Do you have a good advice to teachers with talented students in their class? 

8. Eventually? 

 

 

 March 

 

Almost-done-meeting with mutual orientation and a frame for 

reporting. The participant’s contribution to joint report on experiences 

and recommendations sent to coordinator for compilation. 

 

I made interviews with 2 gifted students from every class in the project: 10 students in 

year 1, 69 students in year 2, 36 students year 3. All interviews were transcribed and a copy 

given to the teacher. At the March meeting I presented patterns and similarities from the student 

interviews: 
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 The students are very different. All are gifted, but remarkably many are also good on quite 

different fields as sport, music, ...  

 Quite many have (also time consuming) other interests 

 Some students are rather special, but do get along well in classes. In any case nobody was 

interested in jumping past a grade in school, when I (jokingly) asked for that 

 Some, but far from everybody, are able to “explain” their interest in mathematics. Many 

consider it caused by parents (counting cars, some parents are even teachers themselves, etc.) 

and some by other reasons (a certain math teacher, a book-present including a calculator etc.) 

 Almost all gifted students were happy to be challenged more than most students in class! And 

some are not at all. 

 

Following this presentation of findings we had a round in groups on coordinator findings. 

Every teacher had transcription of own two student’s interview and was asked to select an 

essential statement (e.g. only 10 lines) from one of them. E.g. some statements about the 

teachers’ handling of the proficiency challenge in mathematics teaching. The excerpts were 

shown and discussed in groups in order to find recommendations to the teacher or to the 

school(s). 

Report / book   

Before the yearly final meeting of the group I wrote the report/book on theoretical 

findings, contributions and recommendations from teachers, excerpts of student interviews and 

suggestions for new routines and strategies. Year 1 this was an internal report, year 2 this became 

a “real” book (more than 100 pages) and in year 3 the report became a problem book. The books 

were printed with support from the local authority (year 2) and the Ministry of Education (year 

3), so they were sent for free to all 1.000 math teachers in the city of Aarhus. The rest can still be 

bought at printing cost (Mogensen, 2005). 

 

 April 

 

Final meeting with publication of concluding report (and eventually a 

press release). 
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The final meeting presented some up-to-date resources, which teachers might want to 

draw on in their teaching, e.g. a digital math encyclopedia (in Danish) and interactive 

(electronic) blackboards. Speeches were held and everyone had the newly printed report/book. 

In the following section I will present more of the overview and findings from this 

Danish action research project. These are also published 2008 in a report from the European 

Comenius 2.1 project: Meeting in Mathematics (Meeting, 2008). 

What does it mean to be gifted? 

All teachers in this project had students, they considered especially gifted or especially 

challenging. But how can a teacher know who they might be? 

This decision was left up to the individual teacher. Some teachers based their choice on 

regular assessment through written tasks or tests. Some teachers had known the students for 

several years, some had just been appointed to the class. In each case the choice was not made 

until the action research program was three months underway.  

Seen this way, the gifted students numbered two out of a typical total of 25 students in 

each class, or 8%. However, in intelligence research you will often meet the expression, 

“students with special qualifications”. These students are approximately 2% of the total number 

by IQ-test, and might very well be among the gifted students mentioned above. 

There was a large variation in teachers’ perception of gifted students. The following 

characteristic may be a support for parents and teachers, who are in doubt. The table is provided 

by the Mensa organization (www.mensa.org). Although the two columns are not alternatives, 

Mensa members suggest the right column to present characteristics of the 2% most intelligent 

children.  
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Gifted student Student with special qualifications 

Is interested 

Has good ideas 

Ironical 

Answers questions  

In the top of the class 

Learns easily 

Popular among peers 

Remembers well 

Accepts information 

Likes to go to school 

Fond of structured learning 

Has a talent 

Becomes happy 

Becomes angry 

Is extremely inquisitive 

Has wild crazy ideas 

Sarcastic 

Poses questions to the answers 

Ahead of the class 

Knows already 

Prefers adults 

Makes informed guesses  

Adapts information 

Likes to learn 

Gets on with complexity 

Has many talents 

Becomes ecstatic 

Becomes furious 

 

Gifted students therefore do not necessarily constitute a homogeneous group, as they 

would fit in both columns of the table above. But they always challenge the teacher in matters 

regarding form and content in teaching. The challenge may not be noisy or obtrusive. Some of 

these students can be silent, pleased by a strong structure or “keeping their heads down”, to be 

almost invisible in the classroom. Others may be seen as clumsy, anti-social or arrogant – and 

anyhow extremely visible in the classroom. 

In any case they are mathematically challenging to the teacher. And one should consider 

various approaches when meeting these students. Some teachers said: I don’t think I have any 

really gifted students – although I have some who are smart. Perhaps you should see ability or 

giftedness as a wide spectrum and support the student differently.  

Numerous attempts to uncover the competence of students have been made; this is 

reflected in many publications. The Russian psychologist Krutetskii (Krutetskii, 1976) suggested 

that mathematically gifted students were good at 

 Reasoning quickly 
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 Generalizing 

 Manipulating abstract concepts 

 Recognizing and using mathematical structures seen before 

 Remembering rules, patterns and solutions seen before 

 Finding shortcuts, which means thinking “economical”. 

Krutetskii (1976) also mentions two significant norms of behavior of gifted students. 

Firstly working with mathematics does not tire them; they can keep on for hours. Secondly they 

have an ability to see cross-curricular problems through mathematical eyes. 

In 1995 a report was published by the group: ”Task Force on the Mathematically 

Promising” (NCTM, the American National Council of Teachers of Mathematics) prompted by 

the requirement to increase attention to talented math students in the USA. In the report Sheffield 

(Sheffield, 1999) describes mathematical promise as a function of ability, motivation, belief and 

experience or opportunity. None of these variables are considered to be fixed, but rather are 

areas that need to be developed, so mathematical success might be maximized for an increasing 

number of promising students. 

The assumption that abilities can be enhanced and developed is supported by knowledge 

from brain research, where it is understood that experience results in changes in the 

brain.Together with the NCTM-report, this suggests that motivation should be affected and 

treated seriously when a school culture makes students keep low profiles to avoid being labeled 

as nerds. Self-confidence and good role models amongst classmates and teachers are decisive for 

students’ attitude to the subject. 

Sheffield suggests these characteristics of mathematically gifted students: 

 Early and persistent attention, curiosity and good understanding of “quantitative” 

information. 

 Ability to grasp, imagine and generalize patterns and connections. 

 Ability of analytic, deductive and inductive reasoning. 

 Ability to shift a chain of reasoning as well as the method. 

 Ability of easy, flexible and creative handling of mathematical concepts. 

 Energy and perseverance in problem solving. 

 Ability to transform learning to a new situation. 

 Tendency to formulate mathematical problems – not just solving them. 
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 Ability to organize and ponder information in many ways and sort out irrelevant data. 

Please notice that this list does not include the ability of calculating fast and correctly! Of 

course many of them are capable of doing that – but Sheffield insists this it is neither a necessary 

nor a sufficient condition for being a mathematically gifted student. A lot of these students are 

impatient with details and reluctant to use time on computations. 

Koshy offers the characteristics below partly based on work with British teachers (Koshy, 

2001): 

 

 Learns very quickly  Enjoys mathematics  

Asks clever 

questions 

   Accurate 

memory 

    

Able to spot 

patterns 

   Ahead of most 

in the class 

 Comes up with 

unusual explanations 

 Works concentrated and for a 

long time with difficult tasks 

 

 

Risk 

It is tempting to combine such suggested lists, so as to build a single checklist suited to 

estimate mathematical potential. However, there is a risk in using such a simplified list for the 

following reasons: 

 Gifted students show their special talent only if there are stimulating opportunities for this. 

 Some students play down their scope of abilities to avoid extra homework. 

 Some students conceal their abilities in order not to be different – and be bullied. 

 Multilingual students may have language problems. 

 Some students have social problems or lack of self-confidence – e.g. no support from home. 

 Other outside factors may also affect and provide ability, motivation, attitude and 

opportunities. 
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Of course teachers spot capable students more easily when there are challenging contexts 

of teaching and learning, i.e. these students get an opportunity to show their special abilities. 

This may take place in talks with classmates, elderly students or siblings, parents, teachers or 

school counselors. Observing how students approach and solve relevant tasks in and out of 

school may also help teachers to notice gifted students. 

Parents’ role 

Some children show particular abilities before their start in school, and one could imagine 

a talk about this to take place with parents at the enrolment of kids in school.To make sure it 

happens, a line with focus on this should be included in the application form.  

Parents’ ambitions may also result in inquiries to the school about special consideration 

for their children. On the other hand there may be a total lack of support from home. Some 

countries are better than others at breaking the social heritage. 

The role of parents regarding support and challenge was emphasized in interviews with some of 

the students and teachers in the action research project. Here is a typical statement by a Danish 

teacher in the action research project:  

 

”The condition/A prerequisite to go further in teaching and learning than normally requested at 

a certain grade level is to explain at the first parents meeting how you intend to teach the 

students: 

By keeping a focus on challenge also for the gifted students 

By offering all students suitable and challenging opportunities 

By assuring parents that nobody will be lost, the scope is to amass successes rather than defeats. 

 

At a parent-teacher meeting, the teacher gives some examples of oral communication in 

teaching, e.g. the teacher could go through a teaching unit, and give the parents the same sort of 

tasks, which the teacher later would introduce to their children.  

Ask the parents to reply, comment on the answers and tell them what teachers would expect, 

including creative remarks, add that these are welcome. 

Concerning homework (or in periods the lack of same), it is likewise necessary to clarify that it is 

not volume, but quality that counts. The students must be able to explain their line of thought.” 
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The statement suggests, that the role of the parents should be supportive, not demanding 

or a transfer of unfulfilled parents’ ambitions. 

 

 

Test 

The qualifications or learning outcome of students can partly be assessed by a test. If 

written tests are used for all students, it is important to remember the limitations.  Teachers may 

ask themselves: 

 Will the test results tell something new about the individual student? 

 Does the test contribute to planning of better teaching? 

 Is the test also suited to the gifted students? 

 Does the test method enable creative thinking?  

 Is there a risk of losing surprising solutions or comments? 

 Does the test fit the grade level and the curricular goals? 

 

A test may be so easy that it either does not provide an optimal challenge or misleads 

some students to believeit to be more difficult than it actually is. The tests used by Krutetskii 

were not diagnostic but purely research tests. Each series reveals only one or few aspects and 

manifestations of the mathematical abilities being studied. And the 72 tests are of four basic 

categories, where three “correspond to the three basic steps in solving a mathematical problem 

(gathering the information needed to solve the problem, processing this information while 

solving the problem and retaining in one’s memory the results and consequences of the solution). 

The fourth category concerns the investigation of types of mathematical ability. (p.98)” 

This may be a reminder: Any cleverly designed test will map only some aspects of what 

might characterize mathematical giftedness.  

 

Experience and strengths 

How does a teacher use the experience and strengths of gifted students?  
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To make every teaching effective, you should start from recognizing the backgrounds of the 

students. But each of the strengths is accompanied by disadvantage, when teaching in a 

multilevel classroom. The following table makes use of some of the characteristics, Krutetskii, 

Sheffield and Koshy pointed out. Several tables like this one below appear in various 

publications (Baltzer, Kyed, Nissen & Voigt, 2006), and the description in the two columns is 

often found to explain the social challenge of some gifted students: 

 

 

The strength 
The disadvantage 

Is curious  

Thinking critical 

Poses questions, that may embarrass others  

Critical and intolerant towards others 

Works alone  

Remembers earlier rules and solutions 

Seems superior and obstinate  

Opposes exercises 

Does abstract thinking 

Has high expectations 

Rejects details, looks for simple solutions  

Perfectionist 

Shows energy and patience in problem 

solving 

Works goal-oriented 

Loses interest, when things do not develop as 

intended 

Is impatient with the slowness of others  

Generalizes patterns and connections  

Transfers learning to another situation 

Does not like routines, will easily be bored 

Formulates complicated rules and systems 

 Finds shortcuts 

Thinks ”economically” 

Gets frustrated by inactivity 

Interrupts and seems hyperactive 

 

Goal 

Are there especially good opportunities to make gifted and motivated students aware of 

and conscious about setting their own goals?  

Yes, we can suppose so. And it may very well be a necessary step in order to meet the 

particular experience and strengths of these students. Well aware that cultures and settings may 

differ between schools and countries, I would like to mention that the following viewpoints are 

based on Danish experience. 
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When working with very capable students such common goals for a class may be too 

modest. The gifted student can aim higher than other students in the group. In the Danish action 

research scheme I interviewed 115 gifted students. Only very few felt too loaded by tasks and 

expectations from their mathematics teacher, who even had them in focus as especially gifted. 

On the contrary, to many students it was the other way around, i.e. most were eager to have at 

least a few more challenging tasks.  

 

So three questions may be asked: 

 Would it help to make goals more visible and involve the students in matters of organization 

and evaluation? 

 How do teacher expectations affect the attitude and work of gifted students? 

 Should teachers be ambitious on behalf of their students?  

I will offer an answer to these questions below. 

Planning 

Can capable students co-operate in planning their math work? Yes, action research 

confirmed this. But it implies expectation, initiative and support by the math teacher. Learning a 

subject such as mathematics is an individual process, taking place in a social context. Co-

operation is part of the learning process; in Denmark it is even included as an aim in the subject 

curriculum: 

 

Danish Mathematics Curriculum grades 1-10 (Aims, section 2). 

Teaching shall be organized so that students build up mathematical knowledge and proficiency 

on the basis of their own prerequisites. Students shall, independently and together, experience 

that mathematics is both a tool for problem-solving and a creative subject. The teaching shall 

give students a vivid insight and further their imagination and curiosity. 

 

The curriculum is a common condition for all students, and it stipulates sharing 

responsibility in setting goals and choosing contents.However, the curriculum was not addressed 

to young students, i.e. it was not formulated in a language well-suited for young students, and it 
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is a majorchallenge for math teachers to pass it on and interpret the demands for the class. 

Nevertheless, teachers ought to do that.  

As is the case in many countries, the Danish curriculum of mathematics is imbuedwith a 

constructivist view on learning, i.e. Knowledge and insight cannot just be fed from teacher to 

student, but have to be constructed by each student with the assistance of a teacher and in 

interplay with classmates. The learning process takes placed in a social setting where students 

can develop meta-cognitive abilities to monitor and direct their own learning and performance.  

This means students share some responsibility in an active learning process. Here it is 

fundamental to success that the students practice self- and peer-assisted-evaluation. It is possibly 

the best argument for portfolios as tools of reflection and documentation in school. 

It is certainly an important idea for the teacher to invite capable students to think ahead; 

having their own ideas, aiming further than the common goal in class, but still in correspondence 

with the math curriculum. In younger grades the teacher could encourage capable students to 

learn each their own tables way ahead of the rest of the class, or ”tempt” them by mentioning 

prime numbers and square root. In lower secondary or middle school, capable students could be 

prompted to work with reduction or trigonometry at high school level. Teachers could encourage 

the capable students to go deeper or ahead.  

Perhaps math teachers should take regular developmental talks with capable students 

individually or in groups – or might differentiation of goal and plan be handled in whole-class 

discussion? Many teachers in the action research project were considering advantages and 

disadvantages of various forms of organization. In every class students are different: they show 

different interests, intelligence and professional proficiency. Hence, when teacherswant to 

present the individual student with learning situations, which correspond to the student’s 

background, they need to differentiate the teaching. 

 

There are plenty of ways to differentiate: 

1. Short introduction to new content/tasks 

You can make an arrangement with the class, setting students to work independently after a 

common introduction. The capable students are quick to catch the point and may on that 

account sooner than the rest continue their individually work. Students needing further 
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assistance can thereafter go through more examples. The capable students work individually 

or together with the tasks. 

This form relies on teachers to discuss teaching organization with their students. One should 

not emphasize teaching of the able at the expense of weaker students. Through participation 

in meta-discussions, students will become conscious about learning in various ways, some 

are quick and pick up matters easily; while others are slow, having to struggle more with the 

issue at hand.  

 

2. Grouping by academic criteria  

This is when the capable students are put together in morepermanent groups, where they 

challenge each other.  

In a group of academically capable students you could expect more independent work, but 

the group should continue to have the attention of the teacher. It must not become a suit-

yourself group. When the students are grouped at levels, it is easier for the teacher to pose 

challenging questions and tasks and give further inspiration to the gifted as well as to the 

weaker ones. The grouping should be fixed for a period and made by the teacher based on 

joint decisions by teacher and students, possibly backed up by tests. 

When a school has more classes at the same or close-age levels, the grouping could also be 

done by “setting”. This means more teachers can cooperate to find and compose material 

suited to various levels and thus prepare a more goal-oriented teaching of the various groups.  

3. Amount of content/time 

Let students solve the same tasks at different levels – or differentiate in time. The more 

capable students can handle more tasks or the same tasks in shorter time. It is crucial that 

capable students are being challenged and develop a culture, which makes it attractive to get 

as far as they can. This means, you must have a stock of extra tasks, preferably different 

tasks. It may also imply that capable students must do more extensive work on tasks, for 

instance open-ended tasks, solvable at different levels. 

4. Different tasks 

Working within a content area, you may present tasks in various degrees of difficulty, which 

the student elects/gets handed. Likewise you could differentiate by materials, e.g. let capable 
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students use a 10-sided “dice” instead of a regular 6-sided one, use other basic arithmetical 

operations, etc. 

 

Based on my experience and action research, I recommend the following variety of tools 

to teachers when it comes to differentiation: 

 

 

Difference in 

demands 

You do not have to be equally tolerant of the quality or the quantity of the 

individual work of the individual student. 

You should also be able to: 

 create interest around a topic 

 choose/produce good introductions 

 form teams or groups for collaboration 

 give the students sufficient time 

 promote the "mathematical discourse" 

 create rigorous discipline combined with a pleasant atmosphere. 

Difference in 

time  

The time, given to the individual students for one and the same task may 

differ. It is likewise important to make time to talk with a group or with 

individual students. On that account: 

 Fit out the classroom to enable students to be autonomous, e.g. in getting 

paper, scissors, glue, extra tasks, mathematical games, computer 

programs, calculators, etc. 

 Establish structure, e.g. giving your students a sense of propriety. 

 Arrange to have consecutive math lessons! Eventually this must be a 

collective decision at school. 

Difference in 

assistance 

 Prioritize your use of time for different students. 

 Make use of students helping each other. 

Difference in 

topics 

 Give students frequent opportunities to work with different topics 

depending on need, interest, and inclination. 
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Difference in 

way of 

teaching 

Vary your approach, of course adjusted to the different students.  

I recommend all these forms in a sensible balance: 

 Exposition by the teacher (of new content or homework). 

 Discussions between the teacher and the students and among students 

themselves. 

 Appropriate practical work. 

 Consolidation and practice of fundamental skills and routines 

 Problem solving, including the application  of mathematics to everyday 

situations 

 Investigations and experiments.  

Difference in 

educational 

resources 

Textbooks are controlling!  

However, very few teachers will teach completely without textbooks. 

Apply also: 

 Supplementary written material. There is a lot: booklets, timetables, 

statistics, advertisements, news, etc. (Usually such material must 

undergo a certain adaptation).  

 Own introductory presentation (eventually with the assistance of 

colleagues) of activities of limited duration and specific goals or 

thematic work for longer time. 

 Student surroundings in a wide sense (TV, sport, preferences, opinions, 

experiences). 

 Observations of students and their work.  

 Calculators and computers are wonderful teaching tools also to increase 

variation in content and teaching style.  
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Difference in 

goals 

Taking-off in continuous assessment the students will set for different goals. 

But the final goal of school and mathematics teaching must be the same to 

all!  

You may apply "untraditional" methods to obtain knowledge about the 

students’ outcome of mathematics teaching, e.g.: 

 grade 6 students can tell all the class (and teacher) about the cost of a 

hobby 

 grade 7 students can write a report about quadrangles instead of a 

ordinary homework 

 grade 8 students can write in a log book once every other week about 

their mathematical findings. 
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Designing and teaching an elementary school enrichment program: What the 

students were taught and what I learned 

Angela M. Smart, University of Ottawa, Canada 

Abstract: This article is a reflection on the experiences I had designing and teaching an 

elementary school enrichment program to gifted students in mathematics. In particular, I 

consider not just what I taught the students in the program but what I learned throughout 

the entire process. This article first focuses on a description of the program and my role 

within the program. I then describe in detail four of the lessons I designed and taught for 

the program. Central to the description of the lessons are my observations of the students’ 

reactions to the lessons and my own growth as the instructor. The article concludes with a 

reflection on my pedagogic practices, the gifted students in the program, what I learned 

during the experience and what I learned after the experience.  

 

Key words: mathematics enrichment, gifted students, elementary, constructivism 

 

Introduction 

 In this article, I discuss my experience as a developer and instructor of a program 

for mathematically gifted elementary school students, entitled the Mathematics 

Enrichment Program. This program was intended to provide mathematically gifted 

students the opportunity to experience mathematics that goes beyond the regular 

curriculum. I begin with a brief description of the program, the school, and the students 

involved. I then describe my role in contributing to the design of the program and being 

the first instructor for the program. I outline four of the lessons I developed and taught for 

the program as well as some of my observations of the lessons. By providing rich details 

of the program, I offer information for others interested in developing a similar program. 

Lastly, this article includes a personal reflection on the development of my own 

mathematical knowledge and understanding as I worked with the program and afterwards 

as my own education provided more insight into the experience. 

 



Smart 

 

 

 

Program Description 

 The Mathematics Enrichment Program (MEP) took place at Roslyn Elementary 

School, a public elementary school located near the centre of Montreal. Approximately 

530 students attend Roslyn from Kindergarten to Grade 6 (Roslyn School). Roslyn offers 

both an English stream as well as a French Immersion stream to its students, and is a 

member of an English school board. 

 The MEP was first piloted at Roslyn in autumn of 2007. Through a relationship 

with one of the local universities, Roslyn sought out a graduate student in Mathematics to 

work as a facilitator and instructor for the program. One of the local universities offers a 

graduate program in mathematics that focuses on mathematics education. Roslyn sought 

out a facilitator from this university program in hopes to hire someone with the expertise 

to teach within the MEP as well as someone who would have the availability part time, as 

this was not a full time position. I was the graduate student that was hired. During my 

first visit to the school, I met with the principal and vice principal to discuss the school’s 

goals and intentions for the MEP. The school wanted to offer different and more creative 

mathematical opportunities, beyond the standard curriculum, for, as the school website 

states, students who showed “great talent in mathematics”, or the mathematically gifted 

students (Roslyn School). The school decided who was considered to have great talent or 

was mathematically gifted under their own criteria. Specifically, the criteria for attending 

the MEP consisted of the classroom teacher’s observations and assessment that the 

student was working two grade levels ahead in mathematics, that the student showed 

great talent and interest in mathematics, and parental permission. The school anticipated 

that the MEP, a program that was voluntary for these selected students to attend, would 

provide an opportunity for students gifted in mathematics to enhance their mathematical 

talents beyond the curriculum. The school also intended that while these students were 

attending the MEP, teachers would have the opportunity to focus more time on students 

in their classrooms who needed extra mathematical support.  

 It was planned that the MEP would take place during the regular school day. The 

students who attended were released from their regular classrooms during the time of the 
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program. The only expectations of these students were that they treat the program as 

though it was still normal class time and not a release time. The 25 students who attended 

the program were divided into three groups according to their current grade level: Grade 

1 and 2 (five students), Grade 3 and 4 (11 students), and Grade 5 and 6 (nine students). 

The gender distribution was approximately equal. Each group of students separately 

attended hour-long lessons, which initially occurred once a week, and later up to twice a 

week once the program was fully organized. The students were only expected to attend 

the program and were never given any assignments or homework from the MEP. 

However, I did place great emphasis on encouraging the students to explore what they 

had learned from the activities on their own time at home. 

 There are a few questions raised about some of the above practices. In particular, 

the question of which students are gifted in mathematics is broached. According to the 

school, students working a two grade levels above are those who are gifted. Yet, 

according to research and literature on gifted students, this may be too suggestive a 

method of identification as those who are mathematically gifted may exhibit other 

features than just scholastic achievement (Bicknell, 2008; Clark, 2002; House, 1987; 

Rosario, 2008). Other questions that are brought forth in the literature, as well as in these 

situations, are: what are the needs of gifted students and how are they to be addressed? 

According to the school, the gifted students needed mathematical enrichment from a 

specialist, which was provided through special classes. Unfortunately, I did not collect 

any data other than my own observations so it is hard to judge the impact the program 

had on the individuals who took part. More research, potentially long term, is needed in 

this area if we are to be better able to answer whether educators are addressing the needs 

of gifted students appropriately.      

 

My Role within the MEP 

 As aforementioned, I was hired as the first facilitator and instructor for the MEP. 

At the time, I was hired for two purposes, to work with the school to get the program 

started by taking care of some organizational aspects, and to develop and teach the 

lessons and activities for the program. The school officially categorized my position as a 

Math Enrichment Tutor, but it was mutually understood that I did much more than tutor. 
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My role within the MEP was also not limited to time spent within the school. The 

majority of the work I did for the MEP was outside the school, as I developed lessons and 

activities to meet the goals of the program. Once the program was organized to the point 

that students could start attending, my role within the school became that of strictly 

teaching the lessons and informally reporting the program’s progress to the school 

administrators. Below I describe in more detail my roles in the MEP, both outside and 

inside the school. 

 

Outside the school 

 Upon accepting the challenge to teach for MEP, I initially started looking for 

resources that could help me develop lesson plans. In particular I was searching for 

resources that described lessons or activities that I could use to meet the goals of the 

program. This proved to be a difficult task. Internet and literature searches provided a 

variety of interesting mathematical problems or games, but hardly anything that could be 

used as the basis for an entire lesson. For example, I found a lot of example of interesting 

mathematical number patterns or games that could be played with a deck of cards but I 

felt that the goals of the program were beyond this. As well, a number of the resources I 

located were on topics already covered in the curriculum, which was not what the school 

had in mind for the MEP. As such, I turned to the resource of my own experience to 

develop lesson plans. 

 I reflected on my own experiences in mathematics, from elementary school, 

where I was pulled out of class to attend a mathematics program for gifted students, to 

my undergraduate and graduate courses in pure mathematics, to generate some initial 

ideas. I created a list of the topics that stood out in my mind as having an impact on my 

own mathematical enrichment and organized this list into topics that could potentially be 

taught to elementary students. The biggest challenge was adapting topics to work within 

the constraint of the elementary students lacking extensive knowledge of algebra. This 

first list demonstrated my personal preference towards topics that a) encourage 

mathematical thinking that focused on purposes to mathematics, not just processes of 

mathematics, b) placed mathematics in realistic or geometric context situations, and c) 

demonstrate different representations of mathematics. Interestingly, my preferences align 
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with some similar recommendations, among many others, from the literature as areas to 

focus on to enhance mathematical skills (Davis & Maher, 1993; Freeman, 2003; House, 

1987; Maccagnano, 2007; Nunes, 1993).  

 My preference for encouraging mathematical thinking, which focused on the 

purposes of mathematics, was evident as I developed lessons that required the students to 

reflect on their experiences, not just standard non-trivial problem solving processes. I 

wanted to avoid the teaching of mathematical procedures and instead focus on the 

purpose of the processes in problem solving. My preference for realistic geometric 

context situations was clearly an example of drawing on my own strengths in 

mathematics, as I prefer to treat mathematical problems with geometric models wherever 

possible. As such, a lot of my lesson plans employed realistic geometric context 

situations. I also wanted students to explore different representations of mathematical 

concepts and to establish links between these representations. By developing links 

between multiple representations, the students could potentially build a base for higher 

levels of abstraction within mathematics. Lastly, I included different cultural or social 

representations of mathematics, such as ancient alternative number systems, which 

became a feature of some of the lesson plans I developed for the MEP. Overall, the lesson 

plans that I designed were greatly influenced by my own experiences and beliefs about 

mathematics.  

 

Inside the school 

 My role inside the school was that of a facilitator and the instructor. In the 

facilitator role, I ensured that the school was aware when I was coming, when I would be 

teaching each group, and what supplies I would need. The school provided me an empty 

classroom with a storeroom for supplies, which was essentially mine during the MEP. As 

the instructor my primary job was to conduct the lessons. I was very fortunate to be 

working with smaller groups of students than in most classrooms, which was 

advantageous as I was able to conduct lessons in a more informal round-table or seminar 

like scenario. I also provided the students with workbooks/journals to record their work, 

what they had learned, and make journal entries that reflected what they had learned and 

what they enjoyed. There has been some research that suggests that gifted students may 
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need extra emotional and social support from teachers (Clark, 2002). I aimed to address 

this dimension within my practice by being providing a classroom atmosphere that was 

very inclusive and positive. I encouraged the students from the beginning to talk about 

how they felt about the work, and whether they were comfortable with the subject matter 

and the classroom environment. After the first few weeks of the program I had one young 

boy ask if he could leave the group. Although he was doing very well with the subject 

matter, he stated that he was not interested in the program since all of his friends were 

still in the regular class. This aligns with what some of the literature says about gifted 

students and their self-concept image (Clark; Davis & Rimm, 1994).  

 

Lessons 

 In the next section I describe some of the lessons I developed and taught for the 

MEP. The process of selecting topics for the lessons I developed for the MEP was made 

from a survey of my own mathematical experience and knowledge.  The topics were then 

simplified to what I felt I could develop into interesting lessons that met the goals of the 

MEP and that aligned with the students’ prior knowledge. Along with a portrayal of the 

lessons, I provided a brief account of my observations of the students’ reactions to each 

lesson. As will be described, not all of the lessons I planned were responded to in a 

positive manner, and I speculate as to why this might have been. Although, these lessons 

were designed with the goals of the MEP in mind, and thus are beyond what the standard 

curriculum in this region required, I believe they could also be incorporated into a regular 

classroom setting for mathematical enrichment with some minor adjustments.  

 

Cryptology 

 The cryptology lesson plan involved a) a description of what cryptology is and 

where it is used in our daily lives, b) an introduction to the concept of modular arithmetic, 

c) instructions on the different rules of a shift cipher, d) a demonstration of shift cipher 

using a Caesar Cipher, and e) an activity where the students encrypted and decrypted 

messages to each other. With only a few minor adjustments for the age groups, each 

group received relatively the same lesson. My purpose behind wanting to teach 
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cryptology was that it could be placed in a realistic context and allowed for an activity 

using the alternative representation of modular arithmetic.   

 I started by introducing the uses of cryptology within our daily lives, such as 

computer passwords, in order to demonstrate to the students a realistic context of 

mathematics. Teaching the students modular arithmetic took up the majority of the lesson 

and encompassed most of the mathematical concepts used. First, we discussed twelve-

hour and twenty four-hour clocks and what is meant by modular arithmetic. We then 

moved onto some other modular bases and attempted a few practice samples of simple 

modular addition and subtraction problems, which were worked on in pairs until I felt 

comfortable that the students understood the concept. I then led from modular arithmetic 

into the idea of numbering the letters of the alphabet in order to represent them by 

numbers and eventually encrypt them. As a group, we numbered the alphabet from 0 to 

25 and called this our plaintext code, recognizing that it was mod26. Once we had the 

basis of our plaintext and an understanding of modular arithmetic, I was able to 

demonstrate a simple Caesar shift cipher of key = 3, for the students. During the time 

remaining I encouraged the students to encrypt their own message using a key they had 

chosen and to switch with a friend and try to decrypt each other’s messages. 

 For all three age groups, I introduced the idea of representing a number by a letter. 

I consciously refrained from using the word algebra when I introduced the symbols in the 

encryption formula.  I had at first considered leaving blank spaces in the encryption 

formula. However, during the lesson I spontaneously drew a picture of a key in the 

formula to represent the number that was the key. The students did not voice any concern 

with this idea and so in an impromptu manner I wrote a P in the formula for the plaintext 

and C in the formula for the ciphertext (or the ‘code’, as we called it), leaving us with the 

formula C = P +k(mod 26) (for encryption), where k was the picture of a key. For 

example, if the key = 12 and the plaintext was 18 the students would have the formula C 

= 18 + 12(mod26) and assuming they did their modular arithmetic correctly, they would 

end up with C = 4. I do not recall any of the students struggling with the abstraction 

process of imagining P, C and k as numbers. Alternatively, they were able to rapidly 

abstract and accept the use of letters and pictures as representing different numbers.   
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 In the months that followed the cryptology lessons, I would constantly get 

requests to do cryptology again. At Christmas time, we all wrote Christmas cards for our 

families in shift cipher codes. I heard reports from parents that the students were coming 

home from school and trying to teach the other members of their families how to encrypt 

messages. Cryptology turned out to be one of my most successful and talked about 

lessons. 

 

Symmetry and the Art of Escher 

 The idea for a lesson on symmetry and the art of Escher came from a university 

geometry textbook entitled Experiencing Geometry: Euclidean and Non-Euclidean with 

History (Henderson & Taimina, 2005), where the authors of this text outline the seven 

different types of symmetry of line. The authors described symmetry using a definition of 

isometry, stating that, “an isometry is a transformation that preserves distance and angle 

measures” (Henderson & Taimina, p. 15).  

 For the lesson, I began by asking the students what they knew about symmetry 

and how they understood symmetry. I provided pictures and asked the students to tell me 

which were examples of symmetry. Through this discussion we started to agree as a 

group on what constituted symmetry and what did not. Initially, the students were 

limiting symmetry to only reflections. But as I offered more pictures and the students 

discussed the examples as a group, they were able to informally agree on a definition for 

symmetry that was similar, albeit simplified, to the definition of isometry offered by 

Henderson and Taimina (2005). In particular, the students agreed that they needed to look 

at the length and distances between the lines and the angles of the pictures. For the 

youngest group who had not been introduced formally to angles, we talked about paying 

attention to the corners of the pictures.  

 With this agreement on what to look for when searching for symmetry, I then 

demonstrated for the classes the seven different types of symmetry of a line on the 

overhead (Henderson & Taimina, 2005), using simple geometric shapes like triangles. 

