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Editorial – “Glocal”, “Glocavores”:  Good Gadgetry? 
 

Bharath Sriraman 
The University of Montana 

 
In the movie “Up in the Air”, Glocal is a neologism, a clever witticism conjured 
up by a naïve business school graduate at an agency hired by corporations to let 
go of employees that become redundant in corporate mergers/cuts.  Her solution 
to the unpleasant nature of telling real human beings that they no longer had a 
job was to try and automate this inhumane process, i.e., have a scripted 
flowchart be read out at a safe distance via computers. In theory, a local call 
center could take care of firings done globally, at very little cost to the agency. 
Thus the neologism “glocal” suggests the gadgetry of global connectivity 
afforded through computer networks at our disposal for destructive and 
constructive purposes. The reader is wondering what the editorial alliteration 
has to do with the present issue of the journal. An explanation is in order. 
 
First, the journal would not exist but for the support of the global community of 
scholars regularly contributing to it. Second, the title of the journal no longer has 
the local label “Montana” attached to it. This Spanish word meaning “land of 
mountains” has already been appropriated by a Danish furniture company that 
makes high end wooden furniture for homes, as well as characters from the film 
and cine media. It was high time for the journal to shed old skin and embrace the 
generic title “The Mathematics Enthusiast”, which more accurately reflects the 
nature of the journal, and the directions in which it has grown. 
 
 In the last 6 years, approximately 5% of the submissions have come from 
Montana, and usually from my prodding locals to contribute to the journal.  A 
perusal of the table of contents of the journal will reveal that a very large 
proportion of the articles come from the global community of scholars, and a 
smaller portion from those in the U.S. To this end the journal has begun to 
support The Psychology of Mathematics Education- North America (PME-NA). In 
October 2010, I was approached by several colleagues at the annual meeting in 
Columbus, Ohio with the suggestion that the journal be open to submissions 
from the community of scholars that form this professional organization. Given 
the sheer abundance of unread Conference proceedings conveniently available in 
pdf format, which can be mined via search engines, it seemed worthwhile to re-
publish a selection of interesting papers in a special issue each year provided 
they passed an additional burden of peer review. This relationship with PME-
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NA is meant to be anti-symbiotic, i.e., The Mathematics Enthusiast does not 
depend on PME-NA in any way- We do quite well on our own and do not need 
any professional organization to support or sustain us. In a similar vein PME-NA 
does not depend on The Mathematics Enthusiast either, since it publishes its own 
conference proceedings each year, and has been a tremendous professional 
organization for many mathematics education scholars in the U.S, myself 
included. The only reason the journal is supportive of PME-NA, is to give a 
possible journal outlet for colleagues at Institutions that do not recognize or 
value online conference proceedings. It is more or less a bibliometric fact that 
many Institutions do not give the same point value to a proceedings paper as 
opposed to a journal article unless the proceedings is listed in a recognized 
academic index (Sriraman, 2011). Vol8,no.3 of The Mathematics Enthusiast 
contains 6 extended contributions from the 2010 meeting of PME-NA. The theme 
of these papers is “optimizing student understanding in mathematics”.  
 
The Mathematics Enthusiast is not a periodical like The Mathematics Teacher or 
The College Mathematics Journal. However, there are some elements of these 
two journals in articles addressing the teaching of mathematics content or simply 
mathematical content at the school and university levels respectively. The journal 
is also not a pure mathematics education research journal either, although it 
regularly features articles from the mathematics education research community. 
Our goal is to remain eclectic and open to the wider community of scholars 
besides mathematicians and mathematics educators. It is often the case that those 
looking into mathematics through a different disciplinary lens can offer 
perspectives that are surprisingly refreshing, and of interest to the community of 
readers. 
 
Vol9, nos 1&2 [January 2012] of the journal will also be available in early August, 
in the online medium 6 months in advance. The print version of this issue will 
become available from Information Age Publishing in January 2012. Vol.9, no.3 
[June 2012] will contain extended papers from the North Calotte Conference in 
Mathematics Education that took place in Tromso, Norway in 2010. The delay is 
due to being unable to locate appropriate reviewers for the submissions. The 
journal strives to find researchers who are capable of giving constructive reviews 
and familiar with the content of the article. Sometimes this becomes difficult, and 
the “objectivity” or the “black box” of blind review often results in reviews that 
are not helpful to the author in question, nor the journal. There is an analogy to 
the “firing” process at corporations mentioned in the first paragraph, and the 
“rejection” process of manuscripts in many journals. We are trying very hard to 
devise a completely open peer review system, where Latourian black boxes do 
not govern decisions that can affect authors (Sriraman, 2011). 
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The monograph series affiliated with the journal retains the “Montana” moniker 
and has 5 monographs in development for release in the next two years. One of 
these monographs is particularly ambitious because it attempts to cover the state 
of the art of mathematics education in China, Korea, Singapore, Japan, Malaysia, 
and India. This is slated for release late next year with a preliminary book of 
extended abstracts available free on the website for those interested.  
 
On a parting note and in keeping with the neologism “glocal”, the community of 
21st century readers of the journal can be thought of as glocavores (as opposed to 
locavores), since we readily consume ideas that spawn all around the world. In a 
more global sense, the Arab Spring is a testament to the fact the connectivity can 
be construed as a useful/constructive tool for instigating change- of the self, of 
ideas, and of the notion of “glocal” as a good thing, as opposed to the way it was 
conceived of by the female protagonist in “Up in the Air”. 
 
