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A Vignette of Doing Mathematics:  A Meta-cognitive Tour of the  
Production of Some Elementary Mathematics 

 
Hyman Bass 

University of Michigan 
 
 

I. INTRODUCTION 
 
What is this about? 
 
Mathematics educators, including some mathematicians, have, in various ways, urged that the 
school curriculum provide opportunities for learners to have some authentic experience of doing 
mathematics, opportunities to experience and develop the practices, dispositions, sensibilities, 
habits of mind characteristic of the generation of new mathematical knowledge and 
understanding – questioning, exploring, representing, conjecturing, consulting the literature, 
making connections, seeking proofs, proving, making aesthetic judgments, etc. (Polya 1954, 
Cuoco et al 2005, NCTM 2000 - Standard on Reasoning and Proof).  While this inclination in 
curricular design has a certain appeal and merit, its curricular and instructional expressions are 
often contrived, or superficial, or no more than caricatures of what they are meant to emulate.  
One likely source of the difficulty is that most mathematics educators have little or no direct 
experience of doing a substantial piece of original mathematics, in part because the technical 
demands are often too far beyond the school curriculum.  Studying the history and evolution of 
important mathematical developments can be helpful, but provides a less immediate and direct 
experience. 
 
This paper is written from the ambivalent space that I inhabit, as a practiced mathematician who 
is also seriously inquiring into the problems of teaching and learning at the school level.  It 
exploits my experience and sensibilities as a mathematician, but it is addressed to some of the 
challenges and concerns of school mathematics teaching and learning.  It tells a story that 
happened in the sometimes conflicted, but potentially fruitful zone between those two worlds. 
 
My intention is to offer the reader a first hand and accessible account of the generation of an 
interesting and elementary piece of new mathematics.  The mathematics itself, while of some 
modest interest, serves here mainly as context, or backdrop.  The main story is the meta-
cognitive narrative of the mathematical trajectory of the work.  Several features of the event 
recommend it for this purpose.  First, the initial question grew from a topic in the elementary 
mathematics curriculum, in the teaching of fractions.  The mathematical work illustrated here is 
launched by asking a “natural question” that is precipitated by this elementary context.  From 
that start, explorations, discoveries, and new questions proliferate, some within easy reach of the 
standard repertoire of the school curriculum, perhaps mobilized in some novel ways, and others 
seeming to demand some new idea or perspective or method.  But, importantly for our present 
purposes, the ideas and methods invoked never transcend the reach of a secondary learner who 
is prepared to think flexibly about some less familiar ways of combining elementary ideas. 
 
In summary then, what is presented here is a narrative of a small mathematical journey, meant 
to give the reader a palpable and authentic, yet accessible, image of what it means to do 
mathematics.  I have tried to scaffold the mathematical work to ease the reading as much as 
possible, but it would be foolish to pretend that this will be an “easy read.”  That cost is perhaps 
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inevitable in an undertaking like this, which is therefore, in a way, a part of the message that this 
is meant to convey.  While I am uncertain of the natural audience for this, I would hope that at 
least it might be of interest to mathematics educators, to mathematics teachers, elementary as 
well as secondary and perhaps to undergraduate mathematics majors.   
 
Many authors have written about the nature of mathematics, and of mathematical practice.  
Some have focused on the psychological aspects of creative mathematical discovery (Poincaré, 
Hadamard).  Polya has insightfully articulated much of the craft and heuristics of creative 
problem solving.  Others (Lakatos, Davis and Hersh, Cuoco et al,) have provided some images or 
descriptions of the nature of mathematical practice and experience.  This paper can be viewed as 
a reflective case study in this general tradition, but with an orientation toward knowledge for 
instruction. 
 
Some of the things entailed in doing mathematics 
 
It will be helpful to name and (at least partially) specify some of the things – practices, 
dispositions, sensibilities, habits of mind – entailed in doing mathematics, and to which we want 
to draw attention in our story.  These are things that mathematicians typically do when they do 
mathematics.  At the same time most of these things, suitably interpreted or adapted, could 
apply usefully to elementary mathematics no less than to research.  Though we offer them as a 
list, it must be emphasized that they interweave and mutually interact in practice. 
 
Also I must make it clear that this is a personally constructed list.  Other mathematicians would 
likely come up with somewhat different categories and descriptions, but I would expect there to 
be much in common.  The first person plural “we” in this discussion refers to “mathematicians.” 
 
 

1. Question:  We ask what we like to call “natural questions” in a given mathematical 
context. 

 
Here is a partial repertoire of frequent questions.  The most basic question we ask is “Why?,” 
whenever we see some claim, or witness an interesting phenomenon.  Given a well-posed 
problem, we ask questions like: Does it have a solution?  (Existence) Is the solution unique, or 
are there others?  (Uniqueness)  Can we find/describe all of them?  Can we prove that we have 
all of them?  If the number of solutions is large, perhaps even infinite, does the solution set have 
some natural (for example geometric or combinatorial or algebraic) structure?  Which solutions 
optimize some property (for example being largest, if the solutions are numbers)?  Do the 
answers to any of these questions generalize, to broader contexts? How are the answers to these 
questions affected by variation in the parameters of the context?  Etc.  Which of these questions 
is most appropriate, or most interesting, in a given context is in part a matter of mathematical 
judgment and sensibility, which develop with practice and experience. 
 

2. Explore:  We explore and experiment with the context. 
 
Initially, this may be relatively unguided but eyes-open playing around with the context. If the 
context is arithmetic or algebraic, one may experiment with numerical or algebraic calculations, 
to get a feel for the size and shape of things, looking for patterns.  Hand drawn diagrams and 
pictures can often be helpful as well. If the context can be modeled and manipulated on a 
computer, this may allow for some visual exploration, using graphs or dragging figures in 
dynamic geometry. 
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3. Represent:  We find ways to mathematically model or represent the context, and we 
examine the representation.  We may choose alternative representations, to highlight or 
foreground particular aspects or features of the context. 

 
This is a particularly important process.  We need some way to look at, examine, manipulate, 
transform the problem at hand, and we need ways of portraying, or representing the problem to 
enable this.  For example, a rational number might be written as a fraction, if you are a number 
theorist, or as a decimal if you are an analyst or statistician. A portrait might be a picture, a 
graph, a diagram, an equation, or even some general kind of mathematical structure.  Or the 
representation may be symbolic, formally naming key variables and relationships in a problem.  
Typically, more than one representation will be deployed, for each one will make certain features 
visible, and leave others obscure.  Some will be amenable to certain kinds of manipulation, for 
which others may be more cumbersome.  Judicious choice of representations can be crucial to 
successful analysis and understanding.  This is the site of some of the most artful aspects of 
problem solving (and of teaching). 
 

4. Structure:  We look for some kind of organizing structure or pattern or significant 
feature.  This may lead to conjectures (or new questions). 

 
Mathematics is not merely a descriptive science.  It seeks simple, general, unifying principles that 
provide insight and explanatory power for phenomena or data of great variety or complexity.  
These principles, sometimes called “patterns,” or “structures,” might take the form of a formula 
(like a closed form expression of a partially or recursively defined function, or like the 
Pythagorean formula, c2  =  a2 + b2).  Or they might express some (hidden) symmetries or other 
relations in a data set or geometric object.  Or they may provide a structured way (for example 
linear or Cartesian) of representing some data set.  If such patterns or structures are only 
suspected, but not verified, they take, once precisely formulated, the form of conjectures. 
 

5. Consult:  If we get stuck, or are not sure about something, we can consult others (expert 
friends or professionals), or the literature.  Often Google (or Advanced Google, or Google 
Scholar) can be quickly helpful for this.  It can often expedite some otherwise long library 
searches. 

 
In doing mathematical research, unlike school work, we don’t want to expend great effort trying 
to solve a problem that has already been solved, (unless our intention is to find a simpler solution 
or proof).  So, once a question we confront resists our first serious efforts, it is wise to consult 
the literature, or expert colleagues, to find out what is already known about the problem.  This is 
also appropriate in school mathematics if working on an open-ended and long-term mathematical 
project.  Mathematics is a hierarchical subject, and we don’t want to constantly reinvent the 
wheel.  But of course this means learning to interrogate and learn from the expert knowledge of 
others.  Google provides a remarkably effective and congenial instrument for such inquiry, and it 
tolerates very informal versions of your questions.  But be prepared for (and welcome) some 
interesting but time consuming scientific browsing.  You will find more things than you sought, 
but surprisingly many of these will eventually turn out to be fruitful.  And you will likely learn to 
see your problem in a larger context than first envisaged, and the potential for applications and 
ramifications of a possible solution.  Mathematicians learn much new mathematics this way. 
 