Referring to the properties from the definition, we talked about each of the different 

symmetries, how they held these properties (with the exception of quasi-symmetry), and 

worked together to brainstorm other examples of these types of symmetry. Lastly, as a 
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class we went through examples of M.C. Escher’s symmetry drawings. With these 

drawings, I asked the students to explore and identify the different types of symmetry 

they saw. Initially, I always asked the students to ‘prove’ to me that they had found some 

symmetry by showing me that the properties in the definition were there. After requesting 

this type of explanation a few times, the students started providing it without being asked 

and ‘proving’ or justifying solutions became a socio-mathematical norm in the MEP.  

 This lesson was the first time that I introduced the idea of formal definitions and 

properties to the students. The students were able to accept quite quickly the need to 

maintain properties. The few times that I provided contradicting examples to test the 

students’ understanding, I was corrected and referred to the properties in the definition of 

isometry for clarification.  

 This lesson also provided me with my first, but not last, experience of being 

corrected by the students. I had chosen pictures from Escher that were bright and showed 

clear examples of symmetry to represent what I was introducing. For one picture I had 

not looked closely enough at all of the details and had decided that it was an example of 

reflection-symmetry, not half-turn symmetry that it actually was. More than one student 

noticed my mistake and referred me to the properties in the definition to demonstrate that 

they were right and I was wrong. This incident brought to my attention the confidence 

these students held in their own understanding. My experience as an instructor at 

university was in a different pedagogical setting where the teacher was perceived as ‘all-

knowing’ and students were constantly looking for reassurance. This was never the case 

with the students in the MEP, which I feel is a reflection of the students’ individual 

mathematic abilities as well as the opportunities that an exploratory mathematics 

atmosphere offers. 

 

Roman Numeral Arithmetic 

 My goal when designing this lesson was to introduce the students to a 

representation of a number system different than the base-ten or Arabic numerals system. 

In the base-ten system we have ten symbols, 0-9, which can be used to represent any 

number. In particular, the base-ten system changes in symbolization with each increase of 

one unit. On the other hand, Roman numerals have symbols representing one and five 
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and any 10n multiple of one or five up to n=3. As such, a change in symbols does not 

occur with each unit increase. I had hoped that the students would gain from this lesson 

an understanding of how the mathematics we use is socially constructed and how 

different societies have constructed alternative number system. I also wanted the students 

to start thinking flexibly about numbers as sums of their parts, which Roman numerals 

demonstrate quite nicely. 

 For the lesson, I introduced the Roman numerals to the students by displaying the 

Roman symbols and the corresponding base-ten numbers they represent. We spent a 

considerable amount of time talking about the rules for using Roman numerals and how 

to read Roman numerals. Once the symbols and rules were outlined, I explored briefly 

with the class some conversions of numbers back and forth from a base-ten system to 

Roman numerals.  

 The last activity the class investigated was addition and subtraction arithmetic 

with the Roman numerals. When the students first encountered the arithmetic problems in 

Roman numerals, they quickly converted then to base-ten numbers, conducted the 

arithmetic operation, and then converted the numbers back to Roman numerals. I took the 

time to point out to the students that the Romans did not convert their numbers to base-

ten because they did not have base-ten. At this point, the students started exploring the 

arithmetic strictly within the Roman numeral system. For the youngest age group, I did 

not provide them arithmetic problems with sums larger than 20, but for the two older age 

groups, I utilized the entire range of Roman numeral symbols for the arithmetic 

problems.    

 The students quickly responded to the idea of using alternative symbols and rules 

to create numbers. No student questioned the logic of using Roman numerals. One 

student even mentioned that it reminded him of cryptology because he was just writing a 

new code for each number. As a follow up at the end of the lesson, I asked the students 

how many different types of number systems they thought we could have. After some 

discussion, the classes agreed that we could make as many number systems for which we 

could think of symbols and rules. Some students even mentioned that they might try 

making their own number system. Thus, for these young gifted students in mathematics, 

the idea of mathematics as being a social construction instead of absolute was a very easy 
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philosophy for them to accept. This was also an opportunity to introduce the students to 

other alternative number systems, such as base-two (binary) or base-three systems, which 

were explored in later sessions for the older two age groups.   

Euclidean Straightedge and Compass Constructions 

 This lesson plan is the example of a lesson that did not work as I anticipated. 

Using a straightedge and compass, I had hoped to teach the students how to cut a line 

perfectly in half and how to draw an equilateral triangle, a square, and a hexagon. The 

goal of this lesson was to encourage the students to look at geometry figures in terms of 

their properties and particularly, the parts that make up the figures. I tried throughout the 

lesson to focus on the idea of the radius of the circle being the same distance from every 

point on the circle. This lesson was only attempted with the Grade 5/6 group, and after 20 

minutes of little progress and much noise and confusion from the students, I decided to 

move onto a different lesson I had planned for the next MEP session. One of the reasons I 

speculate why this lesson did not work is because not all of the students arrived with a 

compass. I then suggested that everyone share with a partner and try the construction 

together. This also did not prove to be successful because as the students tried to share the 

compasses, they tended to not follow the instructions well. 

 I cannot predict whether this lesson would have worked if all of the students had 

brought compasses. It might have been that the topic was too advanced, or that my 

instructions were inappropriate to be incorporated into their prior knowledge. There could 

be other causes as well. One thing that the difficulty with this lesson did demonstrate to 

me is that at the time that I was working with the MEP, the program and myself as an 

instructor were both still in a developmental stage. 

 As was also mentioned previously, other lessons were also less than successful in 

how they were planned. In these situations, I found myself either having to adapt the 

original plan or in some cases, move onto a different lesson altogether. It was imperative 

that I be prepared for such circumstances inside the classroom. Since the lesson plans 

were all of my own design and not previously tested, situations where they needed 

adjustment or failed altogether were to be expected. Thus, while teaching I was also 

consciously and constantly evaluating the strengths and weaknesses of the lesson plan 

and adapting as I went along. 
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Reflection 

 My time as the instructor for the MEP lasted only six months, as I finished my 

graduate degree in Mathematics and moved to a different city. I am currently completing 

a graduate degree in Mathematics Education and I am able to reflect back on the MEP 

experience with some new perspectives based on focused studies on education. In 

particular, I have new theoretical and pedagogical perspectives, which cause me to 

rethink the teaching approaches I used in the MEP project. I also have a better 

understanding about the characteristics of gifted students and a familiarity with research 

on teaching mathematically gifted children of this age. 

Reflection on my Teaching 

 Although I was not formally educated in educational theory at the time this 

program took place, I now see that there were instances and situations in my teaching that 

align with a constructivist view of education. According to Goldin (1990), a constructivist 

mathematics philosophy believes “mathematics [is] invented or constructed by human 

beings, rather than as an independent body of ‘truths’ or an abstract and necessary set of 

rules” (p. 31, emphasis in original). Some of the topics of my lesson plans aimed to 

demonstrate the constructed nature of mathematics. For example, in teaching Roman 

Numerals in comparison to the base ten number system my goal was to make obvious 

that mathematics has been socially and culturally constructed throughout history. Another 

example is when I facilitated the students developing, or constructing, a definition for 

symmetry on their own. The students also did activities like constructing their own 

ciphering systems. As well, I always encouraged the students to work in pairs or small 

groups.  

 Van de Walle and Folk (2007) provide six features that contribute to a 

constructivist teaching methods of mathematics.  These features are a) children construct 

their own knowledge and understanding; we cannot transmit ideas to passive learners, b) 

knowledge and understanding are unique for each learner, c) reflective thinking is the 

single most important ingredient for effective learning, d) the socio-cultural environment 
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of a mathematical community of learners interacts with and enhances students’ 

development of mathematics ideas, e) models for mathematical ideas help students 

explore and talk about mathematical ideas, and f) effective teaching is a student-centered 

activity (Van de Walle & Folk, p. 34). These features in no way make up an exhaustive 

list of what exactly a constructivist mathematics classroom should include, but they do 

provide a basis for features to look for.  

 On reflections, I did manage to include some of the features of a constructivist 

mathematics classroom in the MEP. For example, from the first class we used math 

journals to record any work and to reflect on the class, thus encouraging a reflection of 

the mathematics that was covered. For the youngest age group they might have drawn 

faces to describe how they felt about the lesson and were encouraged to write a few 

words about the class. The two older age groups responded to questions such as “what 

was math enrichment about today?” and “what did I learn?” After the first few weeks the 

students would start to answer these questions even before I instructed them to do so. I 

would read through the journal entries as a way to inform myself about their thinking. 

Further to this, I encouraged open discussions to allow students to listen to their peers and 

formulate their own understanding. I often felt it difficult to facilitate open class 

discussions and keep students on track and sometimes fell back to lecturing, but I also 

recognized that when the open class discussions were successful the level of 

understanding the students demonstrated was greatly increased. 

 Although, I now realize that there are many places where I did not honor a 

constructivist approach. The greatest example being that there were many instances of 

lecture style teaching where I was trying to transmit ideas to passive learners. In some 

cases, I did try to encourage some student discovery and always tried to activate the 

students’ prior knowledge, but I was not consistent at this. I believe that my tendency to 

fall back on a lecture style teaching method was because of my current position at the 

time teaching introductory university mathematics courses, which were taught in this 

manner, as well as my own experience of participating in lecture style mathematics 

classrooms. Thus, I was working from the only example I had ever had. 

 

The Gifted Students 
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 I have also learned more about the characteristics of gifted students and 

approaches that prove to be beneficial.  From numerous literature sources, characteristics 

of giftedness are described as including curiosity and understanding of qualitative 

features, thinking logically and symbolically about relationships, the ability to generalize 

patterns, see relationships, or make connections flexible mental processes, persistence in 

solving mathematical problems, rapid understanding of mathematical ideas, 

systematically and accurately working, confident in mathematical or quantitative 

situations, and creatively approaching problem solving, to name just a few (Applebaum, 

Freiman, & Leikin, 2008; Bicknell, 2008; House, 1987; Maccagnano, 2007; Pandelieva, 

2008; Rosario, 2008).  

As I reflect on my experience, I realize that I witnessed the students in the MEP 

exhibited similar traits. For example, as I mentioned earlier, the students in the MEP held 

no hesitation in correcting my mistakes, thus demonstrating some of their confidence in 

mathematics. Similarly, one very interesting observation about my experience in the 

classroom was that I hardly ever had to repeat instructions to the students. The students 

understood instructions on the first time or were very quick to work with a partner to 

ensure they understood the material, thus taking responsibility for their own 

understanding. I was also able to move through the lessons at a faster pace than I initially 

anticipated. I believe this is an example of the higher and rapid level of comprehension of 

the students in the MEP. 

 It was also the case that a number of times a student would draw conclusions 

about the mathematics we were working on that also showed a very strong level of 

comprehension, and an ability to generalize and see relationships. For example, while 

covering the ideas of modular arithmetic, the class had begun by looking at addition 

problems so that I could draw on their prior knowledge of clocks and time. While 

attempting a few addition modular arithmetic problems, one student took the opportunity 

to announce to the class that she had figured out the subtraction as well. Without being 

asked she went to the board and demonstrated it for the entire class. She thus exhibited 

her ability to rapidly comprehend the information and also to extend her understanding to 

cover alternative mathematical situations.  
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The Program  

 I now recognize that there are many resources available that offer suggestions of 

how programs like the MEP should be developed. For example, the NCTM emphasizes 

has a list of essential components of programs for the mathematically gifted, which 

include such features as teacher competence, high-order thinking skills, applications and 

problem solving, communication skills, encouragement of creativity, and integration of 

content (House, 1987). Another guide on developing programs for gifted students states 

that an enriched mathematics program should attempt such activities as using open-ended 

questions, avoid repeating the regular curriculum, do not grade, and ensuring topics are 

mathematically significant (Freeman, 2003). By reflecting on how I interpreted the goals 

of the program, I believe that I was able to attempt the majority of the NCTM essential 

components as well as Freeman’s list of activities. Thus, the program did include a lot of 

features that the literature suggests it should.  

 Nonetheless, there are many areas were I can now say I could have improved the 

program. For example, although I constantly avoided repeated the regular curriculum, I 

am not sure if I could justify that all the lessons I planned demonstrated the significance 

of the mathematics involved. I also could have attempted to use more open-ended 

programs within the lessons. Similarly, offering more examples of where the content 

could be integrated with other curricular areas could have enhanced the program. I also 

would change my pedagogical approach to include more features of a constructivist 

teaching method to hopefully facilitate more creative activities and personal discovery. 

Overall, if I were to develop a similar program now, I would attempt to include these 

components.   

 

Conclusions and Suggestions 

 Since I have left the MEP, other instructors have taken over. I had the opportunity 

to share some of my knowledge and experiences with the instructor that initially took my 

place. Other than that, I do not know what knowledge or wisdom has been passed on 

since I left. I do know that the program continued to run into a second school year and is 

planned to continue for a third. I also know that the school has expanded their 

Enrichment Program to also include literature, art, and engineering (Roslyn School). 
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 From my experience, I have some suggestions for those who try a similar program 

in the future. First, it was difficult to find resources for lessons that matched the goals of 

the program. Although there is a lot of literature available on gifted mathematics students 

and alternative mathematics for the classroom, I could some find, but not a lot that could 

be incorporated into the lessons for the MEP. A lot of the material I found on non-

curriculum mathematics was designed for larger lecture style classroom settings. Since I 

was aiming for more exploration and personal discovery with the MEP, these lessons 

were not appropriate. Thus, it would be very valuable for enrichment instructors of 

similar programs to have a place to share and exchange lesson ideas.  

 It is also important for an instructor to be very familiar with the material (s)he 

chooses to teach. As I demonstrated by my experience, not all lessons will be successful 

how they are planned. For an instructor to be able to flexibly adapt to the needs of the 

group, the instructor must have a deep conceptual understanding of the material. In some 

cases, it might even be most prudent to move on and perhaps return to a revised version 

of the lesson at a later date.  

 I also suggest that instructors only prepare the lessons to a certain point and then 

adjust and move with the pace of the class. For example, in the Roman numeral lesson, I 

had initially planned to take the opportunity to show the students how to read different 

Roman numeral dates that can be seen on the sides of old buildings. This was to help the 

students recognize a situation where we use Roman numerals. Right at the beginning of 

the lesson though, when I mentioned we would be doing Roman numerals, one student 

quickly stated that he knew how to read them already because he sees them on buildings 

around the city. Thus, I did not feel like I needed to include it in my lesson plan since the 

students spoke about it as a group without my initiation of the topic. Although,these 

suggestions could be relevant to any mathematics classroom. 

 Overall, I feel that the MEP, even in its infancy, was a very positive opportunity 

for the students who were deemed gifted in mathematics. The program took minimal 

effort for the school to run. All that was required was for the co-operation of the teachers 

to allow the MEP students to be pulled out of class and a room for the lessons to take 

place. The majority of the work was placed on the instructor, but I found it a very 

rewarding experience and was also compensated for my work. I would encourage other 
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schools to look into the possibility of providing a similar program for mathematical gifted 

students.  
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An overview of the gifted education portfolio for the John Templeton 
Foundation 

 
Mark Saul, USA 

 
Abstract: The John Templeton Foundation supported a philanthropic portfolio 

concerning the development of human genius.  The work was contoured to some of the 

big questions of human activity: the nature/nurture question, the question of how cultures 

value and institutionalize support of exceptional students, and the ‘continuum hypothesis’ 

for gifted education.  The first strikes at the heart of what makes us human while the 

second relates questions about high intelligence to the great social issues.   

 

Key words: genius philanthropy exceptional cognitive ability 

 

Note: Since the preparation of this article, the work of the Templeton Foundation has 

pursued other directions.  This article reports on work completed with support from the 

Foundation.  

 

The John Templeton Foundation is a large private philanthropic institution with an 

interest in, among other areas, the development of human genius.  This report chronicles 

the start of a portfolio supporting individuals of exceptional cognitive ability.  

This portfolio is assuming a shape contoured to some of the big questions of 

human activity: the nature/nurture question, the question of how cultures value and 

institutionalize support of exceptional students, and the ‘continuum hypothesis’ for gifted 

education.  The first strikes at the heart of what makes us human while the second relates 

questions about high intelligence to the great social issues.   

The ‘continuum hypothesis’ asserts that whatever constitutes genius, however we 

define it or choose to measure it, these qualities exists in a continuum throughout the 

human population.  So, for example, Mozart was a genius.  There have also been 

composers of lesser genius, but the difference, according this hypothesis, is quantitative, 

not qualitative.  Likewise there are people who perform Mozart’s music with genius, 
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others who perform it adequately, people who have a deep appreciation of the music 

although they cannot perform, people who have only a passing appreciation, and so on.  

Of course, these questions need further refinement.  Such refinements are part of 

the work of the investigators supported by the Foundation.  And the answers to all such 

questions, of course, will not emerge from a single project, or a single series of projects, 

or even from a single generation’s inquiry.  Indeed, the individual investigator, within his 

or her field, may not see the work as guided by such a question.  Often, it is only upon 

reflection from outside the work that we can put together the investigation of a small area 

of study with the resolution of a large question about human endeavors.   

The following description of the ‘genius portfolio’ is an attempt to begin this 

process of reflection.  

 

1. The Institute for Research and Policy on Acceleration (IRPA) at the University of 

Iowa  

 

This institute continues the work started by the report “A Nation Deceived” (Colangelo, 

N., Assouline, S.G., Gross, M.U.M., 2004) about acceleration of gifted students, which 

Jack Templeton has called the ‘signature product’ of this portfolio of the JTF.   

Housed at the Belin/Blank Center for Gifted Education and Talent Development, 

the Institute studies the implementation of acceleration for gifted students in the public 

schools, supports students and administrators in creating such programs, and catalyzes 

graduate and post-graduate research in the field of education and policy.   

See: http://www.education.uiowa.edu/belinblank/acceleration/ 

        http://www.education.uiowa.edu/belinblank/bbc/default.asp 

 

2. Templeton International Fellows at the Wallace Symposium 

 

This two-year grant has catalyzed international engagement in the study of gifted 

students.  Fifty-four fellows, from 40 countries were invited to Iowa to take part in the 

Wallace Symposium, a biennial gathering of researchers and educators working with 

gifted students.  A special series of seminars was geared towards giving the Templeton 
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Fellows the tools to pursue research in and support for gifted education in their home 

countries. 

Many countries have the resource of knowledgeable and energetic individuals 

supporting gifted students yet lack a coherent, institutional support program for their 

gifted students, informed by a concerted research effort (Gross, 1997).  The Templeton 

Fellows learned about what exists in the US and other nations, and how similar efforts 

might be implemented in their own countries.  

The project has already born fruit.  A vibrant e-mail discussion has chronicled the 

work of Templeton Fellows in 30 of the 50 countries involved in the project.  

See: http://itsnt710.iowa.uiowa.edu/fellows/ 

        http://www.education.uiowa.edu/belinblank/events/researchsym/ 

 

3. Cogito 

This grant to the Center for Talented Youth (CTY), at Johns Hopkins University, supports 

the development of a website for gifted students.  Both a resource and a convener of 

community, the website serves these students as members, but also a larger population of 

‘surfers’ who may not be included in the community of gifted students, but whose work 

holds promise (Olszewski-Kubilius, P., & Lee, S.Y., 2004). 

See http://www.cogito.org 

 

4. Genetics of high intelligence  

A major project on this topic is led by Robert Plomin, a geneticist at Kings College, 

London, which will involve an international consortium of 12 outstanding geneticists on 

a series of studies of the genetic component of the phenomenon of high intelligence 

(Plomin, 1997). 

A special issue of the Journal of Behavioral Genetics has been devoted to the 

work of this group.  See http://www.springerlink.com/content/0001-8244. 

 

5. Centers for Mathematical Talent: a developing concept.   

In an effort to bring the mathematics research community into the support system for 

students of high ability, we are working to establish a series of regional centers, each 
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involving more than one university or research institution, which would coordinate 

efforts by mathematicians to work in this area.     

 This project, in its formative stages, may go far to bring coherence to the social 

institutions supporting intellectually gifted students.   

 

6. Four Policy Studies: Thomas B. Fordham Foundation 

The Fordham Foundation, an educational ‘think tank’, is studying, in four different ways, 

national and local policies that impact high-ability students: 

a) A study of the effects of No Child Left Behind on gifted education; 

b) A study of teachers’ attitudes towards high-ability students; 

c) An investigation into the effects of grouping by ability in the middle school; 

d) A study of the Advanced Placement program, and the effects upon it of increased 

enrolment. 

This project, viewed narrowly, is an investigation of government and local 

policies.  But taken in context, it allows insight into how a large and loosely-organized 

educational structure (the American educational system) has reacted to the presence of 

students of high ability.  

See: http://www.edexcellence.net/template/index.cfm 

 

7. David Lubinski is a psychometrician at Vanderbilt University.  Together with Camilla 

Benbow, they have been continuing one aspect of the work of Julian Stanley, a pioneer of 

gifted education.  

 

This work involves an enormously longitudinal study of cohorts of students 

identified as being of high mathematical ability, following them through their careers 

(Lubinski, D., Webb, R.M., Morelock, M.J., & Benbow, C.P., 2001). Identification was 

through the usual SAT test, but given at ages 10-12.  The first cohort is now in their mid-

40s, and patterns of achievement are showing up which validate the identification process 

used in ways that have rarely been duplicated in educational research.   

The importance of the work lies both in the validation of this method of 

identification of talent, and in the information we may glean about patterns of support for 
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gifted students, throughout their lives.  Thus it addresses dead on the relationship 

between achievement and environment, one aspect of the nature/nurture question. 

David Lubinski received the Templeton Award for Positive Psychology in 2000. 

See: http://www.vanderbilt.edu/Peabody/SMPY/david_lubinski.htm 

        http://www.exploration.vanderbilt.edu/news/news_wherearetheynow.htm 

 

8. In October 2007, the Templeton Foundation sponsored a series of events at Princeton 

University marking the 100th anniversary of the death of John von Neumann.  These 

included:  

 

a) A panel discussion, Budapest: the Golden Years- early 20th century 

mathematics in Budapest and lessons for today.  The panelists included: 

 

Ron Graham:University of California, San Diego. Recipient of the 

Steele Prize for Lifetime Achievement. 

 

Peter Lax, New York University, Recipient of the Wolf and Abel 

Prizes. 

 

Laszlo Lovasz, EötvösLoránd University, recipient of the Wolf 

Prize 

 

Marina von Neumann Whitman, University of Michigan, daughter 

of John von Neumann 

 

Vera Sos, Alfred Renyi Institute, Hungarian Academy of Sciences  

 

b) A workshop involving mathematicians and educators from the US, 

Hungary, Africa, and India, exploring ways to harness the power of the 

Hungarian system to other regions of the world.  Some of the ideas 

generated include:  
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Making the journal Komal, which offers high-level 

mathematics and physics to high school students, 

internationally accessible in some form 

 

Expanding the Hungarian summer programs to include 

international participants (the goal would be to offer the 

Hungarian programs as models for local programs in Africa 

and India) 

 

Participation by a team from Senegal (in addition to the team from 

Benin) at the International Mathematical Olympiad.  This project 

would be co-funded with the government of Senegal or other 

interested parties.  

See: http://www.princeton.edu/piirs/von_neumann_event/ 

 

9. Building a presence in Africa 

The Foundation is actively seeking new ways to support gifted individuals on the 

continent of Africa.  

a) Dakar workshop on education 

This was a workshop co-sponsored with the National Science Foundation, 

intended to bring together researchers in education from the United States 

and Africa.   The Templeton support was for research on gifted education. 

The grant was administered by Quality Education for Minorities, in 

Washington, DC. 

 

This workshop catalyzed several new partnerships, including some of the 

work described below. 

 

b) The Pan-African Mathematical Olympiad (PAMO) 

This program, run by the African Mathematical Union (AMU), is one of 
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the few serving high-ability students (in any content domain) on the 

continent.  JTF has sponsored visiting scholars to their annual workshop 

for coaches, and also the attendance of a team from Benin to the 

International Mathematical Olympiad in 2009.   

 

In addition, JTF sent an international  ‘committee of visitors’ from Quality 

Education for Minorities to observe the program and suggest strengths and 

weaknesses.  The Committee developed a report on the status of the 

PAMO and ways its work might be expanded.  

 

c) International Mathematical Union (IMU) report on the status of 

mathematics in Africa.  This project provides the philanthropic and 

scientific communities with a blueprint for work in this field in Africa 

See: 

http://www.mathunion.org/fileadmin/IMU/Report/Mathematics_in_Africa

_Challenges___Opportunities.pdf 

 

10. International Conference on Culture, Creativity and Mathematics Education in 

Haifa (Israel).    

This conference took place in February 2008, and brought together 30 scholars from 

Israel, Europe and America, and 10 from predominantly Muslim countries, to discuss the 

role of culture as both a wellspring and a vehicle for creativity in mathematics. 

Aside from the implications for questions about culture and intelligence, we hope 

this conference will stimulate continued thought and action in the Middle East.  This 

region is now rich in natural resources, which will eventually run out.  But human 

resources, properly developed, will never run out.  The Templeton Foundation seeks to 

support development of the latter, putting the human resources of the region at the service 

of humanity, as the natural resources are now at its service.  

A special issue of the Mediterranean Journal for Research in Mathematics 

Education is devoted to the proceedings of this conference.  A book of essays and a 

volume of proceedings has also been published.  See Leikin (2008) and Leikin (2009).   
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11. China: With Shing-Tung Yao, a world-famous mathematician, and several Chinese 

partners, the Templeton Foundation is developing a contest in research mathematics for 

high school students in China and abroad, on the model of the Westinghouse, Siemans, 

and Intel programs in the United States.  

This nascent program is quickly growing.  See http://www.yau-

awards.org/introduction.php and http://www.yau-awards.org/overseas/ 

 

12. Publication series: To provide materials for gifted students, and to bring research 

mathematicians into the system, we are working with the American Mathematical Society 

(AMS) to start a series of publications.  This will be a series of translations from foreign 

sources.  Particularly in East Europe, there already exists a rich literature on this level, 

not available in English.  Experience has found that material for this audience, when 

written well, finds secondary audiences in undergraduates, in teachers, even graduate 

students of adjacent fields. 

The author would like to thank Susan Assouline, Linda Sheffield, and particularly 

Genevieve Becicka, University of Iowa Undergraduate Student in Mathematics 

Education, Iowa Center For Undergraduate Research (ICRU) Scholar at the UI Belin-

Blank Center, for their help in preparing this article. 
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Abstract: In this paper we analyze prospective mathematics teachers' conceptions about 

teaching mathematically talented students. Forty-two Israeli participants learning at 

mathematics education courses for getting their teaching certificates, and fifty-four 

Canadian pre-service (K-8) teachers participating in mathematics didactics course were 

asked to solve a challenging mathematical task. We performed comparative analysis of 

problem-solving strategies, solution results and participants' success.  Based on the 

discussion with 25 Israeli participants we composed an attitude questionnaire, in which 

prospective teachers were asked to express their degree of agreement with statements 

expressing different beliefs about education of mathematically talented students. The 

questionnaire was presented to 56 Canadian and 28 Israeli prospective elementary and 

middle school teachers. We describe similarities and differences between the attitudes of 

the two populations and suggest their possible explanations. Based on the results of this 

study we make several suggestions for teacher education programs.  

Key words: Challenging task, teacher preparation, mathematically promising students  

INTRODUCTION  

Teacher preparation is a crucial factor in creating opportunities for mathematically 

promising students to realize their abilities by means of challenging mathematical tasks 

(Even et al., 2009, Sheffield, 1995). To what extent are teachers ready to work with 

mathematically promising students when they finish teacher education programs? We 

conducted an exploratory study in two different cultural contexts: in an Education 

College in the southern part of Israel and in French-language Canadian University in the 

south of New Brunswick. We asked prospective mathematics teachers enrolled in 

mathematics education courses to solve a challenging task and to answer a questionnaire 

that examined their beliefs about teaching mathematically promising students.  
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We start with review of literature related to the characteristics and educational 

needs of mathematically promising and mathematically talented students. We also discuss 

the role of teachers in the education of such students. We then describe the study 

structure, the results of the study and finish with some questions that remain open for 

future investigation.  

MATHEMATICALLY PROMISING STUDENTS HAVE SPECIAL NEEDS  

The NCTM Standards (2000) stressed that school mathematics has to provide all 

students, independently of their ability level, with equal opportunities in learning 

mathematics. Equal opportunities mean matching of the mathematics education to the 

mathematical potential of learners. NCTM (1995) set up a task force that defined the 

notion of mathematical promise as a function of four key factors: ability, motivation, 

belief, and experience. Wertheimer (1999) claimed that taking care of mathematically 

promising students is an essential educational issue because these students have the 

potential to become leaders and problem solvers in the future. 

Sharing an inclusive view on the education of children with high ability in 

mathematics, we consider that both mathematically talented students and those that have 

potential to move beyond standard skills and are highly motivated are part of this group. 

Therefore, mathematically promising students may possess several characteristics known 

from the literature on mathematical giftedness such as excellent selective memory and 

faster progress in their learning (Ponamorev, 1986; Krutetskii, 1976). They also have 

strong motivation, increased concentration, intuition, originality, stability and flexibility 

(Goldin, 2009; Yurkevich, 1977; Ponamorev, 1986; Subotnik, Pillmeier & Jarvin, 2009).  

Krutetskii (1976) pointed at such high abilities in mathematics as formalization, 

abstraction, finding short solutions, inversion in thinking process and generalization. 

Mathematically talented students stand out for their ability to work systematically and 

quickly, getting an insight into the problem's mathematical structure (cf. Heintz, 2005). 

The ways they solve problems, usually differ from those of regular students (Krutetskii, 

1976). Finally, many of these children are prominent in their higher ability to verbalize 

and explain symbolically their solutions (Freiman, 2006).  

Several authors stress that mathematically promising students have to be provided 

with multiple opportunities that would foster their mathematical understanding, 
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creativity, curiosity, thoroughness and imagination (Ervynck, 1991; Piirto, 1999; Silver, 

1997; Sheffield, 2003) and mathematical tasks for the mathematically promising students 

should be especially challenging (Applebaum&Leikin, 2007; Sheffield 2003; Freiman, 

2006). Based on Polya (1973), Schoenfeld (1985), and Charles & Lester (1982), Leikin 

(2004) suggested that mathematically challenging task should (a) be motivating; (b) not 

include readily available procedures; (c) require an attempt; and (d) have several 

approaches to the solution. "Obviously, these criteria are relative and subjective with 

respect to a person’s problem-solving expertise in a particular field, i.e. the task that is 

cognitively demanding for one person may be trivial (or vice versa) for another" (Leikin, 

2004, p. 209).  

Following Brousseau (1997) we acknowledge importance of teachers' role in 

"devolution of a good task" to any student and claim that this role is critical in creating 

suitable learning environment for mathematically promising students. In order to create 

such an environment a teacher should be mathematically educated, be able to assess 

students' potential and fit mathematical challenge to their abilities and needs. In this 

context, our exploratory study was aimed at analyzing (a) teachers' strategies when 

coping with challenging mathematical tasks (b) teachers conceptions about 

mathematically promising students and their education.  

Teachers' knowledge associated with teaching mathematically promising 

students 

Approaches implemented in each particular classroom and the mathematics employed 

depend on teachers’ knowledge and beliefs.  Research stresses the importance of teachers' 

knowledge (Shulman, 1986) and beliefs (Cooney, 2001, Thompson, 1992) for decision 

making in the process of teaching. Teachers' knowledge and beliefs are interrelated and 

have a very complex structure (see, for example, Leikin, 2006). In this study our focus is 

on the types of knowledge characterized by Shulman (1986) as composed of teachers’ 

subject-matter knowledge  i.e. knowledge of mathematics, and teachers’ pedagogical 

content knowledge which includes the knowledge of how the students cope with 

mathematical tasks, and the knowledge of how to create an appropriate learning 

environment. We also differentiate between beliefs about the nature of mathematics and 
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beliefs about teaching mathematics with special attention to mathematics and 

mathematics teaching related to mathematically promising students. 

The need of mathematically promising students' in especially challenging tasks 

may be negatively perceived by their teachers. The negative views depend on their 

previous experiences and the lack of mathematical and pedagogical readiness to deal with 

challenging tasks. They sometimes reflect teachers' skepticism about the possibility of 

increasing mathematical challenge in their classroom (Leikin, 2003). There is a lack of 

research evidence on how teachers deal with challenging investigative mathematical tasks 

intended for mathematically talented students and on their readiness to work with these 

students. Our paper is therefore focused on deepening our knowledge about the two 

above mentioned components: teachers' capacity to solve challenging tasks and their 

views on mathematics education of mathematically promising students. 

Nowadays, mathematically talented students often study in heterogeneous classes 

and do not get special treatment, since teachers in these classes lack knowledge and skills 

to take care of them. Teachers often lack of instructional materials they may use with the 

students in the heterogeneous environment, and even when they have the appropriate 

material available, they do not know how to use it.  Moreover, teachers are not always 

aware of the mathematical potential of their students, and consider as promising only 

those who get high grades and/or behave well. Besides when students do not follow all 

the prescriptions, choose their own ways of solving problems, perform their tasks quickly 

and misbehave when bored during the lesson, they are perceived by the teachers mainly 

as trouble-makers. Additionally, teachers themselves do not always understand students' 

original solutions and do not know why and how to encourage students' critical and 

independent thinking and creativity.  

Considering specific learning needs of mathematically talented students we stress 

the special skills and knowledge the teachers need for organization of an appropriate 

teaching process. Is there a need for special preparation for teachers and if yes, what kind 

of preparation it should be? Different countries e.g., Australia, USA, Israel, Korea, Japan, 

Russia and others (Leikin, 2005) have different approaches in this matter. 
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Education of mathematically promising students, and their teachers in Israel 

and Canada 

Research literature in the field of teacher education (Stigler & Hiebert, 1998) stresses that 

teaching is a culture-based activity. The authors of this paper have rich intercultural 

experience in mathematically promising students' education due to their personal 

histories. All three come from the former Soviet Union educational system, where school 

education of mathematically talented students was an important element. We studied in 

mathematical classes or special mathematical schools (e.g. Mathematical School #30-

http://www.school30.spb.ru/), and attended mathematical summer camps. During our 

school years, we met a very special kind of teachers who were usually professional 

mathematicians who were themselves mathematically gifted and often graduated from 

similar special programs. Those teachers were very enthusiastic and committed to the 

concept of special educational programs for the gifted and talented (Evered & Karp, 

2000; Freiman & Volkov, 2004; Karp, 2007). The later experience of the authors is based 

on the realities of Israeli and Canadian education. The present study has been conducted 

in two different countries, Canada and Israel.  