Reference 
Sriraman, B. (2011). Dogmatism and the Knowledge Industry: More Accurately 
Assessing the Work of Gifted Scholars. In D. Ambrose, R. Sternberg, B. Sriraman 
(Eds). Confronting Dogmatism in Gifted Education, Routledge, Taylor & Francis, in 
press. 
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Research on Practical Rationality:  
Studying the Justification of Actions in Mathematics Teaching 

 
Patricio Herbst1 

University of Michigan 
& 

Daniel Chazan 
University of Maryland 

 
 

 

Abstract: Building on our earlier work conceptualizing teaching as the management of 
instructional exchanges, we lay out a theory of the practical rationality of mathematics 
teaching—that is, a theory of the grounds upon which instructional actions specific to 
mathematics can be justified or rebuffed. We do that from a perspective informed by what 
experienced practitioners consider viable but also in ways that suggest operational 
avenues for the study of instructional improvement, in particular for improvements that 
enable students to do more authentic mathematical work.  We show how different kinds of 
experiments can be used to engage in theory building and provide examples of initial 
work in building this theory. 
 
Keywords: Mathematics instruction; Practical Rationality; Theory of teaching; 
Teacher education 
 
 
Introduction 

In this paper we address the work of the mathematics teacher in instruction and 

the rationality behind this work. We first sketch out how the teacher’s work 

could conceivably contribute to the creation of opportunities for students to do 

authentic mathematical work. In that sense we expect that the paper will add to 

                                                 
1 pgherbst@umich.edu 
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our collective sense of what is conceivable and perhaps desirable to happen in 

classrooms. Most of the paper, however, is concentrated on elaborating on the 

grounds for possibility and justification of teachers’ actions. In particular, what is 

the rationality that might (or might not) support teachers’ management of 

authentic mathematical work by students?  

In accounting for the rationality beneath teachers’ actions and in regard to the 

possibility of enabling authentic mathematical work by students, we take some 

distance from two relatively commonplace ways of responding to a vision 

sketch. In one of these approaches, a vision of conceivable mathematical work in 

classrooms might be followed by an acknowledgment and analysis of the forces 

and structures that make the vision not viable. Such an approach would summon 

us to be like social critics of the current educational system, and to endorse a new 

educational system that would bring all our hopes to fruition. In the other 

approach, the vision sketch is followed by a busy shaping of persuasive rhetoric, 

design of efforts, and organization of resources, all of them aimed at making the 

vision happen against all odds. Such an approach would summon us to be like 

social engineers, relentlessly working to realize the vision, as if the only thing 

that separated the conceivable from the viable was the existence of the will to 

make the vision happen.  

Without meaning to disrespect proponents of either of those approaches, we 

take a third approach, which combines the orientation to improvement of the 

second with the analytic disposition of the first but poses questions that call 
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neither for critique nor for engineering but rather for theory and research. We 

elaborate on the notion that the actions of teachers in classrooms are not mere 

expressions of their free will and personal resources; rather their actions also 

attest to adaptations to conditions and constraints in which they work. And yet 

that realization does not necessarily condemn us to accept the status quo; rather, 

it can suggest ways of working toward improvement in viable, incremental, and 

sustainable ways.  

How can we think about the distinction, and the gap, between what is 

conceivable and what is viable in mathematics teaching? How can we find out 

how much of the vision can be realized within existing conditions and 

constraints? We argue below that what is required is first to understand and then 

to co-opt what we have been calling the practical rationality of mathematics 

teaching (Herbst & Chazan, 2003; Herbst, Nachlieli, & Chazan, 2011). We first 

recount how the story of practical rationality began and the big picture it serves. 

 

How We Started Our Efforts to Explain Teaching 

We started to work together back in 2000, following our common interest in 

understanding the teaching of mathematics at the secondary level and our 

shared sense of the importance of learning the wisdom of the practice (Shulman, 

2004). But while the focus of our interest was convergent, our theoretical 

perspectives and our methods required some work. Chazan had been doing 

what Ball (2000) calls first-person research: He had been using his own practice 
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teaching Algebra I to investigate the dilemmas and dynamics that a teacher 

needs to manage (see Chazan, 2000; Chazan & Ball, 1999; also Lampert, 1985). 

Herbst had been using the more structuralist notions of didactical contract 

(Brousseau, 1997) and didactical transposition (Chevallard, 1985) to provide 

detached observer descriptions and explanations of the work of teaching and its 

effects on the classroom representation of knowledge (see Herbst, 1998; 1999; 

2002a; 2002b). Our conversations at the time had found a good anchor concept in 

Bourdieu’s (1998) notion of disposition: an element of practical reason that could 

be conceived as having two sides, like a coin. Dispositions could be seen by an 

observer as ordinances to which the individual is subject given the position in 

which they are, but dispositions could also be experienced as tendencies 

emanating from the individual and compelling them to act in particular ways 

(see Herbst & Chazan, 2003; cf. how Lampert, 1985, speaks of commitments). Early 

on the conversation was mostly theoretical, as we searched for ways to 

complement our perspectives; but then our conversation took a methodological 

turn.  