 

6. Connect:  Such searching, or perhaps just reflection, may help us see connections, or 
analogies, with other mathematics (questions or results) that we know, that may suggest 
useful ways to think about the problem at hand. 

 



Bass 

 

Some of the most powerful, and satisfying, mathematical insights and discoveries arise from 
seeing some significant connection established between two a priori unrelated mathematical 
situations.  Mathematicians are disposed to be alert to finding such connections, and they 
develop the sensibilities to see and value them when they are present.  For example, these might 
take the form of finding two fundamentally different representations of the same mathematical 
context.  Or, the situation of the problem you are working on may remind you of a similar 
situation you encountered in some previous problem, and the way you dealt with that problem 
might suggest useful ways of treating the one at hand. 
 

7. Proof seeking:  We seek proofs, or disproofs (counterexamples) of our conjectures.  
Often this proceeds by breaking the task into smaller pieces, for example by formulating, 
or proving, related, hopefully more accessible, conjectures, and showing that the main 
conjecture could be deduced from those. 

 
Once faced with a well-articulated mathematical claim or conjecture, we or course seek to show 
whether, and why, it is true.  All of the above processes can be mobilized in the search of 
evidence, an explanation, and, eventually, a proof.  Or, failing that, we may come to doubt the 
truth of the claim, and seek a counterexample, or disproof.  There are no general algorithms for 
this.  Otherwise, the question would already have been answered, and there would be no 
adventure to the enterprise. 
 

8. Opportunism: Sometimes the mathematics seems to be leading you, rather than the 
other way around.  Mathematicians will often take a cue from this, and follow these 
inviting trails with unknown destination. 

 
For example, the quest for a proof may seem to be making good progress, but, on close 
examination, it appears to be answering a different question than the one you started with.  It is 
a good idea to “listen to the math.”  The new question may be more interesting or natural than 
the original.  Lots of good math is fallen upon by such serendipity.  Mathematicians are disposed 
to welcome this when it happens, and seize the opportunity that it presents.  
 

9. Proving:  Writing a finished exposition of the proof (if one is found), using illuminating 
representations of the main ideas, meeting standards of mathematical rigor, and crafted 
to be accessible to the mathematical expertise of an intended audience. 

 
If one finds, or believes one has found, a proof of the claim, there remains the task of providing 
a precise and compelling exposition of the argument that can convince – oneself, one’s expert 
friends, impartial experts (peer review), and, eventually, one’s students or the profession or 
some public.  The “granularity” of the exposition will depend on the audience and purpose of the 
communication. 
 

10. Proof analysis:  Proofs are conceived of as a means to an end (a theorem).  But the 
proof itself is a product worthy of note and study, since the theorem typically distills only 
a small part of what the proof contains. 

 
First, of course, proofs must be examined for their correctness.  But also, study of the proof may 
show that the full strength of a hypothesis was never used, and that a weaker form of the 
hypothesis suffices.  Making that substitution gains added generality to the theorem with no 
extra work.  In fact there have been cases where a hypothesis in a theorem is never used in the 
proof.  If one knows, for external reasons, that the hypothesis is essential, then that is a signal 
that the proof is faulty. 
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If examination of a number of results shows a strong similarity in their proof methods, then that 
raises the suspicion that they are all special cases of one general result, which a synthesis of the 
proof methods may uncover. 
 

11. Aesthetics and taste: As in any profession, mathematicians are diverse in their styles and 
tastes.  Still, in mathematics, there is a remarkable degree of shared aesthetic sensibility 
– associated with words like elegance, precision, lucidity, coherence, unity, …  – that 
affects not only how they appreciate, but even how they do mathematics. 

 
There are many ways in which this shows up concretely.  For example, the statement of a 
theorem may involve a hypothesis that seems extraneous to the conclusion, and which is 
therefore seen to ‘disfigure’ the statement, and invite the suspicion that it is not really necessary.  
Or, in dealing with geometric reasoning, there is a natural desire to have some visual image of 
the claims and processes used.  This creates an urge to provide geometric interpretations of 
highly algebraic or analytic arguments.  In choosing representations of mathematical situations, 
mathematicians will aim for something that resolves the need to capture important information 
with the desire for simplicity and manipulability or for conceptual transparency. 
 
Now we proceed to the mathematics of our story.  The ‘meta-discussion’ will be interspersed, 
indented and in italics. 
 
 
 

II. THE MATHEMATICAL STORY – PART 1:  CAKE DISTRIBUTIONS 
 
The initial mathematical problem, and first explorations 
 
Division is often introduced in school in the context of sharing problems, say some students want 
to (equally) share some cookies, or cakes; we’ll talk here about cakes, just to fix ideas.  At first, 
in the whole number world, say 2 students want to share six cakes.  Then each student gets 3 
cakes, the 3 being the answer to 6 ÷ 2.  Later, when introducing fractions, we first ask how 2 
students might share 1 cake; each receives ½ cake, which is accomplished by cutting the cake in 
half.  But 3 students sharing 2 cakes is already a bit more complicated.  Each student receives 
2/3 of a cake.  But how is that to be distributed?  Children generally come up with these two 
ways to do this.  One is to cut each cake into thirds, and to give each student a third of each 
cake.  But a more efficient (fewer pieces) way to do this is to cut 1 third from each cake, and 
give these 2 thirds to the first student, and then give the remaining (2/3)-cake pieces to the 
remaining 2 students.  The first distribution involves 6 cake pieces, and the second involves 4. 
 
[Insert pie charts illustrating the 2 cakes for 3 students distributions] 
 
What about other cases?  Say 3 cakes for 5 students, or 5 cakes for 7 students, or for 12 
students?  (We shall look below at 5 cakes for 7 students.)  In general, suppose that c cakes are 
to be equally shared by s students.  One general way to do this is to cut each cake into s equal 
pieces, and then give one piece from each cake to each student.  This requires c•s cake pieces, 
and, when s is large, will pretty much physically ravage the cakes.  What is a less invasive way of 
cutting up the cakes for this distribution?  More precisely,  
 

If c cakes are to be equally shared by s students, what is the smallest number, 
call it  p  =  p(c, s),  of cake pieces needed to make this distribution? 

 
This is our first “natural question.”  It has been formulated right away for general c and 
s, though it might well have been first explored for small numerical values of c and s.  At 
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first, it is not clear whether this is a ‘mathematically interesting’ question, nor what the 
answer might look like.  We can get a feel for this by exploring the problem a bit.  Notice 
that we have already inserted some helpful algebraic notation into the problem 
formulation, expressing that p is a function of c and s. 
 

The distribution described above shows that that p  ≤  c•s.  Also p  ≥  s, since each student gets 
at least one piece.  So we have right away, 
    s   ≤ p(c, s)  ≤ c•s 
 
If c  =  1, then we can cut the one cake into s equal pieces for the distribution, and so  
 
     p(1, s) = s 

 
Let’s look at a more interesting case – 5 cakes shared by 7 students: (c, s)  =  (5, 7) 
So each student receives 5/7 of a cake.  What is an efficient way to distribute these shares? …  
After a bit of reflection and experiment you might come up with one or both of the following 
methods. 
 
The “Linear Distribution:”  Line up the cakes, and the students.  From the first cake, cut out a full 
share (5/7 of the cake) for the first student.  Give the remaining 2/7 of the first cake to the 
second student, and then cut 3/7 of the second cake to complete the second student’s share.  
Then give the remaining 4/7 of the second cake, plus 1/7 of the third cake, to the third student.  
Etc.  Here is a picture of this distribution, where the 7 student shares are identified by colors. 
 

5 circular cakes.   7 student shares: Red, blue, tan, purple, black, yellow, green 
 
The Linear Distribution 
Pieces: 
        1       2  3      4     5     6      7       8       9       10 

      
          11 
 
The “Euclidean Distribution:”  In this case we start by removing a full share (5/7) from each of 
the 5 cakes, and we distribute these full shares to 5 of the students.  What remains are 5 small 
cakes (of size 2/7 of the original) to be equally shared by the remaining 2 students.  Thus, the 
(5, 7) distribution problem has been reduced to a (5, 2) distribution problem.  We start the latter 
by giving each of the 2 students 2 of the (small) cakes.  There remains 1 small cake that we cut 
in half to be equally shared by the 2 students. 
 
Here is a picture of this distribution; 
 
“Euclidean Distribution” 
 
Pieces:   1     2  3      4        5         6 

      
 7     8      9       10         11 
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Notice that, though these distributions are quite different, they both lead to 11 cake pieces.  Is 
this a coincidence?  Is 11 pieces the minimum possible? In other words, is p(5, 7)  =  11?   Do 
these two distribution methods make sense for any (c, s)?  If so, how could one describe them in 
general? 
 