In Canada, each province governs its own educational system. The issue of 

teaching mathematically talented students is viewed and resolved in different ways. In 

New Brunswick, there is strong emphasis on inclusive teaching and learning; all children 

should be involved in all activities. However, as result of recent study of inclusion in 

schools (MacKay, 2006), the government has started to develop and implement new 

policies that should better respond to the need of students with special needs. Gifted 

students are explicitly mentioned as part of this group (GNB, 2007).  

Changes are already being made in many schools and some of them begin to take 

care of mathematically talented students (Freiman, 2008). At the Université de Moncton, 

prospective teachers work with challenging mathematical problems posted on the CASMI 

site (www.umoncton.ca/casmi, see the paper of LeBlanc & Freiman in this issue). The 

site allows prospective teachers to evaluate authentic students’ solutions and may be used 

as resource in their future work. The problem that we use in this study was originally 

posted on this site and our preliminary analysis of submitted solutions allowed us to 

construct our investigation with Israeli university students. Working with challenging 
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tasks on the CASMI site, as well as some other projects we develop future teachers’ 

awareness of the special needs of mathematically promising students. However, more is 

to be done in order to ensure their better preparation.    

In Israel, during the past decade, awareness of the importance of promotion of 

high ability students has been growing. Education of talented children and adolescents is 

considered to be "the springboard for the development of democratic society strong in its 

scientific advancements, industry, high technologies, humanities, and arts". (Rachmel & 

Leikin, 2009, p. 6). A steering committee of the Division of Gifted Education in the 

Ministry of Education (Nevo, 2004) devised recommendations for the advancement of 

education of talented schoolchildren. Educational programs for students who are highly 

able in mathematics are coordinated by the Ministry of Education or by some non-profit 

organizations. Israeli Universities are also involved in promoting mathematics education 

of high ability students. Schools organize special mathematic classes, special mathematic 

groups (mainly starting in the 7th grade), mathematic circles, and competitions. 

Additionally, various out-of-school activities are developed for such students. Among 

those activities are mathematical clubs, Mathematical Olympiads, students' conferences 

and integration of school students in university courses (more details can be found in 

Rachmel, 2007; Rachmel & Leikin, 2009).  

The Division of Gifted Education of Israeli Ministry of Education encourages 

teachers to get special education, though there is still a shortage of corresponding 

programs. In the last six years there were open five special teaching certification 

programs (in three teacher training colleges and two Universities) and the first M.A. 

program (in Haifa University) devoted to the education of gifted students. These 

programs are mainly interdisciplinary and are not focused on specific school subjects. 

Mathematically promising students also get special treatment both through the 

efforts of the Ministry of Education (e.g., Epitomizing and Excellence in Mathematics 

Program, Zaslavsky & Linchevski, 2007) and those of different non-profit organizations 

(e.g., Excellence-2000 Association, MOFET Association, and more, e.g. Applebaum, 

Schneiderman & Leikin, 2006; Schneiderman, Applebaum & Leikin, 2006). Teachers of 

mathematics working in these programs have to participate in seminars devoted to 
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enrichment in secondary school mathematics. Unfortunately, there are still not enough 

courses specifically devoted to education of mathematically talented students.  

As presented above the education of mathematically promising students and their 

teachers differs meaningfully in the two countries and thus we wondered whether the 

differences in the policy affected prospective teachers' conceptions associated with this 

issue. That is why, in our study, we ask participants from both countries about their 

beliefs regarding their own educational needs in preparation as professional teachers able 

to work with mathematically talented students.  

THE STUDY 

The purpose and the questions 

The main purpose of the study presented in this paper was exploring prospective teachers' 

conceptions about teaching mathematically promising students. To examine teachers' 

mathematical knowledge we ask: How do teachers themselves cope with an investigation 

task intended for mathematically promising students? What problem-solving strategies do 

they use? In order to explore teachers' pedagogical conceptions associated with teaching 

mathematically talented students we ask: How do teachers define mathematically talented 

students? What do they think about mathematical tasks suitable for mathematically 

talented students? What are their views on the preparation of teachers for mathematically 

talented students? We compared the responses of participants from Israel and Canada. 

Population and procedure 

The study was conducted in two stages.  

Stage A 

Forty two Israeli college students enrolled in mathematics education courses as part of 

teaching certification program took part in solving a challenging task. Then 25 of these 

students participated in a follow-up discussion about the task they solved, the needs of 

mathematically promising students and the knowledge and skills of teachers of the gifted. 

The preliminary analysis of this stage of the study has been presented at the ICME-11 

Congress (Applebaum, Freiman & Leikin, 2008). We performed qualitative analysis of 

the collected data: categorized problem solving strategies used by the prospective 
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teachers and performed content analysis of the discussion conducted by the first author of 

this paper. Categories derived from the analysis of the discussion were used in the 

attitude questionnaire at the second stage of the research.    

Stage B 

Fifty-four (New Brunswick) Canadian prospective elementary (K-8) teachers enrolled in 

mathematics didactics course and 28 Israeli prospective elementary school teachers 

enrolled in mathematics education course as part of their mathematics teacher training 

(Grades K-8) were asked to answer the questionnaire. All Canadian participants were 

asked additionally to solve the task that Israeli teachers had solved at Stage A of the 

study.  

The tools: data collection and data analysis 

The problem 

The teachers were asked to solve the following problem: 

Represent number 666 as a sum of consecutive natural numbers. Find as many different 

presentations as possible.  

In accordance with above discussed theoretical views on needs of mathematically 

promising students and the role of challenging tasks in their education we proposed this 

problem to the participants of our study since: (a) this problem has more than one 

solution, (b) the problem allows different problem-solving strategies1, (c) it is an inquiry-

based problem and a solver can create his/her own strategy; (d) this problem does not 

demand any extracurricular knowledge. The challenging nature of this task for 

mathematically promising students was validated by the three authors. 

The problem was solved individually by each participant during one 45-minute-long 

session. The analysis of teachers' problem-solving performance was done qualitatively. 

All teachers' problem solving strategies were described. We analyzed the effectiveness of 

                                                 
1 We differentiate between solution and solution strategy as follows: solution is the result obtained for 

the problem by the implementation of a solution strategy. The answer for a problem can contain a 
number of solutions since the problem considered herein is open-ended and has 5 different solutions on 
the set of natural numbers.    
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the strategies and the relationship between the strategies and the solutions. To summarize 

this analysis we quantified the results (presented later in Figure 1). 

Discussion with the teachers 

We supposed that teachers may have some knowledge about mathematically promising 

students despite the fact that their program did not include special courses devoted to this 

issue. The discussion allowed us to learn the participants' ideas about teaching such 

schoolchildren, their characteristics and needs. Twenty-five teachers participated in this 

whole group discussion. The discussion was recorded by an assistant. The content 

analysis of the discussion allowed us to reveal the main categories in teachers' responses. 

Later teachers' responses were used in the attitude questionnaire to compare beliefs of 

Israeli and Canadian participants.  

 Attitude questionnaire   

According to research literature and the analysis of the discussion with 25 Israeli 

participants we composed an attitude questionnaire that allowed teachers to express their 

level of agreement with different beliefs related to the education of students with high 

abilities in mathematics. The questionnaire includes 3 main parts:  

Part A: Characteristics of students that have high ability in mathematics,  

Part B: Characteristics of tasks suitable for these students,  

Part C: Preparation of teachers for teaching mathematically talented students. 

Each part included statements that reflected Israeli teachers' beliefs expressed 

during the discussion. For each statement there were six ranks from which the teachers 

were asked to select the most appropriate level of agreement (form 1 - fully disagree to 6 

- fully agree).  

The validation of the questionnaire was performed both for the content validity 

and internal consistency of each questionnaire part. Content validity was examined in the 

course of the discussion of the three authors of this paper. All the clauses about which 

there was any kind of disagreement were changed. The reliability (internal consistency) 

of the questionnaire was checked for each of the three parts using Cronbach’s alpha.  
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The reliability was found to be satisfactory to permit the use of this instrument: 

 for Part A,  for Part B, and  for Part C of the questionnaire. We 

analyzed responses of teachers in Israel and Canada and compared them. T-test was 

applied to analyze whether the means of two groups are statistically different from each 

other for each part of the questionnaire and for each one of the questionnaire statements.  

  

RESULTS 

In the first part of this section, we discuss the strategies used by teachers when solving 

the problem as well as different resulting solutions. In the second part, we analyze several 

issues related to mathematically promising students raised during the follow-up 

discussion. In the third part we analyze the results of the attitude questionnaire.  

 Solving the problem: Strategies and solutions  

Overall the teachers used five different strategies when solving this problem. Figure 1 

presents the number of teachers who employed each strategy. As follows from the table, 

five different solutions were found by teachers and five different strategies were used. 

The table also shows which strategies led to particular solutions.  

In the following section of this paper we provide in-depth analysis of the strategies and 

solutions. We describe different strategies used by the teachers and discuss the 

complexity of the solutions according to the level of mathematical knowledge and 

connectedness required in order to apply the strategy correctly and find as many solutions 

as possible. Then we analyse differences and similarities between Canadian and Israeli 

teachers in the use of different strategies. 
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result is 
attained 

by a 
particular 
strategy 

221+222+223 16 32 15 17 2  5 1 4  42 50 

165+166+167+168 3 19 12 9 1  5 1 1  22 29 

70+71+…+77+78 4 6 13 5 2  3 1 2  24 12 

50+51+…+60+61 1 9 4 4 1  4 1   10 14 

1+2+…+35+36  23 5    1    6 23 

 

Figure 1:  Distribution of prospective teachers' solutions according to use of different 

solution strategies and different results 
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Trial and error strategy 

Trial and error strategy was used by participants most frequently. Fifty-five of ninety-six 

(16 of 42 from Israel – 38% and 39 of 54 from Canada – 72%) teachers checked different 

combinations of numbers, some of which matched the problem conditions and some of 

which did not. Overall by using trial and error strategy solution 666=221+222+223 was 

found by 48 teachers, solution 666=165+166+167+168 was found by 22 teachers, 

solution 666=70+71+72+…+78 by 10 teachers, solution 666=50+51+52+…+61 was 

found by 10 teachers and solution 666=1+2+3+…+36 was found by 14 teachers (see 

Table 1). 

All the teachers who used the "trial and error strategy" figured out that the 

solution can not contain only two addends. Twenty teachers (from both countries) found 

only 1 solution: 221+222+223=666. Additionally, there were 2 teachers from Canada 

who found only 1 solution using this strategy: 1+2+3+…+36=666. They just did the 

addition starting with 1 and adding other numbers until they got 666. Seventeen teachers 

(3 from Israel and 14 from Canada) managed to find 2 solutions with this strategy. Nine 

teachers (4 from Israel and 5 from Canada found 3 solutions. Seven teachers (all of them 

from Canada) found 4 solutions.  

None of the participants tried to analyse whether their solution includes the 

complete set of the solutions to the problem. Obviously, some teachers, when using trial 

and error strategy, could do it in more systematic way than others. Those who succeeded 

in finding more than one solution manifested higher level of flexibility; however they did 

not conduct an in-depth investigation of the problem applying more advanced 

mathematical methods (formulas, theorems, etc) as it was the case in other strategies we 

discuss below. 

Dividing 666 and surrounding a median number 

Twenty nine teachers (15 in Israel and 14 in Canada) divided 666 by different factors then 

putting the addends "symmetrically" and consequently around the quotient.  Table 1 

shows that almost all (3 of 4) teachers that found all five solutions used "dividing 666" 

strategy. There were a few solutions obtained with this strategy.  
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Some teachers divided 666 by 3. They found the following solution: 666 :3 222 , 

and then they obtained three consecutive numbers by adding and subtracting 1:  

222 1 221,  222 1 223  , therefore, 221 222 223 666   . 

Other teachers divided 666 by 4 and received a non-integer number: 666:4=166.5, 

so they had to add and subtract 0.5 and 1.5 to obtain four natural addends:  

166.5 0.5 166,  166.5 0.5 167,  166.5 1.5 165,  166.5 1.5 168,   

so 165 166 167 168 666    . 

The teachers that divided 666 by 9 found the following solution: 666:9=74, then 

the sum of 9 addends was: 70+71+72+73+74+75+76+77+78=666 . Teachers that divided 

666 to 12 found another solution: 666:12=55.5, then the sum of 12 addends is 

50+51+52+...+61=666 .Finally, the last solution was: 666:36=18.5 leading to the 

discovery of the sum of first 36 natural numbers 1+2+3+...+36=666  or 666:37=18 and 

then the sum is 0+1+2+3+...+36=666 , that presents the same solution (if you decide that 

0 can also be used). 

Clearly, when implementing this strategy, teachers used the fact that consequent 

natural numbers form an arithmetic sequence. Dividing 666 by a particular number they 

searched for a median of a sequence which either belonged or did not belong to the 

sequence. Furthermore they used the property of an average of arithmetic sequence: The 

median member of an arithmetic sequence is a mean of all its terms. Thus the sum of all 

terms of an arithmetic sequence is: 1 2 ... { }nx x x n median x     . This strategy also 

allows to prove that there exactly 5 solutions to this problem. 

A. Thirty-six is the maximal number of addends: Since for 36 terms of the sum the 

minimal term is 1 then for bigger number of addends a sum must include addends 

smaller than 1, thus not natural. E.g., 666:37=18, this leads to the following sum of 

consecutive numbers 0+1+2+3+...+36=666 which includes 0 which is not natural. 

B. In order to be able to form a set of natural numbers being symmetrically distributed 

around a median number; it (the median) must be a natural number or (natural+0.5). 

The median number of n consecutive numbers, when n is odd, belongs to the 

sequence (see sums of 3 and 9 terms earlier). All the numbers in the sequence are 

obtained by adding 1 k  for natural k . The median number of n consecutive 

numbers, when n is even, does not belong to the sequence. For example 666:4=166.5, 
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then 4 natural numbers around 166.5 are obtained by adding 0.5, 1.5   to 166.5. 

Similar results we obtain for the sums that include 12 and 36 terms. Since among 

numbers smaller than 37 only 3, and 9 are odd divisors of 666 and only 4, 12 and 36 

are even numbers that divide 666 with reminder 0.5 there are no other solutions for 

the problem on the set of natural numbers. 

Since none of the teachers provided these explanations explicitly we may claim that the 

teachers applied this strategy by intuitively using number sense and properties of 

arithmetic sequence.  

Interestingly, this strategy was the most frequently used in finding solutions 

165 166 167 168 666     (used by 7 teachers out of 14 who found this solution), 

70+71+72+...+78=666  (used by 5 out of 15 teachers), 1+2+3+...+36=666  (used by 4 out 

of 5 teachers who found this solution).  

Using properties of arithmetic sequence explicitly 

Two teachers (both from Israel) used formula of the sum of n first terms of arithmetic 

sequence. This led to the equation in two variables. 

1

1

,

1 (2 ( 1)) (2 1 ( 1))
666 1332 (2 1)

, 2 2

666

n

n

a m m N

d a d n n m n n
S m n n

N n n N

S

  
              
 

 

 

Then this equation was divided into a series of systems of two equations with two 

variables 

2 1 1332 2 1 666 2 1 444 2 1 1
, , ,...,

1 2 3 1332

m n m n m n m n

n n n n

              
         

. 

One these teachers found 3 solutions for n=3,4 and 9: 

221 222 223 666   , 50+51+52+...+61=666 and 70+71+72+...+78=666 .  

The other teacher found 4 solutions: 221 222 223 666   , 50+51+52+...+61=666 , 

70+71+72+...+78=666  and 165 166 167 168 666    . 
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Using equations  

Six teachers (five from Israel and one from Canada) used this strategy. Two teachers 

found 2 solutions by solving different equations that represented sums of consecutive 

numbers. 

Three teachers found 4 solutions by constructing 11 equations and solving them: 

            66611...21...,,66621,6661  xxxxxxxxx  

One teacher found all 5 solutions by solving all the equations: 

            66635...21...,,66621,6661  xxxxxxxxx  

It seems that this strategy may arise from a routine procedure that students are used to 

applying in school.  

Last number is 6 

Four (all from Israel) teachers based their solution strategy on the fact that the last digit of 

the sum of consecutive numbers has to be 6.  

Two teachers saw that 1 2 3 6   , and   2203:6666  . They found only one 

solution: 666223222221   

Two other teachers found 3 solutions by using sums of 3, 4 and 9 consecutive numbers 

whose sum ends in 6: 

221, 222, 223 – as described above with 268765   and   1604:26666  , thus the 

numbers are  165,166,167,168 . 

Finally 36876543210   and 709:36666  , thus the numbers are 

70,71,72,73,74,75,76,77,78 . 

Summary 

From the analysis of the solutions produced by the participants from two different 

countries we learn about similarities and differences between these two groups of 

population.  

Both in Israel and in Canada most of the participants used two main strategies: trial and 

error strategy and "dividing 666" strategy (98% of Canadian participants and 74% of 

Israeli participants). None of the teachers used more than 1 strategy when solving the 

problem. Israeli teachers used 5 different strategies while their Canadian colleagues only 
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3 strategies (see Table 1). Israeli participants also used properties of arithmetic sequence 

(5%) and using '6' pattern (10%).   

More than one solution was found by 71% of the participants in Israel and by 76% 

of the participants in Canada. We found that 50% of Israeli participants and 39% of 

Canadian participants found 3, 4 or 5 different solutions. Only 4 (10%) Israeli teachers 

and none of Canadian participants found all five solutions. 

Most of the participants in our study – prospective mathematics teachers in Israel and 

Canada - did not attempt to find the whole set of solutions for the given problem. This 

finding is disappointing. We assume that mathematics classroom for the mathematically 

promising students should be based on mathematics culture that encourages students to 

find the complete set of solutions for any problem. We consider that programs for 

mathematics teachers should include tasks of this kind and stress the importance of 

problems with multiple solution strategies and multiple results in education of 

mathematically promising students. Proving that a problem does not have an additional 

answer (besides those found) and examining the problem for additional results through 

implementation of different strategies should be a part of routine in teachers' courses as 

well as in school mathematics classrooms especially when dealing with the education of 

mathematically talented students.  

TEACHERS' BELIEFS RELATED TO MATHEMATICALLY PROMISING 

STUDENTS AND THEIR EDUCATION 

This section of the paper presents the results of the discussion with 25 Israeli participants 

about their conceptions about mathematically promising students and their education. The 

discussion was organized with focus on three main questions: (1) Who are they, the 

mathematically promising students and what are their needs? (2) What tasks are 

necessary to meet those needs, and (3) Do teachers feel ready to work with 

mathematically promising students in their classroom and what kind of education they 

need for that?        

Who are they,-"Mathematically Promising Students" 

When answering this question, the teachers addressed a wide range of characteristics of 

mathematically promising students. We organized the answers by the following 
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categories: mathematically promising students have advanced mathematical reasoning, 

they solve problems differently from other students, they work at a higher pace. Note that 

practically none of the teachers mentioned personal characteristics of the mathematically 

promising students such as motivation, beliefs, sensitivity. Only one of them (Tair) said 

that mathematically promising students are "thirsty for knowledge".  

Mathematical reasoning 

In this category we included teachers' replies that referred to students' mathematical 

reasoning. These teachers stressed that mathematically promising students may be 

characterized by different qualities of mathematical thinking, by advanced level of their 

logical reasoning and abstraction they perform. Michal and Inbal clearly expressed this 

opinion.   

Michal:  The student who has developed logical thinking, abstract thinking, enjoys 
mathematics 

Inbal:  Reasoning is a very important component that proves that the student 
understood this material.  

Problem solving: 

Some teachers stressed that mathematically promising students solve problems 

differently from other students, they find original problem-solving strategies, can solve 

unconventional problems, and can cope with many different tasks:  

Yosuf: The student who has high thinking skills and can solve problems from real 
life.  

Inbal:  The student who uses original strategies that he did not study at school 
and can apply them to new material. He can find connections between 
different topics in mathematics. 

Ruti:  The student who can solve non-standard and inquiry based problems. 

Hani: I have 2 students in the 6-th grade who, from my point of view, are very 
promising, since they solve all the tasks that I give them. However, they 
cannot explain their solutions, but this is not a necessary characteristic of 
promising students. 
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Pace of learning and thinking: 

Many teachers believe that mathematically promising students are quicker than others 

when performing mathematical tasks:  

Suad:  The student who can solve problem in less time than other students. 

Hani:  The student who understands the material quickly and could study with 
students of higher grade. 

 

Do Mathematically Promising Students have a different approach to learning 

Mathematics? If they do, what are those approaches? 

When discussing this question, teachers referred to the main needs of the students: 

"deepening" (of their knowledge) (Yosuf, Hani, Ruti, Michal, and Aved), enrichment 

(Inbal and Aved) and acceleration (Inbal).  

Different types of tasks 

When reasoning about teaching approaches suitable for mathematically promising 

students many teachers focused on special mathematical tasks. Their ideas in this respect 

related to the abovementioned "deepening" or enrichment approaches. 

Yosuf:  I always prepare several special tasks aimed at mathematical thinking 

development for 3 students in my class who always complete their class 

work before other students.  

Inbal:  I bring extra curriculum tasks and the tasks for "deeper" learning to my 

class. The tasks can enrich students' comprehension in mathematics. 

Hani:  Such students usually complain when we are solving problems slowly, so I 

give them tasks on the same topic but more complex. 

Ruti:  At our school we have Mathematical Laboratory. Mathematically 

promising students attend it once a week and work there with inquiry 

based problems.    

Michal:  One of the ways is to ask the mathematically promising student what s/he 

prefers. What kind of tasks does s/he want to solve? He should be able to 
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choose between inquiry based, open–ended or other types of complex 

problems. 

Aved: Challenging the mathematically promising students with the tasks from 

various Mathematical Olympiads. The tasks that contain "deepening" 

and enrichment. 

 

Social interactions of different kinds 

Some teachers mentioned that mathematically promising students require different 

learning environments with regard to the social interactions in which they are involved. 

Yosuf thought that these students should help others which may be useful for themselves. 

Ayad expressed an opinion that learning in homogeneous classes may better suit the 

needs of talented students. 

Yosuf:  I ask the students who have completed their work to help other students. 

This helps them to organize their own thinking. And I discovered that 

students usually understand the explanations of the mathematically 

promising classmates better than mine.  

Ayad:  Promoting mathematically promising students will become more effective 

if they study in homogenous groups.  

 

Acceleration 

Some teachers think that mathematically promising students should be taught at a higher 

pace in order to realize their mathematical potential  

Inbal:  Another way is to move the student to a different class where s/he can 

learn with students of the same mental level.  
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Is the task you solved suitable for mathematically promising students? 

Despite the complexity of the task the participants appreciated the importance of the 

incorporation of such tasks in teacher education programs. During the whole group 

discussion 25 Israeli participants agreed that this problem was challenging and suitable 

for mathematically promising students. Their arguments were: the problem has different 

solutions, there is more than one answer, it was inquiry based problem and so on.  

Inbal:  The task does not demand extensive knowledge, but rather higher order 
thinking skills. So this task can be a challenge for the students of various 
grades from the 3rd up to the 12th . 

Michal:  [The task that requires] not only search of solutions but hypothesizing or 
developing some theory may be very challenging for students. 

Inbal:  The beauty of this question is that unless you found the correct approach 
you never know if you have all the solutions. So you are in some conflict 
with yourself.  

Tair:  This task has different solutions   unlike almost all the usual tasks in a 
primary school. More than that, there are different ways for finding these 
solutions… 

Do teachers need special preparation for teaching "mathematically promising 

students"? 

When this question was discussed, all teachers expressed their disappointment about not 

having at least one course in their Teachers' Training Program that focuses on special 

approaches to teaching mathematically promising students and their needs.       

Michal:  One of the courses has to cover the topic: "various needs of students". 

Ruti:  In teaching mathematics the problem with the mathematically promising 
students is very complicated. In addition to a special course, teachers 
need to get experience. 

Yosuf:  I feel that during all my years in the Pedagogical College I learned 
nothing about work with the mathematically promising students.  

Raya:  I think that we need the course that will instruct how to choose problems, 
what kind of problems are preferable for each age, what are the materials 
and ways for teaching mathematically promising students and so on… 

Tair:  In my opinion, there must be a special separate course during teachers' 
training that has to touch upon the problems we have talked about.  
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Based on opinions expressed by this group of participants, we developed an attitude 

questionnaire presented below.  

Attitude questionnaire   

As we described in the methodological section, the attitude questionnaire was based on 

the analysis of the beliefs expressed by the Israeli prospective mathematics teachers that 

participated in the whole group discussion at stage A of our study. At stage B, the 

questionnaire was given to one group of Israeli prospective teachers (N=28) and two 

groups of Canadian prospective teachers (N=56). As presented in the methodology 

section the three parts of the questionnaire were composed by combining teachers' 

statements during the discussion and the beliefs described in the literature  

There were three parts in the questionnaire:  

Part A: Characteristics of mathematically promising students,  

Part B: Types of mathematical tasks suitable for advancement of high ability students,  

Part C: Education of mathematics teachers for teaching talented students.  

As presented in the methodology section, all three parts of the questionnaire had high 

internal consistency that allowed quantitative analysis of the data. We compared the 

responses provided by the Israeli participants to the responses of Canadian participants 

(using T-test). Figures 2A, 2B and 2C show the results of the analysis of the three parts of 

the attitude questionnaire and compares results received for Israeli and Canadian 

participants. Figures 3A, 3B and 3C present percentage of the teachers who agreed or 

strongly agreed with the statements in the questionnaire.  

Characteristics of mathematically promising students   

In general Israeli teachers' agreement with statements about special characteristics of 

mathematically talented students was stronger than that of Canadian participants (Figure 

2A). The average score for Part A of the questionnaire in the Canadian group of teachers 

was neutral (M=3.89 with SD=0.85; between 3 – slightly disagree and 4 – slightly agree), 

whereas for Israeli teachers it was positive (M=4.56 with SD=0.46; between 4 – slightly 

agree and 5 – agree). Both in Israel and in Canada none of the items in Part A of the 

questionnaire received a score higher than 5. Mean scores between 4 (slightly agree) and 

5 (agree) were found for 11 of 13 statements (all except 1.4 and 1.7 in Fig 2A) for the 
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Israeli group of teachers and for 5 of 13 statements  (1.2, 1.3, 1.6, 1.8, 1.9 in Fig 2A) for 

the Canadian group of participants.   

The three highest mean scores for Canadian group of prospective teachers were 

obtained for the following categories:  1.9 – Mathematically talented students can solve 

new problems – those that were not solved in the classroom previously (M=4.376 

SD=1.03); 1.6 – Mathematically talented students enjoy solving mathematical problems 

(M=4.30, SD=1.10), 1.3 – Mathematically talented students can understand more abstract 

mathematics than usual students (M=4.16, SD = 1.21).  The Israeli group of teachers 

chose as most correct the following statements: 1.3 – Mathematically talented students 

can understand more abstract mathematics than usual students (M=4.96, SD=0.88), 1.9 – 

Mathematically talented students can solve new problems – those that were not solved in 

the classroom previously (M= 4.93, SD=0.72), 1.1 – Mathematically talented students 

solve mathematical tasks quicker than other students (M=4.89, SD = 0.96).   

In spite of the fact that both Canadian and Israeli teachers chose statements 1.3 

and 1.9 among the three most acceptable there were significant differences in their 

responses. As mentioned earlier, Israeli teachers provided higher agreement scores to 

almost all the statements in the questionnaire. Thus the highest mean score in the 

Canadian group (M=4.37; SD=1.03) is smaller than ninth mean score in the Israeli group 

(M=4.57, SD=0.69). This observation possibly explains significant differences that we 

found between the attitudes of Israeli and Canadian teachers to 10 of 13 items in Part A of 

the questionnaire.   

The most significant differences between the attitudes of the two groups are 

observed for statements 1.1 (Mathematically talented students solve mathematical tasks 

quicker than other students) and 1.5 (Mathematically talented students participate in 

mathematics lessons more enthusiastically than other students).  Whereas Israeli teachers 

agreed with these statements (M1.1=4.89, SD1.1=0.96; M1.5=4.79, SD1.5=0.88), Canadian 

teachers' mean agreement score for the same statements was lower than "slightly agree"   

(M1.1=3.72, SD1.1=1.62; M1.5=3.82, SD1.5=1.01). Interestingly these differences relate to 

cognitive (1.1) and affective (1.5) characteristics of mathematically talented students. 

The characteristics that got the lowest agreement score in both countries were 1.4 

(Mathematically talented students like helping other students), 1.7 (Mathematically  
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t 
M (SD) 

 
Israel 
N=28 

Canada 
N=56 

4.69*** 
4.56 

(0.46) 

3.89 

(0.85) 
Part 1:  Characteristics of mathematically talented students 

4.19*** 
4.89 
(0.96) 

3.72 
(1.62) 

1.1  Mathematically talented students solve mathematical tasks 
quicker than other students  

1.04 
4.32 
(1.31) 

4.02 
(1.21) 

1.2 Mathematically talented students prefer learning with students 
who are good in mathematics  

3.51** 
4.96 
(0.88) 

4.16 
(1.21) 

1.3  Mathematically talented students can understand more abstract 
mathematics than usual students  

1.17 
3.96 
(1.35) 

3.63 
(1.04) 

1.4  Mathematically talented students like helping other students  

4.36*** 
4.79 
(0.88) 

3.82 
(1.10) 

1.5  Mathematically talented students participate in mathematics 
lessons more enthusiastically than other students   

2.15* 
4.75 
(0.80) 

4.30 
(1.10) 

1.6  Mathematically talented students enjoy solving mathematical 
problems  

1.46 
3.75 
(1.14) 

3.38 
(0.97) 

1.7 Mathematically talented students like to work in small groups 
with students of different levels of knowledge in mathematics  

2.97** 
4.79  
(0.88) 

4.12 
(1.14) 

1.8  Mathematically talented students can solve problems in original 
ways  

2.92** 
4.93 
(0.72) 

4.37 
(1.03) 

1.9 Mathematically talented students can solve new problems – those 
that were not solved in the classroom previously  

3.53** 
4.57 
(0.69) 

3.89 
(1.06) 

1.10 Mathematically talented students know many facts in 
mathematics  

3.58** 
4.29 
(0.85) 

3.53 
(1.04) 

1.11  Mathematically talented students remember any mathematical 
statement they ever learned  

2.63* 
4.57 
(1.14) 

3.91 
(0.98) 

1.12 Mathematically talented students ask many questions unpredicted 
by the teacher  

3.2** 
4.68 
(0.91) 

3.95 
(1.14) 

1.13 Mathematically talented students like to participate in 
mathematical competitions  

*p<0.05; **p<0.01;  ***p<0.001 

Figure 2A:   Attitudes towards characteristics of mathematically talented students. 
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Figure 3A:  Percentage of strongly positive attitudes (6–completely agree, 5–agree) 
to characteristics of mathematically talented students  
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talented students like to work in small groups with students of different levels of 

knowledge in mathematics), 1.11 (Mathematically talented students remember any 

mathematical statement the students ever learned). In both groups mean agreement scores 

for these characteristics were close to the middle of the scale.  

Statements 1.4 and 1.7 belong to the group of 3 of 13 statements in Part A for 

which no significant difference between the responses of Israeli and Canadian 

participants was found. Additional statement on which no significant difference was 

obtained is statement 1.2 – Mathematically talented students prefer learning with students 

who are good in mathematics. All three statements belong to the group of social 

characteristics of mathematically talented students and prove that teachers characterize 

them as learners who prefer working with students of the same ability level (if at all).  

Additional evidence of the significance of differences between the attitudes of 

Canadian and Israeli teachers can be seen in Figure 3a that shows percentage of the 

participants in each country who marked middle and high level of agreement for different 

statements. Figure 3a demonstrates that whereas more than 50% of Israeli participants 

agreed or strongly agreed with 10 of 13 the statements in Part A of the questionnaire 

(except 1.4, 1.7 and 1.11), less than 50% of Canadian participants chose these levels of 

agreement for 12 of 13 statements.  

Tasks suitable for the mathematically talented students 

In this section we present comparative analysis of the attitudes of Israeli and Canadian 

prospective mathematics teachers demonstrated in Part B of the questionnaire. 

Part B of the questionnaire reveals additional differences between beliefs of Canadian 

and Israeli teachers about mathematical tasks suitable for mathematically talented 

students. The level of agreement with the statements in Part B of the questionnaire 

expressed by Israeli participants is higher than that expressed by Canadian participants 

(Figure 2B) for five of six statements. The average score for Part B both groups was 

between "slightly agree" and "agree" levels (For Canadian group: M=4.10, SD=0.69; for 

Israeli group: M=4.61, SD=0.58).  

Unlike Part A of the questionnaire where in both groups no statement received a score 

higher than 5, in Part B in the Israeli group the mean score of at least 5 was obtained for 2 

of 6 statements: 2.5 – Problem form mathematical Olympiads are suitable for 
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mathematically talented students (M=5.00, SD=0.77) and 2.6 – New problems – those 

that were not solved in the classroom previously – are suitable for mathematically 

talented students (M=5.25, SD=0.80). We found significant differences between the 

attitudes of the two groups to these two statements. The most serious difference related to 

suitability of Olympiad problems for students with high abilities in mathematics.  

t 
M (SD) 

 Israel 
N=28 

Canada
N=56 

3.52** 
4.61 

(0.58) 
4.10 

(0.69) 
Part 2:  Mathematical tasks suitable for mathematically talented 

students  

1.39 
4.11 

(1.23) 
3.73 

(1.04) 
2.1  Difficult problems that regular students cannot solve are 

suitable for mathematically talented students 

-0.57 
4.18 

(1.12) 
4.32 

(0.99) 
2.2 Problems from extra-curricular topics are suitable for 

mathematically talented students 

1.90 
4.29 

(1.05) 
3.80 

(1.20) 
2.3  Regular problems that all students solve are suitable for 

mathematically talented students 

1.90 
4.82 

(1.02) 
4.38 

(0.95) 

2.4  Investigation problems that require discovery of new facts and 
their proof or refutation as suitable for mathematically talented 
students 

5.61*** 
5.00 

(0.77) 
3.86 

(1.07) 
2.5  Problems from mathematical Olympiads are suitable for 

mathematically talented students 

3.67** 
5.25 

(0.80) 
4.53 

(0.94) 
2.6  New problems -– those that were not solved in the classroom 

previously -– are suitable for mathematically talented students  
*p<0.05; **p<0.01;  ***p<0.001 

Figure 2B:  Attitudes towards the types of tasks suitable for mathematically talented 
students 
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Figure 3B:  Percentage of strongly positive attitudes (6–completely agree, 5–agree) 
towards the types of tasks suitable for mathematically talented students 

Both Israeli and Canadian participants chose "New problems – those that were not solved 

in the classroom previously" as most suitable for the education of mathematically 

talented students, though these scores were significantly different (see Figure 2B). 