At about the same time that we started talking about dispositions, the 

educational research community was dealing with a renewed interest in the use 

of experimental methods in education, which culminated with reports like 

Shavelson and Towne (2002) and the establishment of the What Works 

Clearinghouse by the US Department of Education 

(http://ies.ed.gov/ncee/wwc/).  The notion was in the air that educational 
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research should aspire to the gold standard of using experimental design, 

randomly assigning participants to conditions; and our conversations started to 

include considerations of hypothesis testing in research on mathematics 

teaching. As we considered what experimental research in mathematics 

instruction could look like, it was odd to us that the image that first came to 

mind was that of research on whether the implementation of an instructional 

intervention might affect students’ performance: Does curriculum X produce 

better gains than curriculum A on the scale N? To be clear, nothing is odd about 

thinking of curriculum or pedagogy implementation in terms of experimental 

research. What seemed odd to us was that those types of questions would appear 

as the prototypical examples of how our field might take on the challenge of 

experimental research.  

Experimental research that gauged the achievement gains that could be 

caused by a particular treatment were clearly worthwhile questions, important 

for policy and practice, but they were also applied questions, not necessarily 

illuminating the fundamental phenomena of mathematics instruction. We 

wondered whether embracing an experimental paradigm would necessarily 

mean that research on mathematics instruction would be limited to asking 

questions of an applied nature, questions that took for granted that we knew the 

nature of mathematics instruction well and just had to design and test ways of 

improving it. Given our experience as classroom researchers, we knew that, at 

the time, mathematics education research (for a long time focused on learning 
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and the learner, and later on the individual teacher) still had some ways to go as 

far as understanding the nature of the activity of mathematics teaching. We 

thought there was a great need for basic (as opposed to applied) research on 

mathematics teaching, not just basic research on students or teachers. And so we 

wondered whether basic research on mathematics instruction had some use for 

an experimental paradigm.  

Instructional Situations and their Norms:  

A Focus for Basic Research on Mathematics Teaching 

The fundamental idea, proposed by David K. Cohen among others (see 

Cohen, Raudenbush, and Ball, 2003; also Chevallard, 1985; Hawkins, 1974; 

Henderson, 1963), that instruction consists of the interactions among teacher, 

students, and content in environments was compelling to us and essential for 

defining an emerging field. We pondered what basic research on the nature of 

mathematics instruction could look like if it embraced an experimental 

paradigm: What kind of interventions could reveal aspects of the nature of 

mathematics instruction? And what aspects of mathematics instruction could we 

expect to find out about? These questions seemed important, on the one hand, in 

order to respond to the challenge of using an experimental paradigm. Those 

questions seemed important, on the other hand, in order to establish a 

foundation for basic (rather than applied) research on instructional practice in 

mathematics--research that asked questions distinct from the study of instruction 

writ large (which might assume that the subject does not matter or that it matters 
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the same regardless of the particular discipline from which it comes) as well as 

questions distinct from the study of people (teachers or students) which might 

perpetuate the reduction of mathematics education research to psychology.   

One key idea presented itself as an aspect of mathematics instruction that we 

wanted to find out more about: If the subject matters in instruction, that is, if 

mathematics instruction in geometry is a practice distinct from instruction say in 

Calculus, American History, or Organic Chemistry, we would expect to see 

regularities of some sort across different cases of instruction in a specific domain. 

This was anchored by our mutual interest in justification and proof and our 

question of why, while those practices were current in geometry, they continued 

to be absent in algebra, in spite of calls for it in reports over the decades: How 

could it be that the same teacher with the same class, but perhaps at one year’s 

remove, would talk and act so differently in regard to the source of mathematical 

truth simply due to a shift from geometry to algebra instruction? Additionally, if 

the regularities observed concerned mathematics instruction as an activity, we 

would expect to observe regularities that went beyond the knowledge being 

transacted to include similar ways in which teacher and students managed those 

knowledge transactions. The word “norm” used in the sociological sense as the 

normal or unmarked behavior that is tacitly expected in a setting, suggested itself 

as the name of the object of study. We hypothesized that instruction in specific 

courses of mathematical study (algebra, geometry, etc.) could be described as 

abiding by consistent sets of norms, much as other human practices like eating in 



Herbst & Chazan 

 

a formal dinner or getting a table in a restaurant abide by consistent sets of 

norms (Garfinkel & Sacks, 1970). And we thought that experimental research 

could be used to confirm that those norms exist. 

Instructional Situations, their Norms, and the Notion of Breaching Experiment 

While the observance of norms could be found at various layers of classroom 

activity (as we indicate below, in particular at the layer of the didactical contract 

and the layer of the mathematical task), we concentrated on studying norms at 

the layer that we’ve called the instructional situation (Herbst, 2006). Conceptually, 

an instructional situation is a type of encounter where an exchange can happen 

between (1) specific mathematical work done by students and their teacher in 

moment-to-moment interaction and (2) a claim on students’ knowing of a 

specific item of knowledge at stake. Intuitively one could think of an 

instructional situation as including a mathematical task and the element of the 

curriculum that the completion of the task enables the teacher to lay claim on. 

We model instructional situations by spelling out norms that describe the 

knowledge and the work being exchanged, who is expected to do what, and 

when those different actions are supposed to happen (see Herbst & Miyakawa, 

2008; Herbst, Chen, Weiss, & González, 2009).         