Ok, there are several important things to notice here.  First, we identified two fairly 
natural methods to distribute the cake shares, resulting from an initial exploration.  And 
we invented a representation scheme to make visible these distribution processes that 
might be less clear from a purely verbal description.  We used colors to visually identify 
the different student shares.  Student names would have been somewhat more 
cumbersome, and numbers might have conflicted with the numbering of the cake pieces, 
which we wanted in order to be able to count them.  Finally, we asked several “natural 
questions” precipitated by examination of the two representations.  In particular, the 
appearance of 11 pieces for both distributions may hint at a general pattern.  We 
experiment with these ideas below. 
 

To check what this pattern might be, we could examine some smaller cases.  For example, 
starting with the first two cases we considered, we find that  
    p(1, s)  = s 
 
    p(2, 3)  = 4 
 
    p(3, 5)  ≤ 7 
 
For, in the case of 2 cakes for 3 students, the Linear and Euclidean Distributions coincide and 
give 4 pieces, and it is clear that the two cakes cannot be cut into 3 equal pieces (all of size 2/3); 
so p(2, 3)  =  4. 
 
In the case of 3 cakes for 5 students, the Linear and Euclidean Distributions both give 7 pieces. 
 
If we believe that p(3, 5)  =  7, and also that p(5, 7)  =  11, then what might we guess is a 
general formula for p(c, s)?  We tried, optimistically, the nice formula: 
 
    p(c, s)  = c  +  s  -  1 ? 
 
This was quickly defeated already in the case of sharing 4 cakes among 6 students, when 4 + 6 – 
1  =  9.  In this case we can split the problem into two 2-cakes-among-3-students problems.  
Each of these produces 4 pieces, and so altogether 4 + 4  =  8  < 9 pieces. 
 
To better understand what is going on it will be convenient to choose a more illuminating 
representation of our distributions. 
 
 
From round to rectangular food 
 
In the Linear Distribution we are measuring off successive pieces of the cakes, lined up one after 
another, so the cakes are functioning mathematically like successive intervals on a number line.  
To capture this aspect and yet keep them “cake-like” we can take our cakes to be long thin 
rectangles.  Since we are only interested in the length (they are functioning as ‘thickened 
intervals’) we can simply assume that they have width 1.  As for the length, it will be convenient, 
as we shall see, to assume that they have length s, the number of students.  In other words, we 
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can assume that the units of length are chosen so that each cake is a (1 x s)-rectangle.  And the 
cake pieces will again be sub-rectangles of width 1. 
 
Now for the Linear Distribution, we place the cakes end to end to form a long (1 x c•s)-rectangle 
of cake, where the boundaries between successive cakes occur at the multiples of s.  Let’s look at 
the case (c, s)  =  (5, 7) studied above.    
 
The Linear Distribution of 5 cakes for 7 students 
 
First we line up the 5 cakes. 
 
Cake 1 Cake 2 Cake 3 Cake 4 Cake 5 
 
Next we ignore the cake separations, and view this as one long cake (of length 5•7 = 35) to be 
shared equally by the 7 students.  The cuts to create their (equal) shares will occur at the 
multiples of c = 5. 
 
 
Cake 1 Cake 2 Cake 3 Cake 4 Cake 5 
S1             S2 S3 S4 S5 S6 S7 
 
 
Finally, we combine the cake separations with the student share cuts to obtain the combined 
division of the cakes into pieces for the distribution. 
 
Cake 1 Cake 2 Cake 3 Cake 4 Cake 5 
S1             S2 S3 S4 S5 S6 S7 
1                     
                     5/7 

2  
  2/7 

3        
         3/7 

4              
               4/7 

5
1/7  

6
                     5/7 

7
1/7 

8
               4/5 

9
         3/7 

10 
  2/7 

11 
                    5/7 

 

 
Row 1:  Cakes (5). Row 2: Student shares (7). Row 3: Cake pieces (11). 
 
 # pieces = 11 (= 7  +  5  -  1) 
 
 
The Linear Distribution of c cakes for s students 
 
In general, the cake separations occur at multiples of s:  s, 2s, 3s, … , (c-1)s.  There are c-1 of 
these.  The student share cuts occur at multiples of c:  c, 2c, 3c, … , (s-1)c.  There are s-1 of 
these. So this makes altogether (c-1) + (s-1) cuts, except that some of the two sets of cuts 
coincide.  The common cuts occur at common multiples of c and s.  These are just multiples of m  
=  lcm(c, s), the least common multiple of c and s.  We have the greatest common divisor, 
   d  =  gcd(c, s)  = cs/m, 
so the cuts common to the two sets are: m, 2m, … , (d-1)m.  There are d-1 of these.  Thus the 
total number of cuts is: 
 
 # cuts  = (c-1)  +  (s-1)  -  (d-1)  = c  +  s  -  d  -  1, 
 
and so the total number of cake pieces for this “Linear Distribution” is one more: 
 
 # cake pieces = c  +  s  -  d,  where d  =  gcd(c, s) 
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Of course we see here a significantly new (rectangular) representation of the Linear 
Distribution, one that better coordinates the geometry of the representation with the 
arithmetic of the distribution.  Moreover, this representation makes easily available (and 
visualizable) an analysis of the number of pieces, as a function of c and s.  We could see 
the structure in the (5, 7) case, and this guided the analysis in the general case. (Notice 
also that, from the point of view of this analysis, there is a certain symmetry in the roles 
of c and s.)  And it raises the “natural next question:”   “Can we do something similar for 
the Euclidean Distribution?” 
 
 
 
 
 
 

The Euclidean Distribution of 5 cakes for 7 students 
 
For the Euclidean Distribution of 5 cakes for 7 students, we began by cutting off 5/7 of each 
cake.  To do this all at once, it would be convenient to arrange the cakes not end-to-end, but 
rather side-by-side, so as to form, this time, a (5 x 7)-rectangle of cake.  This done, the 
Euclidean Distribution looks as follows: 
 
 

S1 
P1 
5/7 

S6 
P6 
2/7 

S2 
P2 
5/7 

S6 
P7 
2/7 

S3 
P3 
5/7 

S6 
P10 
1/7 

S7 
P11 
1/7 

S4 
P4 
5/7 

S7 
P8 
2/7 

S5 
P5 
5/7 

S7 
P9 
2/7 

 
 
  The students:  S1, … , S7; their shares are color coded. 
  The pieces:   P1, … , P11 
  The fractions indicate fractions of a cake; each cake is one of the 5 rows of the  
   rectangle. 
 
So, while the Linear Distribution is an essentially 1-dimensional (length) representation, we see 
here that the Euclidean Distribution appears to exhibit something more like a 2-dimensional 
(area) phenomenon.  Moreover, a little reflection suggests that this is closely related to the 
Euclidean Algorithm (for finding the gcd of two numbers, using successive division with 
remainder).  Explicitly, the Euclidean Algorithm for calculating gcd(5, 7) (= 1) looks like: 
 
  7 = 15  +  2 (1  5x5 square consisting of 1•5 = 5 pieces) 
  5 = 22  +  1 (2  2x2 squares consisting of 2•2 = 4 pieces) 
  2 = 21  +  0 (2  1x1 squares consisting of 2•1 = 2 pieces) 
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  # pieces = 5 + 4 + 2 = 11 
 
 
 
 
In fact, (see the picture below) we can interpret the Euclidean algorithm (for finding gcd(c, s)) 
geometrically as successively filling up the (c x s)-rectangle with maximal size squares so that 
what remains at each stage is still a rectangle.  And so we can interpret the result as a “square 
tiling” of the rectangle, in the sense that the rectangle is covered by the squares, and any two 
square intersect at most along an edge of each.  And in fact, the Euclidean Algorithm is a kind of 
“greedy algorithm” for producing a square tiling of a (c x s)-rectangle, in the sense that, at each 
stage, it inserts a square ‘tile’ of maximum possible size. 
 
 

  

  

 

 
 # square tiles  =  1 (5x5)  +  2 (2x2)  +  2 (1x1)    = 5 
 
A natural (side) question here is,  
 
Is the “Euclidean tiling” of a (c x s)-rectangle optimal in some sense?   
For example, does it produce a square tiling with the smallest possible number of tiles? 
 
We’ll come back to this question later. 
 

So several interesting things happened here.  First we found a new (area model) 
representation of the Euclidean Distribution which makes visible its connection with the 
Euclidean Algorithm, and also exhibits the geometric connection of the latter with ‘square 
tilings’ of rectangles.  This new context in turn suggested new natural questions about 
the “Euclidean tiling,” albeit pointing in a direction somewhat orthogonal to our original 
interest.  Such “side tracks” are not uncommon when doing mathematics, and some of 
them turn out to be helpful, or independently interesting, in unexpected ways.  But first 
we return to our initial question. 