Applebaum et al 

The mean scores showing attitudes of Israeli teachers to four remaining 

statements in Part B of the questionnaire were all between 4 (slightly agree) and 5 

(agree). This way Israeli teachers demonstrated positive attitudes to all the statements 

included in this part. In contrast attitudes of the teachers in Canadian group were neutral, 

from 3 (slightly disagree) to 4 (slightly agree) for 3 of 6 statements. The two highest 

mean scores for Canadian teachers were obtained for statements:  2.4 – Investigation 

problems that require discovery of new facts and their proof or refutation are suitable for 

mathematically talented students (M=4.38 SD=0.95) and 2.6 – New problems – those that 

were not solved in the classroom previously – are suitable for mathematically talented 

students (M=4.53, SD=0.94).   

Statement 2.2 – Problems from extra–curricular topics are suitable for 

mathematically talented students – was scored by Canadian teachers (M=4.32, SD=0.99) 

slightly higher than by Israeli teachers (M=4.18, SD=1.12), though the difference was not 

significant. Statement 2.1 – Difficult problems that regular students cannot solve are 

suitable for mathematically talented students received the lowest agreement score in both 

countries (see Figure 2B). 

Additional evidence of the differences between the attitudes of Canadian and 

Israeli teachers towards tasks suitable for mathematically talented students can be seen in 

Figure 3.B that shows percentage of the participants in each country who marked neutral 

and high level of agreement for different statements. Figure 3b demonstrates that more 

than 70% of Israeli participants agreed or strongly agreed with 3 of 6 the statements in 

Part B of the questionnaire (2.4, 2.5 and 2.6), and additionally about 50% of participants 

agreed or strongly agreed with 2 other statements (2.1 and 2.3). More than 50% of 

Canadian participants chose these levels of agreement only for 2 of these 3 statements. 

Statement 2.5 received an even lower level of agreement – only 30%.   
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Education of teachers of mathematically promising students  

t 

M 

(SD) 
 

Israel 

N=28 

Canada

N=56 

5.23***
4.85 
(0.57) 

4.01 
(0.90) 

Part 3: Education of mathematics teachers for  work 
with talented students 

5.08***
4.79 
(1.03) 

3.50 
(1.21) 

3.1  To teach talented students teachers have to learn 
more mathematics than other teachers  

5.00***
5.25 
(0.65) 

4.20 
(1.29) 

3.2 To teach talented students teachers have to study 
special classroom settings  

4.23***
5.25 
(0.65) 

4.41 
(1.17) 

3.3  To teach talented students teachers have to learn 
ways for identification of high abilities students 

5.63***
5.54 
(0.51) 

4.50 
(1.18) 

3.4  To teach talented students teachers have to learn how 
to solve investigation problems  

-0.19 
4.64 
(1.42) 

4.70 
(1.11) 

3.5  To teach talented students teachers have to know 
their special psychological characteristics  

3.00** 
3.64 
(1.34) 

2.73 
(1.24) 

3.6  To teach talented students teachers have to be gifted 
in mathematics  

*p<0.05; **p<0.01;  ***p<0.001 

Figure 2C:  Attitudes towards characteristics of the education of teachers of 
mathematically talented students. 
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Figure 3C:  Percentage of strongly positive attitudes (6–completely agree, 5–agree) 
towards the education of teachers of mathematically talented students. 

Results from Part C of the questionnaire reveal highly significant differences between 

Canadian and Israeli teachers' attitudes. Similar to parts A and B, the level of agreement 

of Israeli participants with the statements in Part C is significantly higher than that of 
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Canadian participants (Figure 2C). The average score for Part C in the Canadian group of 

teachers was slightly positive (M=4.01, SD=0.90), whereas for Israeli teachers it was 

close to the middle of the scale (M=4.85, SD=0.51). Similar to Parts A and B, mean 

scores for all the statements in Part C for Canadian participants were below 5 (agree). 

Looking at the attitudes of Israeli participants, we learn that 3 of 6 scores were above 5 

(agree), whereas those of Canadian group were between 4 (slightly agree) and 5 (agree) 

for 4 of 6 statements.  

The two highest mean scores for Canadian group of students were obtained for the 

following categories:  3.5 To teach talented students teachers have to know their special 

psychological characteristics (M=4.70, SD=1.11) and 3.4 To teach talented students 

teachers have to learn how to solve investigation problems (M=4.50, SD=1.18).   

The teachers from Israeli group demonstrated the highest agreement (between 

"agree" and "completely agree" levels) with the following three statements: 3.4 Teachers 

have to learn how to solve investigation problems (M=5.54, SD=0.51), 3.2 Teachers have 

to study special classroom settings (M=5.25, SD=0.65), and 3.3 Teachers have to learn 

ways for identification of high abilities (M=5.25, SD=0.65). 

The statement that got the lowest score in both countries was statement 3.6 To 

teach talented students teachers have to be gifted in mathematics (see Figure 2C). The 

mean agreement score of Israeli teachers was almost neutral (M= 3.64; CD=1.34), and 

Canadian teachers' attitudes were even negative (M=2.73, CD=1.24). From this 

observation, it becomes clear that our participants do not think that being gifted is a 

necessary condition for teachers working with gifted students.  

Significant differences between the attitudes of Canadian and Israeli teachers can 

be seen in Figure 3C that shows percentage of the participants in each country who 

marked middle and high level of agreement for different statements. Figure 3C 

demonstrates, for example, that whereas 100% of Israeli participants agreed or strongly 

agreed that teachers need to learn how to solve investigation problems, only 60% of their 

Canadian colleagues seem to share this point of view at the same level of agreement.  

The most striking difference can be observed in the statement affirming that 

talented students' teachers have to learn more mathematics than other teachers (more than 

70% of Israeli teachers vs. 20% of Canadian peers agreed or strongly agreed with this 
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statement).  Similar percentages of participants from both countries seem to agree equally 

only with the statement that teachers need to learn more about psychological 

characteristics of gifted and talented students. 

Additional comparison 

To finish this report we provide additional information in Figure 4 that demonstrates the 

percentage of teachers who express positive attitude (at slightly agree, agree, and strongly 

agree levels) to the statements in the questionnaire. 

Figure 4 demonstrates that Israeli participants were more positive in all the three 

parts of the questionnaire. More than 80% of Israeli teachers agree (at different levels) 

with 11 of 13 statements in Part A of the questionnaire and with 5 of 6 statements in Parts 

B and C. Among Canadian participants less than 80% agreed with 10 of 13 statements in 

Part A, and with 5 of 6 statements in Parts B and C.  

Figure 4 demonstrates that both Israeli and Canadian participants were the most 

positive with respect to statements 1.6, 1.9, 2.4, 2.6, 3.4, and 3.5. At the same time the 

difference in the attitudes of Israeli and Canadian participants is very clear in case of 

statements 1.1, 1.11, 2.3, 2.5, 3.1, 3.2 and 3.6. The least popular statements among the 

participants from both countries were 1.7, and 3.6. 
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Figure 4:  Percentage of positive attitudes of teachers to the beliefs statements in the 
questionnaire. 

In conclusion, dissimilarities in the views of the representatives of two countries speak of 

interesting and meaningful differences in the education of prospective mathematics 

teachers as related to the issue of mathematically talented students. These differences 

were reflected in the participants' attitudes revealed in our questionnaire. We suppose that 
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a detailed qualitative investigation of teacher training in different countries can explain 

many of the findings of this study.  

CONCLUDING REMARKS 

The results of our data analysis, can lead to several conclusions about teaching 

mathematically promising students.  

First, our findings show that teachers cope with challenging tasks with varying 

levels of success. The majority of teachers used ‘non-systematic’ strategies, without 

analysis of the efficiency of the strategies. Indeed, these results suggest that teachers need 

better mathematical preparation in terms of solving open-ended challenging tasks that 

would enable them not to limit the problem solving process with finding of one suitable 

solution. On the contrary, teachers should be encouraged to perform in-depth 

investigation, assess of strategies' efficiency, search for different ways to solve problems, 

and for possible generalizations in terms of developing mathematical theories. Acquiring 

such cognitive and meta-cognitive skills will help teachers in guiding their students on 

the way to deeper and more meaningful mathematical knowledge. 

Comparing solutions and strategies of Israeli and Canadian participants we were 

not able to draw far going conclusions. However, we can state that Israeli teachers used 

both non-systematic strategies and systematic ones (that they have previously learned in a 

different context), whereas most Canadian prospective teachers used only non-systematic 

strategies. Comparative analysis of school mathematical curricula and of the teacher 

educational programs in the two countries may shed more light on the findings of this 

study. We assume that continuation of the study that will employ different types of 

challenging tasks (Applebaum & Leikin, 2007) also can contribute to our understanding 

of the discovered phenomena.      

Our findings from the discussion with Israeli participants suggest that they were 

aware of the qualities of mathematically promising students in mathematics classrooms. 

While the list of characteristics of these students given collectively lacks some important 

features, teachers recognize special learning needs of mathematically promising students 

and value investigation and challenging tasks as important for the mathematical 

development of these students. Namely, the task they were asked to deal with was 
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characterized by teachers as potentially rich in terms of higher order thinking, theory 

building, and leading to the development of appropriate strategies.  

According to the teachers participating in the discussion, special needs of 

mathematically promising students can be met with particularly challenging, open-ended 

and investigative tasks of higher difficulty level and increasing complexity. However, the 

teachers saw such tasks as rather exceptional for today’s mathematics classroom and 

rarely used by teachers This confirms the need for a more challenging curriculum for 

mathematically promising students already mentioned by several researchers working 

with the mathematically promising students (e.g., Sheffield, 2003, Freiman, 2006). In 

spite of the afore-mentioned opinion expressed by the teachers in the discussion they 

themselves did not feel prepared for dealing with such tasks in their classroom. Their 

feeling was consistent with the data obtained in the first part of our analysis that shows 

that only few teachers were able to find (almost) all solutions to the problem. Their 

mathematical background should be, therefore, reinforced by mathematically challenging 

tasks and investigations.  

Regarding the social aspects of teaching mathematically promising students, the 

teachers' opinions vary meaningfully. Some teachers speak about the benefits of 

homogeneous learning environment, while others consider that mathematically promising 

students will benefit more while helping less capable students in heterogeneous classes.  

The results of the questionnaire analysis can deepen our knowledge of beliefs of 

prospective teachers regarding the definition of mathematically promising students, their 

particular educational needs and teachers' readiness to meet those needs in the process of 

education.   

Why did Israeli prospective teachers agree with questionnaire statements (23 of 

25) more than their Canadian colleagues? One plausible explanation can be that the 

statements were built according to the results of a discussion in which only Israeli 

teachers took part. Discussion with Canadian prospective teachers could reveal other 

statements and lead to a different distribution of answers. However, using our data, we 

can investigate further whether the level of mathematical preparation can be a factor 

reinforcing Israeli teachers’ perception of the necessity of stronger mathematical 

background for work with mathematically promising students. Finally, our data from 
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questionnaires suggest that there was a wider variety of opinion about social than about 

cognitive issues related to mathematically promising students. The fact that Israeli 

participants agreed less about psychological aspects needs further investigations.   

Our study is an exploratory small-scale study. It would be interesting to use our 

instruments with larger and culturally more diverse prospective teachers’ populations. 

There is also a need for more rigorous study of the preparation of mathematics teachers 

for the education of mathematically promising students. While more rigorous studies 

would be needed to get into the situation details, some recommendations can be made 

regarding teachers’ training and professional development associated with teaching 

mathematically talented students. Teacher education programs should: 

 Expose teachers to the complexities of teaching mathematically promising students. 

 Develop in teachers stronger higher-order thinking skills and their abilities to 

investigate challenging tasks by proposing such tasks during their training.  

 Amplify teachers' didactical inventory of teaching strategies to allow identification 

and fostering of mathematically promising students' abilities using inquiry- based, 

challenging and investigative tasks. 

At the next stage we intend to investigate how mathematically promising students 

deal with the mathematical problem used in this study, what are their own views on their 

needs, and compare teachers’ beliefs and expectations with the real situation in their 

classes. 
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Abstract: In order to teach successfully, future teachers should not only be educated about 

students’ conceptions, but also about different forms of knowledge and classroom culture. In our 

research, we examined whether the participation in the Internet-based challenging problem 

solving community CASMI contributes to the development of the aforementioned awareness and 

understanding in order to meet the needs of all students including the gifted ones. The results 

obtained enabled us to note that the pre-service teachers’ perceptions of the project as a source of 

enrichment are mainly positive. However, analyzing schoolchildren’s strategies, the participants 

preferred to use pre-determined criteria instead of writing personal formative comments adapted 

to the mathematical reasoning presented in the solution. Research shows that such comments 

could enrich the feedback by better reflecting the diversity of the learners’ styles, thus helping 

them to reach their full potential. We suggest more attention needs to be given to the analyses of 

this diversity in pre-service teacher training and professional development in order to enable 

teachers to differentiate their teaching.   

 

Key words: Online Problem Solving, Pre-Service Teacher Training, Diversity of 

Schoolchildren’s Strategies, Asynchronous Assessment, Mathematical Enrichment 

 

RATIONALE OF THE STUDY 

What should future teachers know to teach successfully in a mathematical classroom that 

becomes more and more diverse (in terms of children’s background and abilities) and at the same 

time be inclusive?  Setting up an early 21st century research agenda for teacher’s professional 

development and teacher education, Even & Tirosh (2002) base their recommendations on an 

important body of refereed literature that focuses on the development of mathematical awareness 
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and understanding of student mathematics learning and thinking.  According to them, this should 

be coordinated by three major axes: educating about student conceptions, educating about 

different forms of knowledge, and educating about classroom culture. A complex approach to 

teacher education is thus needed in order to eventually help meet educational needs of children 

struggling with mathematics and those of gifted ones who may get lost while not being 

challenged enough (Diezmann, Thornton & Watters, 2003; Diezmann & Watters, 2005; Freiman, 

2006; Freiman, Manuel & Lirette-Pitre, 2007; Johnson, 2000b; Kettler & Curliss, 2005; 

Sheffield, 2003).    

In our paper, we will examine whether participation in the Internet-based challenging 

problem solving community CASMI contributes to the development of the aforementioned 

awareness and understanding in order to meet the needs of all students including the gifted ones. 

During the semester, pre-service teachers enrolled in mathematics education courses in two 

Canadian universities were involved in the analysis of K-12 children’s solutions by giving them 

an asynchronous feedback.  

Working with a vision of the diverse and inclusive classroom, we keep in mind that gifted 

students, independently of how we define and identify them, may need additional resources that 

are not directly available in a regular classroom. Therefore, we believe that the Internet may 

provide teachers and their students with appropriate activities for every child.  Several studies 

show that rich, contextual, and open-ended mathematical problems posted on a website can 

challenge all children and give them an opportunity to produce new mathematical knowledge in 

a situation when the answer is not obvious and the strategy is to be chosen or constructed by 

using different ways of reasoning and communicating. This situation may be potentially fertile 

for mathematically gifted learners, meeting their special needs for more challenge (Applebaum 

& Leikin, 2007; Barbeau & Taylor, 2009; Diezmann et al., 2003; Diezmann & Watters, 2005; 

Freiman, 2006; Freiman & Lirette-Pitre, 2008; Freiman et al., 2007; Johnson et al., 2007; 

Johnson, 2000b; Kettler & Curliss, 2005; Leikin, Levav-Waynberg & Applebaum, 2008; 

Sheffield, 2003). While the analysis of children’s mathematical production by pre-service 

teachers has become an important part of mathematics education courses, little is known about 

the impact of participation of pre-service teachers in online activities with schoolchildren and 

even less about their capacity to guide young learner by means of asynchronous feedback.   
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  In our mathematics education classes, with pre-service teachers, we explore a variety of 

solutions to mathematical problems submitted electronically by schoolchildren. We aim to help 

pre-service teachers appreciate the diversity of such solutions and learn how to guide 

schoolchildren in a personalized and caring manner, nurturing their curiosity, interest and 

perseverance, which are very important for all children and especially for the gifted ones.  

In our previous publications, we discussed some data about pre-service teachers’ 

perceptions of the CASMI project (Freiman, Vézina & Gandaho, 2005).  In this paper, we will 

report on our exploratory research in which we combined the information gathered from 

questionnaires regarding pre-service teachers’ perceptions of the project with their feedbacks on 

schoolchildren’s solutions. More precisely, two particular goals have been set for our enquiry:    

a) to look at how pre-service teachers perceive their participation in the project regarding 

online challenging problem solving as a source of enrichment. 

b) to examine if, being faced with a multitude of problem solving strategies, pre-service 

teachers are able to evaluate the correctness of students’ mathematical reasoning and to 

provide them with an adequate feedback. 

We found that very few research data are available on these questions. Therefore, our 

study aims to contribute to a better understanding of teacher – student retroactive communication 

on problem solving and to identify promising paths of improvement in pre-service teachers’ 

mathematics education, in order to enable future teachers to provide students with richer learning 

opportunities.    
 

THEORETICAL PERSPECTIVE 

In order to understand the value of mathematical enrichment activities supported by the 

virtual CASMI environment, we looked at the literature that analyzes the role of challenging 

problems in today’s mathematics classroom and their importance for meeting the needs of gifted 

students. We also searched for different studies on virtual problem solving environments and 

formative feedback. In the next three subsections, we will briefly review the most pertinent 

findings and recommendations from the studies that guided us in our data collection and data 

analysis.  
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Problem solving in today’s school mathematics and the needs of gifted students  

In today’s mathematics classrooms, problem solving is seen as an important vehicle for 

the enrichment of mathematical culture because it puts strong emphasis on the development of 

abilities to communicate and to reason mathematically (OECD Program for International Student 

Assessment, 2003). In Canada, more precisely, new approaches in teaching problem solving in 

mathematics are following common trends set up by the NCTM Standards (2000).  These trends 

explicitly define the central role of problems in learning mathematics and the importance to use 

mathematics as problem solving tools in real life interdisciplinary contexts, therefore facilitating 

knowledge transfer (Tardif, 1999). 

Whether it is in connection with problem solving or with the learning of mathematics in 

general, it has been established that gifted students learn differently than their peers.  The scale 

defined by PISA (OECD Program for International Student Assessment, 2003) assesses several 

levels of mathematical literacy.  The highest level described by this scale features many 

characteristics of mathematically gifted students.  Among others, these students show insight in 

the solution of problems, develop abilities in mathematical interpretation of problems in 

real-world contexts (also see Krutetski’s (1976) notion of mathematical cast of mind), identify 

relevant mathematical tools or methods in order to find solutions to problems set in unfamiliar 

contexts, solve problems involving several steps, reflect on results and generalize findings and 

use reasoning and mathematical argument to explain solutions and communicate outcomes.  

Moreover, they usually are quicker at grasping concepts and the depth of their understanding 

surpasses the one of other students (Johnson, 2000a).  It is thus important to ask ourselves what 

can be done to differentiate instruction for gifted students.  Among others, Johnson (2000a) 

makes these different suggestions: 

- Students should be allowed to explain their reasoning (orally and in writing). 

- Resources used in the classroom should be numerous and varied. 

- Open-ended problems should be privileged. 

- Students should be asked “why” and “what if” questions. 

- Problems and activities should extend beyond the curriculum. 
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Furthermore, studies conducted in the past decades, including studies of mathematical 

giftedness, state the need for more challenging tasks for all students but also reveal a lack of 

opportunities of solving such problems for students in the regular classroom (Barbeau & Taylor, 

2009).  However, a new approach to problem solving provided by virtual environments has the 

potential to increase learning opportunities for students.  Indeed, a growth in Internet-based 

learning opportunities in mathematics can be observed.  The technology itself is developing 

towards socially friendly, flexible and dynamic environments in which many schoolchildren can 

access virtual resources from school or from home.  They can now get an instant interactive 

access to more challenging mathematics, solve problems and submit their solutions using virtual 

tools.  Moreover, these new learning environments provide learners with a variety of contents 

and tools, giving them the choice between multitudes of activities adapted to their particular pace 

and needs.  “Technology can provide a tool, an inspiration, or an independent learning 

environment for any student, but for the gifted it is often a means to reach the appropriate depth 

and breadth of curriculum and advanced product opportunities” (Johnson, 2000a, p. 5).  One of 

the elements that become important in such environments is the kind of feedbacks students 

receive.  Indeed, within the socio-constructivist teaching and learning paradigm, teachers need to 

make valid references about children’s strategies (Willson & Kenney, 2003).  This can be done, 

among others, by giving high quality feedbacks about children’s solutions. In our paper, we will 

focus on pre-service teachers involved in a mentoring task based on the analysis of 

schoolchildren’s solutions to challenging mathematical problem solving online activities.  

 

Virtual opportunities of challenging problem solving: assessing diversity   

When students solve open-ended problems, they mobilize a multitude of resources 

(Schoenfeld, 1989).  This mobilization of resources is recognized as the use of a set of skills 

(mathematical or not) by the Program for International Student Assessment (OECD Program for 

International Student Assessment, 2003).  It is through this mobilization of a set of resources and 

a metacognitive reflection that students are able to elaborate not only divergent strategies for 

solving problems but also several different solutions (Poirier Proulx, 1999). 

Open-ended and challenging problem solving is therefore seen as a process where 

students should be evaluated on the bases of their own ways of reasoning and communicating. 

According to Lesh & Doerr (2000), the challenge for teachers is to maintain and nurture the 
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diversity of students’ approaches, encouraging them to verbalize their thinking and explain their 

strategies. One of the possible solutions is to make teachers familiar with a “Problems of the 

week” model which proves to be an effective way to develop students into more independent 

learners (Webb, 2003).   

This type of model is found in the CASMI, an Internet-based learning environment.  

Researchers argue that the use of such environments allows more schoolchildren to participate in 

mathematically rich contextual problem solving activities.  Pre-service teachers can thus learn 

from students’ solutions by analyzing their reasoning and communication abilities (Charbonneau, 

2000; Renninger & Shumar, 2002) in didactic contexts that are more practice oriented (Bednarz, 

2004).  In such contexts, teachers play the role of a mentor by guiding students in their learning.   

 

Guiding students with an effective formative feedback 

Formative feedback is defined as “information communicated to the learner that is 

intended to modify the learner’s thinking or behavior for the purpose of improving learning” 

(Shute, 2007, p. 1).  Thus, the main goal of formative feedback is to help students understand 

their errors and further their reasoning.  But is all feedback good feedback?  It has been recently 

argued by Hattie & Temperley (2007) that feedback is “most effective when it aids in building 

cues and information regarding erroneous hypothesis and ideas and then leads to the 

development of more effective and efficient strategies for processing and understanding the 

material” (p. 102).  According to Shute (2007), formative feedback serving as a corrective 

function should, at the least, indicate the correctness of students’ answers and provide 

information about the correct answer.  However, she specifies that a certain number of 

researchers agree that feedback, to be more effective, needs to give information pertaining to the 

improvement of the answer (instead of simply indicating the correctness of the work).  Indeed, 

unspecific feedback can be considered useless or frustrating by students.     

Galluzzo, Leali, and Loomis (2000) identified key elements linked to an effective 

feedback by resuming the works of Brophy.  Among others, the authors insist that the teacher 

must: 

- give a feedback which is specific to students; 

- not strictly put his focus on the students’ errors but also state the accomplishments; 

- be specific in his comments (rather than global). 
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The authors also underline the importance of the knowledge of the discipline taught.  

Indeed, one cannot give a specific feedback if he or she is not comfortable with the discipline. 

Shute (2007) did a review of the formative feedback literature and came up with these 

nine guidelines to enhance learning (p. 30): 

- Focus feedback on the task, not the learner. 

- Provide elaborated feedback to enhance learning. 

- Present elaborated feedback in manageable units. 

- Be specific and clear with feedback messages. 

- Keep feedback as simple as possible but no simpler (based on learner needs and 

instructional constraints). 

- Reduce uncertainty between performance and goals. 

- Give unbiased, objective feedback, written or via computer. 

- Promote a learning goal orientation via feedback. 

- Provide feedback after learners have attempted a solution. 

She also specifies three guidelines for high-achieving learners (p. 33): 

- Consider using delayed feedback, especially for complex tasks. 

- Use facilitative feedback, which aims to guide students by giving them comments and 

suggestions in link with the problem that needs to be solved.  Telling students what to do 

is considered directive feedback rather than facilitative feedback. 

- Verification feedback, which gives information pertaining to the correctness of the 

answer, may be sufficient.  On the other hand, elaboration feedback gives more 

information to students, allowing them to correct their work. 

Summarizing and projecting our literature review on our research questions, we claim 

that the combination of challenging problem solving in an online environment and the 

opportunity to analyze genuine schoolchildren’s solutions and to produce a formative feedback 

provides us with an insight into pre-service teachers’ ability to evaluate and to guide students 

based on the diversity of their strategies and solutions.   In the next sections, we describe in more 

details how we proceeded with data collection and data analysis.  
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METHODOLOGY 

In our exploratory study, we analyzed quantitatively pre-service teachers’ experiences 

with the assessment of open-ended challenging problems in the online environment. According 

to our two goals, we wanted to learn about pre-service teachers’ perceptions on the importance of 

such experiences and their impact on future classroom practices regarding the use of the 

enrichment activities with their students.  We were also interested in the evaluation of the quality 

of the feedbacks given by pre-service teachers. We thus studied their abilities to understand 

children’s strategies and communication styles. In this section, we will describe the virtual 

environment CASMI (Communauté d’Apprentissages Scientifiques et Mathématiques, 

www.umoncton.ca/casmi)1, the mentoring activities in which the pre-service teachers were 

involved and how these activities have been evaluated. We will also present the samples and data 

collection tools.      

 

Virtual environment 

In the CASMI environment, schoolchildren are invited to solve challenging mathematical 

problems and submit their solutions electronically (Freiman & Lirette-Pitre, 2008). Pre-service 

teachers then analyze every solution and write a personal feedback. The problems of the week 

are grouped in four categories according to their level of difficulty and posted online. These 

problems present a variety of contexts to which schoolchildren are supposed to apply 

mathematical concepts from all domains of school mathematics (arithmetic, algebra, geometry, 

statistics). 

Figure 1 (p. 11) presents one of the problems students had to solve in the CASMI.  In this 

problem, “The Valentine’s Day card”, students had to find the original width and length of a 

piece of paper that had been folded.  The problem contains a context familiar to French Canadian 

schoolchildren and is attractive.  A variety of answers can be produced, since the only constraint 

is that the sum of the width and the length of the original piece of paper must be equal to 50 

centimeters.  Children with different abilities may extract different mathematical relationships 

                                                 

1 Although the research project took place when the website was called CAMI (Chantier d’Apprentissages 

Mathématiques Interactifs), the abbreviation CASMI will be used throughout this article in order to facilitate its 

reading. 
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representing and exploring them in many different ways.  One solution submitted by a grade 6 

student is presented in figure 2 (p. 11) and an extract from the personal feedback given to her by 

a pre-service teacher is presented in figure 3 (p. 12). 

 

 

The Valentine’s Day card 

 

Valentine’s day is coming and Reuben decides to make a Valentine’s day card 

for Sophie. 

 

As you probably did before, Reuben takes a piece of red construction paper and 

folds it vertically in two. He then folds the piece horizontally and finally draws 

hearts and flowers while writing beautiful words of friendship everywhere. 

 

The perimeter of the folded card is 50 centimeters. Find the length and the 

width of the original piece of paper (before it was folded).  Clearly explain 

your reasoning. 

 

 

Figure 1.  Mathematical problem presented in the CASMI 

The Valentine’s day card 

 

If we unfold it, it’s going to be twice as big, and if we unfold it again, it’s 

going to be twice as big again. 

 

50 × 2=100 

100 × 2= 200 

 

Answer: 200 centimeters 

 

Figure 2.  Solution submitted electronically in the CASMI 
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Figure 3.  Extract from the personal feedback written by a pre-service teacher 

 

The first paragraph of the extract from the feedback contains various aspects mentioned 

in our theoretical framework.  First of all, the fact that the student didn’t seem to understand 

exactly was she was looking for is underlined and an "appropriate interpretation” of the question 

is given.  Moreover, the student is invited to review her work.  Finally, a strong belief in the 

child’s capacity to correctly solve the problem is visible.  The second paragraph, written in the 

last section of the feedback, values the student’s participation and efforts and aims to encourage 

her to solve more problems in the CASMI in the near future. 

While all children are asked explicitly to explain their reasoning, not all of them show 

their work and sometimes, it is not obvious to see mathematical reasoning beyond the 

explanations. All this may represent important challenges to pre-service teachers who are not 

used to solving problems in different ways, analyzing reasoning and giving critical comments 

back to students. Therefore, working within the CASMI environment, they get this genuine 

opportunity to look at this variety of mathematics created by children.   

 

 

 

Extract from the feedback 

 

I believe that you tried to find the perimeter of the original paper (before it was 

folded).  However, the problem was to find the length and the width of this 

piece of paper. I invite you to verify your answer. I am sure that you can solve 

this problem!!! 

 

Thank you for participating. Bravo for your efforts! I wish to receive other 

solutions from you in the next few weeks. 
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Participants 

During the 2006 winter semester, a total of 70 pre-service teachers participated in our 

research.  Thirty-two were enrolled into the Middle School (5-8) Teacher Preparation Program 

and 18 were enrolled in the High School (9-12) Teacher Preparation Program at Université de 

Moncton.  Twenty more were enrolled in the Secondary Mathematics Teacher Preparation 

Program (7-11) at Université Laval. The collaboration between the two researchers never aimed 

to make any comparisons between the two groups. There was no specific interaction between the 

two groups. According to our theoretical perspective, we focused on each participant’s 

perception using a survey and we assessed the quality of randomly selected feedbacks. In this 

case, we can consider these two groups as one combined population (one group) rather than as 

two different populations.    

 

Instruments 

During the semester, feedbacks were written to schoolchildren using an electronic form 

built into the CASMI site (figure 4, p. 14)2.  All pre-service teachers had to log-in individually to 

assess solutions randomly assigned to them.  Our form was divided in three sections.  The first 

section, Greeting, was situated at the beginning of the form and allowed pre-service teachers to 

make a first contact with students by writing comments pertaining to their participation or the 

efforts that were made, as well as general comments with regard to the submitted solution.  The 

second section of our form, the rubric, contained six different components used by Math Forum 

to score solutions: interpretation, strategy, exactness in calculations, completeness, clarity, and 

quality of reflection.  We developed our own pre-built set of criteria according to the specific 

features of each component.  These criteria were presented as multiple choice items.  Thus, in 

their formative feedback, pre-service teachers could choose one of these pre-determined criteria 

for each component. The chosen criterion could also be accompanied (or replaced) optionally by 

an open comment, which permitted the personalization of the feedback.  Finally, in the last 

section of the electronic form called Signature, pre-services teachers could summarize their 

thoughts about the student’s production and invite them to visit the CASMI again in order to 

                                                 

2 An English version of this electronic form is presented in appendix 1 (p. 29). 
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solve more problems.  So, in every section of the electronic form, pre-service teachers were 

capable of writing comments and thus of personalizing the feedback given to schoolchildren. 

 

 

 

Figure 4.  Electronic form in the CASMI site 

 

At the end of the semester, a questionnaire including open-ended questions as well as 

multiple choice questions was distributed.  The questionnaire was divided into ten sections, 

pertaining to different aspects of the project: 1) General information on the participants; 2) 

CASMI project and the didactics course; 3) CASMI project and the student doing mathematics; 

4) CASMI project and teachers; 5) Appreciation of the CASMI website; 6) Accessibility of the 

problems; 7) Problems’ content; 8) Functioning of the CASMI website; 9) Continuation of the 

CASMI project; and 10) Use of the site with the preservice teachers’ future students.  The 

answers to the questions as well as the comments gathered in the questionnaire permitted us to 
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collect qualitative and quantitative data concerning pre-service teachers’ perceptions pertaining 

to the CASMI project and teacher training as well as to the CASMI project and teaching and 

learning mathematics.  The multiple choice questions employed a four-point Likert scale: 

1 = Completely in agreement, 4 = Completely in disagreement.  

 

Procedures 

Université de Moncton. 

At the Université de Moncton, pre-service teachers enrolled in the Elementary (K-8) 

Teacher Preparation Program must take two courses in mathematics education.   Within each 

course, they conduct a project related to CASMI. Most of the pre-service teachers participating 

in our project were enrolled in their second math education course and were already familiar 

with the resource. While during the first course they are required to do reflective analyses of their 

experience and are guided by the course instructor in their assessment process, the second course 

requires more autonomous work and better quality of feedback. Fifty students evaluated up to ten 

solutions each.  During the math education classes, each problem as well as different ways of 

solving it and communicating related strategies were discussed. Pre-service teachers thus 

understood the problems before having to assess schoolchildren’s work. 

 

Université Laval. 

The participants at Université Laval were all enrolled into the Secondary Mathematics 

Teacher Preparation Program.  In this program, pre-service teachers have to take three courses in 

mathematics education.  Within the framework of our research project, twenty pre-service 

teachers enrolled into their third and final math education course received a brief presentation of 

the CASMI, which they were not familiar with.  A document explaining the evaluation rubric 

and presenting examples of feedbacks was also given to them. In a four weeks period, each 

pre-service teacher evaluated a total of twelve productions submitted by students.  

At the beginning of each week, before they received students’ productions, pre-service 

teachers had to solve the four “problems of the week” presented in the CASMI.  These problems 

were then revised in class. This revision made it possible to avoid any confusion that could be 

allotted to the various problems.  Moreover, pre-service teachers were asked to present different 

strategies used when solving these problems.  Therefore, they were made aware of different ways 
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to solve one problem. It is important to note that the pre-service teachers’ feedbacks were strictly 

evaluated on formative bases.  Following each week, comments pertaining to pre-service 

teachers’ feedbacks were emitted by the professor. These comments made it possible for the 

pre-service teachers to adjust their formative evaluations week after week. 