Herbst’s own research studying the work of the teacher managing the 

instructional situation of ‘doing proofs’ in high school geometry provided an 

example of a norm: students are expected to justify a statement in a proof with a 

reason before they move on to make the next statement. In proposing it as a 
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norm, we did not mean to endorse the norm as appropriate, but to describe what 

classroom participants—teacher and students—would consider appropriate. We 

were not willing to posit that those norms would necessarily be explicit for 

teachers or students: We expected that people might act as if they followed 

norms but not necessarily bring them up if and when they were asked to 

describe the activities they do. And we realized also that, unlike physical laws 

those norms of human activity could not be thought of as inevitable; they could 

in fact be broken—one could conceive of and actually find a teacher who had let 

a student make a new statement without having justified the previous one. While 

one would expect that a large number of observations of a similar instructional 

situation would reveal compliance with norms more often than non compliance, 

the notion that mathematics instruction is regulated by norms could not be 

validated solely through the observation of regularities in action. We needed 

empirical ways of attesting that even if a norm had actually been breached, 

people familiar with the practice would have expected it to be fulfilled.  

The notion that basic research on mathematics instruction could consist of 

finding out about the norms of instruction in subject specific situations, along 

with the particular notion of a norm as a tacit, shared expectation for action, led 

us to an idea for how to pick up the challenge of doing experimental research. 

We were inspired by the ethnomethodological notion of breaching experiments 

(Garfinkel & Sacks, 1970; Mehan & Wood, 1975), which the first author was 

already adapting for use in classroom research (Herbst, 2003, 2006). We thought 
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this notion could be adapted to deliberately bring to the surface practitioners’ 

sense of the norms of instruction.  If we could represent to practitioners (for 

example, through a videotaped episode of instruction, but also possibly through 

an animation or through a virtual reality experience) action that purported to be 

of the same kind of what they would ordinarily do, but where a hypothesized 

norm of that action had been breached, we might be able to hear from 

practitioners whether they had expected the norm to hold. In that sense, a 

representation of teaching that included the breach of a norm could be expected 

to reproduce deliberately the phenomenon of interest, namely, that practitioners 

expected that norm to hold. The extent to which those procedures could be called 

experiments refers to Francis Bacon’s notion of experiment in scientific inquiry: 

“there remains simple experience; which, if taken as it comes, is called accident,” 

“if sought for, experiment” (cited in Durant, 1926, p. 146). That is, our earlier 

conception of doing experimental research only abided by the notion of 

experiment as the deliberate reproduction of a phenomenon. But one could also 

see at least as a possibility that the modern conception of experiment, which 

emphasizes reproduction of the phenomenon under controlled conditions by 

way of random assignment of participants to conditions, could be used to 

confirm that a norm holds: Imagine having two representations of teaching that 

differed only in that in one of them (the control condition) a hypothesized norm 

held while in the other  (the treatment condition) the hypothesized norm has 

been breached. Imagine a sample of practitioners who have a comparable degree 
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of socialization in the practice where the norm is supposed to hold. Imagine 

randomly assigning those participants to one or another representation. Imagine 

having a way of gauging their satisfaction with the instruction experienced and 

comparing both groups in regard to that assessment. That gave us a skeleton of 

what basic experimental research on instruction could look like and some 

impetus for initial work on a project that we would later call Thought 

Experiments in Mathematics Teaching (ThEMaT).  

Thought Experiments in Mathematics Teaching 

The notions of instructional situation, norm, and breaching experiments led 

us first to gather video records from a geometry lesson on proofs where the 

teacher allowed a student at the board to omit the justification of a statement and 

to move on with the proof. We started by gathering focus groups of geometry 

teachers that looked at that video record and then examining the discourse of 

those focus groups for comments that might provide evidence that teachers in 

the focus groups had seen the actions of the videotaped teacher as breaching a 

norm (Herbst & Chazan, 2003; Nachlieli & Herbst, 2009; Weiss, Herbst, & Chen, 

2009). At the same time that this work was being done we started exploring the 

use of animations to represent classroom scenarios and we wrote a grant 

proposal for Thought Experiments in Mathematics Teaching to the National 

Science Foundation, asking for support to create animations that helped us study 

what by then we had started calling the practical rationality of mathematics teaching.  
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Thought Experiments in Mathematics Teaching (ThEMaT) was funded in 

2004 and, among other things, it enabled us to create seventeen families of 

animated classroom stories (the stories can be seen in LessonSketch, 

www.lessonsketch.org). The animations use simple cartoon characters and voice 

over to represent scenarios of classroom instruction. The use of animations 

allowed us to control the content of those scenarios, allowing us to design 

scenarios that breach a norm but comply with others. Animations also allowed 

us to produce breaches that had not been observed in actual classrooms (thus 

showing one important advantage over video records). And this media also 

allowed us to create stories that branched, thus depicting alternative scenarios 

that proceeded from a common trunk (thus our reference to families of stories, 

since many of them have several alternative stories; see Chazan & Herbst, 2012; 

Herbst, Chazan, Chen, Chieu, & Weiss, 2011; Herbst, Nachlieli, & Chazan, 2011). 

The generous support of the National Science Foundation has been crucial for us 

to maintain a research program that, in our view, has contributed to the field not 

only an important technique for data collection but also some useful theoretical 

and methodological ideas.   