 
A closer look at the Euclidean Distribution, and the number of pieces it produces 
 
The Euclidean Algorithm applied to a pair of whole numbers, (c, s) (not both = 0), proceeds as 
follows:  Take the larger of the two numbers, divide it by the smaller, and replace the larger one 
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by the remainder in this division.  After a finite number of such steps, one of the two numbers 
will be zero, and then the non-zero remaining number is the gcd(c, s).  More explicitly, and with 
interpretation for the cake distribution, we have the following cases: 
 

If c ≥ s, write c  =  qs  +  r, with 0 ≤ r < s.  (Euclidean division with remainder; q, the 
quotient, is the number of times you can remove s from c, and r < s is the remainder.) 
Then we give q cakes to each student, making qs pieces distributed, and then continue 
by applying the Euclidean Distribution to (r, s): r cakes among s students.  If s divides c, 
then r = 0, and we are done. 
 
If c < s, write s  =  qc  +  r, with 0 ≤ r < c (Euclidean division again).  In this case we 
cut off q pieces, each of size c/s of a cake, from each cake, and distribute one each of 
these (full) shares to qc of the students.  There remain c small cakes, each of size r/s of 
the original, to be equally shared among the remaining r  (=  s – qc) students.  Thus we 
are reduced to a distribution of c (small) cakes among r students, with r < c, to which we 
apply the first step above.  (In case c divides s, then r = 0, and we are done.) 
 

To count the number of cake pieces that the Euclidean Distribution produces, let us denote this 
number by E(c, s).  We claim that, just as for the Linear Distribution,  
  E(c, s)  = c  +  s  -  d,  where d  =  gcd(c, s) 
 
To prove this claim, note first that this is true if there are no cakes.  For then there are no pieces, 
i. e.  
  E(0, s)  = 0 = 0  +  s  -  gcd(0, s) 
 
In the first case above, c ≥ s, we have 
  c   =   qs  +  r,  with   0 ≤ r < c,  and then we see that 
  E(c, s)  =   qs  +  E(r, s) 
 
Since r < c, we can assume by (mathematical) induction that E(r, s)  =  r  +  s  -  gcd(r, s).  But 
it is easily seen that gcd(r, s)  =  gcd(c – qs, s)  =  gcd(c, s)  =  d, and so  
 
  E(c, s) = qs  +  E(r, s) = qs  +  r  +  s  -  d 
   = c  +  s  -  d 
 
In the second case above, c < s, we have  
  s   =   qc  +  r, with 0  ≤  r  < c, and then we see that 
  E(c, s) = qc  +  E(c, r) 
 
Since r < s, we can apply induction to conclude that E(c, r)  =  c  +  r  -  gcd(c, r).  Just as 
above, we see that gcd(c, r)  =  gcd(c, s – qc)  =  gcd(c, s)  =  d.  Thus 
  E(c, s) = qc  +  c  +  r  -  d  = c  +  s  -  d 
 
This completes the proof, by induction, that  
 
 
 

 
What we have just seen, though a bit technical, is a rather straightforward inductive 
analysis of the number of pieces produced by the Euclidean Distribution.  The inductive 
method here is quite natural, since the Euclidean Algorithm is itself an inductive (or 
recursive) procedure.  In particular, this offers a proof of the remarkable, and perhaps 
unexpected, fact that the Linear and Euclidean Distributions, though quite different, 

The Euclidean Distribution, just like the Linear Distribution, produces 
c +  s  -  d pieces, where d  =  gcd(c, s)
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produce the same number of pieces, c  +  s  -  d, thus establishing an interesting 
connection.  This makes the number c + s – d seem quite special to the cake distribution 
problem, and strongly tempts us to make the: 
 

 
In other words, the smallest number, p(c, s), of cake pieces you can use to share c cakes among 
s students is c  +  s  -  d.  We have already seen, with the Linear and Euclidean Distributions use 
exactly c  +  s  -  d pieces, and so  
 
  p(c, s)  ≤ c  +  s  -  d 

Side comment on the Euclidean Algorithm:  The school curriculum often gives diminished 
attention to ‘long division’ (here called Euclidean division), and therefore also small 
attention (if any) to the Euclidean Algorithm for finding the gcd(c, s) = d of two whole 
numbers c and s, which is based on Euclidean division.  The method generally offered is 
to first find the prime factorizations of c and s, and then simply inspect these to find d.  
And in fact, for small numbers, this is likely most efficient.  However, if nothing more is 
said, this deprives students of the awareness, in comparing the two methods – Euclidean 
Algorithm vs. prime factorization – in general, that for large numbers (say > 6 digits), the 
problem of prime factorization becomes an intractably difficult computation, whereas the 
Euclidean Algorithm, despite appearances, is relatively straightforward and can be done 
in practical (‘polynomial’) computational time relative to the size of c and s.  This 
phenomenon is fundamentally important in cryptography.  Thus, ironically, neglecting 
long division, often done on the grounds that we have calculators to do such 
computations, will deprive students of exposure to an important idea about complexity of 
computations that is central to modern computer science. 

 
 
Seeking a proof of the Conjecture:   A side trip into graph theory 
 
It remains to show (in order to prove the Conjecture above) that we can’t do better, i.e. 
distribute c cakes to s students with fewer than c + s – d pieces.  In other words, it remains to 
show that, 
 
  p(c, s)  ≥ c  +  s  -  d 
 
How can we possibly show this?  It is here that we shall push the envelope of school 
mathematics a bit.  So far, we have been using fairly basic, though substantial, mathematical 
ideas and tools of High School mathematics.  I think it is fair to say that most mathematicians 
who spent some serious time thinking about this question would arrive eventually at the point we 
are at now.  But the next steps seem less predictable. At this point, after considerable reflection, 
I had to reach for a new connection. 
 
 
The graph of a cake distribution 
 
The problem now is that we have to consider any possible distribution D of c cakes to s students, 
and show that D must consist of at least c + s – d pieces.  In contrast with our discussion of the 
Linear and Euclidean Distributions, we have no special information about D.  So let’s think a bit 
about what D is.  D distributes cake pieces to students.  So one way to picture this schematically 
is as follows.  For each cake piece, draw a line from the cake from which it came, to the student 

Main Conjecture:   p(c, s)  = c  +  s  -  d, where  d  =  gcd(c, s) 
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to whom it is given.  If we forget that the cakes are cakes, and that the students are people, and 
simply represent them abstractly as dots, then what we have is a collection of dots, together with 
some lines (corresponding to the cake pieces) connecting various pairs of these dots.  This is in 
fact a familiar kind of mathematical object, called a (combinatorial) graph.  We shall call this the 
graph of the distribution D, and denote it (D). To see what this looks like, consider the graphs 
of the Linear Distribution DL and the Euclidean Distribution DE, for c = 5 and s = 7.  We shall 
represent the students by dots, and the cakes by short horizontal line segments instead of dots, 
just to be a bit more suggestive of the context. 
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 Graph of the Linear Distribution, (DL): 
 
     o      o        o       o       o                   o       o 
 
 
   

_______ _______ _______ _______ _______ 
 
 
 

Graph of the Euclidean Distribution, (DE): 
 
  o  o        o   o  o 
 
 
 
   

_______ _______  _______   _______  _______ 
  
 
 
            

 o 
 
 

Here the graph of a distribution brings into play a dramatically new representation of our 
problem.  What are its pros and cons?  Well, it captures rather well, and elegantly, the 
“combinatorial structure” of a cake distribution.  But it loses the geometric and metric 
aspects.  For example, in the graph, a cake piece becomes an undifferentiated line 
segment, independent of the size of the piece.  So, what does this graph do for us?  At 
first we’re not sure.  But at least this is a familiar and widely used kind of mathematical 
object, so we can ‘consult graph theory’ to see if it has anything useful to offer.  
 
 

A tip-toe into graph theory 
 
Mathematically, a graph  is defined to consist of a set V (called vertices, or nodes), a set E 
(called edges), and a specification of a pair of endpoints (which are vertices) for each edge.  The 
vertices are generally depicted as dots, and the edges as line segments joining their endpoints.  
(These lines do not have to be drawn straight; they may be curved.  All that is essential is 
specifying the vertices that they connect.)  Here is an example, from our School of Education, 
with 16 vertices and 16 edges. 

 
 o  o o  o o  o 
 
 
 o  o    o o 
 
 
 o  o o  o o  o 



                                                                                                       TMME, vol8, nos.1&2, p .17 

 

 
This graph is said to be connected, since you can get from any vertex to any other along an 
edge-path.  In general, a graph is a disjoint union of connected sub-graphs, called its connected 
components.  A graph is called a tree if there is a unique edge path (without backtracking) from 
any vertex to any other.  In particular, a tree is connected.  The above graph is not a tree, since 
you can go around the “O” in two ways. 
 