 

Data Analysis 

A total of 65 pre-service (47 from Université de Moncton and 18 from Université Laval) 

answered the questionnaire. A theme analyses of the qualitative data collected in the 

questionnaire was realized. Frequency distributions were calculated to analyze the multiple 

choice items. 

In addition to data from the questionnaire, we analyzed formative feedbacks written by 

pre-service teachers.  Out of a total of 924 schoolchildren’s solutions submitted to ten problems 

posted during the semester, we randomly selected 200.  We developed and validated an 

evaluation grid containing 53 variables3.  These variables reflected elements reported in our 

theoretical framework and were divided into nine categories.  The first category was General and 

it permitted us to determine the correctness of students’ answers and then check if pre-service 

teachers had identified that answer as being correct or incorrect.  The same variables were 

repeated for the next two categories, Greeting and Signature.  We were interested to see if 

pre-service teachers added personalizing elements to their message (i.e. smiley, humor, etc.) and 

if they congratulated students on their work or thanked them for participating.  Elements of 

feedbacks more directly in link with the mathematical aspect of the student’s solution also 

interested us.  For each of our six components, we evaluated if pre-service teachers had chosen 

the appropriate criterion in the pre-built set of multiple choice items specific to these 

components.  Ideas present in the feedback examined were analyzed. For each idea, we checked, 

among others, if pre-service teachers underlined the correctness of the answer, the correctness of 

the reasoning and if they identified students’ errors.  Elements more linked with the quality of 

feedbacks, like specificity or reference to students’ work, were also evaluated.  In addition to 

that, we checked if pre-service teachers gave facilitative, verification or elaboration feedback. 
                                                 

3Some of these variables were repeated for every criterion or for every different idea present in a comment.  The 

evaluation grid thus contains a total of 271 variables. 
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This analysis enabled us to gather information about the quality of submitted solutions by 

the students as well as the quality of the feedback provided by the pre-service teachers. 

 

Resume and Analyses of the Most Important Findings 

a) How do pre-service teachers perceive their participation in the project regarding 

their future work on challenging problem solving in the mathematics classroom? 

The participation in the CASMI project allowed pre-service teachers to analyze concrete 

solutions of real schoolchildren.  The first part of our analyses concerned pre-service teachers’ 

perceptions of the CASMI project and according to the previously described elements of our 

questionnaire, we found that 84.6 % of participants agreed or strongly agreed that their feedbacks 

were important for schoolchildren. Eighty percent found that the project helped them better 

understand schoolchildren’s reasoning and 67.7 % found that it helped them better understand 

the problem-solving process in mathematics. Moreover, 83.1 % affirmed that they had learned 

more about formative feedbacks, 66.1 % say that the project gave them the chance to review 

mathematical concepts, and 78.5 % of pre-service teachers said that the project gave them ideas 

for teaching.  Finally, 81.5 % of them agree or strongly agree that the CASMI project not only 

enables teachers to differentiate their teaching but also enriches the mathematics curriculum.  

The complete results on pre-service teachers’ perceptions of the CASMI project are presented in 

table 1 (next page). 
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Table 1 
Pre-service teachers’ perceptions of the CASMI project 
 
 Completely in 

agreement 
In agreement In disagreement 

Completely in 
disagreement 

I don’t know 

 Frequency % Frequency % Frequency % Frequency % Frequency % 
Your feedback is important 
for the student 
 

40 61.5 15 23.1 2 3.1 1 1.5 6 9.2 

The content of the 
problems enriches the math 
curriculum 

26 40.0 27 41.5 7 10.8 3 4.6 0 0.0 

 
The project… 
 
helped me to understand 
the student’s reasoning 
 

7 10.8 45 69.2 10 15.4 3 4.6 0 0.0 

helped me better 
understand the problem-
solving process in math 
 

10 15.4 34 52.3 15 23.1 5 7.7 1 1.5 

allowed me to perfect my 
techniques in formative 
evaluation in math 
 

18 27.7 36 55.4 6 9.2 3 4.6 2 3.1 

allowed me to review math 
concepts 
 

19 29.2 24 36.9 15 23.1 5 7.7 1 1.5 

gives teachers ideas for 
math courses 
 

28 43.1 23 35.4 11 16.9 1 1.5 2 3.1 

allows teachers to 
differentiate their teaching 
 

19 29.2 34 52.3 7 10.8 1 1.5 4 6.2 
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The results obtained from the analyses enable us to note that the pre-service 

teachers’ perceptions of the CASMI project as a source of enrichment are mainly positive 

in all aspects of the questionnaire.  Those results are consistent with our previous data 

(Freiman et al., 2005).  However, in this study, we decided to conduct an in depth 

analyses of the quality of the feedbacks given by pre-service teachers in order to track 

their abilities to assess students’ solutions and to guide them, in the process, towards 

better problem solving strategies.  The second part of our analyses, concerning the types 

of feedbacks given by pre-service teachers, is presented in the next section. 

 

b) Being faced with a multitude of problem solving strategies, are pre-service 

teachers able to evaluate the correctness of students’ work and to provide students with 

an adequate feedback in order to guide them and to help them improve their problem 

solving skills? 

Our methodological framework defined certain aspects that are important when 

giving a feedback.  Among those aspects, pre-service teachers need to be able to assess if 

the solution submitted by a student is correct.  It is also important for schoolchildren to be 

guided and to get feedback which is directly linked with the work they have done.  

Keeping this in mind, we analyzed 200 feedbacks given by pre-service teachers in order 

to study their ability to evaluate students’ work and to give a quality feedback.  We found 

that in 78.5 % of cases, pre-service teachers were able to correctly identify if students’ 

answers were correct.  They made an incorrect evaluation 10.5 % of the time 

(i.e. indicating to a student that his answer was correct when it wasn’t and vice versa) 

(table 2, p. 21).  Moreover, for each component of the evaluation rubric, pre-service 

teachers were invited to choose a criterion specific to the component and linked with the 

student’s work (table 3, p. 21).  They chose the appropriate criterion 70.0 % of the time 

for the component Interpretation, 72.5 % of the time for the component Strategy and 

72.0 % of the time for the component Clarity.  This percentage goes up to 79.0 % in the 

case of the component Correctness, 77.5 % for the component Completeness, and 80.0 % 

for the component Quality of reflection.   
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Table 2 
Choice of the criterion in order to identify if the student’s answer was correct 
 
 Frequency Percent 

No criterion selected 3 1.5 

Incorrect choice of criterion 21 10.5 

Partially correct choice of criterion 19 9.5 

Correct choice of criterion 157 78.5 

Total 200 100.0 
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Table 3 
Choice of the criterion specific to the component 
 

 No criterion selected 
Incorrect choice of 

criterion 
Partially correct choice 

of criterion 
Correct choice of 

criterion 
Component Frequency Percent Frequency Percent Frequency Percent Frequency Percent 
Interpretation 7 3.5 11 5.5 42 21.0 140 70.0 
Strategy 9 4.5 29 14.5 17 8.5 145 72.5 
Clarity 19 9.5 13 6.5 22 11.0 144 72.0 
Exactness in calculations 10 5.0 20 10.0 12 6.0 158 79.0 
Completeness 14 7.0 13 6.5 16 8.0 155 77.5 
Quality of reflection 14 7.0 14 7.0 10 5.0 160 80.0 
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Since every feedback could be personalized by writing a comment, we then asked 

ourselves which kind of analysis and recommendations were present in the individual 

comments that were written.  The analyses of the 200 feedbacks given by pre-service 

teachers shows that 70.5 % of these feedbacks place little or no importance on the 

successes of students and tend to strictly focus on their errors or on challenges for them to 

overtake (table 4, p. 22).  Moreover, although the majority of comments do refer 

implicitly to schoolchildren’s work, 60.5 % of them are general and lack in precision 

(table 5, p. 22).   

 

 

Table 4 
Feedback in the form of positive feedback or focusing on the student’s errors 
 
 Frequency Percent 

Positive feedback 161 29 

Focusing on student’s errors or on challenges 391 70.5 

Total 552 99.5 
 

 

Table 5 
General or specific comment 
 
 Frequency Percent 

General comment 336 60.5 

Specific comment 219 39.5 

Total 555 100.0 
 

 

Thus, the problem may not reside as much in the criteria-based assessment of 

students’ answers as in the (informal) feedback they give (or do not give).  Among the 

200 solutions that were analyzed, 100 contained some incorrect reasoning or calculation 

mistakes (table 6, p. 23).  Our findings show that for 81.0 % of these solutions, at least 

one comment, directly linked to one of the components in the rubric, was made by pre-
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service teachers (table 7, p. 23).  However, even though 81.0 % of the incorrect solutions 

were commented on at least once, in several cases (i.e. for several components), pre-

service teachers seemed to be satisfied by choosing one of the pre-determined criteria and 

didn’t write any comments in order to enrich their feedback. We do not know why they 

did not take the time to write more comments. In our future work, we will need to 

conduct interviews with the participants in order to learn more about their reasons for 

choosing a particular criterion over another.   

 

 

Table 6 
Correctness of the student’s answer 
 
 Frequency Percent 

No answer 1 0.5 

Incorrect answer 100 50.0 

Partially correct answer 36 18.0 

Correct answer 63 31.5 

Total 200 100.0 
 

 

Table 7 
Feedbacks given to students whose answers contained some incorrect reasoning or 
calculation mistakes 
 
 Frequency Percent 

No feedback 7 7.0 

Feedback directly linked to one of the six 
components of the rubric  

81 81.0 

Feedback given in the sections Greeting or Signature 12 12.0 

Total 100 100.0 
 

 

Moreover, they do not seem to fully appreciate the diversity of students’ 

approaches which, according to Lesh & Doerr (2000), is a challenge for teachers.  It is 

important for them to maintain and nurture that diversity.  The pre-service teachers that 

participated in our study were not in a guiding mode and did not encourage 
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schoolchildren to further their reflection.  Indeed, instead of being built on students’ 

work, comments that were written strove students’ thinking towards pre-determined 

answers which is contrary to current tendencies in mathematics education (Astolfi, 2006). 

 

CONCLUSION 

This study draws its originality from the fact that it focuses not only on pre-

service teachers’ perceptions but on the link existing between these perceptions and the 

quality of their formative asynchronous feedback. Linking pre-service teachers’ 

perceptions of what an Internet resource on problem solving can bring to improve 

mathematics teaching and learning to their ability to analyze children’s thinking, we 

aimed to develop practical recommendations on how to build more solid assessment 

competences in pre-service teachers.   

Participation in the online project allowed pre-service teachers to experience new 

mathematical problem solving approaches which stress the use of a multitude of 

strategies and communication means by schoolchildren. They perceived their experience 

as valuable since it permitted them to better understand the problem solving process and, 

in particular, children’s ways of communicating their reasoning.  They observed that 

some problems allow different data interpretation, different solving strategies and 

sometimes different answers. 

Some strategies may be plausible, even ingenious. Others may contain 

misinterpretations, misconceptions, or alternative views. In order to be able to guide 

children through their learning, pre-service teachers have to become competent not only 

in mathematics but also in feedback pedagogy, which sometimes work in the counter 

direction of the traditional didactical contract (Brousseau, 1986, 1988, 1998; Poirier, 

2001). When communicating with schoolchildren about problem solving, our pre-service 

teachers get the chance to work on contextual open-ended problems revising their own 

views of problem solving and its role in mathematics learning.  They also reinforce their 

own conceptual understanding of mathematics and develop a better understanding of how 

children think and explain their thinking.  While writing feedbacks, pre-service teachers 

put in practice their ability to understand the problem itself and to guide children towards 

better problem solving strategies (Freiman et al., 2005; Metallidou, 2009).   
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It’s not easy to understand a child’s reasoning when it is expressed out loud. 

Asynchronous assessment is even more challenging because there is no opportunity to 

give feedbacks in another way than written comments. But our data shows a lack of such 

personal comments.  The comments’ general character may be a result of the pre-service 

teachers’ lack of mathematical background as well as lack of time. If the first two issues 

can be address by better teacher training strategies, the last one may raise a concern.  

Indeed, when schoolchildren are allowed to use a variety of strategies and 

communication means, teachers must give feedback to every one of them.  If pre-service 

teachers don’t have the time to do it with 10 students, how will they find the time to do it 

with 30 students, and possibly 30 different strategies?  Are changes necessary to the 

school system or to the working ethics of pre-service teachers? 
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Appendix 1.  English version of the electronic form in the CASMI site 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feedback 

Analysis of the solution

Section ‐ Interpretation: 

Section Greeting: 

Greeting text: 

General section: 

Section ‐ Data: 

You correctly identified the important data of the problem and you wrote them down. 

You partially identified the important data of the problem.

I would have liked for you to write down the data of the problem. This stage is very important 

in problem solving. 

The goal of the problem was well understood and mastered. Bravo!

The goal of the problem was partially understood and you are on the right track to complete the problem.

The goal of the problem was partially understood. Here is some advice which will help you solve the problem.

The goal of  the problem does not seem  to have been understood. Here  is some advice which will help you 

solve the problem.
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Gifted Students and Advanced Mathematics 
 

Edward J. Barbeau 
 

University of Toronto, Toronto, Canada  
   

Abstract: The extension to a wide population of secondary education in many countries 

seems to have led to a weakening of the mathematics curriculum. In response, many students 

have been classified as “gifted” so that they can access a stronger program.  Apart from the 

difficulties that  might arise  in actually  determining which students  are gifted (is it always 

clear  what the term  means?), there  are dangers  inherent in programs  that  might be devised 

even for those that  are truly talented. 

Sometimes students are moved ahead to more advanced mathematics. Elementary 

students might be taught algebra or even subjects like trigonometry and vectors and 

secondary students taught calculus, differential equations and linear algebra. 

It is my experience  over thirty-five years  of contact  with bright students  that  

acceleration  to higher  level mathematics is often not  a good idea. In this paper, I will 

articulate some of the factors that have led me to this opinion and suggest alternatives. At the 

same time, one needs to deal with truly exceptional students in an appropriate way. 

 

Keywords:  talented students, enrichment, acceleration  
 
 
1.  Beliefs and assumptions 

 
 

The central question in mathematics education is, “Who owns the mathematics?” If the 

answer is not “the student”, then our efforts within and without school are likely to be 

counterproductive.  Traditional education has often led to a syllabus being imposed on 

students as passive recipients, so that whatever richness it possessed was not appreciated and 

thus not understood or retained. 

If students are  to  enter  into  mathematics, it  must  be through  an  involvement  that 

makes it  intelligible,  that ensures  its  applicability and  that leads  to  an  apprehension of its  

power.   An overemphasis  on covering  material, whether  in a traditional approach  or in the  

enrichment  of talented students, runs  the  risk  of reducing  the  occasions  for this 

involvement.   The  point was made  by Nicolas Sarkozy, President of the French  Republic, 

in an encyclical  letter to educators on September  4, 2007 (I am  indebted  to the  French 

Embassy in Washington for the translation): 

Don’t  misunderstand me; my aim is not  to increase the teaching  hours  still further; 

the  timetable is  already  too heavy.  It is not to add yet more new subjects to a list 
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which is already too long. On the contrary, to my mind, the aim is to give back to our 

children time to live, breathe; assimilate what they have been taught. [emphasis mine] 

We need to regain coherence in our educational system.  · · · We need to restore  

coherence within  each  school subject  and  between  these and  society’s expectations,  

once again  find a lodestar  for education, set for its principles,  goals and  simple 

criteria. 

 

It is this  provision  of room  to  breathe and  sense of coherence  and  purpose  behind 

what  we present to students that will help them  engage our discipline  productively.  The 

traditional curriculum  scored  quite  well on  coherence;  elementary students got  a  solid 

exposure to arithmetic and secondary  students might spend a whole year on subjects such as 

Euclidean  geometry,  analytic  geometry, trigonometry,  algebra  and  traditional applied 

mathematics, learning a range of results and techniques  and doing exercises. It often lacked 

the opportunities for students to explore and experiment, to put their own stamp on the 

concepts and procedures they needed to master. 

Teachers must not be put in the position of answering questions that students are not 

prepared to ask.  If we are to proceed to more advanced mathematics, it is because the 

experiences of the students lead them to an apprehension of the need for it.  It might be a 

more general approach  that tidies  up what  might  be otherwise  unmanageable or of more  

powerful  tools to  handle  situations that are  difficult  or  impossible  with  the  tools they  

possess.   Arithmetic is a tool for convenient handling of quantitative information; algebra is 

an antidote to the over complexity of arithmetic solutions to word problems; the 

systematization of synthetic, analytic or transformation geometry allows the encompassing of 

an undisciplined slew of results. 

Thus the pace of introducing new material should be sensitive to how well students have 

assimilated existing material, how flexibly they can negotiate it and their understanding of its 

uses and limitations. 

 
2.  Educational activity: past and present 

 
The  approach  described  has  been  implicit  in many  programs  available  to  students 

over the  years.  The  Gelfand Correspondence Program  in Mathematics, first in the  Soviet 

Union and  latterly  in the  United  States,  has provided a curriculum  for its adherents that is 

coherent  and  interactive  (5). Project SEED Mathematics, originating in Berkeley, CA in the 

1960s is another program, still continuing, that provides an in depth experience for students 

(7).   The  recent  Volume for the  16th  ICMI Study,  Challenging  mathematics in and 

beyond the classroom describes several initiatives, such as the Creative problem solving in 

mathematics (CPSM)  course at  Quincy  Senior High School in Quincy,  IL, that is based on 

a study  of solid geometrical structures, and the Maths `a modeler research  activities  for 

students and teachers  in France,  one of which is focused on tiling (3, p.  189 seq). 
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Even though,  as the Study  Volume indicates,  many educational researchers  are 

studying  and  creating  programs  for gifted  students, it  is hard  to  avoid  the  impression  

that evidence of their  efficacy is largely  anecdotal.  Success seems to be dependent to a large 

degree on the expertise and passion of their proponents and on the readiness of students to 

embrace them.  In many cases, the student participants are either self-selected or identified by 

adults as being suitable.  I am not aware of longitudinal studies  that any particular regime 

leads to greater mathematical awareness and prowess, either among those amateurs of  

mathematics that melt  into the general  public  or those  who proceed to higher  study.  Nor 

am I aware of systematic programs that have been adopted over a large jurisdiction to bring 

along those that are especially interested or capable in mathematics. 

 

3.  Algebra and calculus 
 

Algebra  and  calculus  both  have the  characteristic of being general  methods, capable 

of treating  a  wide range  of problems  and  situations.  In so being, they tend to suppress 

particularities and to see problems as belonging to broader categories. The situation is 

mediated through a specially created formalism that is efficient and sophisticated, so that a 

first-hand feeling for the situation may be lost in the application of a standard procedure. Both 

algebra and calculus are systems of great mathematical power, but this is often traded off 

against transparency and intelligibility. An inexperienced student might see these as 

machines, to be used indiscriminately. 

Students should be exposed to these advanced areas only when they can appreciate their 

significance and understand their use. Indeed, it might be said that the most important thing 

that a young student needs to know about either algebra or calculus is when not to use it. 

Consider algebra.  Its utility for most middle school and early secondary students is in 

the reformulating and solving of word problems.   Some such problems can often be more 

conveniently handled by arithmetic or proportional techniques.  Consider the following 

example: 

 

Example 1.  Two old ladies, Olga and Tamara live in separate towns some distance apart 

that are joined by a single road.  One  morning  at  sunrise,  the  two  ladies  set  out 

simultaneously to walk to the town of the  other,  each walking at  her own constant speed. 

The two passed on the road at noon.  Olga reached her destination at 4 pm, while Tamara did 

not arrive at hers until 9 pm.  What time was sunrise that day? 

When this problem is given to students who have had some algebra, their first impulse it 

to set up some equations and try to solve them.  Invariably, they find this a tough task and 

often do not succeed.  Part of the  difficulty is the  introduction of superfluous  detail, such  as  

the  actual  distance  between  the  towns  or  the  speeds  of the  two  ladies,  which serve to 

obfuscate  the  situation.  What gets lost is the significance of the proportionality inherent in 

the situation: when a person walks at a constant speed, the distance travelled is proportional 
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to the time taken.   Suppose the time taken by both ladies before noon is T hours.   The 

distance walked by Tamara in the morning is the same as that walked by Olga in the 

afternoon, and vice versa. Appealing to the proportionality quickly leads to T: 4 = 9: T and 

the answer T  = 6. Thus, the sun rose at 6 am. 

Accordingly, gifted students should be presented with arithmetic and proportionality 

problems of varying difficulty, and challenged to solve them through basic reasoning.  Some 

might be encouraged to use the sort of diagrammatic methods espoused by Singapore texts. 

(For an example, see (3, p.  290-291).) However, they will find some problems tough when 

only arithmetic methods are available, but routine when algebra can be used. 

 

Example 2.  A man is 6 years older than his wife. He  noticed  4 years  ago  that he  had  

been  married  to  her  exactly  half  of his life.   How old will he be on their 50th wedding 

anniversary if in 10 years she will have spent two-thirds of her life married to him?                  

[International Mathematical Talent Search, Round 17. Consult (6).] 

 

The student who tries to meet this on arithmetical terms has a real challenge, and will 

appreciate how the definition of variables and the use of algebra will clarify the situation. 

However, the application of algebra  is not completely  automatic; the rapidity  of achieving 

success on this  problem  will depend on how  astutely the  variables  are  defined  and  the 

equations  are set up. 

Algebra  should  presented in a context  where the  student  can be expected  to decide 

on where and  how to use it;  sometimes  it  is better avoided;  other  times,  it  is essential. 

Gifted  students need to learn algebra,  which after  all is the  language  of mathematics, but it  

should  be presented  in a measured  way  so  that its  power  is made  manifest  and  the 

student can absorb  and  dwell naturally in its higher  level of abstraction.  Once algebra is 

embarked upon, its use as a tool in all sorts of problems should be explored, not only in the 

setting up and solving of equations, but in problems of maximization, analytic geometry, 

trigonometry, combinatorics. 

For students at the secondary level, calculus is in an analogous position. When it is 

introduced prematurely, students seem inclined to address it only on operational terms. Since 

the only functions secondary students are going to have to deal with to any degree are 

polynomials  and the standard transcendental functions,  they are not sensitive to the issue 

that differential  calculus applies to functions that are smooth  and may see it as applicable to 

anything in sight (such as the absolute  value function).  By not being aware of the more 

subtle  issues and  the  range  of validity  of calculus  techniques,  their  long term  growth  as 

mathematicians may be stunted. Two case studies will illustrate the point. 

This should not be construed as an argument against giving calculus to minors, but only 

that it is given to students with a well-rounded experience in algebra and geometry. As any 

fan of the Putnam competition knows, calculus can be the arena of its own clever and elegant 

challenges. 
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Case Study 1.  Functional equations.   In recent years, it has been common to include 

among competition questions, particularly at the Olympiad level, functional equations that 

have to be solved.  Frequently, there are no conditions on the function apart from the 

equation, so the solution sought is completely general.  However, students immersed  in 

algebra and  calculus,  will often,  probably  unconsciously,  assume  that the  function  in 

question  is a polynomial,  that it is continuous  or that it possesses a derivative.  Acting  on 

this  often leads them  into formidable  computational territory; their  extra  knowledge often 

prevents them  from addressing  the  problem  at  its most basic and  natural level. 

 

Example 3. Problem 2 on the 2008 Canadian Mathematical Olympiad (4) sought the 

solution of the functional equation 
     yxyfxff  2)2( , 
 
where f is defined on the  rationales and  takes rational  values. 

The algorithmic-bound student who either assumes that f(x) is a polynomial or 

differentiates immediately introduces unwarranted complications and restricts the scope of 

the problem. The solver of this needs to take to heart that stark but comforting fact that 

everything available is stated in the problem and has to try to squeeze out of this meagre store 

the maximum possible information. 

This might involve guessing a solution, to see where one might be headed. Or it might 

be trying some basic substitutions (setting variables equal to zero or to each other are 

reasonable options) to get simplifications or more workable conditions. In this case, one can 

find that  

       yfxfyxff  22,00  and    xfxf 22   for all x and y. 

 

The experience that students might obtain  from such problems  might well lead to an 

easier embrace of axiomatic  systems  in their  later  studies,  where they  need the  discipline 

of assuming  exactly  what  is given and  putting  aside extraneous details. 

 

Example 4. Solve the functional equation 
 
 

         224 yxxyyxfyxyxfyx   
for real x and  y, 

 
Noting the role of x ± y, one can try the substitution yxvyxu  ,  to obtain 

      uvvuvufuvf 22   
 
for real u, v. One can “separate the variables” to obtain 

    22 v
v

vf
u

u

uf
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from which it is deduced  that   3xcxxf   for some constant c. It can be checked 

that this works. 
 
 

Notice in this example how little one has to rely on technical results and processes, and 

how much depends on intuition and ability to draw out the significance of the equation 

resulting from separating the variables. Students will often have initial difficulties with these 

sorts of problems, but given enough time and experience, they will develop the experience 

and divergent thinking that will more reliably lead to success. 

 

Case Study 2.  Inequalities and optimization.  If students are exposed to calculus while 

their algebraic background is sparse, they are inclined to see every inequality and 

optimization problem as an occasion for taking the derivative. It is useful to defer calculus 

until students have learned various algebraic techniques for dealing with inequalities. These 

often involve techniques such as completing the square, expansion, rearranging and factoring 

of expressions to expose clearly the sought inequality, and so provide the student with 

practice in reading algebraic expressions and extracting information from them. This could be 

combined with the derivation of and experience in dealing with standard inequalities such as 

the arithmetic-geometric means inequality, power mean inequalities and the Cauchy-Schwarz 

inequality. Indeed, an examination of Olympiad inequalities suggests that probably three 

quarters of them can be handled with an astute application of the arithmetic-geometric means 

inequalities. 
 

The  student  who resorts  to  calculus  to  solve inequality  problems  runs  three  risks. 

The first is that, in missing the salient features of an inequality or optimization problem, she 

complicates the situation. The second is that the  solution  may  not  be  complete; having  

found  the  condition  for the  vanishing  of a  derivative,   the student may  neglect giving an 

argument to justify the nature of the optimum. The latter danger  is particularly pronounced  

if the student is equipped  with the howitzer  of Lagrange  Multipliers;  this is a neat  

technique,  but  often the classification of the optimum  can be tricky. The third  is that she 

might not develop the valuable  ability  to “read”  algebraic  expressions  and  develop an 

instinct for performing  the  most appropriate and  effective manipulations. 

Another pitfall that occurs in this area is that students forget that the essence of solving a 

problem is to reduce it to something more elementary and straightforward. There is an 

unlimited supply of inequalities of ever increasing sophistication and power, and many 

students lack the maturity to adjust the strengths and generality of the tool to the situation at 

hand. 

 

Example 5.  A good example appeared as Problem 3 on the 2008 Canadian 

Mathematical Olympiad (4).  Candidates were asked to show, for positive reals a, b, c 

satisfying a + b + c = 1, that  
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This drew more solutions than expected, that ranged from very straightforward to 

extremely complicated; a few appealed to the very general Muirhead majorization 

inequalities (for which I had to access Google for enlightenment) (8). However, elementary 

algebraic manipulation leads to the equivalent abccabcab 9  or  

 cba
cbacba







 

111111
9  

which is a consequence  of the  Cauchy-Schwarz inequality. 
 
Example 6. For x, y, z > 0, show that 

        
10







 yzxzz

z

xyzyy

y

zxyxx

x

 
 

Since combining terms on the left side or using calculus to maximize it is particularly 

nonappetizing, it is best to look for elementary methods and insights.    

The basic   0
2
 yzx  leads to     2zyxzxyx   and a quick evolution 

to the solution. 

While neither example is obvious, both underscore the utility of learning how to read the 

structure and seeking insight rather than charging ahead with a standard approach. 

In summary, the mathematical growth of students in the exercise of judgment should be 

kept commensurate with the exploration of new and higher level material. 

 

4.  Subjects suitable for gifted students 

In selecting a program for gifted students at the precollege level, the emphasis should be 

on broadening the experience of the regular syllabus rather than on acceleration. One has the 

opportunity of covering topics that are attractive, yet not likely to figure in main stream 

mathematics education. I will mention some of these: 

Geometry. School geometry  tends  to  be  sparse,  and  in  many  jurisdictions,  there is a 

tendency  towards  empirical  geometry  using  technology.  The use of resources such as 

Geometer’s Sketchpad is a welcome addition to the syllabus, but it may displace other 

important aspects of the mathematical experience. Unless it is part of an enriched program, 

Euclidean geometry is unlikely to figure as part of a student’s mathematical education. 

Elementary geometry is all about circles and triangles, figures that admit an unlimited 

supply of properties and relationships. It betokens the fecundity of mathematics; after 2500 

years, new results are still being found and old ones reestablished in ever more elegant ways. 

It links mathematicians across time  and culture,  is shared  by amateurs and  professionals, 

hones analytic  and  logical skills, fosters competency  in exposition,  sharpens  the  aesthetic 

sense and provides an ample stage for investigation, ingenuity and achievement. It provides a 
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handsome supply of tools – traditional Euclidean derivation, transformations, vectors, 

analytical geometry, complex numbers – for the solutions of problems. 

The ability  to use transformation arguments, in particular, is particularly exciting for the 

novice, as such arguments rely on exposing and exploiting  the basic structural aspects of the  

situation and  give an  insight  into why the  result  holds that Euclidean  or analytic methods  

often fail to do. 

 

Number theory. Elementary number theory is another attractive area for young students.  

Not  only  should  they  learn  the basics  of prime  factorization,  common  multiples and 

divisors, but they should master the use of modular  arithmetic (something  is probably  easier 

picked up by the young than  by many students later  at college age).  The solution  of 

Diophantine equations  provides  an excellent challenge for students at  the secondary  level, 

as they  are required  to assimilate  and  select the  right  algebraic  and  numerical  facts  and 

techniques.  A particular equation that is ideal for the young is Pell’s equation.  It is easily 

motivated and readily understandable, and provides the occasion for a great deal of empirical 

investigation.  Yet the  methods for treating this  equation  provide  a natural home for surds 

(a topic given at most a cursory treatment in the standard curriculum) and provides direct 

experience in issues that will be taken up in more detail in the study  of computation and  

number  theory,  modern  algebra.  An indication of what is possible is provided by my book 

Pell’s equation (2). 

However, again  care needs to be taken  when more advanced  work is undertaken or 

referred to that students do not lose a sense of appropriateness and judgment. They  need to  

realize  that the  Dirichlet  result  about  the  infinitude  of primes  in certain  arithmetic 

progressions  is deep,  and  not  to  be  thrown  into  a  solution  when  simpler  resources  are 

available. 

 

Polynomials. For about nine years, I presented a course on polynomials to secondary 

students that terminated in an optional final examination. This was an ideal topic for gifted 

students, as it combined practicality with an concrete gentle introduction to important areas of 

advanced mathematics, including complex analysis, inequalities, number theory, modern 

algebra, approximation theory, dynamical systems, combinatorics and, yes, calculus. This 

eventually resulted in a book (1). As there  were many  topics  that  would be useful for 

students to know, but  that might likely not meet in a college course, it could be  regarded  as 

an  amplification  of high  school work in which student  derived  practical  experience with 

examples  of higher level theory  later  encountered  at  college. 

 

Functional equations. An area that was almost non-existent two decades ago, functional 

equations now occur regularly on competitions. This is an excellent realm of challenge for 

secondary students, who often require only basic reasoning and elementary facts, but need to 

collect the evidence about the unknown function carefully and cogently. 
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Combinatorics. Although combinatorics has increasingly become part of the 

undergraduate mathematics curriculum, there is an elementary dimension to this division of 

mathematics that makes it eminently suitable for the young. The Pigeonhole Principle and 

Inclusion-Exclusion Principle are two techniques that are at once powerful and accessible. 

The use of generating functions provides exercise in algebraic techniques along with an 

indication of how one area of mathematics can enrich another. As with geometry, a high 

premium is put on careful argumentation, so that the skills of the student in organization and 

exposition can be enhanced. 

 

Recursions and Dynamical systems. Elementary finite differences, in particular the 

solving of recursions, is an elementary topic that can be part of the arsenal of gifted students. 

Linear recursions share many structural properties with linear systems of algebraic or 

differential equations, and so provide a larger context for linear algebra that will be studied 

later. Dynamical  systems, particularly the study of the logistic recursion, requires only basic  

algebraic and calculus background, and serves as an occasion for computer  investigation and  

a study of approximation. 

 

Trigonometry. This branch of mathematics has become considerably emaciated in the 

standard syllabus in North America. This is unfortunate, as trigonometry is an elegant 

formulation for dealing with situations that at root involve similar triangles in a powerful 

way.   It  stands  at  the  crossroads  of pure  and  applied  mathematics, and  provides a firm 

foundation for studies  in either  of these directions.  Combining ideas of algebra and 

geometry, it is a platform to encourage facility and insight in both areas, one should that be 

part of the educational experience of any gifted student in mathematics. It also provides a 

home for complex numbers, which lives only as an orphan in the standard school syllabus; 

many trigonometric manipulations can be handily done using complex techniques. 

 

Cardinality. Many students are confounded at college by a failure to understand the 

nature of the continuum. For gifted students, this can be circumvented by embarking on an 

early and leisurely examination of the real number system to get a feel for its complexity. 

This includes understanding countability and uncountability, and realizing that by this 

criterion, the sets of rationals and nonrationals are essentially different. The study of infinity 

is often quite difficult even at the college level, but an argument can be made for dealing with 

it early before students have had a chance to form prejudices. 

 

History. Young students can usefully be introduced to some aspects of the history of 

mathematics. There is value in seeing how our predecessors tackled problems before modern 

mathematical structures were in place and to gain some understanding of how these structures 

were conceived and formulated. Apart from Euclidean  geometry, students can study  with  
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profit  the  solution  by Euler  of the Konigsberg bridge problem, precalculus determination of 

areas and  tangents (the cycloid gives some beautiful case studies), the beginnings of number  

theory at the hands of such masters as Fermat (see (2) for a treatment of Pell’s equation), 

attempts to solve exactly or approximately polynomial equations and  the analysis of 

algebraic curves. The Mathematical Association of America and the American Mathematical 

Society both produce books that can be read by secondary students. 