The goals of the research program are quite ambitious: To develop and test a 

theory of the rationality of instructional practices in mathematics. This theory of 

the rationality of instruction explains what instructional actions are justifiable by 

drawing on two elements (1) the norms that the practice of teaching a particular 

mathematics course imposes on whoever plays the role of teacher, and (2) the 
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obligations that the profession of mathematics teaching requires of anybody 

taking the position of mathematics teacher. Combined with the personal assets 

(including knowledge, skills, and beliefs) that an individual teacher brings with 

them to that position and that role, those norms and obligations can help explain 

teacher action and decision-making.  The project is now on its second funding 

cycle in which we are designing and using an online interface (LessonSketch, 

www.lessonsketch.org) to deliver online multimedia experiences that include 

animations and other cartoon-based representations of teaching. The project 

designs multimedia experiences and questionnaires that confront individuals or 

groups of teachers with representations of teaching; the project will investigate 

how responses to those questionnaires correlate with measures of mathematical 

knowledge for teaching (MKT; Ball, Thames, & Phelps, 2008). Over the years, 

project ThEMaT has allowed us not only to probe and ground our ideas about 

norms and develop instruments but also to deepen the theory and make 

progress, though we have not yet used an experimental paradigm in quite the 

sense described above. Our interventions thus far are experiments in the sense 

that they reproduce predicted phenomena (evidence of the breach of a norm), 

but they have not yet reached the gold standard of controlled conditions by 

random assignment. These conditions may be fulfilled through our current 

efforts with LessonSketch: An authoring tool in the LessonSketch environment 

allows us to create online multimedia experiences that may be randomly 

assigned to participants (see Inglis & Mejía Ramos, 2009, for an example of a 
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similar use of the internet in experimental research in mathematics education).  

While the foregoing describes the story of our work, we use the following 

sections to expand on the ideas and some of the methods.   

Explicating Practical Rationality 

A Classroom Scenario 

Consider what we would call a thought experiment in mathematics 

teaching. The action happens in a high school geometry course in late November. 

The class has spent some time learning to use triangle congruence to prove 

statements and has begun the study of quadrilaterals.  The teacher, Mr. Jones, 

has drawn a figure on the board (see Figure 1) and wants the class to prove a 

statement about the relationship between the sides of the rectangle ABCD. There 

is some hesitation. Somebody asks whether they could prove that AB  is longer 

than BC  while another student asks what they have to go on; the teacher lets 

those comments pass. A student asks whether triangles ADE and BCE are 

congruent. Mr. Jones writes this question on the board and draws two arrows 

from it. One arrow points toward a question he writes, “how would it help to 

know that those triangles are congruent?” The other arrow points toward 

another question he also writes, “what would you need to assume to be able to 

say that those triangles are congruent?” You can hear somebody say that it’s 

obvious that they are congruent while another says that they could then say the 

triangles are isosceles. Another student says, “you’d need to know that AEB is a 

right angle;” Mr. Jones writes this on the board and asks the class what they have 



                                                                                                      TME, vol8, no.3, p .419 

 

to say about that (see Figure 2). Some students claim to not really know what the 

teacher means with that question but others raise their hands. One of these 

students says that she thinks it would be useful if the angle were right because 

then the angles at the top would be congruent with the small angles at E. Some 

kids perk up and one kid says, “and you could then say that AB is twice BC.” 

The teacher asks them to take a few minutes and see if they can prove that the 

ratio between the sides is 2 assuming as little as possible. You see a kid write, 

“Prove: The ratio is 2 ” while others have written “Given:” and are pensive.  

  

  

Figure 1. Mr. Jones diagram Figure 2. Discussing given and prove 

 
 

For a few years now, in the context of the project Thought Experiments in 

Mathematics Teaching, we have been creating cartoon-based representations of 

teaching that illustrate conceivable scenarios of instruction.  One of them is the 

story “A Proof about Rectangles,” a version of which we’ve just described. Now 

we want to use that episode to raise a few questions about mathematics 



Herbst & Chazan 

 

instruction in school classrooms and to elaborate on the ideas that this kind of 

material has helped us explore.  

Some of these questions concern the substance of this conceivable episode: 

What opportunities for students’ mathematical work are made possible by how 

the teacher has been managing the instruction? Other questions are about theory: 

What kind of considerations about classroom instruction could help us describe 

and explain how teacher and students ordinarily transact mathematical ideas, in 

such a way that we could also account for possible avenues for improvement and 

foresee their consequences? Finally, other questions are about research 

methodology: What kind of data can help us ground those theoretical 

considerations? How to obtain it? These questions, though large, serve to 

explicate the program of research that we call the practical rationality of 

mathematics teaching (Herbst & Chazan, 2003; Herbst, Nachlieli, & Chazan, 2011).  

Desirable and Customary Mathematical Work 

What mathematical work are students doing in the episode described above? 

We could describe it as listing plausible statements about a figure and 

considering whether these plausible statements could be connected through 

logical necessity. The source of some of those statements seems to be 

perceptual—for example, the observation that angle AEB is right. Other 

statements seem to result from deduction—notably, the observation that if the 

angle AEB was right then one could conclude that side AB would be twice as 

long as side BC . But regardless of the origin of each of those statements, the 
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teacher is helping students connect all statements through abduction and 

deduction: Asking what assumptions would enable one to infer the plausible 

statement made and asking what inferences could be made if one took that 

plausible statement for granted. The assertion about the relative length of the 

sides of the rectangle eventually derives from the plausible truth of those earlier 

statements. The teacher is thus helping students reduce a question of truth (what 

could be true about an object) to a question of deducibility from possible 

statements about an object. They are using proof as a method to find things out.  