We are going to make use of one basic fact from graph theory:  What does it take to make a 
graph connected?  Well, if there are lots of vertices, then you will need lots of edges to connect 
them all.  How many edges do you require? 
 
PROPOSITION.  (The “Basic Inequality”)  If a graph  is connected then  
 
#E ≥ #V   -   1, 
 
with equality if and only if  is a tree. 
 
This is easy enough to prove, inductively, as follows.  We can build a connected graph by starting 
with a single vertex, and then successively attach edges, by either one or both of their endpoints, 
to what we already have.  (You might try to picture doing this on the graph displayed above.) 
 
If  consists of a single vertex and no edges, then  
 
  #E = 0 = #V  -  1, 
 
and  is a tree. 
 
Next suppose that  is obtained from a connected graph ’ (with vertices V’ and edges E’) by 
attaching a new edge e.  We assume, by induction on #E, that  
 
 #E’ ≥ #V’   -   1,  with equality if an only if ’ is a tree 
 
Case 1:  We attach only one end point of e to ’.  Then  
 
 #E   =   #E’   +   1  and  #V   =   #V’   +   1,  so 
 #V  -  #E = #V’  -  #E’ ≤ 1 
 
and  clearly remains a tree if ’ was one. 
 
Case 2:  We attach both end points of e to ’.  Then 
 
 #E   =   #E’   +   1,  but #V   =   #V’, so 
 #V  -  #E = #V’  -  #E’  -  1  < 1. 
 
Moreover,  is not a tree, because we can connect the end points of e either using e itself, or 
using a path in the (connected) graph ’. 
 
We shall see next that the Basic Inequality above can be applied to the graph of a cake 
distribution to get the lower bound we seek on the number of pieces in a cake distribution. 

 
 
Here we have ‘consulted graph theory’ to find some resource that can give us new 
traction on our cake distribution problem.  Also we have provided an accessible proof of 
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the basic graph theoretic inequality that we will need.  In doing this we needed to give 
precise mathematical definitions to the graph theoretic concepts being used.  The 
representation of a cake distribution by its graph gives us the bridge of access to this 
resource.  Of course it took some exploration and experimentation (lengthy, but not 
described here) to discover what from graph theory might be useful for this purpose.  
But with this in hand, we are now in a position to finish the proof of the main conjecture.  
 
 

Proof that:  p(c, s)   ≥   c  +  s  -  d 
 
Suppose that D is a ‘minimal’ distribution of c cakes to s students, i.e. one that involves the least 
possible number p  =  p(c, s) of cake pieces.  Let   =  (D) be the graph of the distribution D.  
Then its vertex set is 
 V = {cakes}   {students}, 
and so 
 #V = c  +  s 
Its edges are just the set  
 E = {cake pieces}, 
and so  
 #E = p 
 
We would like to apply the Basic Inequality above to .  However, we are not entitled to do this 
since we do not know that  is connected.  So, instead, let’s look at a connected component, call 
it ’, of .  Now the vertex set V’ of ’ consists say of c’ cake vertices and s’ student vertices, and 
its edges E’ are just the cake pieces taken from cakes in V’ and given to students in V’.   
However, the fact that ’ is a connected component of  implies that every piece taken from a 
cake in V’ is given to a student in V’, and, conversely, students in V’ receive pieces only from 
cakes in V’.  It follows that  
  ’ is itself the graph of a distribution D’ of c’ cakes to s’ students.   
Moreover, D’ must also be minimal, i.e. involve the minimal number p’  =  p(c’, s’) of pieces; 
otherwise we could replace D’ by something using fewer pieces, and this could be embedded in D 
to reduced the number of pieces in D, contrary to our assumption that D was already minimal. 
 
Ok, now we are in a position to deploy all that we have learned.  Let d’  =  gcd(c’, s’).  Then the 
Linear and Euclidean Distributions (for (c’, s’)) show us that 
 
(1) p’ ≤ c’  +  s’  -  d’ 
 
On the other hand, since ’ is connected, the Basic Inequality of graph theory tells us that  
 
 p’ = #E’ ≥ #V’  -  1,  i.e. 
 
(2) p’ ≥ c’  +  s’  -  1 
 
Combining (1) and (2) we see that 
 
 d’ = 1, i.e.  c’ and s’ are relatively prime, 
and  
 p’ =  c’  +  s’  -  1, and  ’ is a tree. 
 
Now the students in V’ each get c’/s’ of a cake.  But they must receive the same share, c/s, as all 
of the other students.  Thus 
 



                                                                                                       TMME, vol8, nos.1&2, p .19 

 

 c’/s’ = c/s,  which is independent of the connected component ’ 
 
Let  
 c0/s0  =  the reduced form of the fraction c/s, 
so that  
 c = dc0 and s = ds0,  where  d  =  gcd(c, s) 
 
Then the discussion above shows that c’  =  c0  and s’  =  s0, independent of ’.  Moreover it 
follows that  
 
  is a disjoint union of d trees, each with c0  +  s0 vertices and c0  +  s0  -  1 edges, 
and so 
 p  = #E = d(c0  +  s0  -  1)  = c  +  s  -  d 
 
This completes the proof of our main conjecture, which is now a theorem. 

 
 
We have presented here a reasonably formal, yet I hope accessible, proof of this result.  
The argument combines information coming from different sources (different 
representations) and so can be viewed as establishing some interesting connections.  
Moreover, the graph theory even gives us a bonus, in the way of more detailed 
information about the combinatorial structure of a minimal cake distribution. It is also 
worth noting how the imported concepts and language of graph theory (‘connected,’ 
‘connected components,’ ‘trees’) fit so comfortably and conveniently with our cake 
distribution context.   With our new theorem in hand, it is “natural to ask:” What is the 
significance of this result?  What might it be good for?  This is a kind of ‘debriefing’ stage 
of the reasoning. 
 
 
 

III. THE MATHEMATICAL STORY – PART 2:  SQUARE TILINGS OF RECTANGLES 
 
Square tiling of rectangles 
 
In our analysis of the Euclidean Distribution (of c cakes for s students) we saw that the Euclidean 
Algorithm, on which it is based, could be interpreted geometrically as producing a “square tiling” 
of the (c x s)-rectangle.  We raised, in passing, the question of whether this “Euclidean tiling” is 
optimal in some sense, for example whether it uses the smallest possible number of square tiles.   
 
Let’s pause here to say more precisely what we mean by a square tiling T of a rectangle R.   By T 
we understand a set (here assumed to be finite) of squares in the plane such that their union is 
exactly R, and any two of them intersect at most along an edge of each one.  (Here we are 
treating squares and rectangles as two-dimensional regions, not just their one-dimensional 
boundaries.) 
 

CAKE DISTRIBUTION THEOREM  Let D be an equal distribution of c cakes among s students.  Then  
 
  # (cake pieces in D) ≥ c  +  s  -  d,  where d  =  gcd(c, s) 
 
For the Linear Distribution and the Euclidean Distribution, we have equality above in place of ≥. 
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In the course of thinking about the above questions, I did a Google search under the heading 
“Square tilings of rectangles.”  This produced a wealth of references, showing that there is in fact 
a minor industry around this and related topics.  In particular, one of the references (Kenyon, 
1994) shows that the answer to the above question is negative.  (In special cases the Euclidean 
tiling is minimal for the number of tiles, for example when c and s are consecutive terms in the 
Fibonacci sequence.)  To see that the Euclidean tiling is not minimal in general we can take s  =  
c + 1, in which case the Euclidean tiling consists of 1 (c x c)-square together with a column of c 
(1 x 1)-squares, for a total of c  + 1  =  s tiles.  Consider the case c  =  8, so s  =  9. 
 
The Euclidean tiling of the (8 x 9)-rectangle, with 9 tiles 
         

      
 
 
 
 
 
 
 

 
A square tiling of the (8 x 9)-rectangle with 7 tiles 

So this ‘wishful thinking’ guess did not pan out.  Still, since, as we have shown above, the 
Euclidean Distribution minimizes the number of pieces for cake distributions, we have the feeling 
that the corresponding Euclidean tiling of the (c x s)-rectangle should also be minimal, in some 
sense to be determined.  Well, a natural approach to this might be to: 
 
Find a geometric interpretation of the minimal number 
p  =  p(c, s)   =  c  +  s  -  d 
of cake pieces in the Euclidean distribution of c cakes to s students. 
 

Here we are opportunistically picking up on some side issues that appeared in the course 
of the work, but were not central to it.  The interest here, beyond the fact that these are 
interesting new questions in their own right, is that the connections noticed earlier might 
lead the way to some possible elaborations or applications of the result proved above.   
Also note that, as we engaged more seriously with these ideas, it was important to give a 
precise mathematical definition of the main terms (like ‘square tilings’) being used. 