 

§4. Conclusion. 

In dealing with gifted students, the guiding principle should be to broaden the experience 

of the students at each level, and not to proceed to more advanced work unless it is carefully 

prepared for. Advanced mathematics involves more abstraction and generality, and so is 

inclined to increase the intuitive distance between the student and the mathematics, unless the 

intuition itself is enriched. There is a trade-off between the intelligibility of particular 

situations presented at a lower level and their capacity for inclusion in a broader sphere at a 

higher level. To appreciate the power and elegance of higher mathematics, and to exploit it 

judiciously, students need time and experience to develop comfort and facility with 

sophisticated matter. 
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Disrupting gifted teenager’s mathematical identity with epistemological 
messiness 

Paul Betts, University of Winnipeg, Canada 

Laura McMaster, Miles Macdonell Collegiate, Canada 

 

Abstract.  Mathematics is widely perceived as a universal and uncontested discipline, 
contrary to the philosophy of mathematics literature.  Other researchers have considered 
the potential role of philosophy in school, but there is little work with gifted students 
engaged with issues concerning the nature of mathematics.   We developed a philosophy 
of mathematics unit intended to enlarge gifted students’ perceptions of the nature of 
mathematics by exposing the uncritical and tidy rendering of mathematics within school 
math.  Using a narrative methodology, we attended to gifted student’s students’ stories of 
relationship with mathematics, based on the premise that a person’s relationship with 
mathematics is inextricably woven together with their identity.  In this paper, we will 
focus on the experiences of three gifted teenagers during our philosophy of mathematics 
unit.  We found that these students were disrupted and compartmentalized their school 
math and philosophy of mathematics experiences and beliefs.  We conclude that 
substantive experiences with the nature of mathematics should be a regular component of 
school math. 
 

Key words: philosophy of mathematics, gifted high school students, mathematical 

identity, narrative 

INTRODUCTION 

For me, yeah I don’t like it – grayness in math.  I think of math as right or wrong 

(Dorothy, a high school student in the IB program). 

 

It is well known that mathematics is perceived as a universal and unquestioned 

body of knowledge.  This positioning of the nature of mathematics in wider society is 

reflected in curricular documents and in the teaching of mathematics.  Curriculum 

recommendations do not, to our knowledge, ever refer to possible philosophically-based 

goals or learning outcomes (see, for example, National Council of Teachers of 

Mathematics, 2000; Western and Northern Canadian Protocol, 2006; Manitoba 

Education, 2008).  Teachers, en masse, believe that mathematics is absolute (at a 

superficial level), and reproduce these beliefs among their students (Philipp, 2007). 
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Contrary to the popular positioning of mathematics in school math and the wider 

society, philosophers have debated the epistemological status of mathematics at least as 

far back as Socrates.  These debates revolve around the questioning of mathematics as an 

absolute body of knowledge and are far from resolved.  Various fallibilist positions have 

been developed by mathematicians (e.g., Davis & Hersh, 1981), mathematics educators 

(e.g., Ernest, 1998), philosophers (e.g., Lakatos, 1976), and cognitive scientists (e.g., 

George Lakoff & Nunez, 2000). 

Given the premise that school math is presented as a neat, tidy and undisputable 

collection of facts, we developed a “messy” conception of the nature of mathematics, and 

then developed activities intended to explore this messiness with gifted teenagers.  Our 

goal was to use messiness to expand gifted high school students’ conceptions of the 

nature of mathematics.  Not surprisingly, given many years of exposure to a narrow and 

tidy vision of mathematics in school, the gifted students we worked with struggled to 

make sense of mathematics as messy. 

Philosophy based programs of study for children and young adults are not a new 

idea.  For example, the Philosophy for Children (P4C) program was initiated in the 

seventies by Lipman, premised by the idea that children and young adults can think 

philosophically, and so philosophy should not be relegated to college-level study 

(Lipman, Sharp, & Oscanyan, 1980).  These programs also tend to share the following 

qualities: (1) pedagogy is rooted in open dialogue, where a context, such as a story (e.g., 

Lipman, 1988;), or a story beginning (e.g., Matthews, 1984) is used to trigger a teacher-

facilitated discussion of a philosophical issue; and (2) content is usually focused on 

general philosophical issues such morals, ethics, truth, and rarely considers discipline-

based issues.  The effects of these programs have been well documented.  In general, 

these programs improve the thinking (e.g., Naji & Ghazinezhad, 2008) and other 

curriculum-based skills of students (e.g., Trickey & Topping, 2004). 

Specific issues arise when considering exposing children and young adults to 

ideas from the philosophy of mathematics.  Given that mathematics is perceived as 

(superficially) absolute within school math and by the wider society, what is there to 

discuss philosophically?  Daniel et.al. used the P4C model to develop a philosophy of 

mathematics program (called P4CM) for children and young adults (Daniel, Lafortune, 
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Pallascio, & Schleifer, 1999).  Stories with mathematical content were used to trigger 

open dialogue concerning philosophy of mathematics.  They found various kinds of 

evidence that participation in P4CM is beneficial; for example, negative attitudes toward 

mathematics are reduced (Lafortune, Daniel, Pallascio, & Schleifer, 1999).  Others have 

successfully implemented variations on P4CM.  For example, while working with junior 

high students, Martin (2008) used a story that raises the issue of making a perfect cube to 

trigger a conversation about whether a perfect cube actually exists; the ideas within the 

conversation of these students were consistent with ontological views of Aristotle and 

Plato. 

 For all of these philosophical programs, questions remain concerning the process 

of students’ development of enhanced thinking.  In particular, while participating in open 

philosophical dialogue, students would be individually making sense of philosophical 

issues.  There would likely be changes in their informal, implicit personal philosophies.  

What sorts of changes might occur and how do they occur?  These questions apply 

equally to gifted and the general student population.  In particular, it is not clear in what 

ways gifted students would respond to a unit of activities focusing on issues concerning 

the philosophy of mathematics.  For example, we found various positioning of gifted 

students toward a philosophy of mathematics unit, including confusion, resistance and 

engagement (McMaster & Betts, 2007). 

We wondered if the gifted students we work with would be more or less open to 

entertaining alternative visions of mathematics.  Would they be responsive?  Would their 

gifted abilities contribute to or hinder their responsiveness?  We considered this research 

to be a first foray into these questions, and therefore deliberately decided to take an 

exploratory approach.  Because we hoped to expand students’ perspectives of 

mathematics, because we believed gifted students would be able to handle ideas that 

would appear foreign to their past experiences with mathematics, and because our 

activities come near the end of a course on philosophy, we did not expect to be disruptive 

of their relationship with mathematics.  Our efforts disrupted student relationships with 

mathematics, but it is unclear whether their perspectives were enlarged in a stable way.  

In this paper, we will look closely at how three gifted students adapted to the disruptions 

triggered by a “messy” rendering of the nature of mathematics.  We will suggest that 
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these students navigated the disruption by compartmentalizing their experiences, which 

likely allowed them to protect their identities in relation to mathematics. 

 

RESEARCH METHODS 

In this research project, our goal was to expand our IB student’s appreciation of 

mathematics.  To detect this goal, we used a narrative methodology (Clandinin & 

Connelly, 2000) – we sought to detect student’s stories of identity in relation to 

mathematics.  Narrative assumes that we use story to make sense of experience and that 

experience is storied (Clandinin & Connelly, 2000).  Hence, we looked for student stories 

that suggested how they were positioning themselves in relation to the ideas presented 

during our philosophy of mathematics unit. 

A narrative approach is suitable to the nature of our research questions.  This 

paper represents results from an initial project concerning gifted student’s positioning of 

self and others that are triggered by experiences with the nature of mathematics.  We are 

less concerned with what students know or learned about mathematics or the nature of 

mathematics.  Rather, we sought to understand the role of their identities (as learners and 

gifted students) as they struggled with novel ideas concerning the nature of mathematics.  

Our focus is on experience and identity; hence the uses of a narrative approach. In what 

follows, we describe the participants and their context for this study, methods of data 

collection and analysis, and our philosophy of mathematics unit based on epistemological 

messiness. 

Participants and context 

The students we worked with were enrolled full time in the International 

Baccalaureate (IB) program, and in their final year of high school.  We consider these 

students to be gifted because they are high performing academically and highly motivated 

to be successful. The IB program is a “demanding two-year curriculum that meets the 

needs of highly motivated students” (International Baccalaureate Organization, 2005-

2009c), and so it is considered an advanced placement program of study, attracting 

students with the highest grades in regular studies.  At the very least, all the students were 
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academically precocious, based on grades.  The three students we focus on in this paper 

are among the best in the IB program at this school.  Dorothy is a multi-sport athlete with 

high marks in all subjects, and scored in the top 15% in English among all IB programs in 

the world.  Mary consistently receives the highest grades in all subjects among all 

students in the IB program in her school.  John scores high marks in all courses, and is 

considered brilliant in math and science by his teachers. 

 The IB program is implemented by high schools around the world, all following 

an academically advanced and standardized curriculum (International Baccalaureate 

Organization, 2005-2009b).  The IB curriculum includes a course called Theory of 

Knowledge (ToK), which focuses on ways of knowing, including epistemological issues 

specific to major disciplines (International Baccalaureate Organization, 2005-2009a).  

The philosophy of math unit within ToK is an ideal location to introduce the notion of 

epistemological messiness.  All students who participated in this project were enrolled in 

the Theory of Knowledge course, as well as other IB courses that would be considered 

advanced versions of standard high school courses, such as Math, Science, and English.  

The philosophy of mathematics unit came near the end of the ToK course, so general 

ideas (e.g., Plato’s Forms, aesthetics) where available to apply to the particular case of the 

discipline of mathematics. 

Data collection and analysis 

 Stories of student identity in relation to mathematics were constructed from data 

collected before, during and after the philosophy of mathematics unit.  Before beginning 

the unit, we interviewed each participant, seeking to establish their appreciation of and 

attitudes about mathematics.  These interviews revealed what we expected: mathematics 

is absolute and so why would there be a need to consider philosophical aspects of 

mathematics.  Thus, we knew at the start of the unit that students would tend to story the 

experience with narratives such as “math is inaccessible” and “math is black and white.”  

We speculated that these stories would be intimately tied to how they made sense of 

ideas.  For example, Plato’s Forms may prop up a student’s identity of “yes, math is 

inaccessible.”  We also suspected that students would need to negotiate tensions between 

ideas developed during the unit and their life of experiences with mathematics dominated 
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by just one vision of mathematics, namely, math is a perfect and uncontested body of 

knowledge. 

 During the unit, we asked students to write a reflective journal at the end of each 

class.  These served a pedagogical purpose: they provided us with insight on student 

thinking for assessment purposes, allowed us to provide feedback to students for the 

purpose of encouraging further elaboration of their ideas, and were used to showcase 

student ideas in subsequent classes.  The journals were also used for research purposes.  

They became a source of data for detecting student’s stories of identity in relation to 

mathematics. We also kept field notes of interesting conversations that occurred during 

the classes, which also served as a source of data. 

 After the unit was complete, we selected ten students to participate in an in-depth 

interview.  We used two criteria to select candidates.  First, we sought candidates that 

seemed to display exceptional giftedness.  Although this tended to correlate with grades, 

we looked for students who displayed exceptional thinking during classes, such as an 

ability to develop an idea or the soundness of their ideas.  Second, based on the journals 

and field notes, we tried to select candidates with differing reactions toward the unit.  For 

example, John aggressively accepted Formalism throughout although began to consider 

Embodiment at the end of the unit, whereas Mary quietly embraced Platonism 

throughout, whereas Dorothy seemed undecided throughout but tentatively considered 

Proofs and Refutations (see next subsection for descriptions of these philosophical 

positions).  The final interview lasted about an hour, was open ended, and focused on 

encouraging and challenging students to describe and develop their views concerning the 

nature of mathematics. 

 We decided to describe the stories of three students, Dorothy, Mary and John.  We 

believe that each of these students are quite different, and taken as a whole are reflective 

of the diversity of the class.  They are also among the most gifted of the students who 

participated.  And yet, despite the diversity suggestive of our small sample, we found a 

common theme in their stories, namely, a navigation of disruption of their identity in 

relation to mathematics.  In the next sections, we will try to illustrate these stories of 

navigation of disruption. 
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 Data analysis proceeded in two phases.  First, we focused solely on developing 

the story of each of the three students (and the other students who participated in the post-

interview), without comparison.  We each developed a story and then, through a process 

of dialogue and reexamination of the data, we came to an agreement on each story.  Our 

differing perspectives as regular-teacher-of-these-students and researcher-from-outside-

the school were complementary, and, we believe, adds to the trustworthiness of our 

interpretations.  From these stories, we selected three for further analysis.  We then 

looked for themes across the stories of the three case participants.  It was during this 

second phase that we came to agree on the theme of disruption, and when we began 

orienting their stories as one of navigating disruption. 

An epistemologically messy philosophy of mathematics unit 

Numerous mathematicians have described the work they do using journey or 

process metaphors, which belie the neat and tidy presentations of mathematics found in 

most expository texts, including school math text books.  For example, 

When asked what it was like to set about proving something, the mathematician 

likened proving a theorem to seeing the peak of a mountain and trying to climb to 

the top.  One establishes a base camp and begins scaling the mountain's sheer 

face, encountering obstacles at every turn, often retracing one's steps and 

struggling every foot of the journey.  Finally when the top is reached, one stands 

examining the peak, taking in the view of the surrounding countryside and then 

noting the automobile road up the other side! (Kleinhenz, 2007) 

What is described in math textbooks and taught in school math classes is the “automobile 

road up the other side,” which clearly hides most of what it means to do math.  And yet, if 

students are to appreciate math (a goal found in all curriculum documents we are aware 

of!), then they should experience the doing of mathematics.  The quote above begins to 

question a tidy rendering of doing mathematics – there are frustrations, false starts, back 

tracking, and numerous other accomplishments and setbacks along the way.  At the very 

least, problem solving is more than a linear sequence of steps, and there is always more to 

do even after a problem is solved.  This is a starting point for recognizing that school 

math experiences hide philosophical issues.  It is with this rejection of the tidiness in the 

representations of school math that we use as a starting point for the nature of 
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mathematics as messy.        

 We wish to be critical of a tidy vision of the nature of mathematics that seems to 

be universally propagated by school math.  Mathematics as a perfect and uncontested 

body of knowledge is a tidy position – there is no uncertainty and hence no messiness.  

But numerous philosophers have questioned the certainty of mathematics.  For example, 

Davis and Hersh (1981), who are mathematicians, suggest that mathematics is a human 

endeavor, and hence subject to the same fallibilism as any human endeavor.  Ernest 

(1998) developed a fallibilist position by drawing on a social constructivist perspective.  

Although school math does not explicitly present a philosophy of mathematics, its tidy 

enactment commonly engenders superficial absolutist positions among student’s personal 

working philosophies.         

 We developed a philosophy of math unit based on exploring four distinct 

philosophical positions concerning the discipline of mathematics.  Each of these positions 

were given credence as viable philosophies, where deeper explorations of each were 

intended to invite students to attend to and critique the tidy renditions of school math 

common to their mathematical experiences.  First, we broadly distinguish between 

Absolutism (math is universal and infallible) and Humanism (math is fallible).  We then 

developed two example positions for each broad category: Platonism and Formalism for 

Absolutism, and Proofs and Refutations and Embodiment for Humanism.   

 We gradually developed each of these positions through a series of activities, each 

activity usually built from a specific high school math context but examined from a 

philosophical perspective and with minimal attention to teaching the mathematics 

involved (we ensured that the mathematical concepts explored were familiar to students).  

A messy rendition for the nature of mathematics emerges in two ways:  each 

philosophical position by itself carries numerous opportunities for critique of the neatness 

of school math, and the availability of multiple positions for the nature of mathematics is 

an opportunity to perceive the philosophy of mathematics as a contested body of 

knowledge.  In what follows, we provide a brief description of each position, and of one 

example activity, to illustrate the content of our philosophy of mathematics unit [see Betts 

(2007) and McMaster & Betts (2007) for more detailed descriptions of our philosophy of 

mathematics unit]. 
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 Platonism is an absolutist position based on Plato’s “allegory of the cave” and 

Plato’s “Forms” (Govier, 1997).  Forms are the ideal – a universal representation of the 

particulars accessible to humans.  The cave allegory suggests that humans perceive only 

shadows of perfection – being the Forms – and are chained down, unable to be free of the 

cave to experience perfection.  So, in particular, mathematical concepts, such as the 

fraction ½ and a drawing of a line, are but imperfect representations of the Form for a 

concept.  School math pretends to present ideas as if they are ideal.  A line is drawn as if 

it is a “perfect” line, rather than as a representation of a line that is good enough for the 

purposes of the current mathematical argument.  Platonism can trigger critique of the 

neatness of school math because humans cannot access the ideal – the Forms – and hence 

must account for the imperfection of a human representation of a mathematical idea.  

Erdos, one of the most prolific mathematicians ever, was a proponent of Platonism 

(Hersh, 1997).   

Formalism is also an Absolutist position, and is based on the premise that error 

enters into mathematics when its ideas are operationalized in human contexts (Hersh, 

1997).  For example, Russell’s paradox arises because it is represented using language, 

and so is subject to the fallibility of language.  Mathematicians such as Hilbert set out to 

formalize mathematics as a symbolic system independent of language (Mancosu, 1998).  

In essence, mathematics is a set of symbols and rules for manipulating these symbols, 

which have no meaning in the real world.  According to the mathematician Hardy, only 

pure mathematics, mathematics that is unconcerned with application in the real world, is 

real mathematics (Hardy, 1992).  Students can engage with the idea that mathematics 

does not come in a perfect package; rather, mathematicians have worked hard to remove 

error from mathematics.  Hardy would argue that school math is not real mathematics, 

which can lead students to question the tidy renditions of school math as misleading. 

 One of the Humanist positions is based solely on the ideas developed by Lakatos 

in his book Proofs and Refutations. Lakatos used the historical development of Euler’s 

formula to describe various iterations of the following process: conjecture, proof of 

conjecture, refutation of conjecture (e.g., by counter example; critique of proof, 

definitions, and/or axioms), leading to a new conjecture (by modifying definitions, 

axioms, and/or the actual conjecture) (Lakatos, 1976).  This position is messy in two 
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ways.  First, a result is sanctioned by the mathematical community not just by proof, but 

by a process of error detection and adjustment to account for the error.  Mathematical 

decisions can be based on criteria other than logic, such as aesthetics.  Second, a theorem 

can always come under scrutiny, even if it has been sanctioned as true by the mathematics 

community – in other words, we can never be 100% sure that a conjecture and its proof is 

true because another refutation may arise in the future.     

 The other humanist position, which we call Embodiment, is based on the ideas of 

Lakoff and Nunez.  The reader should consult other writers for more detailed descriptions 

of embodied cognition in general (e.g., G. Lakoff & Johnson, 1999) and as it relates to 

mathematics (e.g., George Lakoff & Nunez, 2000).  A key principle is that mathematical 

ideas start from our experience as humans and are built up via a series of metaphorical 

mappings.  For example, the notion of continuity of the real number line comes from our 

embodied experience of motion.  The real numbers is a discrete and infinite collection of 

numbers, but is also represented as a continuous line.  We can manage these realizations 

of real numbers because we can experience continuous motion between two points, 

which is also a travelling of an infinite number of discrete points (e.g., the halfway point).  

The embodied experience of motion from A to B is metaphorically mapped onto the 

notion of an interval of the real number line, such as all real numbers from 0 to 1.  An 

embodied vision of mathematics is messy because the idea that mathematics is universal 

and independent of humanity is completely rejected. 

 One of the activities we used near the beginning of the unit involved the circle.  

We asked the students to come up with more than one answer to the following question, 

and to be able to justify their answers:  How many sides does a circle have?  We know of 

5 distinct and mathematically viable answers to this question, of which, we will describe 

three: (1) no sides because sides are straight and a circle is curved; (2) one side, which is 

the edge going all the way around the circle; and (3) infinitely many, because a circle is 

the limiting case of a regular n-sided shape as n approaches infinity (in the limit, there is 

an infinite number of sides, each of length 0).  After generating a list of answers that 

seemed mathematically correct and trying to justify which answer could/should be the 

correct answer, we asked students to reflect and discuss what this situation means for the 

nature of mathematics. 
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 This activity allowed us to develop several philosophical issues, based on the 

ideas of students.  If, for example, we pick one answer, how do we know for certain it is 

correct, which allows us to point to a broad distinction between Absolutism and 

Humanism.  The distinction arises because of the potential for opting for an answer that 

later turns out to be rejected – does this mean that mathematicians can eventually remove 

all error with careful analysis, or is mathematics a human endeavor so that it must be a 

fallible body of knowledge.  Another issue arises concerning the inaccuracy that must 

arise in drawing a circle, which leads to the idea of a perfect circle and Plato’s Forms.  

Finally, in the debate about which answers to accept, the issue of agreeing on the 

definition of a side arises, leading to a discussion of Lakatos’ heuristic, where we 

consider the refutation of an idea through the contesting of a definition. 

 The circle activity is not immediately used to illustrate Embodiment.  The 

Embodied position is difficult to develop because it is based on attending to subtle and 

taken-for-granted aspects of human experience.  After an initial encounter with 

Embodiment that is not grounded in a mathematical context, we revisit previous 

examples for evidence of this position.  For the circle example above, we wonder how to 

imagine how n-sided shapes of increasing n approach a circle but the circle doesn’t 

disappear in the limiting case.  How do we do this?  We can’t draw a circle as an infinite 

number of sides of length zero.  But we can experience a circle as a continuous curving 

line that loops back onto itself, which is metaphorically mapped onto the limiting case 

definition of circle. 

 The example above also illustrates the pedagogical principles used to implement 

our philosophy of mathematics unit.  We followed teaching ideas used in the P4C model.  

In particular, we sought to establish an environment where open dialogue concerning the 

nature of mathematics was facilitated.  We encouraged students to state and defend 

philosophical positions.  We resisted the urge to tell students about the philosophical 

positions of others or to suggest a “best” position.  We considered it tantamount that 

students not consider us, as teachers, to be the final arbiters of a correct philosophical 

position or argument.  Rather, we sought opportunities to validate student thinking by 

labeling their ideas as following a specific philosophical position.  So, for example, when 
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a student argued that the circle example above suggests that mathematical results change 

over time, we suggested that their position was similar to that of Lakatos.    

Students were encouraged to and did begin to develop their own personal 

philosophical positions concerning the nature of mathematics, rather than merely 

reproducing ideas from us.  Our pedagogical emphasis on dialogue and refusal to 

sanction one philosophical position as correct led students to think deeply about the 

philosophical implications of the mathematical contexts we explored and about their own 

experiences with mathematics.  Students had no difficulty applying to the case of 

mathematics ideas previously developed in their philosophy course.  We noticed students 

suggesting that aesthetics is an important consideration, leading to an interrogation of 

proof as the only arbiter of mathematical truth.  Students also were able to critique 

mathematical aspects of the contexts we presented.  The idea that we must decide on the 

meaning of a side during the circle activity above was brought forward by the students 

without prompting from us.  With some scaffolding we were able to help students notice 

superficial uses of Humanism and Absolutism.  They, for example, began to recognize 

that falliblism is not the same as solipsism.  Most significantly was the critical thinking 

inherent in the questioning of students:  How do we gain knowledge of the Forms if we 

can only access the imperfect – if we are trapped in the cave?  Why isn’t it possible for 

mathematical results to be certain even though they emerge from human experience?  

These questions respectively represent a critique of Platonism and a synthesis of 

Absolutism and Embodiment.  The students, in general, did engage with philosophical 

ideas, critique the neatness of school math, and begin to appreciate the philosophy of 

mathematics as a contested body of knowledge [see McMaster & Betts (2007) for further 

details].  

RESULTS - DESCRIBING EACH STUDENT’S STORY OF NAVIGATING 

DISRUPTION 

 Our focus in this paper is not what students learned.  We saw significant evidence 

that the students engaged with philosophical ideas, and take it as a given that they learned 

about philosophies of mathematics.  Our focus on student identity leads us to notice how 

their thinking about the nature of mathematics was intricately woven together with their 

relationship with mathematics and their identity in general.  Philosophical ideas 
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concerning the nature of mathematics are not evident within these students’ prior 

experience, but their identities do matter as they take-in and work with these ideas, 

independent of their common experiences of math as a neat collection of facts and rules 

to follow.  We found that many student’s identities in relation to mathematics were 

disrupted.  In previous work, we developed a general description and characterization of 

the disruption for all students who participated in our philosophy of mathematics unit 

(see McMaster & Betts, 2007).  In this paper, we focus on a deeper description of how 

three students navigated the disruption of their identity in relation to mathematics.  Each 

student started the unit believing mathematics was tidy and uncontested, and this belief 

was implicitly challenged by the activities during the unit.  For each case, we try to 

establish a chronology for each story, based on their identity before the philosophy of 

math unit (as per pre-interview), during the unit (journals and in-class observations), and 

after the unit (as per post-interview). 

DOROTHY 

Before the philosophy of mathematics unit began, Dorothy expressed a joy for 

learning in general and math in particular.  She expressed a real satisfaction in obtaining 

the right answer in math, which is a feeling that she has valued since early elementary 

school.  She prefers certain branches of math, such as algebra and trigonometry, over 

others such as probability, because she doesn’t like having what she calls “options” in 

probability.  She also likes the process of working through a precise sequence of steps, 

where that process is clear and linear, a process she describes as “exactly how things fall 

into place.”  She wants to know how it works, but only wants it to work in one way.  One 

right answer is what she wants.  At the conclusion of this pre-interview, she states, though 

not rudely, that she just wants to “stop talking about math.”  Dorothy is interested only in 

the business of doing math that involves arriving at the right answer, and finds it 

uncomfortable and disconcerting to delve into the philosophical issues that accompany it.  

Dorothy carries a tidy rendering of the nature of mathematics:  results are either right or 

wrong, there is one method for solving each problem, and each method is essentially an 

algorithm.  Dorothy’s implicit personal philosophy of mathematics is a superficial form 

of absolutism, propped up by her success with doing school math. 
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During the philosophy of mathematics unit, Dorothy freely expresses feelings of 

confusion.  She is clearly not comfortable with this feeling, and tends to seek simplistic 

resolutions to the issues presented in class.  For example, in an early journal she wrote:  

“It is just simpler to accept what we are told than to dispute it.”  She does not want to 

enter this debate at all, but since she is required to, she advocates for math that is simple 

and useful.  In a later journal, she agrees with the Humanist position because it is simple, 

not just from a mathematical point of view, but from a human point of view.  She wrote:  

“We must make adjustments to mathematical concepts for sheer simplicity in life.”  She 

objects to discussing the issues.  This discussion frustrates her because she does not see 

its purpose.  We believe this is because she has been indoctrinated to be very goal 

oriented, rather than to see the value of the messy discussion that we undertook in class. 

After the philosophy of math unit, Dorothy was still reluctant to talk about the 

nature of math, and seeks to keep issues of messiness in math from threatening her prior 

experiences with a right/wrong dichotomy approach to math that she has been trained to 

value.  She is willing to discuss various elements of math as long as those discussions do 

not threaten what she sees as math’s fundamental operations, such as how formulas work, 

or whether they work.  She is so comfortable with the right/wrong approach to math that 

she is only willing to discuss the issues underpinning math if she can consider them like 

separate issues that don’t threaten what she feels she actually does in math class - 

different philosophical positions can call different issues into question but that doesn’t 

mean that there is more than one answer to problems she is asked to solve in math class.  

Dorothy seems to be able to compartmentalize math to make these discussions feel safe 

to her; that is, we can talk about the philosophy of math as long as it doesn’t prevent her 

from being able to seek the right answer to a math problem.   

Throughout her post-interview, the interviewer challenged Dorothy to consider 

her position more critically, especially her tendency to agree with both Absolutism and 

Humanism as acceptable philosophies of mathematics.  For example, she wants math to 

always produce one right answer (Absolutism), but she also wants math to be personal, 

under the control of the person performing mathematics, and describes the evolution of 

mathematical knowledge in humanist terms.  She becomes aware that her position is 
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untenable, but this is not enough for her to change her position.  We believe this 

illustrates just how deeply seated her ideas about math are. 

When challenged further to defend her position, Dorothy’s sense of security, 

sourced in following rules, procedures, using formulas, and getting to the right answer, is 

threatened.  Throughout the interview, she repeatedly changes the topic, laughs, flirts, 

indicates she doesn’t care about the issues raised, and tries to brush off the interviewer.  

For example: 

Interviewer: So there is no interpretation or opinion in mathematics? 

Dorothy: No [laughs]. 

Interviewer: And yet you did talk about grayness coming into our philosophy of 

math? 

Dorothy: Ahhh okay [laughs]. 

Interviewer: Your turn. 

Dorothy:  Noooo [laughs] it shouldn’t be my turn! 

Given the frequency of these exchanges, we don’t believe these comments are random –  

Dorothy is profoundly uncomfortable.  At one point, she even makes a borderline 

inappropriate comment (i.e., “Men!”) which targets the interviewer.  We see this as 

additional evidence of her attempts to get out of the tight spot in which she finds herself.  

In addition, she sees the discussion itself as combative, even saying at one point to the 

interviewer “You win”.  The student is uncomfortable, defensive, and almost rude.  A 

process that she has found satisfying and which has fed her self-concept regarding 

mathematics, the process of targeting and then obtaining a right answer, is being seriously 

challenged, and she is seeking ways to bail out.  Her desire to avoid the issues altogether 

is closely connected to Dorothy’s need for control.  If the philosophy of math is 

integrated into her mathematical experience, she feels a loss of control, and literally 

doesn’t know what to do.  A huge source of her feelings of academic success becomes 

threatened, and her self-concept along with it.  She tries to avoid issues from the 

philosophy of mathematics to keep it separate from her experience of school math. 
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MARY  

 Based on the initial interview, Mary believes that she does well in math because she 

works hard.  She doesn’t believe she is good at mathematics, although she does enjoy 

doing mathematics and that enjoyment seems to be strongly tied to her experiences of 

success with math due to hard work.  Mary does what she is supposed to do in math class 

(and in all courses).  She accepts the knowledge of the instructor at face value and 

without question – the math that is taught in school was developed by mathematicians in 

the past and is true without question.  There is no need to question the results of 

mathematics.  Mary is happy with this state of affairs because it is easy to figure out what 

responses are correct, so that she can be successful in terms of grades and feel good about 

her hard work.  Mary perceives mathematical results as either right or wrong, which are 

sanctioned by teachers as the communicators of the work of mathematicians.  This is a 

tidy rendering of the nature of math because of the simple relationship between teachers 

and mathematicians and the unquestioned acceptance of the ultimate and universal truth 

of the mathematics learned in school.  For Mary, these beliefs about school math extend 

to all of mathematics. 

Mary’s conception of mathematics was challenged during the philosophy of 

mathematics unit.  We presented the idea that mathematics might not be absolute and that 

humans might be inextricably implicated with what is considered true in mathematics.  

Now, Mary must face the possibility that the canons of mathematics, which she is so 

successful at reproducing on math tests, might not be so certain.  She faces the possibility 

that the nature of mathematics involves uncertainty, which causes a problem for her 

desire to detect and reproduce right answers. 

 Mary adapts to the discomfort caused by epistemological messiness in two ways.  

First, she keeps mathematics at arm’s length.  For example, during the final interview, she 

said: 

I also agree with the fact that math has always existed and is not created by 

human beings or anyone else. When we, as humans, find out some new 

mathematical concept, we are really just discovering something that was always 

there. 
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This quote is representative of Mary’s position in two ways.  She rarely used “I” to state 

her position, and when she did, she reverted to “we” (which was much more common), as 

if to distance herself from the position.  Further, the quote represents Mary’s belief that 

math is ubiquitous – it is “everywhere.”  Mary deliberately places mathematics outside 

her personal experience, and the only reason she experiences math is because “we” 

cannot help bumping into it – it is needed for “us” to “survive.”  Keeping mathematics at 

arm’s length is comfortable for Mary.  It allows her to keep mathematics as objective and 

separate from us, which protects her comfortable acceptance of the absolutism of 

mathematics. 

 The second way Mary adapts to her discomfort during the unit is to be slow to 

commit to an answer or to sit on the fence.  For example, in the first journal she wrote:     

It can be argued whether math is independent and can act alone or if it needs 

language to exist. 

In the last journal, when asked to pick one of the four camps, she wrote:  

My philosophy of math is Platonism, as it is the philosophy of math that makes 

the most sense to me. I feel that there is not really one philosophy of math that is 

completely right.  

In the first quote, she states a contentious issue, but will not take a position.  In the 

second quote, she selects a position but makes a qualification.  Throughout the final 

interview, she was slow to answer, tried to give short and non-committal answers, and 

would qualify with phrases such as “I’m not sure.”  The only idea that Mary would 

commit to was that “we” can never be “sure.”  She uses uncertainty in general to protect 

her belief that mathematics can be certain.  She qualifies or doesn’t commit because she 

is looking for the school sanctioned right answer to reproduce.  The Theory of 

Knowledge course reinforced the idea that knowledge is never certain.  Mary is doing 

what school has taught her to do, namely, to reproduce the right answer. 

 When Mary does commit to a position it is because there is a strong emotional 

connection to her zone of comfort with mathematics.  In the final journal, when reflecting 

on whether school math has influenced her beliefs, she wrote:  

Although high school math has been a major influence on my beliefs of 

Platonism, I think my personal traits and the way in which I think also contribute 
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to my Platonist views. I like things that are black and white that give me definite 

answers. I do not want to be caught in a no man’s land, as I will not know what to 

do because I will not know what the right thing to do is.  Platonism tells me that 

concepts have definite answers. This is what makes me happy because I will 

know what I am doing, and can tell if I am doing the right thing. 