Such use of proof as method in knowledge inquiry is essential to the 

discipline of mathematics (Lakatos, 1976). It is also behind the drive to 

mathematically model other fields of experience: The expectation that in those 

fields it will also be possible to reduce the problem of truth to a quest for 

deducibility, which can then warrant new, still unknown, possible truths is 

important in pure and applied science. Hanna & Jahnke (1996) have argued that, 

by using an empirical theory to predict empirical phenomena, scientists engage 

in modeling the world and deductively producing inferences based on 

assumptions, predictions that are eventually subject to confirmation by 

experimentation.  

Being able to master such a form of inquiry can make a child resourceful in 

ways that can add to methodological resources they get from the study of other 

disciplines. Mathematical work of the kind depicted in the scenario is not only 

authentic mathematical work (Weiss, Herbst, & Chen, 2009) but also embodies 
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skills and processes that might empower students to contribute to knowledge 

production writ large. In that sense we would argue that Mr. Jones’s questions to 

students about what could be deduced from a given statement, or what 

statement could entail what they think is true, are helpful ways of educating his 

students in the use of mathematical reasoning for making predictions about the 

world, in this case about the world of diagrams. A scenario where students could 

work on connecting plausible statements deductively is therefore conceivable 

and it could be represented using animations or comic strips with cartoon 

characters.  

However, it is likely the case that few students encounter such opportunities 

to engage with proof in school mathematics in the way outlined by the foregoing 

scenario. The work they do during their school years rarely includes chances to 

acquire the skill or the appreciation of the methodological, model-making 

function of proof or even experiences doing work that could have had that 

exchange value.  

It is more likely that the problem above would be presented to high school 

geometry students as shown in Figure 3. In particular, while students are 

ordinarily expected to prove propositions in high school geometry, it is 

ordinarily the teacher (or the book) who will state the givens and the conclusion 

of the propositions they prove. While efforts to change these norms have been 

made (e.g., the work with the Geometric Supposers reported in Schwartz, 

Yerushalmy, & Wilson, 1993), it rarely falls on the students to determine the 
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givens for a plausible conclusion, to deduce the conclusion from a set of givens, 

or to find both the givens and the conclusion for a theorem that relates to some 

plausible naïve conjecture. 

 

•Given:  

 ABCD rectangle,  

  E midpoint of DC ,  

  �AEB right angle 

 Prove: 
AB

BC
 2  

 

Figure 3. A more likely proof problem. 

 
 

The Scenario as an Example of Norms and Instructional Situations 

The expectation that, if students are to be held accountable for producing a 

proof, the teacher will have to provide for them the givens and the “prove” 

statement is an example of what we call a norm of the instructional situation 

“doing proofs.” It is a norm in the sense that an observer can describe teachers 

and students acting as if they expected that this would be the case. In 

consequence, if students and teacher were involved in an interaction about a 

problem for which the teacher did not provide the given and the “prove”, then it 

is likely that neither teachers nor students would describe those activities as 

doing proofs—they might describe them as something else (e.g., having a 
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discussion). The norm is that anytime the students are expected to produce a 

proof, teachers are expected to provide the givens and the conclusion to prove. 

Of course by “norm” we don’t mean ‘the correct thing to do’; it is certainly not 

“correct” from our perspective informed by our understanding of mathematical 

practice, though it may be experienced as correct or appropriate by teachers and 

students. We use “norm” and “normative” in two complementary senses: First, 

the sense in which ‘normative’ means ‘frequent’ or ‘usual;’ this could be 

corroborated empirically by observing, over a large number of high school 

geometry classrooms, the recurrence of this feature in proof activity. Second, the 

sense in which the participants in the situation act as if they expected such 

behaviors to be appropriate or correct.  

Such norms are not just arbitrary belief systems, idiosyncratic and completely 

changeable; they are norms of interaction between teacher, students, and specific 

content and are thus ascribed not to individuals but to the specific instructional 

situation where that interaction happens. They have a particular purpose; they 

regulate the division of labor over time between student and teacher vis-à-vis a 

specific kind of instructional exchange. In this case, this norm regulates the 

exchange between the work students do when proving a proposition and the 

claim (that the teacher needs to substantiate in high school Geometry) that 

students know how to do proofs. In that sense, this norm is different in scope 

than the more general norms of the didactical contract, which are present across 

different instructional exchanges (e.g., the expectation that when the teacher asks 
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students a question, she already knows the answer).  In trying to understand the 

practical rationality that underlies that norm and the possibilities to depart from 

it we are therefore asking not a question about instruction in general (e.g., Do 

teachers see it as possible, desirable, or appropriate to have students work on 

tasks where they determine the givens or the goal?) but rather a question about 

what counts as doing a proof in high school geometry: Do teachers see it as 

possible, desirable, or appropriate to hold students accountable for doing a proof 

and to do so in the context of tasks where students are in charge of providing the 

givens or the conclusion of the proof problem? To us it seems that such tasks 

would enable students to experience and learn about the methodological role of 

proof: Its instrumentality in finding new knowledge. But, such tasks are not 

common in classrooms. 