 
In fact it is not so hard to see a geometric interpretation of the number of cake pieces.  Imagine 
the rectangular area picture of the Euclidean distribution.  We reproduce below the illustration for 
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c = 5 and s = 7.  Each cake piece is a horizontal slice of one of the squares in the tiling, and the 
number of these slices in a given square is clearly just the side length of that square. Thus, for 
each square of side length l, we get l pieces, and so the total number of pieces will be the sum 
of the side lengths of all the squares in the Euclidean tiling of the rectangle.    
 

S1 
P1 
5/7 

S6 
P6 
2/7 

S2 
P2 
5/7 

S6 
P7 
2/7 

S3 
P3 
5/7 

S6 
P10 
1/7 

S7 
P11 
1/7 

S4 
P4 
5/7 

S7 
P8 
2/7 

S5 
P5 
5/7 

S7 
P9 
2/7 

 
  The students:  S1, … , S7; their shares are color coded. 
  The pieces:   P1, … , P11 
  The fractions indicate fractions of a cake; each cake is a row (of width 1) of the  
   rectangle. 
 
This leads us to define the following quantity associated with any tiling T of a (c x s)-rectangle.  
Here T is understood to be a set of squares whose union is exactly R and such that any two of 
them intersect at most along an edge of each.  If  is one of these (square) tiles, i.e.    T, we 
shall write s() for its side length.  Then we define p(T) to be the sum of these side lengths. 
 

  p(T) =   T    s()  
 
With this notation, our observation about the Euclidean tiling, TE , can be expressed by the 
formula,  
  p(TE)    = p(c, s)  = c  +  s  -  d 
 
So we might thus be led to make the following: 
 
 

 
 
 

 
 
 
 
 
 
This passage illustrates some important kinds of ‘mathematical moves.’  We are 
navigating between two mathematical worlds, one the world of cake distributions, the 
other the world of square tilings of rectangles.  We saw (earlier) that the Euclidean 

Conjecture.  For any square tiling T of a (c x s)-rectangle, p(T)  ≥  c  +  s  -  d. 
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Distribution established a bridge between these two worlds, the Euclidean Distribution at 
one end, the Euclidean tiling at the other.  We proved that the Euclidean Distribution has 
a minimizing property in the cake distribution world, so we were tempted to ask if (or 
suspect that) the Euclidean tiling has some analogous minimizing property.  This is a kind 
of reasoning by analogy that mathematicians often use, to guess what might be true, by 
developing a relation of some new situation to an old one, about which we already know 
something.  It can be viewed as another kind of pattern seeking.  The procedure we 
followed was to try to build up the dictionary of translation from the cake world to the 
tiling world.  Given that [Euclidean Distribution] translates to [Euclidean tiling], we ask, 
[# pieces] translate to [???].  What we seek here is something that we can measure 
geometrically for all tilings in the tiling world, and so that, when applied to the Euclidean 
tiling, gives something closely related to the number (c + s – d) of pieces.  We found 
p(T) as the answer to that question, and accordingly we gave it a name, p(T), so that we 
could talk about and work with it. 
 

 
The Conjecture above, if true, would indeed show that the Euclidean tiling minimizes p(T), and 
so it is geometrically optimal among tilings, in this sense.  Can we prove this Conjecture?  The 
geometric statement is not so obvious.  Perhaps, instead of directly attacking it geometrically, we 
can use our Cake Distribution Theorem to help.  In other words, perhaps we can interpret any 
square tiling T of a (c x s)-rectangle as arising somehow from a cake distribution of c cakes 
among s students, and in such a way that p(T) is the number of cake pieces.  If we can do that, 
then we will have proved the above conjecture by reducing it to the Cake Distribution Theorem. 
 
 

So here we are proposing to show that our dictionary is (at least partly) reversible; in 
other words we can go back from a square tiling to a cake distribution.  In this way, we 
can use our dictionary to import our theorem on cake distributions to the tiling world, 
where it translates into a geometric theorem.  
 

 
Making a cake distribution from a square tiling 
 
For this argument, let us assume that not only c and s, but also the side lengths of all of the 
square tiles in T, are integers.  To help follow the argument, let’s illustrate what happens with 
the square tiling of the (8 x 9)-rectangle that we saw above: 
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Let us cut the rectangle into c horizontal (1 x s)-rectangles, that we consider to be the ‘cakes.’  
Then the vertical sides of the square tiles can be viewed as cuts through some of these cakes.  
The result is that each square tile , say of side length s(), will consist of s() horizontal cake 
pieces, each of size 1 x s().   
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
It remains to explain the distribution of these pieces to the s students.  For this let us label the 
size-(c x 1)-columns of the big (c x s)-rectangle R, by the numbers 1, … , s, one for each 
student.  So student j corresponds to column j.   
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      1    2     3    4     5    6    7     8    9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For each tile  through which column j passes, give student j one of the cake pieces from .  (In 
the following picture, the numbers indicate the student to whom that piece is given.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since exactly s() columns pass through , and since  is composed of exactly s() cake pieces, 
this distribution of the cake pieces from  is possible.  Now we have distributed all of the pieces 
to the s students.  To see that this is an equal distribution, we need to see that each student 
receives the same share, c/s of a cake.  In other words, student j should receive an amount of 
cake equivalent to that cut out by the (c x 1) column j.  But, for each square  through which 
column j passes, student j receives a horizontal cake piece of size 1 x s(), while the intersection 
of column j with  is a rectangle of size s() x 1, of the same area.  Thus, the area of column j, 
being the sum of the areas of its intersections with the squares through which it passes, also 
equals the total share received by student j.  And this is what we needed to show. 
 
We have thus proved: 

         

         

         

         

         

         

         

         

1 6 

      2       7 

           3            8 

                  4 9 

5 6 

1 3       7 

2      4             8 

1 2 5 9 

SQUARE TILING THEOREM.  If T is a tiling of a (c x s)-rectangle by squares of integer side 
length, then  
 
  p(T) ≥ p(c, s) = c  +  s  -  d, where d  =  gcd(c, s) 
 
This is an equality for the Euclidean tiling TE. 
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So this is a satisfying outcome, but with the one caveat that we had to restrict attention 
to square tiles of integer side length.  We’ll come back to that issue later, but just take 
note of it now.  The proof has, I think, a very nice ‘fit’ to it.  It shows I think a close 
structural relation between square tilings and cake distributions, so that results about the 
latter have applications to the former. The proof above seems ‘natural enough,’ even 
though it is a bit tricky to explain (especially without the pictures). The key was finding 
the idea for the proof, not its execution.  I have not found a direct geometric proof of the 
theorem above. 
 
 

The “complete perimeter” 
 
One geometrically un-aesthetic feature of the theorem is the fact that p(T) is not a ‘visually 
obvious’ quantity.  For example, if we look at a square tiling, 
 

  

  

 

 
we can’t ‘see’ p(T).  Of course we can just add up all of the side lengths of the squares, but 
many geometrically visible pieces of this are counted twice, and this happens in slightly 
complicated ways.  A more visually obvious geometric quantity is the total length of all of the 
boundary lines seen in this picture, viewed as a partition or (cartographic) ‘map,’ of the rectangle 
(with the squares as “countries”).  Let’s call this the “complete perimeter” of the tiling T, the sum 
total of the lengths of all the boundaries, and denote it CP(T).  A more precise, but less intuitive, 
definition could be given as follows: 
 
  CP(T) = the total length of the (set theoretic) union of the sides  
    of all of the square tiles in T 
 
This union is exactly the set of line segments that we see in the picture.  An intuitive way to think 
of CP(T) is that it measures “the amount of ink needed to draw the picture of the tiling.”  Then, 
with this more geometrically natural quantity, we can ask,  
 
Does the Euclidean tiling also minimize CP(T)? 
 
Put another way, does the Euclidean tiling, among all square tilings of R, minimize the 
‘boundary’?  In this form, question reminds us of what are called “isoperimetric problems,” which 
are about enclosing a given area with minimum perimeter. 
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The motivations in play here are partly aesthetic.  The cake distribution world is primarily 
algebraic/combinatorial, while the tiling world is primarily geometric.  But when we 
translated the number of pieces into the quantity p(T), the p(T) was still mainly an 
algebraic expression, with no visible geometric meaning.  So there was a mathematical 
impulse to seek some more visibly geometric quantity that we could relate to the number 
of pieces in a cake distribution.  This would make the theorem more interesting or 
natural from a purely geometric point of view.  We shall see now in what follows that this 
is easily achieved from what we have already done. 