A Platonist view of mathematics is a security blanket for Mary.  During the final 

interview, when pressed on this issue, she admitted as much.  Formalism is rejected 

because math loses its real life ubiquitous nature (she is perhaps worried that formal math 

is so abstract that she will no longer be able to understand it) – this is the safety of 

keeping math at arm’s length.  Embodiment is rejected because math is not separate from 

humans, and so she cannot maintain an impersonal relationship with mathematics.  Proofs 

and Refutations is hedged by the possibility of finding absolute answers or the surety that 

“we” can never be sure.  These are strongly emotional positions, in the sense that she 

feels strongly about keeping mathematics impersonal and separate.  She selects Platonism 

because she feels strongly about wanting to feel happy about knowing there are right 

answers that she can correctly reproduce. 

JOHN 

John is extremely good at achieving 100% on math tests and exams.  He was also 

one of the few participants who expressed a genuine love of mathematics.  During his 

pre-interview, he stated, “I like the fact that in math you can derive an answer and be 

certain of it…”  He admires the work of mathematicians, and feels a sense of pleasure 

when his ability to be the only one in a math class who can solve a challenging problem 

positions him as the “mathematician” of the class.  A key word used in his pre-interview 

is “comfortable.”  He likes math because it makes him feel comfortable.  He knows what 

to do, he’s good at doing it, and he experiences satisfaction at the achievement of the one, 

unique answer.  Math is at the center of his self-concept; he in fact claims it to be at the 

center of “everything.”  John has simplified the nature of mathematics by conflating what 

he does in school math with the work of a mathematician.  He sees himself as a problem 

solver, and his success on math tests props up this perception of mathematics – he is 

comfortable with his perceptions.  His comfort with school math generates a blind spot in 
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recognizing the potential differences between how math is rendered in school and how 

mathematicians experience mathematics. 

 During the philosophy of math unit, John’s discomfort was minimal at first but 

slowly increased.  After the first class he wrote:  “I think about math today in another 

light, one in which I am not used to thinking.”  John is just a little bit worried because the 

first class has triggered the thought that the math he is comfortable with might not be the 

math of mathematicians.  In subsequent journals, we find evidence of an increase in his 

concerns about mathematics.  Later in the unit he wrote: 

I learned about the idea of embodiment today.  I, however, don’t buy it.  I believe 

that we, as humans, despite our given restrictions within the reality by which we 

live, are capable of extrapolating our knowledge into areas and dimensions 

unprovable by our current capabilities.  I still believe firmly in absolutism. 

The words “however” in sentence two and “firmly” in the last sentence are not needed by 

John to express his ideas.  Their presence suggests how important John felt it was to 

emphasize his position, and hence his increasing concern with the ideas presented.   

 Part of his discomfort is rooted in his respect for mathematics and 

mathematicians.  During class discussions, we learned that John read about 

mathematicians and mathematics out of interest (not as required school reading).  In one 

of his journals he wrote:  “We have a problem.  And a mathematician must [emphasis not 

added] be able to accept it.”  He admires mathematicians, but is discovering an element 

of being a mathematician that is outside his comfort zone.  His discomfort with the ideas 

presented during class activities has increased.  We believe this is because he has 

available to him increasing evidence that the mathematics he is comfortable with is not so 

neat and tidy.  The one right answer he is certain exists for every problem and takes 

pleasure in finding has been challenged. 

John also values critical thinking – he is curious about ideas but is also skeptical.  

We found this evident in his questioning and challenging disposition during class 

discussions.  We also found this evident in journal entries.  For example, from two of his 

journals: 

I feel that this is an extremely deep topic, in need of further explanation, and look 

forward to further exploring it. 
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And: 

There are always abstract exceptions to mathematics.  It is indeed fascinating to 

wonder about it and analyze, realizing we might never truly achieve an answer.  It 

is rather the thought process that makes it all worthwhile. 

John values thinking for the sake of thinking.  John believes that an idea must stand up to 

critique before it is accepted, and he wants to engage in such critical thought processes.  

He finds pleasure in engaging with ideas.  Thus, when he found his ideas about 

mathematics to be challenged, he took this challenge seriously because he values critical 

thinking.   

He must find a way to navigate the disruption in his comfort with the math he has 

experienced in school.  He does this, with pleasure, through critical thinking.  Although 

he adamantly agreed with Absolutism, through his skeptical challenging and questioning, 

he eventually found problems with both Platonism and Formalism.  His initial reactions 

to both Proofs/Refutations and Embodiment was rejection because they represented a 

rejection of Absolutism.  Now his skeptical disposition was to question and critique in 

order to find reasons to also reject these positions.  But Embodiment, in his perception, 

was difficult to reject.  We spoke several times after class about Embodiment – it was 

clear that his valuing of pure thinking was the essence of his curiosity and questioning.  

He wanted to make sure he understood in order to make sure the ideas could withstand 

critical evaluation.  So, although he rejected Embodiment in his second last journal, his 

last journal started to describe a philosophy of math that he labeled “Embodied 

Absolutism.”  John is finding a way to protect his absolute vision of and experience with 

mathematics through his pure joy with pure thinking. 

During the final interview, John’s explication of his ideas continued, predicated 

on his joy of engaging with ideas.  He sees Embodied Absolutism as a philosophical 

project – a thought experiment – in which the problem is deciding what is absolute and 

what is embodied.  For example, John argued that although error may arise due to 

perception, and this is because of our embodiment, the concept that is perceived is still 

absolute.  When challenged on this idea, he acknowledged that he might be wrong about 

“where Absolutism stops and embodiment starts.”  His post interview is singularly 
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focused on his recognition that there is still thinking to be done on his philosophy, and he 

is willing and happy to do that thinking. 

John’s comfort/pleasure with math is inextricably tied up with his 

comfort/pleasure with thinking, where the thinking he values is oriented by both curiosity 

about pure thought and by skepticism of all ideas.  But absolutism is the one idea, at least 

at the ontological level, which cannot be challenged – there must be some absolutes.  For 

example, he noted that the “…fact that we are embodied…is absolute.”  At the beginning 

of the post-interview, he described the ideas as fascinating (a word used several times in 

his journal as well).  The philosophy of math has been a cerebral game, but he loves 

playing this kind of thinking game, and so his comfort with thinking about ideas “for the 

fun of it” protects him from the disruption of his comfort with school math.  School math 

becomes compartmentalized – his experiences with school math remain separate and 

protected from his thinking about the nature of mathematics. 

CONCLUSIONS 

In summary, Dorothy starts from her comfort with the absolutism of mathematics, 

and then the messiness of philosophy of mathematics disrupts this comfort.  To deal with 

this discomfort, she seeks simplistic answers.  For example, she tries to simultaneously 

agree and disagree with a Humanist position.  She tries to avoid philosophy of 

mathematics issues altogether.  Epistemological messiness thwarts what she really likes 

about math, what she describes as its lack of “greyness.”  Dorothy experiences profound 

discomfort, and to protect her sense of identity in relation to mathematics, she 

compartmentalizes philosophy of mathematics to keep it separate from her experiences 

with school math. 

Mary wants to maintain her identity with mathematics as an objective and 

separate body of knowledge with which she need not think or feel personally about.  

When the ubiquitous, objective and absolute mathematics that she is happy with (because 

she can successfully reproduce it for her teachers) is challenged, she feels discomfort.  

She does not want to face the prospect that a nature of mathematics, which she is happy 

with, might not be representative of mathematics.  She protects her sense of identity by 

being non-committal, qualifying her answers, or keeping ideas at arm’s length from her 

personal beliefs.  This allows her to maintain a sense of success – if she doesn’t commit, 
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she doesn’t need to face being wrong.  When she does commit, it is to maintain and 

protect a strong emotional connection to mathematics – that is, that she is happy with 

math and that would allow her to maintain an impersonal relationship with math.   

John genuinely loves mathematics and pure thinking and these are intricately tied 

together.  But it is skepticism that ultimately protects his identity in relation to 

mathematics.  Although his comfort with school math is disrupted, he is critical of all 

ideas except the idea that there must be some absolutes.  That there must be some 

absolutes and his joy of pure thinking leads him to synthesize absolutism with 

embodiment.  This allows him to ultimately protect his identity in relation to school math 

because, in the end, it is pure thought that matters and is valued.  Mathematics is based on 

pure thought.  Descartes would be proud. 

We would like to highlight several features of these three stories of navigating of 

disruption.  First, a story of identity in relation to mathematics is intrinsically and 

fundamentally bound up with a story of identity in general.  Dorothy’s outgoing nature 

was the story of her sense of indecision in terms of the philosophies of mathematics that 

we presented.  Mary’s quietness is her way of seeking the answer that she will quietly 

embrace and, given the opportunity, reproduce on tests if her answer is the curriculum-

sanctioned correct answer.  John’s skepticism is fundamental to both his continued 

rejection of ideas but also his eventual acknowledgement of the skepticism of the 

Embodiment position. 

Second, we believe that these students compartmentalize their disruption.  The 

Theory of Knowledge (ToK) course is a mental game.  For Dorothy, the game doesn’t 

really matter.  For Mary, she quietly plays the game by looking for the sanctioned right 

answer, which is absolute in math class and “there is no right answer” in ToK.  John 

enjoys playing the mental game of debating ideas, but when in math class, he understands 

the procedure presented and gets mad at himself when he makes a “stupid” mistake on a 

test – the skepticism of TofK does not carry over into math class.  We believe this 

compartmentalizing is important for maintaining a sense of coherent identity in relation 

to mathematics for these students.  If they did not compartmentalize their experience of 

our messy philosophy of mathematics unit, their experience outside the unit would also 
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be disrupted, which could potentially undermine their status as the “smart” (math) 

students as sanctioned by their teachers 

From the results of this project, we make several recommendations.  It may seem 

that our philosophy of mathematics unit failed to enrich these gifted student’s beliefs 

concerning the nature of mathematics – their beliefs were only disrupted leading to a 

compartmentalization of school math and philosophy of mathematics.  But our 

philosophy of mathematics unit was only a two-week intervention compared to 12 years 

of enculturation into a narrow and tidy vision of math.  These gifted students are focused 

on maintaining their success (read grades) in the IB program.  In particular, their IB 

mathematics teacher was resistant to the ideas explored in our unit, so the “geography” of 

the school math course and ToK course may have contributed to the 

compartmentalization we observed.  Given the social milieu of our project, perhaps 

mathematics as messy is too foreign for these gifted students to occasion change in their 

relationship with or perceptions of mathematics.  Other renderings of mathematics could 

be used to enrich our messy framing of the nature of mathematics, such as by Byers 

(2007), who uses concepts such as mystery and ambiguity to describe key processes in 

the development of mathematical ideas.  It may be that activities can be created based on 

mystery/ambiguity that resonate, rather than disrupt, while still occasioning richer 

conceptions of mathematics among these gifted students. 

We also believe that the disruption and compartmentalization experienced by 

these gifted students is a curricular issue.  All mathematics curricula, to our knowledge, 

state a major goal is for students to appreciate the products and processes of mathematics.  

And yet, a richer exploration of the nature of mathematics with gifted high school 

students is disruptive of their personal identity in relation to mathematics.  This is 

because mathematics curriculum, as enacted in math classrooms, is singularly narrow in 

its tidy vision of mathematics.  Most curricula try to point to the richness of mathematics 

through a list of mathematical processes (e.g., problem solving, reasoning) that should be 

infused throughout the teaching of all skills and concepts.  But this list is easily framed 

by a narrow vision of mathematics.  We believe that curriculum documents should 

endorse a “critical engagement” mathematical process, which signals teachers concerning 

some of the messiness of mathematics.  The goal would be opportunities for students to 
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experience some of the messiness of mathematics as regularly as problem solving and 

throughout their K-12 school math program.  A critical engagement mathematical process 

could be enacted throughout K-12, so that children/teachers are not 

enculturated/enculturating a narrow and tidy vision of mathematics. 

The curricular recommendations above have significant implications for teacher 

professional learning.  The expansion of mathematics curriculum to include messiness 

places considerable demands on all K-12 teachers, especially given the common belief 

among teachers and wider society that the nature of mathematics is uncontested and 

uncontestable.  The professional learning of teachers is a significant concern because it 

effects all kinds and levels of teacher education, at a time when it is not clear how to 

effectively invite teachers into the current agenda (e.g., National Council of Teachers of 

Mathematics, 2000) to reform mathematics education; and because current calls for 

reform are effectively silent concerning philosophically-based goals or learning 

outcomes, so are insufficient based on our curricular recommendations.  We consider 

these implications as a call for collective and action-based research that raises the status 

of philosophy of mathematics among all educational stakeholders. 

Finally, this project raises questions for further research.  Our research questions 

for this initial project were exploratory in nature and focused on gifted students.  

Subsequent research could consider more closely how student identity is related to 

student relationships with mathematics.  For example, what is the relationship between 

expanded or disrupted perceptions of the nature of mathematics and success in school 

math?  Would gifted abilities contribute to or hinder a student’s responsiveness to issues 

concerning the nature of mathematics?  More precise research questions are needed to 

expand the literature, and subsequent research could consider the general student 

population as compared to gifted students. 
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The promise of interconnecting problems for enriching students’ experiences in 
mathematics 

 
Margo Kondratieva 
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Abstract: The interconnecting problem approach suggests that often one and the same 

mathematical problem can be used to teach various mathematical topics at different grade 

levels. How is this approach useful for the development of mathematical ability and the 

enrichment of mathematical experiences of all students including the gifted ones? What 

are the benefits for teachers’ and what would teachers need to implement this approach? 

What directions would further research on these issues take? The paper discusses these 

and closely related questions.  

I propose that a long-term study of a progression of mathematical ideas revolved 

around one interconnecting problem is useful for developing a perception of mathematics 

as a connected subject for all learners. Having a natural appreciation for linking learned 

material, mathematically-able students exposed to this approach could develop more 

comprehensive thinking, applicable in many other problem solving situations, such as 

multiple-solution tasks. Because the problem’s solutions vary in levels of difficulty, as 

well as conceptual richness, the approach allows teachers to form a strategic vision 

through a systematic review of various mathematical topics in connection with one 

problem.  

General pedagogical ideas outlined in this paper are supported by discussions of 

concrete mathematical examples and classroom applications. While individual successful 

practices of using this approach are known to be taking place, the need for more data 

collection and interpretation is highlighted.  

Key words: multiple-solution problems, connectedness of mathematics, constructions in 

geometry, teaching support of mathematically inclined students. 
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1. Interconnecting problems and giftedness in mathematics 

Mathematically gifted learners differ from average learners in their ability to 

perceive and retain mathematical information (Krutetskii, 1976). Apparently, they possess 

a well-organized interconnected web of mathematical knowledge (Noss&Hoyles, 1996) 

which manifests itself in flexibility of handling data, originality of interpretations, ability 

to transfer and generalize mathematical  ideas (Greenes, 1981), and creativity of  

approaches taken when problem solving. According to Polya (1973), besides extracting 

relevant information from the memory, “in solving a mathematical problem we have to 

construct an argument connecting the material recollected to a well-adapted whole” 

(Polya,  p.157). This ability to logically organize and process mathematical information is 

yet another distinguishing characteristic of mathematical talent (Krutetskii, 1976).  

A learner could be a good exercise doer but still be incapable of adjusting 

standard techniques for answering unfamiliar questions (see e.g. discussion in Greenes, 

1981). In teachers’ words, “some of them [students] who solve standard problems quickly 

and easily meet an impasse when solving problems requiring independent thoughts” 

(Krutetskii, p. 176). This observation implies that the goal of the teacher consists of 

helping a dedicated learner go beyond instrumental understanding secured by knowing 

mathematical procedures, and achieve relational understanding (Skemp, 1987) between 

different mathematical topics, which assumes connections of various mathematical ideas.  

“An ability to establish and use a wide range of connections offers students alternative 

paths to the solution. … with a formulation of each new connection … the likelihood of 

discovering a solution in enhanced” (Hodgson, 1995, p.19). The emphasis on making 

connections is important not only for the teaching of mathematically gifted learners but is 

becoming one of the core didactical principles of the modern mathematical curricula 

(NCTM, 2000).  

Researchers distinguish several ways of manifesting students’ higher ability: in 

quality of the product, in characteristics of the process, and as a subjective experience. 

There also exists a variety of possibilities to describe and study the phenomenon of 

creativity (see e.g. Sriraman (2004a) for a review of this topic).  As for the driving force 

of mathematical creativity, interaction of ideas in the mind of the thinker is considered as 

one of the most important factors in this process (Ervynck, 1991). Consequently, some 
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authors proposed to measure flexibility of thinking and creativity in mathematics by the 

number of produced solutions to a given problem as well as the ability of the solver to 

switch between different representations of the problem (Krutetskii, 1976; Laycock, 

1970, Silver, 1997). From this perspective, problems which allow multiple solutions 

present a promising tool for nurturing of giftedness and enhancement of the quality of 

teaching in general (Stigler & Hiebert, 1999; Fennema & Romberg, 1999). Leikin and her 

collaborators extensively studied multiple-solution connecting tasks which they define as 

“tasks that contain an explicit requirement for solving the problem in multiple ways” 

(Leikin & Levav-Waynberg, 2008, p.234). They view these tasks as a valuable tool for 

the examination of mathematical creativity (Leikin & Lev, 2007).  

The approach considered in this paper also focuses on problems with multiple 

solutions but those problems are used with a different pedagogical emphasis. The idea is 

not to solve the problem in many different ways at once. Instead, one problem is used 

throughout a learner’s development over a long period of time. Each problem’s solution 

is considered from different perspectives as the learner builds his mathematical 

confidence over several years of schooling.  In particular, problems connecting 

elementary and advanced solutions as well as various methods and techniques are 

valuable for this purpose. The intuition developed through elementary approaches to the 

problem may be used by the learner for a better understanding of more advanced methods 

and at the same time for making connections between the various approaches.   While 

learners at different stages of their growth  “may be able to solve a particular problem, the 

manner of solution and the consequences of long-term development of learning can be 

very different, moving from rigid use of a single procedure through increasing flexibility 

to symbolic operations on thinkable concepts” (Tall, 2006, p.200). Multiple-solution 

problems used to specifically support the progression of the learner are the subject of this 

paper. 

I call a problem interconnecting if it possesses the following characteristics:  

(1) allows simple formulation (without specialized mathematical terms and 

notions); 

 (2) allows various solutions at both elementary and advanced levels;  
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 (3) may be solved by various mathematical tools from distinct mathematical 

branches, which leads to finding multiple solutions,  and  

 (4) is used in different grades and courses and can be understood in various 

contexts.   

Due to the wide range of difficulty levels of its solutions, the same interconnecting 

problem may appear at the elementary school level, and then in progressive grades until 

the advanced level. The students, familiar with the problem from their prior hands-on 

experience, will use their intuition to support the more elaborated techniques presented 

symbolically in the upper grades. This would allow students to see their old problem in a 

new light and interpret new methods in terms of an old and familiar example, and thus 

linking the new concept with the existing schemata. Rephrasing Watson and Mason’s 

description of reference examples, an interconnecting problem is “the one that becomes 

extremely familiar and is used to test out conjectures, to illustrate the meaning of 

theorems” (Watson & Mason, 2005, p.7).  

 From a learner’s standpoint, a problem is interconnecting if its solution has been 

understood by the learner from several conceptual perspectives after working on the 

problem over an extended period of time. This definition of interconnectedness does not 

only characterize a problem but also demands a continuous engagement and certain 

cognitive effort from a learner,  suggesting that same problem can be interconnecting for 

one student but not yet for another. Thus, the possibility of identifying and developing 

mathematically gifted students is embedded in the definition of interconnecting problems.  

Once understood, an interconnecting problem may be used by the solver as a model of 

flexible thinking in another problem context. The possibility for creative solutions arises 

from the learner’s familiarity with other interconnecting problems because this familiarity 

allows the learner to have a comprehensive grasp of the new problem. In the next section 

I discuss interconnecting problems in comparison with various types of other 

mathematical activities and teaching approaches. 
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2. The place of interconnecting problems among other teaching approaches 

There are various types of mathematical activities students face during their 

lessons. Different activities have different learning objectives. For instance, mathematical 

exercises help students to develop proficiency with various standard techniques and rules. 

In contrast, recreational problems appeal to students’ common sense and intuition. There 

are also problems which combine some features of both the exercise and recreational 

types. These problems, on the one hand, are very intuitive and on the other hand 

incorporate special knowledge in a natural fashion. Their elementary solutions may not 

be immediately apparent but when found they demonstrate how several basic facts can be 

useful in a non-routine situation. They help to activate and connect basic knowledge and 

allow the student to discover new relations and properties. According to Polya (1945) and 

Schoenfeld (1985), this type of problem plays a very important role in the development 

of a strong mathematical background of a learner. 

Careful and meaningful construction of appropriate learning environments for 

gifted students is a difficult pedagogical issue. First, according to Diezmann & Watters 

(2002) in order to have a cognitive value for a learner, the mathematical task must have a 

level of difficulty appropriate for the learner, that is, it must be  at the psychological edge 

between his/her comfort and risk-taking zones (Vygotski, 1978).In addition, if suitable 

learning-stimulating tasks are not given “at the right moment, then some intellectual 

abilities may not have the chance to develop”(Sierpinska, 1994, p.140). Students need to 

be challenged during all years of education because “when the student comes to study 

mathematics at the university level, the propitious moment [in his/her development] 

would have passed, and it may be too late for the teaching intervention to have any 

effect” (Sierpinska, 1994, p.140). 

 Tasks which require finding multiple solutions present a challenge not only for 

students but also for their teachers. Besides a general direction to employ different 

representations of the same mathematical concept (NCTM, 2000), teachers are 

insufficiently advised how to incorporate multiple-solution tasks in their lessons and how 

to assess their students’ progress in solving them (Leikin&Levav-Waynberg, 2007). I 

suggest that familiarity of students with interconnecting problems during their entire 

educational process creates a culture of mathematical thinking that makes solving 
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multiple-solution tasks more accessible. Through interconnecting problem, students may 

acquire the habit of analyzing a given problem in multiple ways as a systematic approach 

to problem solving and learning mathematics.   

 In a way, the interconnecting problem approach complements the strand of 

problems approach (Weber et al, 2006; Powell et al, 2009).  The strand of problems 

approach uses isomorphic problems (English, 1993; Hung, 2000; Maher & Martino, 

1996; Sriraman, 2004b), which appear to be different but employ the same underlying 

mathematical structure, and allows students to develop “problem-solving schemas within 

a specific mathematical domain” (Powell et al, p.139). Both approaches employ Bruner’s 

proposal of spiral curriculum, the view that curriculum should revisit basic topics and 

ideas learned over an extended period of time. This proposal correlates with the 

phenomenon of the spacing effect found in studies of memory: learning of fewer items in 

a longer period of time is more effective than repeated studies in a short period of time 

(Crowder, 1976). Thus reinforcement and revisiting is necessary in order to achieve 

fluency in understanding and comprehension of some material. But the revisiting can 

happen in different ways. In the strand of problems approach, the learner returns to the 

same mathematical idea or technique by solving a number of different problems. Here the 

challenge is to recognize that different problems have the same mathematical structure 

and thus the same method can be employed to solve all of them.  

In contrast, in the interconnecting problem approach the learner always deals with 

the same problem but employs different mathematical ideas and consequently, methods to 

solve it. This leads to establishing links between different topics learned in mathematics 

curriculum. In sum, the two complementary approaches are based on different paradigms: 

one problem linked with multiple ideas (or concepts) and many problems linked with one 

idea (or concept), which allows building a network of knowledge, especially if the 

approaches are used in a combination. This view is schematically presented in Figure 1. 
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Figure 1: Strand of problems and interconnecting problems generate a network of concepts and 

problems. 

In this respect, the interconnecting problem approach becomes an integral part of a 

teaching strategy aimed at creating a learning environment fostering mathematical 

intellectual growth and giftedness in particular.In the next section I give an example of 

interconnecting problem and examine its potential for learner’s development. 

3. An example of an interconnecting problem 

As many other good mathematical questions, this problem arose from practical 

needs in an engineering design project. It was conveyed to me in a conversation with my 

friend, who also mentioned that the majority of his colleagues, former university 

graduates, could not find a reasonable solution to it. I took it as a challenge to illustrate 

that the problem can be solved at different levels of grade school education and thus serve 

as an interconnecting problem for a learner of mathematics. 

Problem: Start with an arbitrary angle ABC and point E inside the angle. The 

problem is to draw a circle tangent to the sides of the angle and passing through the point 

E (that is we need to construct the center and the radius of the circle). 

In this section I will consider four possible approaches to this problem that can be 

applicable at different stages of learner’s cognitive development and related to different 

mathematical tools and representations of the question. The first approach is very 
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intuitive and can be demonstrated with manipulatives. This corresponds to enactive stage 

of problem representation (Bruner, 1966). Two other approaches, similarity-based and 

parabola-based, are geometrical approaches. They can be classified in Bruner’s 

terminology as iconic because they involve reasoning based on the properties of the 

drawn objects. The third method develops further the idea of parabola-based approach by 

moving it towards algebraic formalization and rigorous description of the solutions in 

terms of their coordinates. The local network of knowledge build around this problem 

over time can be schematically shown in the following figure. 

 

Figure 2: Approaches to the problem appropriate during several developmental stages. 

 

Below I present mathematical details pertinent to each of the approaches.  In this 

section I give a more algorithmic, step-by-step description of each method. The next 

section discusses ideas and concepts underlying these methods. 

 

A. Experimental approach:  

 

We bring into play a 3D model to help students understand that the solution to the 

problem exists. Consider a conical basket and imagine putting your finger on a point 

located inside the basket. Keeping the basket and the finger in the static position, ask if it 

is possible to find a ball or spherical balloon such that when it is placed in the basket the 

finger will touch the surface of the balloon. It is clear that if the balloon is too small, then 
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the finger will be far from its surface, while if the balloon is too big, the finger will 

deform or break the surface. Is it possible to get a balloon of the right size? The solution 

then is very intuitive: we place a small balloon and inflate it until it touches the finger. 

This experiment can convince students that the problem has a solution no matter what the 

size of the cone is and where the finger points. It does not define the radius and position 

of the center yet, but shows that it can be determined mechanically, doing the experiment 

with real manipulatives. Note that our original problem is a plane section of this 3D 

model.  

The next two approaches are purely geometrical. They can be discussed with a 

child who starts to notice and understand properties of drawn objects such as circles, 

triangles, tangent lines, perpendicular segments, etc. 

B. Similarity-based approach: 

For this approach I refer to Figure 3.  

 

Figure 3: Pure geometrical similarity-based approach. 

 

I. First we draw an arbitrary auxiliary circle tangent to the sides of the angle but not 

passing through the point E. We do it by the following steps: 
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1. Draw an angular bisector of ABC; we know that all circles tangent to the sides of 

the angle have their centers on this bisector.  

2. We pick an arbitrary point F on the bisector as the center of the auxiliary circle. 

3. We drop a perpendicular from the point F to one of the sides of the angle, BC.  

4. The intersection point of the perpendicular and the side is called by G, and FG is 

the radius of the auxiliary circle.  

II. Our second step is to connect the vertex B of the angle and the given point E by a ray 

BE. Since point E lies inside the angle, the ray BE intersects our auxiliary circle in two 

points, called J and I. The segments FJ and FI are radii of the auxiliary circle. 

III. Our last step is to draw two lines through point E: one line is parallel to segment FJ 

and another is parallel to segment FI. These two lines intersect with the angular bisector 

BF at points K and H respectively. 

We claim that points K and H are the centers of the required circles; their radii are 

segments KE and HE respectively.  

This method is not applicable if E lies on the bisector BF or on one of the sides of 

the angle. The latter case is discussed in (Jones, 1998) along with an analysis of students’ 

approaches to solve the problem. In the special case when E lies on the bisector BF we 

follow another approach, which is in fact easier (see Figure 3a).  
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Figure 3a. Special case: point E lies on the angle bisector. 

 

First, we draw a line perpendicular to BF passing through point E. This new line 

intersects the side BC at point M. We put points L and N on side BC such that 

LM=ME=MN. Two lines perpendicular to the side BC and passing through points L and 

N intersect the angular bisector at points K and H respectively. These are the centers of 

the required circles. Similarly, if E lies on one of the angle’s sides, say, AB, we find the 

center of the circle as an intersection of the angular bisector BF and the line 

perpendicular to the side AB and passing through E. 

C. Parabola-based approach: 

I. We first draw the angular bisector of ABC. 

II. Our second step is to draw a parabola with focus at given point E and the 

directrix being one of the angle’s sides, say AB. Recall that parabolais the set 

of points which are equidistant from given point (called focus) and a given 

line (called directrix). Thus we draw it in the following way (Figure 4): 
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Figure 4: Drawing a parabola with focus at E and directrix AB. Here EF=FD 

1. Take an arbitrary point D on side AB. 

2. Draw a perpendicular to the side AB through point D. 

3. Draw a perpendicular bisector to the segment ED. 

4. These two lines intersect at a point F which lies on the parabola. 

5. As D moves along the line AB, the intersection points form the parabola. 

The parabola is a locus of centers of all circles which pass through point E and are 

tangent to the side AB. This parabola intersects with the angular bisector at two points, 

call them H and G (Figure 5). We claim that these two points are the centers of the circles 

we need to construct. Note that the second step, the drawing of a parabola with given 

focus and directrix, can alternatively be performed with a help of special mechanisms 

(linkages) known to ancient Greeks and widely used in the Middle Ages (see e.g. 

Henderson and Taimina, 2005, p.300). Modern geometry software such as GeoGebra has 

this tool as a built in option. 
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Figure 5: Approach involving geometrical definition of parabola. 

 

The idea of the parabola-based approach could be converted into an algebraic method by 

a learner who knows how to describe geometrical objects such as lines and circles 

analytically, to reformulate the question in terms of related algebraic equations and solve 

those equations. We outline this approach in the following subsection. 

 

 

 

D. Algebraic approach:  

Let the angle measurement be , where  0 . Consider a coordinate system 

in which the angle is formed by the ray AB with equation 0y , 0x  and ray BC with 

equation )tan(xy   in the first quadrant or second quadrant (Figure 5a). Let a given 

point E lie inside the angles and have coordinates ),( 00 yx . We are looking for the 

coordinates ),( yx of the center of a circle which passes through E and is inscribed in the 

angle. As we previously observed, the center lies on the angular bisector, and thus we 

have one relation ,kxy  where ).2/tan(k The ray representing the angular bisector 
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lies in the first quadrant. Another relation comes from the observation that the distance 

between the center and point E must be equal to the ordinate of the center. Squaring both 

values, we obtain .)()( 22
0

2
0 yyyxx  We note that since both values, the distance 

and the ordinate, are nonnegative, squaring does not affect the roots of the equation. 

Now, the system of two equations leads to one equation with respect to the 

abscissa of the unknown center, .)()( 222
0

2
0 xkykxxx   After a simplification it 

becomes a quadratic equation 0)(2 2
0

2
000

2  yxkyxxx , and thus we find two 

possible solutions )1(2 22
00000  kyykxkyxx , which correspond to the abscissas 

1x  and 2x  of the centers H and K of the two circles. Consequently, the ordinates 1y  and 

2y  of the centers are ).)1(2( 22
00000  kyykxkyxkkxy By construction we 

have 1y =EH and 2y =EK. An analysis of these formulas reveals the cases when there is 

only one solution possible: when point E lies on the side of the angle, that is either 00 y  

or ).tan(00 xy   In the first case, the center has coordinates ),,( 00 kxx  and in the second 

we get )).1/()1(),1/()1(( 22
0

22
0 kkkxkkx   

Also, note that the formula simplifies when point E lies on the angular bisector, 

i.e. okxy 0 . Then we obtain )11( 22
0 kkkxx  , )11( 22

0 kkkkxy  . 

This approach is essentially an algebraic realization of the second geometrical 

approach, C, based on the intersection of a ray with a parabola.  
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Figure 5a: Algebraic approach: Graphs in the coordinate plane. 

The parabola, which consists of centers of all circles passing through E ),( 00 yx and 

tangent to the ray 0y , 0x has equation 2/)2/()( 00
2

0 yyxxy  because its focus 

lies at E and the x-axis is its directrix. Together with the equation of the ray ,kxy  this 

yields exactly the same quadratic equation as we have analyzed above in approach D. 

 

4. Discussion of the key ideas of each of the four approaches. 

Gifted students often grasp the formal structure of the problem and produce their 

solutions from exploration of certain key ideas associated with this perceived structure 

(Krutetskii, 1976). Polya (1973) distinguishes between the stages of designing a plan in 

problem solving and implementing the plan. The design is based on the conceptual grasp 

of the problem situation, whereas its implementation requires more of instrumental 

knowledge. Since identification of concepts and ideas relevant to a given problem is 

essential for the solvers’ success, training of able students must include a deep analysis of 

each solution accompanied by the explicit identification of its main ideas.  Observe that 

approaches B, C, and D, if presented to a student as such, will indeed guide him/her to 

the right answer. Yet, without an appropriate reflection by the learner, without 

identification and understanding of the reason for each step of the construction, the 

solutions remain useless for learning to solve problems in general.  In this section I 

listsome ideas and concepts associated with more algorithmic step-by-step solutions 

presented in the previous section. 
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The approach A based on the experiment with an inflating balloon is not quite a 

solution of the problem but it plays an important role in the exploration, visualization and 

internalization of the situation. It shows that a solution exists and can be found as a result 

of a continuous process. Embedding this problem in 3D, we allow for a physical 

realization of the question. Similarly, using modern dynamic geometry (or engineering) 

software one can easily perform the task approximately just by a trial and error method in 

the interactive 2D environment. The size and position of the circle can be continuously 

adjusted in order to obey the requirements of the problem. Most of students (and 

engineers!) would employ this approach sufficient for a particular configuration. Thus it 

may take some effort to convince them to find a solution for a general configuration 

based on mathematical concepts and ideas. Some of them are as follows. 

Each of the other three mathematically more advanced approaches B, C, and D 

uses the fact that the center of the circle inscribed in an angle lies on the angular 

bisector. This observation is essentially based on one’s embodied knowledge because it 

refers to the axial symmetry of the geometrical figure and may be demonstrated to a child 

by folding the picture along the angular bisector.  In addition, every approach has its key 

mathematical ideas, which I outline below.  

The fact that similarity results from dilatation (or uniform scaling) is the key idea 

of the first geometrical solution (approach B). Figure 6 shows two circles inscribed in an 

angle. An inner ray started at the vertex of the angle intersects each of the circles in two 

points, I, J and K, L respectively. Triangles IJD and KLF, formed by the points of 

intersection with the ray and the centers D and F of the circles, are similar. Again, one can 

appeal to the embodied cognition, the natural sense of geometrical perspective, to view 

the second circle as a magnified copy of the first. This view implies that the sides of the 

triangles are parallel, which forms the basis for the construction employed by approach 

B.  
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Figure 6: Two similar triangles IJD and KLF viewed as a result of dilatation. 