“Doing proofs” in high school geometry illustrates what we mean by an 

instructional situation. These are frames for the encounter among teacher, 

students, and specific content: In these encounters an instructional exchange 

takes place—the exchange between the work that students do, for example, on a 

particular task, and the knowledge claim that such work enables the teacher to 

make by virtue of having done that work. Instructional situations can be 

modeled as systems of norms such as the one described above. Instructional 

situations are content-specific in two regards: They accommodate or make room 

for specific tasks, and they permit the exchange of work on those tasks for 

specific items of knowledge. The instructional situation “doing proofs” does not 
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customarily accommodate students’ work in which students produce the givens 

or the ‘prove’ for a proof problem; rather, if they are ever involved in such work, 

their involvement does not count as knowledge of proof. Based on our 

understanding of the methodological role of proof in mathematics (Lakatos, 

1976) we argue that such work (figuring out the givens or the conclusion) does 

not always precede but it is often part of the work of proving in mathematics. 

 Is it Feasible to Change Instructional Situations? 

A motivation for our work has been to understand better whether the kind of 

mathematical work described above—the use of proof as a tool to know with—

could feasibly be deployed in classrooms. One way of addressing that question 

focuses on the design of resources that can support that work. And some of our 

instructional experiments (e.g., Herbst, 2003, 2006) have included developing 

resources, including special lessons and units co-developed with teachers. In 

those, problems were designed to create contexts where proving could help 

students come up with an answer to the problem. Our focus on the feasibility of 

that work led us not only to investigate whether proof could play a role as a tool 

to know with (see Herbst, 2005) but also to investigate what kinds of disruptions 

of the work of teaching those tasks would cause (Herbst, 2003) and what sorts of 

negotiations a teacher needed to make to restore a sense of normalcy (Herbst, 

2006).  

Another way of addressing the feasibility question goes beyond investigating 

what is possible when teachers use different tasks to engage students in proving 
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and taps into the source of arguments that teachers could draw upon to justify or 

rebuff such tasks. Behind that version of the feasibility question is the 

fundamental hypothesis that classrooms are complex systems where actions are 

not merely a projection of the will or capacity of the actors or the richness of their 

resources. Rather, actions of individual actors contribute to the deployment of a 

joint activity system whose performance also feeds back, and thus gives shape, to 

the actions that the participants can take in that system. And at least tacitly and 

as a group, teachers of a given course know the demands of that system to the 

point that we should be well advised to canvass that knowledge if we intend to 

understand whether a particular improvement will be feasible or not. The 

question then is not simply how to design materials that enable desirable 

mathematical work or how to create in teachers the desire to promote that work. 

We also need to ask about the structure and function of the activity system where 

that work might be deployed and how this system might accommodate or resist 

attempts to deploy that work. In particular this requires thinking of mathematics 

instruction in school classrooms as a system of relationships that are deployed 

under various conditions and constraints. A conceptualization of this system 

could enable us to think in a more sophisticated and potentially accurate way 

about what teacher and students do and thus be able to foresee if given 

improvement efforts have a prospect of success.  

An analogy with how mathematics educators have evolved in their thinking 

about students’ errors can illuminate this conceptualization of instruction as a 
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system. There used to be a time when student errors were seen as indications of 

misfit, mishaps, or forgetfulness. Things changed when research on students’ 

mathematical work started to be treated within a cognitive paradigm. For 

example, an international study led by Lauren Resnick, Pearla Nesher, and 

François Leonard (see Resnick, Nesher, Leonard, Magone, Omanson, & Peled, 

1989) on students’ sorting of decimal fractions showed that students’ errors had a 

conceptual basis: Their errors could be explained by the existence of conceptual, 

tacit controls such as the “fraction rule” or the “natural number rule.” These 

were mathematical quasi-truths, or epistemological obstacles (Brousseau, 1997), 

true within a limited domain but false when that domain was extended. Students 

that made errors did so not out of the lack of knowledge but out of the 

possession of some knowledge. As a field, our stance toward students’ errors 

thus changed from an early judgment stance to a later inquiry stance: Rather 

than judging students as irrational when they make errors, we now strive to 

understand what rationality leads them to make those errors.   

We propose that we should think of the actions of teachers (and students) in 

the classroom by analogy with how we have come to think about error in 

children’s mathematical thinking. The analogy we propose is that we could think 

of “error” in instruction—really teaching that deviates from what might be 

deemed desirable—not as an indication of misfit, ill will, or lack of knowledge, 

on the part of the practitioner. Rather, we should think of this “error” as an 

indication of the possible presence of some knowledge, knowledge of what to do, 
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which is subject to a practical rationality that justifies it. This is a rationality that 

we should try to understand better before judging teachers or attempting to 

legislate their practice. It is this rationality, rather than simple stubbornness, that 

explains why many reforms are not able to make their way into classrooms. 

Teachers and students act in classrooms in ways that attest to the existence of 

specialized knowledge of what to do; knowledge that outsiders to those 

classrooms are less likely to have even if they know the knowledge domain being 

taught and learned. For example, as it relates to the scenario narrated above, 

teachers and students of geometry would likely see it as strange for Mr. Jones to 

ask the students for the givens of the problem. We focus here on the rationality 

associated with the role of the teacher and how this might warrant or refute 

actions like that one. 