 
 
Instead of trying to directly answer the question of whether the Euclidean tiling minimizes CP(T), 
let’s first just try to calculate CP(T).  One way to do this is to first sum the perimeters of all the 
square tiles, and then compensate for things we have counted twice.  So we begin with  
 

 4p(T) =   T   4s()  
 
  = the sum of the perimeters of all of the square tiles 
 
The sides that are not counted twice are those on the boundary of R, and their lengths add up to 
the perimeter of R, which is 2(c + s).  All of the other square side lengths are effectively counted 
twice.  It follows that  
 
 CP(T) = 2(c + s)  +  ½ [4p(T)  -  2(c + s)], so 
 
  
 
 
It is worth noting in passing here that this calculation was purely geometric, and did not require 
c, s, and the square side lengths to be integers.  They could be any real numbers > 0. 
 
The formula above shows that, for a fixed (c x s)-rectangle R, CP(T) is a linear function (with 
slope 2) of p(T), as T varies over all square tilings of R.  Thus, a tiling T minimizes CP(T) if and 
only if it minimizes p(T).  In particular therefore, the Euclidean tiling TE minimizes CP(T), in which 
case we have 
 
 CP(TE) = (c + s)  +  2(c + s  -  d),  so 
  

   
 
 
So we have proved the geometric result that we sought: 
 

 

CP(T) = (c + s)  +  2p(T) 

CP(TE) = 3(c + s)  -  2d

PERIMETRIC SQUARE TILING THEOREM   For any tiling T of a (c x s)-rectangle R by squares with 
integer side lengths, we have 
 
  CP(T) ≥ 3(c + s)  -  2d,    where d  =  gcd(c, s) 
 
For the Euclidean tiling, TE, we have equality in place of ≥ above. 
 



                                                                                                       TMME, vol8, nos.1&2, p .27 

 

 
Misgivings, new questions, and generalizations 
 
While the theorem above seems to offer a pretty happy state of affairs, there remain some issues 
in the background that are puzzling, if not troubling.  First of all, it seems mathematically 
unpleasant that we had to assume that our tilings used only squares of integer side lengths, 
while the statement of the conclusion requires only that c and s be integers.  What happens if a 
tiling T involves squares not of integer side length?  Is it still true that  
 
  CP(T) ≥ 3(c + s)  -  2d? 
 
And, more generally, the notion of square tiling is purely geometric and makes perfectly good 
sense for any rectangle, say c x s, where c and s can be any real numbers > 0, not necessarily 
integers.  What is the story for these?  In this case, CP(T) above still makes sense, but what 
about d  =  gcd(c, s)?  How could that possibly be interpreted?  In fact this raises in turn an 
existence question:  If c and s are not integers, how do we know that there even exists any tiling 
of R by squares? 
 

In short, we are here asking questions about the “natural mathematical boundaries” of 
what we have done, and about ways to frame our results in their “natural mathematical 
generality.”  These are the kinds of questions that a mathematician would typically be 
disposed to ask, before even thinking hard about their likely outcome.  Such questioning 
repertoires are an important resource in mathematical practice (just as in teaching). 
 

Let’s begin with the last question:   
 
Which rectangles can be tiled by squares? 
 
First observe that this is a property that is invariant under rescaling.  If we change everything by 
a scaling factor, then a square tiling gets transformed into another one (of a different size).  Now 
if a (c x s)-rectangle has rational side lengths, c and s, then we can scale up by a common 
denominator of c and s to get a rectangle with integer side lengths, which can clearly be tiled, for 
example by (1 x 1) squares, and thus so also can R be square tiled, after scaling back down.  
More generally, if a (c x s)-rectangle admits a square tiling, then so also does a (rc x rs)-
rectangle, for any real number r > 0, as we see by rescaling with the factor r.  (So the side 
lengths don’t even have to be rational numbers.)  Thus, a (c x s)-rectangle R can be square tiled 
if, for some number r > 0, rc and rs are both rational. But then the ratio c/s  =  rc/rs is also 
rational.  Conversely, if c/s is rational, say c/s  =  a/b with a and b integers, then, setting r  =  
a/c  =  b/s, we have rc = a and rs = b, which are both rational. Two non-zero real numbers c 
and s are said to be commensurable if the ratio c/s is a rational number.  With this terminology, 
the discussion above shows that,  
 
A rectangle can be square tiled if its side lengths are commensurable. 
 
I wondered if the converse might be true, believing that it is.  I asked some colleagues, and 
finally was led to the answer, in the (old) literature. 
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In fact, more can be said: 

 

 

                                         
 

THEOREM (Max Dehn, 1903)   
 
 A rectangle can be square tiled if and only if its side lengths are commensurable. 

HISTORICAL NOTE.  Max Dehn (1878-1952) was a German mathematician who studied under 
David Hilbert at Gottingen.  Dehn did deep and fundamental work in geometry, topology, and 
group theory.  He was the first to solve one of Hilbert’s famous list of 23 problems.  Giving a 
negative solution to Problem #3,  Dehn showed that a cube and a regular tetrahedron of the 
same volume could not be cut into polyhedra that are pairwise congruent.  This contrasts with 
what happens in the plane, where two polygons of the same area can be decomposed into 
triangles that are pairwise congruent. 
 
In 1938 Dehn, a Jew, was forced by the Nazis to leave his professorship in Frankfurt.  In 1945 
he became the unique math professor at Black Mountain College in North Carolina, where he 
remained till his death.  There was no opportunity there to teach advanced mathematics, but he 
also taught Latin, Greek, and Philosophy. The Black Mountain faculty included such figures as 
John Cage, Merce Cunningham, Willem de Kooning, Buckminster Fuller (of whom Dehn became 
a close friend), Walter Gropius, and many other artists. 

THEOREM   If the side lengths of a rectangle R are rational numbers, then a square tiling  
 
  of R must involve only squares of rational side length. 
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Consulting the literature in pursuit of the questions above was the occasion for learning 
some very interesting mathematics (old, but much of it new for me), and I welcomed the 
opportunity to thereby gain new knowledge and techniques, as well as culturally broaden 
my mathematical horizons.  I did not hesitate to take in more than was needed for the 
questions that motivated my search.  I’ll report on some of the highlights below, 
providing mathematical details only when they are within reach of high school 
mathematics. 
 

 
If we import Dehn’s Theorem from the literature for our use, then we can give a version of our 
theorem on square tilings of rectangles in more natural mathematical generality.  First we need 
to interpret gcd(c, s) when c and s are any real numbers. 
 
A generalized meaning of gcd and lcm 
 
Let c be any real number.  By a multiple of c we shall mean a number of the form q•c, where q is 
an integer. A number d is called a divisor of c if c is a multiple of d. Now let s be another real 
number.  Then a common multiple of c and s is just that; it is a number that is a multiple of both 
c and s.  We similarly define a common divisor of c and s.  Note that these definitions agree with 
those we already know when c and s are integers.  Here are some exercises that we leave to the 
reader. 

 
With these definitions we can now state our theorem in its natural generality. 
 

EXERCISES.  Let c and s be real numbers, not both 0, and let r be a real number > 0. 
 
1. 0 is a common multiple of c and s. 
 
2. m is a common multiple of c and s   if and only if   rm is a common multiple of rc and rs.   

d is a common divisor of c and s   if and only if   rd is a common divisor of rc and rs. 
 
3. The following conditions are equivalent.  
 

(a) c and s are commensurable, i.e. rc and rs are rational for some r > 0 
(b) c and s have a common multiple ≠ 0 
(c) c and s have a common divisor 

 
4. Under the equivalent conditions of #3, c and s have a greatest common divisor, denoted 

d  =  gcd(c, s), and a least common multiple > 0, denoted m  =  lcm(c, s).  Moreover,
  c•s = d•m 

 
5. We have gcd(rc, rs)  =  r•gcd(c, s) and lcm(rc, rs)  =  r•lcm(c, s).   
 (This follows from #2 and #4.) 

PERIMETRIC SQUARE TILING THEOREM (GENERALIZED)  Let R be a (c x s)-rectangle, and let T be a  
 
square tiling of R.  Then c and s are commensurable, and  
 
 CP(T)   ≥ 3(c + s)  -  2d,  where  d  =  gcd(c, s), 
 
with equality when T is a ‘rescaling’ of the Euclidean tiling. 
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The discussion above was designed just to give meaning to the quantity “gcd(c, s)” in 
the theorem.  The definitions and exercises are a fairly typical example of how a 
mathematician may try to find a natural general framework for some mathematical 
concept.  With some elementary concepts from “group theory” (out of bounds in the 
present discussion) one could give a more conceptual and more precise formulation to 
these ideas.   