The following key ideas form a foundation for the solution with a parabola 

(approach C): the set of all circles inscribed in an angle form a family; their centers lie on 

the ray which is the angle bisector. Similarly, the set of circles passing through E and 

tangent to one side of an angle form another family; their centers lie on a parabola with 

focus at E and the directrix being the side of the angle. The center of the required circle is 

at the same distance from the angle’s sides as it is from the given point E, thus the 

elements common to both families give the required circles. 

The algebraic solution (approach D) is based on the following key ideas: In an 

appropriate system of coordinates, an equation of the angular bisector involves a 

homogeneous linear function with slope expressed via the value of given angle. The 

distance between two points given by their coordinates is calculated by the Pythagorean 

Theorem. This leads to the equation of a circle, which is a set of points equidistant from 

one given point, its center.  In order to find intersection points of two curves, one needs to 

solve a system of equations describing the curves. 

Note that in this paper I only listed elementary solutions accessible for students in 

grade school. One may also identify some approaches from university mathematics 

curriculum, e.g. methods of complex analysis, relevant to the problem. But even if solved 

by elementary methods, we see that the problem offers a range of mathematical ideas to 

be explored. These ideas become connected as learners discover them one by one in a 



Kondratieva 

 

course of continuous engagement with the problem. Furthermore, this long-term 

commitment to the same problem helps to develop students’ “capacity for work on one 

interesting problem for a long period of time”, which was found to be one of the 

characteristics of “creative-productive giftedness in mathematics” (Velikova et all , 

2004).  If we want our students to make sense of mathematics “we cannot expect any 

brief program on problem solving to do the job. Instead we must seek the kind of long 

term engagement in mathematical thinking” (Resnik, 1988, p.58), and this thinking can 

be organized around an interconnecting problem, its possible solutions and their interplay. 

I conclude this section with an illustration of the effect of such an interplay or 

interconnectivity of ideas employed in different solutions. The following geometrical fact 

emerges from a comparison of approaches B and C. 

Theorem. Consider an arbitrary circle and parabola drawn in such a way that the same 

line is tangent to the circle and is the directrix of the parabola, and both the circle and 

the parabola lie on the same side from the line (see Figure 7). Pick arbitrary point A on 

this line. Let O denote the center of the circle and F the focus of the parabola. Assuming 

that line passing through point A and O intersects the parabola in two points, call points 

of the intersection D and E. Assuming that the line passing through point A and F 

intersects the circle, call  points of the intersection B and C.  Then segments FD and CO 

are parallel and so are segments FE and BO. 
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Figure 7: New theorem emerged from approaches B and C to the initial problem. 

Proving this statement would be a challenging task for a majority of secondary 

school students. It would constitute a good question in a mathematical contest and thus 

can be used for identifying and fostering mathematical giftedness. Note however, that the 

statement becomes obvious if one identifies points D and E in Figures 7 and 6 with points 

H and K in Figures 3 and 5, or in other words, if one connects the ideas learned in two 

approaches to our initial problem. We leave it for the reader to reproduce the proof in full 

details. While doing this, the reader is advised to focus on his/her own experience and 

observe how familiarity with an interconnecting problem may lead to understanding of 

new mathematical facts in the process of rewiring various mathematical ideas.  

 

5. Teaching issues related to interconnecting problems 

Mathematics’ teachers can play a pivotal role in helping students make connections. 

Teachers’ commitment to this role is reflected in how they select curriculum materials, 

express personal interest in solving problems, explore and learn new connections in 

mathematics, negotiate meaning, and search for adequate pedagogical approaches 

(Koshy, 2001, p.123). The success of the interconnecting problems approach 

implementation depends on mathematics teachers’ readiness to implement it in general, 

and as a method of nurturing mathematical talent, in particular.  



Kondratieva 

 

Today’s teachers have access to many problems and mathematical activities 

through books, Internet, journals, conferences, and other channels. Thus, it is 

unreasonable to say that the teachers are in need of more problems. But precisely because 

the number of available problems is large, teachers necessitate a systematic approach 

which would help them select problems appropriate for creating a coherent and connected 

representation of mathematical ideas for their students. By making this choice teachers 

would need to deal with such issues as ensuring that problems make mathematical sense, 

are clear and non-ambiguous. But the real challenge the teachers face is not just to pick a 

good problem and discuss it with the students, but also let the students experience 

usefulness of previously learned methods as well as develop an understanding of needs 

and possibilities of more advances approaches. Interconnecting problems also allow 

teachers to form a strategic vision and use it in their choice of tasks and actions in a 

classroom. 

However, to be able to successfully implement the interconnecting problem approach, 

and especially if teaching a gifted group, teachers would benefit from (Barbeau et al., 

2010): 

 Having personal experiences of problem-solving (in particular, having experience 

with multiple-solution connected tasks and ability to identify the place of each 

solution within mathematical curriculum) and investigations to draw upon. This 

would also help teachers to distinguish the markers of giftedness from just getting 

good marks in standard assessments or memorizing and following procedures 

diligently.  

 The ability to accept that some of the pupils they encounter will indeed be quicker 

and more intelligent than they are, but also that they have a role in nurturing 

whatever talent they find; put more emphasis on modeling the process of problem 

solving by their own example of thinking out loud rather that just providing 

student with information and techniques; 

 Becoming familiar with the resources so that they can orchestrate a program that 

will benefit their pupils, and having peers outside the school available for advice, 

assistance and mentoring. All of these presuppose a level of self-confidence that 

many teachers lack; 
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 Having administrative support for working with the same group of students for a 

longer period of time. It is possible that a proper assessment of giftedness requires 

contact over a long time, as the teacher needs to understand how a given student 

thinks. Instead of having a new teacher each year at school, perhaps pupils need 

fewer teachers, each for several years. This allows a dynamic to be created 

between the teacher and the class and allows the teacher to get to know the 

student in a way not possible over a single year. 

 

In relation to this new approach, it would be helpful to find out what teachers’ 

views are on good mathematical problems, what they value, how they select questions for 

their students; what their beliefs about useful learning recourses are and how close are 

teachers’ descriptions of good problems to the idea I am developing in this paper. In 

short, the following two questions are essential for the successful use of the approach: (1) 

Would practicing teachers identify interconnecting problems as good problems? (2) 

Would teachers be able to see good problems as interconnecting ones?  A discussion of 

teachers’ perspective on interconnecting problems goes beyond the scope of this paper. 

Further investigation of teachers’ readiness to implement the approach and their related 

understandings, knowledge, perspectives and experiences will provide some empirical 

evidence of benefits of proposed approach and guide its effective implementation in 

practice.  

 

Conclusion 

Being an instructor of mathematics, I often find myself leading a classroom 

discussion around problems illuminating the essence of a mathematical method. Some of 

the problems I bring into play appear to be universally useful in a variety of courses. 

Students attending my classes enjoy recognizing them and comparing how different ideas 

and techniques can be applied to address the same mathematical question.  My 

observations suggested identification of problems useful for systematical use in various 

university level courses. Similar practices are discussed in literature. For example, 

Mingus (2002) refers to “calculation of n-th roots of unity” as a problem which 

“encourages students to see connections between geometry, vectors, group theory, algebra 
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and long division”.  By means of investigation of this problem in different courses 

“students were able to review concepts from previous courses and improve their 

understanding of the old and new concepts” (Mingus, 2002, p.32). Further discussion 

reveals that “proving identities involving the Fibonacci numbers provide a solid 

connection between linear algebra, discrete mathematics, number theory and abstract 

algebra”.  In my view, these are examples of interconnecting problems.  The practice of 

using such problems effectively responds to the proposal that students’ achievements at 

university level courses are greatly influenced by the degree of interconnectedness of 

their basic mathematical knowledge, in particular, by connectedness between 

mathematical terminology, images, and the properties of the objects represented by these 

terms (Kondratieva & Radu, 2009). My own experiences resonated with like-minded 

instructors’ practices led me to the formulation of the approach described in this paper, 

which I propose to apply to the whole mathematics curriculum with particular 

consideration of the needs of gifted students. 

Modern curriculum is moving from a formal approach towards more exploration-

based and inquiry-based study of mathematics. While making connections and multiple 

representations of mathematical ideas are recognized as primary goals in teaching and 

learning mathematics, it is not always clear how teachers can implement this agenda. 

House & Coxford (1995) argued that presenting mathematics as a “woven fabric rather 

than a patchwork of discrete topics” is one of the most important outcomes of 

mathematics education. However, there is also a need for practical teaching strategies 

“for engaging students in exploring the connectedness of mathematics” (House & 

Coxford, 1995, p. vii).  

The interconnecting problem approach is one of such strategies. I hope that this 

article shows the potential of interconnecting problems and provides some practical ideas 

for teachers who pursue this direction in mathematics education.  

I suggest that the use of the interconnecting problem approach at different stages 

of students’ cognitive growth can foster the intellectual ability of the best students, 

identify mathematically-able students and engage them in analysis of connections 

between various ideas and methods. In addition, the application of different methods to 

the same mathematical problem throughout the years of schooling can: 
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 save classroom time devoted for exploration in high school by having necessary 

investigations and hands on experiences in earlier grades; 

 foster earlier transitions to the study of algebraic methods by means of reference 

to pictorial or other previously employed representations of the problem;  

 motivate students through freedom of exploration and experimental observations;  

 improve students’ logical skills  by letting them reason in familiar terms;  

 improve retention of basic facts by using them in the context of the problem and 

connect to other basic facts used in the same problem earlier;   

 develop students’ visualization skills and rely on their hand-on experience with 

geometrical objects when a more advances mathematical method is employed. 

 help with producing multi-step solutions by building connections between various 

topics. 

One may point at the obstacles the use of interconnecting problems may face 

because by the time students are in high school they may forget what they have done in 

previous years. Therefore, I emphasize the importance of very careful planning through 

the years of school curriculum for using of this approach.  Elementary and secondary 

level teachers may need to collaborate in order to identify useful interconnecting 

problems and outline the direction of emphasis through elementary grades required for 

the secondary level studies appealing to the same problem. Teachers need to ensure that 

the experience with interconnecting problems obtained in earlier years of education is 

memorable. For that, each investigation needs to be concluded with a concise summary 

of the key ideas and perhaps illustrated by special schematic images which students will 

associate with the problem in the future. The purpose of such images is to allow the 

students quickly evoke previous experiences associated with the problem and thus 

prepare them for learning new skill related to the old ones. As an example one may 

consider the notion of “procept” viewed as an amalgam of processes, an object emerged 

from them and the symbol which both represents and evokes it (Gray & Tall, 1994).  

Another example is the Shatalov’s “support signals” also helpful for “to reward 

successes—however small—and thus build up the child's natural enthusiasm for learning 

and confidence to be creative (Johnson, 1992, p. 59). 
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  To summarize, I am not claiming that the interconnecting problem approach is 

easy to implement but it is worth trying because students equipped with a comprehensive 

view of one interconnecting mathematical problem will likely exhibit more confidence, 

mathematical insight, and elegancy in problem solving than those who have studied an 

equivalent number of disconnected and arbitrarily contextualized mathematical facts.  

Teachers who care about coherent picture of mathematics they teach may observe more 

signs of giftedness in their classrooms. 
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Abstract: Research in math education on mathematical creativity relies on the idea that 

creativity is potentially within all students and it can be fostered by properly structured 

activities. The tasks most commonly used for its assessment are problem solving and 

problem posing. In our approach we use problem posing tasks to get insight into students’ 

creativity. Based on a qualitative analysis of the participants’ answers to the questionnaire 

that followed the task, we define algorithmic, combined and innovative creativity as 

constructs that can be put in correspondence with the types and level of knowledge 

involved in the problem posing task. We propose criteria to identify these types of 

creativity and discuss aspects related to the quality of the resulting problems. A second 

set of criteria is defined in order to assess the novelty of the posed problems. 

 

Keywords: assessment criteria for creativity, mathematical knowledge. 

 

Introduction  

The first accounts of mathematical creativity emerged in the context of the work 

of professional mathematicians (Poincare, 1948; Hadamard, 1954). These accounts were 

subjective and often associated with a “genius” view of creativity (Weisberg, 1988). 

However, over the past decades, the approach to creativity in the mathematics education 

research community has shifted and now creativity is seen as an ability that can be 

enhanced in students by properly selected mathematical activities. In this view, creativity 

is closely connected to deep knowledge of a domain; it is associated with long periods of 

work and reflection and might be influenced by previous experience and instruction 

(Holyoak & Thagard, 1995; Sternberg, 1988; Silver, 1997). Since creativity became a 

subject of research in mathematics education, several research issues and paths have 
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emerged. One of which,, its assessment, will be discussed in this article. Two main 

approaches to assessment of creativity can be identified. The first one relies on an 

interpretation of the main components of creativity as they were defined by Torrence 

(1974). Fluency, flexibility and novelty are interpreted as number of identifiable changes 

in the approach to the problem, number of generated solutions and the level of their 

conventionality (Silver, 1997; Ervynck, 1991; Leikin, 2007). Another approach is 

represented by researchers who look at the relation between the traits, abilities and certain 

behaviours during task resolution and creativity. Balka (1974) in his article synthesized a 

set of criteria for measuring mathematical creative ability based on the works of Guilford; 

Torrance; and Meeker. He listed both convergent thinking, characterized by finding 

patterns and breaking from established frames of mind, and divergent thought defined as 

formulating mathematical hypotheses, evaluating unusual mathematical ideas, and 

splitting general problems into specific sub-problems. Haylock (1997) mentions two of 

these as being key-aspects for creativity: the ability to overcome fixations in 

mathematical problem-solving (like, for example, breaking away from stereotyped 

solutions), and the ability for divergent production within mathematical situations. 

Meanwhile, the two approaches are not independent; they focus on different aspects. In 

the first one, we have quantitative measures that allow the comparison between students 

performing the same task; the second approach gives us ways for fostering creative 

behaviour in problem solving.  

As settings for the assessment, there are two major approaches: problem solving 

and problem posing tasks. Both have been recognized as being appropriate for this 

purpose. Namely, Ervynck (1991), Silver (1997) and much earlier, Polya (1973) among 

others, argued that solving problems in multiple ways is an expression of creative 

thought.  In fact, Silver (1997) in his article stressed that inquiry-oriented mathematics 

instruction which includes problem-solving and problem-posing tasks and activities can 

assist students to develop more creative approaches to mathematics. Jensen (1973) said 

that for students to be creative in mathematics, they should be able to pose mathematical 

questions that allow exploration of the original problem as well as solve the problems in 

multiple ways.  
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We focus on the relation between problem posing and mathematical creativity; in 

particular, on the issue of defining criteria for creativity assessment through problem 

posing tasks in classroom settings. Our interest is to connect between mathematical 

knowledge and creativity. From this point of view, our approach is more related to the 

one of Haylock (1997), in terms that this would eventually lead to insight on stages of 

creative behavior and suggest ways for fostering students’ mathematical creativity.  

We shall start by describing the adopted working definitions for mathematical 

creativity, on one hand, and for classroom problem posing, on the other. Next, we present 

our methodology. In section three, we present arguments for the potentially creative 

nature of the problem posing process. In the next two sections we describe and give 

examples for the criteria derived from the experiments. We finish with conclusions and 

an outline of future research paths.  

 

Definitions 

Mathematical creativity 

In the literature, we can find many definitions of mathematical creativity, but none is a 

commonly accepted one (Mann, 2006). Treffinger, Young, Selby and Shepardson (2002) 

identified over 100 contemporary definitions. Runco (1993) defines creativity as a 

construct involving both “divergent and convergent thinking, problem finding and 

problem solving, self-expression, intrinsic motivation, a questioning attitude, and self-

confidence” (p. ix). Krutetskii (1976) characterized mathematical creativity in the context 

of problem formation (problem finding), invention, independence, and originality. 

Ervynck (1991) defines creativity in a framework of mathematical knowledge: 

“mathematical creativity is the ability to solve problems or to develop thinking in 

structures, taking into account of the peculiar logical-deductive nature of the discipline, 

and of the fitness of the generated concepts to integrate into the core of what is important 

in mathematics.” (p. 47) 

At the same time, researchers stressed the need to have workable definitions that 

can be applied at classroom level (Pehkonen, 1997; Freiman & Sriraman, 2007). A good, 

commonly agreed definition would help, on one hand, to identify students with creative 

mathematical thinking and, on the other hand, design meaningful tasks for them. In our 
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paper, we shall adopt the definition given by Sriraman (2005) and also accepted by other 

authors (Liljedahl & Sriraman, 2006; Freiman & Sriraman, 2007). Mathematical 

creativity at classroom settings is defined as a) the process that results in novel and / or 

insightful solutions and b) the formulation of new questions and/or possibilities that allow 

an old problem to be regarded from a new point of view.  

 

Problem posing in classroom setting 

For mathematicians, problem posing refers to the process by which they formulate a 

problem that has not been solved by anyone before. In most empirical studies, though, 

problem posing means the formulation of novel problems with the solution unknown at 

least for its creator (Van den Heuval-Panhuizen et al. 1995). In other contexts it is 

understood as reformulation of an existing problem (Cohen & Stover, 1981), mostly ill-

defined one. Silver’s (1994) synthesizes these aspects in his definition in accordance with 

which „problem posing refers to both the generation of new problems and the re-

formulation, of given problems”. (p. 19) 

We shall adopt the definition given by Van den Heuval-Panhuizen et al. (1995). 

Therefore, in this study we define problem posing in a specific topic as the process of 

formulating questions about 1) the existence of a mathematical object; 2) the relation 

between different mathematical objects; 3) new properties of a given object deduced or 

related to a set of specified properties. The classroom setting means that the problem 

posing happens “inside of a class”, in a context shaped by school curriculum. We mean 

the “inside of a class” as opposite to the work of mathematicians; therefore all students 

and teachers are included here, no matter their experience in mathematics. This also 

implies that the problem posing process is initiated by teachers as purposeful, goal-

oriented learning activity performed with the students in the mind (even if physically not 

present during the experiment). Teachers want to illustrate, through these problems, 

mathematical methods or concepts, rather than considering problem posing an end itself. 
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Methodology 

Subjects 

In the experiments participated high school and first year university students from 

Romania along with secondary / high school teachers, all from Romania, and Olympiad 

participants from Mexico. University students were of 18-20 years old and entered to 

university after completing an admission exam. None of the students has been involved in 

training on problem posing.  High school students were 16-17 years old and they just 

have studied sequences as part of the school curriculum. Olympiad participants were 15-

18 years old and had no previous contact with sequences (as topic in introductory 

calculus). The teachers who participated in the experiment had varied experience in 

teaching and, at the time of the experiments, they were participating at an in-teacher 

education program.  Overall, in the experiments participated 44 high school students; 25 

university students; 22 Olympiad participants; 41 middle school teachers and 22 high 

school teachers. 

Task 

Participants received the following instructions: Consider three consecutive elements of a 

sequence, an-1, an and an+1, and the usual algebraic operations (inequality included). With 

these elements pose three problems such that to have an easy, one of average difficulty 

and a difficult problem. At the end, you need to handle in the drafts of your work.  At the 

moment of handling their problems in, they received a questionnaire about the following 

aspects of the problem posing process: the existence of an initial idea (for each problem 

of different difficulty), change of the idea during generation, problem types from which 

to start the generation process, a theorem or generalization as from where to trigger the 

problem posing process and difficulty criteria they used.  

A remark needs to be made: no further clarifications were made about the difficulty of 

problems. Each participant could establish his own criteria for difficulty based on his 

experience. We plan to analyze our data from this point of view in the future.   

Data analysis 

 In the first step of our analysis we looked at the problem posing process from the point 

of view of overall dynamics. The purpose was is identify recurrent actions that could, 

eventually, be grouped and considered as phases of the posing process. Further, by 
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analyzing these phases we were hoping to have elements that would situate classroom 

problem posing as an instance of mathematical creativity.  

What are the processes or phases that characterize creativity? Silver (1997, p.76) asserts 

“…It is in this interplay of formulating; attempting to solve, and eventually solving a 

problem that one sees creative activity. Both the process and the products of this activity 

can be evaluated in order to determine the extent to which creativity is evident.”  

 In the analysis of our data, we hypothesized that, during the problem posing 

process, the knowledge available to the student is under a continuous reordering as the 

relevance of a piece of knowledge is under change. The aspects proposed by Silver 

(1997), like shifts in direction or reformulations or explored paths, relate to the change 

between on-focus and off-focus state of a particular mathematical object and property of 

the object. In one phase, there is a broad field which is briefly explored such to focus, 

immediately after, on a particular aspect of the mathematical object or property. Such a 

“reordering” allows cognitive change to occur and it is the base for the “shift from 

association-based to causation-based thinking, which facilitates the fine-tuning and 

manifestation of the creative work” (Gabora, 2002). Therefore, in the analysis of our data 

we paid special attention to the cases when participants reported changes in their 

approach or when that change was identifiable from the scratch work (even if not 

reported in the questionnaire). We conclude that problem posing is creative because 

involves the same mechanisms that are present during a creative endeavor.  We shall give 

two examples to illustrate these ideas. The first one is presented in figure 1 and was given 

by a teacher. The teacher reported in the questionnaire: The idea was to combine the 

theorems (Fig1a.) and I tried several expressions (Fig. 1b) until I get to the final 

form.(Fig. 1c) 
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Figure 1. a. Theorems reported by the teacher 

 

 b. The expressions tried by the teacher 

 
          

c. final expression of the problem 

In the reformulation of an expression one draws on experience, searches for 

analogies or for new associations, meanwhile during the evaluation of the newly formed 

expression needs to search for causal relations, assess general characteristics of the 

problem and the aptness of the problem with the initial constraints or goals. 

As second example we give the answer of an Olympiad participant to the question 

Did you have from the very first moment what sort of problem will you generate at each 

level of difficulty? If you answer Yes, please specify it. The answer was: Neither yes, 

neither a no. I had an initial sketch of what I wanted to do, but the final product was not 

what I thought of initially. The next question of the questionnaire referred to the change 

in ideas: If you answered yes to the previous question, did the idea change during the 

process? If case of a yes answer, please specify. The student’s answer reveals that one 

switches from broad to focused look and continuously monitors the problem in 

formation: Probably because the original ideas were not in concordance with the level of 

difficulty of the problem I was just creating and, also, because I was trying to create 

something new (especially for the difficult problem). 

We see creativity in the problem posing task due to this cyclic alternation between 

the two types of thinking: an association based one during which ideas flow and a causal 
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type of thinking that allows assessing the creation done so far and setting a new context 

for the next cycle. 

Once we identify problem posing as a creative act, we concentrate in the next 

section on defining criteria to assess it. The assessment can be seen at process and results 

level. We shall focus on mathematical knowledge as a key factor in such an enterprise.  

 

Criteria for creativity assessment through problem posing  

In this section we define criteria for assessing creativity at process and result level. As we 

shall illustrate, a separation into these two aspects was necessary given that, in repeated 

situations, the quality of the generation process was not matching the quality of final 

results. First, we shall focus on the process of problem posing and, then, on the resulted 

problems. 

 

Assessment of the problem posing process 

In order to formulate the criteria, we analyzed the drafts handled in by the participants. 

The details from the drafts were interpreted, where possible, in terms of actions (steps 

taken towards the accomplishment of the task). At the same time, the actions (like for 

example, replacement of a constant with a variable) rely on knowledge and, therefore, we 

considered that the definition of criteria should relate to knowledge. A problem posing 

task always has a context given by the topic of the posed problems. As such, and 

especially at classroom level, we can identify a cluster of knowledge that typically is used 

in problems related to that topic. We shall refer to this as domain or topic specific 

knowledge.  

In school mathematics, we consider the concepts, theorems, corollaries presented 

at a topic as the domain specific knowledge of that topic or domain. The clustering of 

knowledge based on its relevance to a particular task is a common practice between 

researchers. For example, Leikin (2007) introduces, between others, the concept of expert 

spaces as being the space of solutions to a problem given by an expert in the domain. 

After we delimited the domain and not-domain specific knowledge for the topic / domain 

of sequences by analyzing several textbooks, we categorized the steps, actions, taken by 

the participants during the posing process based on the belonging of the involved 
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knowledge to domain specific or not clusters. After a systematical classification of the 

processes seen in the drafts, we identified three main ways for posing a sequence 

problem. Our criteria for the creativity of the process are based on these three categories. 

We define as first level of creativity (algorithmic) one that it is characterized 

solely by the employment of domain-specific algorithm. Typical examples are the cases 

where problem generation is based on a rule, on problem types or specific techniques. For 

a rule based generation, consider the example presented in figure 2. The elements of the 

rule would be instantiated by known cases that are known from class or individual study.  

The problem was posed by a high-school student and refers to the rule: the sequence 

obtained as product between a sequence having the limit zero and one that is bounded, is 

convergent to zero. As it can be seen in the figure, the student defines a bounded 

sequence (a typical example for bounded sequences in Romanian textbooks) and one that 

converges to zero, and then asks for the limit of the product.   

 

Figure 2. Problem posing by using a domain specific rule 

 

However, it has to be said that the rule is not always profoundly understood (the 

relations between elements); situation that often leads to erroneous problems. Since at 

this moment we look at the process itself, it has to be underlined that high school students 

rely mostly on memory when trying to instantiate the rule elements. Knowledge is too 

rigid and not interconnected, leading to many unsolvable problems or, when solvable, 

they lack interest. The expertise in instantiating elements of a rule or of some technique 
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will impact the quality of the result. We give three examples for the use of the same 

technique as base of the generation process with different results. 

The first one is the one presented in Figure 1. Two others, one made by teacher 

and one posed by a high school student are shown in figure 3a and 3b. 

  

a. Example of a teacher´s problem 

 

 

 

b. Example of a high school student´s 

problem for algorithmic creativity 

Figure 3. The use of a known limit as start point in the generation process 

 

It can be seen, in an attempt to solve, that problem at point b, quickly leads to 

infinite as result, since the exponents of n are chosen so. In comparison with this, the 

problems posed by the teachers, need to be worked until the end in order to have a result 

and, also, require having knowledge about trigonometrically functions. In conclusion, 

even if the approach to problem posing is fundamentally the same, the quality of the 

resulting problems can vary significantly.  

A second level of creativity is defined as the application of some domain-specific 

rule along with some other type of knowledge. We shall use the term combined creativity 

for this case. The “other knowledge” would be from another domain and its application 

not straightforward for the most. However, this not-topic specific knowledge plays a 

central role in defining the problem; the problem is structured around this knowledge and 

connected to the topic through the formulation of the problem.  Example:  

Consider ( )n n Na  such that 0 1a  and 1
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It is interesting to see the procedure followed by this Olympiad participant to 

generate the problem. His answer in the questionnaire was:  Getting to n! is trivial and 

then I tried to “out inside” the combinatorial identity. We give in Figure 4, the fragment 

with the most important step (from creativity point of view). 
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Figure 4. Example of problem generation 

In this case, the question of the problem is not one typical for sequences. Indeed, 

the problem is about combinatorial, but it is formulated as one of sequences. The 

combination of knowledge from different topics can lead to a situation that is considered 

as worth for exploration. A second example comes from a first year University student 

and it was posed for the average difficulty problem: 

Consider a sequence 100mod)( 11   nnn aaa   with 1,0 10  aa . Prove that 

the sequence is periodical. 

In the questionnaire, the student reported that he wanted to build a periodical 

sequence, so he thought of the pigeonhole principle and then tried to define something to 

fit this idea. Once again, the problem is structured around this not-topic specific 

knowledge that also becomes essential for solving the problem. As a remark on the 

“quality” of the problem, it has to be said that under the current formulation the problem 

is straightforward, an aspect that seems to be ignored by the student (since he specifies 

the problem as average difficulty). Small changes in the initial values, and maybe other 

question could have turned the problem into a challenging one. In conclusion, the quality 

of the problem is not always in direct relation with the creativity shown during the 

generation process. 

A third level of creativity was tagged as innovative creativity and it is defined as 

the process of using solely knowledge from outside of the topic for which the problem is 
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generated. Example: Consider the following sequence: 1 3a  , 2
1n n na a a   . Decide 

whether 396,138,794,300,000 is term of the sequence. 

In the above case, the rule of divisibility with 3 was applied (as the start point) 

and generated a question. The result is an extremely simple problem, yet unusual at first. 

The main point we highlight is that they used knowledge and techniques from a 

completely different domain and, then, reformulated the problem in terms of the 

requested domain.  

A second example comes from a University student: Consider 

32

1
)(,),0(:





x

x
xfRf . Note with   


n

n xfffxf ))(...()(  . Prove that 

nn

nn
n dxc

bxa
xf




)( where 
*,,, Ndcba nnnn  . 

The problem is built around function composition and uses no knowledge from 

sequences (as seen in introductory calculus). With regard to the problem, we observe that 

it is not a difficult one to solve, however – as a homographic function - it leads to an 

interesting exploration and far-reaching results.   

As we underlined, it is not necessary that certain creativity in the process to lead 

to interesting or challenging problems and vice versa. Therefore, it is important that when 

judging the creativity of a student we pay attention also to the process by which he 

arrived to the results and not only to the final problem.   

 

Assessment of the result 

Plucker and Beghetto (2004), in their review on creativity, stressed that there are two key 

elements of creativity, specifically novelty and usefulness. We observe that this definition 

allows evaluating the results of the creative process, especially as usefulness is 

concerned. At this point we focus on the novelty of the posed problems, considering that 

their usefulness is given by the fact that we situate ourselves in a classroom setting, 

therefore the problems are useful because they carry a potential pedagogical value. 

The novelty of a problem is judged in comparison with already existing problems, 

therefore we need to define the elements of the problems that should be compared at this 

phase. In the particular case of classroom setting, the core set of problems supposed to be 
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known are those from the textbooks and some problem books. Generally speaking, we 

treat a problem as having a given part, requested part, form of the question, restrictions 

(when asking to apply some particular method, for example) and solutions. In some 

particular domain (sequences, for example), we can speak about problem types as 

determined by the expressions involved in the given part. Based on these specifications 

we define the following levels of novelty. 

At the lowest level we define the algebraic novelty which consists of differences 

in the expressions in the given or requested part, meanwhile all the rest remains 

unchanged (the problem structure, type, and possible solution method). A very common 

way is to change the values of a constant thus obtaining something new (in terms of the 

expression involved in the problem), but in the same time having the same problem from 

structural point of view. High school students tend to generate problems with algebraic 

novelty only, especially if they experience a failure before.  

The second level of novelty consists of a significant change in the given or 

requested or “form of the question” part, but the structure remains identical to the initially 

known problem. Such change it is reflected at the level of the nature of the used 

expression, therefore we shall use the term of conceptual novelty. The simplest example 

consists of parameterization, the process by which a constant is changed into a 

parameter. The new problem, though structurally identical with the initial one, is novel 

since it opens up a space for discussion based on the parameters values.  This 

interpretation of novelty refers to comparing an initial (retrieved) problem and a new one, 

but can be easily extended to define the novelty of a problem in relation with a set of 

problems.  

A third level of novelty is the methodological one. Let’s analyze the following 

example given by a secondary teacher: 

Consider the sequence 1,2, 2, 3, 3, 3,4,4,4, 4, …  Answer the followings: 

1. Which are the next three terms of the sequence?  

2. Is the sequence monotone? 

3. Prove that the last digit of the index of the last elements from the part of equal numbers 

is not divisible with 4. 
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The question 3 can be considered as one bringing a methodological novelty in 

play, since the question that can’t be answered by the same method as the previous ones. 

In this case, we have a modification that turns the problem into a new one, and this 

novelty can be identified at the level of the applicable solution methods. It might seem 

that novelty is easy to be achieved, but often even a small change in the value of a 

constant can turn a problem previously easy to solve into a very difficult one. Therefore, 

one needs a good understanding of the problem’s structure in order to maintain the 

problem solvable and well defined.  

 

Conclusions 

In our paper, we defined criteria for the assessment of mathematical creativity in 

classroom settings through problem posing tasks. The criteria were identified as result of 

a qualitative analysis of a series of problem posing experiments ran with high school, 

university students, teachers and Olympiad participants. The structuring element of the 

analysis was the topic-specificity of the knowledge involved in the process. Based on 

this, we introduced and illustrated the constructs of algorithmic, combined and innovative 

creativity. In each case, we outlined the possible links between the quality of the result 

and the creativity involved in the problem posing process. In the last part, we introduced 

criteria for the assessment of the results’ novelty. Three constructs were given and 

exemplified: algebraic, conceptual and methodological novelty. 

As future line of research, we envision the study of the co-growth of the body of 

mathematical knowledge and understanding along the creativity exhibited during a 

problem posing task. A second line of research concerns the development of activities 

that could foster creativity of students. As a third line, we want to study the constraints 

teacher consider during the posing process whether those are tacit or not by nature.  
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The next issue of the journal includes several articles that have already been accepted for publication as well as 
two sections devoted to mathematics education meetings in 2010. The first section includes extended papers from 
the North Calotte Conference in Mathematics Education held in Tromsø, in February 2010, and the second section 
includes extended versions of the plenary papers from the 2010 Annual Conference of the Psychology of 
Mathematics Education: North American Chapter, held in Columbus, Ohio, in October 2010.  
 
As the reader will note, this double issue is nearly 400 pages (!) in its length, and space restrictions for the print 
version of the journal does not allow us to include more articles that are already in the pipeline. We appreciate 
the patience of authors that have to wait until the next issue to see their articles in print. Another feature of this 
particular issue is to allow an eclectic style of fonts and formatting for journal articles, particularly those that 
require the use of special math fonts. In the past, the quest for “font” uniformity has sometimes resulted in many 
math symbols disappearing or changing into unintelligible icons when converted to portable document format. 
However the universality of the intended “meaning” of operators given the particular contexts in which they 
disappeared in some articles in the past, did not take away from the understanding of the person reading these 
papers. Another reason to appreciate the language of mathematics! 
 
On a concluding note, I wish to thank each and every author contributing to this issue for their work and adding 
to the prestige, eclecticism and scope of the journal. I hope 2011 bodes well for everyone.  
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