 
The proof of the Generalized Perimetric Square Tiling Theorem goes as follows.  The 
commensurability of c and s is just Dehn’s Theorem.  So, after rescaling R and T, we can assume 
that c and s are rational.  Then the sequel to Dehn’s theorem tells us further that the tiles in T all 
have rational side length as well.  Choosing a common denominator for c and s and all the side 
lengths of tiles in T, we can use this to rescale the situation again and arrange that c and s are 
integers, as are the side lengths of all the tiles in T.  Now we are in a position to quote the 
Perimetric Square Tiling Theorem we proved above under these conditions.  Finally, we scale 
back to the original R and T.  Exercise #5 above is used to see that gcd(c, s) behaves 
consistently in each of these rescalings.  
 
 

Dehn’s Theorem tells us that square tileable rectangles are commensuarable, i.e. their 
side lengths are rational after rescaling.  A further rescaling makes the side lengths 
integers, where we can apply the earlier Perimetric Square Tiling Theorem.  To scale 
back to the original rectangle and tiling, we need to know how to give meaning to a 
rescaling of the gcd(c, s) that appears in the earlier theorem.  That is what we worked to 
accomplish in the discussion preceding the generalized theorem.  So finding the 
“mathematical boundary” of our result had two ingredients.  First, Dehn’s Theorem 
restricts the geometric boundary of the set of rectangles for which it is meaningful to 
discuss square tilings.  Second, we conceptually expanded the algebraic notion of   
gcd(c, s) so that it has meaning in the full geometric context defined by Dehn’s Theorem. 

 
The only ‘gap’ in our story now, i.e. the only component that we have not mathematically 
derived from essentially High School level mathematics, is Dehn’s Theorem itself.  Can 
we make that also accessible? 

 
 
Proofs of Dehn’s Theorem 
 
There are several proofs of Dehn’s Theorem, but I have not found one that stays within the 
mathematical bounds that I have tried to maintain here. Dehn’s original proof (Dehn, 1903) was 
quite complicated.  Later proofs (see for example, Freiling and Rinne, 1994) are short and 
elegant, but make use of some abstract linear algebra, and the Axiom of Choice.  An ingenious 
proof was devised by Brooks et al, (1940).  From a square tiling of a rectangle, they constructed 
an electrical circuit, and used Kirchoff’s Laws to deduce Dehn’s Theorem, as well as many 
interesting generalizations. This method is also described in Blackett’s book on Elementary 
Topology (1982). 
 
For mathematical completeness, but outside the framework of the exposition above, we provide 
here a proof of Dehn’s Theorem as used here.  First a preliminary on “area functions.” 
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Area functions on rectangles 
 
Consider a plane rectangle  
 
  R  =  [x, x’] x [y, y’], 
 
with vertices the points (x, y), (x, y’), (x’, y) and (x’, y’); here x < x’ and y <y’.  We call these 
“coordinate rectangles” (the sides are parallel to the coordinate axes), and assume that all 
rectangles in what follows are such.   
 
Let f(x,y) be any function on R2.  We define the “f-area” of R to be 
 
  A(R)  (or Af(R))  = f(x’, y’)  -  f(x, y’)  -  f(x’, y)  +  f(x, y) 
 
LEMMA.  If a rectangle R is partitioned by a line parallel to one of its sides into two rectangles R’ 
and R”, then  
 
  A(R) = A(R’)  +  A(R”). 
 
Proof.  We show this in the case that the dividing line is vertical.  The horizontal dividing line 
case is similar. 
 

(x, y’) 
 
 
R’ 
 
(x, y) 

(x’, y’)                              (x”, y’) 
 
 
R” 
 
(x’, y)                                 (x”, y) 

 
We have 
 A(R’)  +  A(R”)  =        f(x’, y’)  -  f(x, y’)   -  f(x’, y)  +  f(x, y) 
            +  f(x”, y’)  -  f(x’, y’)  -  f(x”, y)  +  f(x’, y) 
 
    = f(x”, y’)  -  f(x, y’)  -  f(x”, y)  +  f(x, y)  
   
    = A(R) 
 
 
5.3 PROPOSITION.  If a rectangle R is tiled by rectangles R1, R2, . . . , Rn then  
 
   A(R) = A(R1)  +  A(R2)  + . . .  +  A(Rn) 
 
 
Proof.  Say R  =  [a, a’] x [b, b’].  If the tiling is the coordinate tiling resulting from partitions of 
the intervals [a, a’] and [b, b’], then the result follows easily from the Lemma, for example first 
summing over the tiles in a given row, to replace the row of tiles by a single row tile, and then 
summing over the rows. 
 
In general, we can extend the edge lines of all the tiles to refine the tiling to a coordinate tiling, 
and note that, by the Lemma, the sum of the areas in the refined tiling agrees with the sum over 
the original tiles, as well as with A(R). 
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Bilinear area functions.  Suppose now that the function f(x, y) is bilinear, in the sense that 
f(x+x’, y)  =  f(x,y) + f(x’, y), and f(x, y+y’) = f(x,y) + f(x, y’) for all numbers x, x’, y, y’.  Then 
for a rectangle 
 
  R = [x, x + a] x [y, y + b] 
we have 
  A(R) = f(x+a, y + b)  -  f(x, y + b)  -  f(x + a, y)  +  f(x, y) 
 
   = f(x, y)  +  f(x, b)  +  f(a, y)  +  f(a, b) 
           -  f(x, y)  -   f(x, b) 
           -  f(x, y)     -    f(a, y) 
           + f(x, y) 
 
   = f(a, b) 
 
Thus, when f is bilinear, the Proposition above can be formulated as: 
 
PROPOSITION.  Suppose that f is bilinear.  If a rectangle R of side lengths (a, b) is tiled by 
rectangles with side lengths (a1, b1) , . . . , (an, bn), then  
  A(R) = f(a, b) 
   = f(a1, b1) + . . .  +  f(an, bn). 
 

 
 
Proof of (a)  (See Freiling and Rinne, p. 549):  If c/s is not rational, choose a Q-vector space 
basis of the real numbers, R (a “Hamel basis”) containing c and s.  Then there exists a Q-linear 
function g:R   Q such that g(c)  =  1  =  -g(s).  Put f(x, y)  =  g(x)g(y), a bilinear function on 
R2, and use f to define an area function A  =  Af  as above.  Then (Proposition above)  

A(R)   =   f(c, s)   = g(c)g(s)  = -1 
 = T  g(s())2  > 0, 

which is a contradiction.  (Here, for    T, s() denotes the side length of .) 
 
 
Proof of (b):  Decompose R as a Q-vector space –  R  =   Q    W.  Take a Q-basis B of R 
consisting of 1, followed by a Q-basis of W.  Let g(x,y) be a symmetric Q-bilinear form (inner 
product) on R for which B is an orthonormal basis.  Hence g is positive definite.  For x    R,  we 
can write x  =  x0  +  x’, uniquely, with x0    Q  and x’    W.  Choose a real parameter t, define 
the Q-bilinear function 
  f(x, y)  = x0y0  +  tg(x’, y’), 
and let A  =  Af  be the corresponding “area function.” 
 
We are given a finite set T of squares that tile the rectangle R with rational base c and height s.  
Then, as above, we have 
 

DEHN’S THEOREM (GENERALIZED).  Let R be a rectangle of height c and base s, and let T be a 
finite set of square tiles that tile R. 
 

(a) (Dehn)  c/s  is a rational number. 
 
(b) Suppose that c and s are rational (which we may achieve by rescaling, thanks to 

(a)).  Then all squares in T have rational side lengths. 
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A(R)   =   f(c, s) = cs > 0 
 
 = T  f(s(),s()) = 1≤i≤r  f(s(i),s(i)), 
   

where s(1), s(2), . . . , s(r) is the list of side lengths of the square tiles in T.  We can write  
 s(i)   =   s(i)0  +  s(i)’,   with   s(i)0     Q and   s(i)’    W. 
Then 
 f(s(i), s(i)) = s(i)0

2   + tg(s(i)’, s(i)’) 
 
These f(s(i), s(i)) are linear functions of t, with t-coefficient  ≥  0, and  >  0 if s(i) is irrational.  
Since their sum, A(R), is a constant (independent of t) it follows that none of the s(i) can be 
irrational. 
 
 

IV. CONCLUSION 
 
I have tried to provide a vivid image of a small piece of ‘mathematics in the making,’ accessible 
(apart from this last section on Dehn’s Theorem) with only a base of High School level 
mathematics. The main agenda, carried by the interleaved meta-discussion, was to make explicit 
some of the moves, dispositions, and motivations that guided the mathematical work.  My hope 
is that this can help illuminate some of the resources that mathematicians deploy in the course of 
their work, and that many of these will resonate with and prove helpful to teachers and learners 
of school mathematics. 
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