Practical Rationality and the Role of the Teacher 

 The “teacher” of a specific course of mathematical studies, such as high 

school geometry, is an institutional role, not just a name to describe an aspect of 

an individual’s identity (Buchmann, 1986). There is a person who plays the role, 

for sure; that person comes to play the role with personal assets that are likely to 

matter in what he or she chooses to do. These assets are likely to include 

mathematical knowledge for teaching and skill at doing some tasks of teaching 

(Ball, Thames, and Phelps, 2008). It is widely believed that those assets make a 

difference; that teachers who have those assets may be able to figure out and do 

things that others may not be able to do. But while teachers’ causes and motives 
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to do things may have personal grounds, it is unlikely that their actions could be 

justified on personal grounds. One could imagine that Mr. Jones in the scenario 

above might have been bored with the prospect of giving his students another 

routine proof exercise or wanted to have a fun day teaching geometry. But we 

could not really expect him to use any of that as the warrant for doing what he 

did—his job is not to find activities that amuse him, but rather to teach geometry 

to his students. Even if the actual basis for his actions had been his own 

amusement, how could he justify having done that when talking with his peers? 

Those grounds for justification are what we call practical rationality. 

The notion of practical rationality points to a container of dispositions that 

could have currency in a collective, for example, within the set of colleagues who 

teach geometry in similar settings. These are dispositions to abide by the norms of 

the specific instructional situation a teacher is engaged in (i.e., the norms of the 

situation of doing proofs in high school geometry) as well as dispositions to 

honor the obligations to the profession of mathematics teaching. 

By dispositions we mean what Bourdieu (1998) describes as the categories of 

perception and appreciation that compel agents in a practice to act in specific 

ways. We interpret categories of perception to include the taken as shared ways 

in which practitioners perceive people, events, things, and ideas in the shared 

world of the classroom, as instantiated, for example in the language tokens they 

use to talk about the world of the classroom. We interpret categories of 

appreciation to include the principles and qualities on which practitioners rely to 
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establish an attitude toward people, events, things, or ideas. Dispositions tend to 

be tacit but they can be articulated to others when justifying to one’s peers (or to 

other stakeholders) why one might or might not do something like what Mr. 

Jones did with that proof problem. The high school geometry course and the 

work of doing proofs, in particular, have been particularly fertile grounds for us 

to develop theory about instruction and the practical rationality of mathematics 

teaching.  

Didactical Contract and the Role of the Teacher 

To conceptualize the work of the teacher as the playing of a role, we start 

from the notion of the didactical contract (Brousseau, 1997): The hypothesis that 

student and teacher have some basic roles and responsibilities vis-à-vis a body of 

knowledge at stake. What does it mean that there is knowledge at stake? The 

relationship between teacher and students exists because of the assumption that 

there is knowledge that can be communicated from one to the other; this 

knowledge is at stake because such communication may or may not happen. The 

didactical contract is a tacit assignment of rights and responsibilities between 

teacher and student vis-à-vis the communication of that knowledge. These 

responsibilities include the expectation for the teacher to give students work to 

do that is supposed to create opportunities to learn elements of that body of 

knowledge, and the expectation for the student to engage in the work assigned, 

producing work that can be assessed as evidence of having (or not yet having) 

acquired that knowledge.  
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We use the word norm to designate each of those statements that an observer 

makes in an effort to articulate what regulates a practice: Actors act as if they held 

such statement as a norm, though they may be quite unaware of it. Each class has 

a didactical contract that can be modeled by listing its norms. From the 

perspective of the teacher, the didactical contract authorizes a basic exchange 

economy of knowledge that he or she has to manage: An exchange between 

work designed for, assigned to, and completed by students and elements of 

knowledge, prescribed by the curriculum, at stake in that work, and hopefully 

embodied in students’ productions. The role of the teacher includes managing 

those exchanges between work and knowledge. This management includes, first, 

enabling and supporting mathematical work; and second, interpreting the results 

of this work, exchanging it for the knowledge at stake.  

The hypothesis of a didactical contract only says that a contract exists that 

fulfills those goals; the hypothesis means to describe any mathematics teaching 

inside an educational institution. But it is also obvious that the teacher and 

student roles and responsibilities are under-described by that hypothesis: There 

are many ways in which the didactical contract could be enacted that would 

have at least those characteristics; contracts could be quite different from each 

other not the least because the mathematics at stake could be very different from 

course to course and thus require very different forms of work to be learned. 

Even for the same course of studies, say high school geometry, different contracts 

could further stipulate the roles and responsibilities of teacher and student 
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differently. In particular, it is conceivable that some contracts might include the 

expectation that every new task would require negotiation about how the 

general norms of the contract apply (e.g., What is it required of the teacher to get 

students to work on a particular task? What does it mean for students to work on 

that task?). It is also conceivable, and we argue more likely, that contracts rely on 

a manifold of instructional situations that forego the need for some of those 

negotiations much of the time. These instructional situations include mostly tacit 

but specific norms that specify how the didactical contract applies for a range of 

tasks and the specific items of knowledge to be exchanged for the students’ work 

on those tasks.  

While some research has endeavored to conceptualize, enact, and study the 

characteristics of alternative contracts (e.g., Chazan, 2000; Lampert, 1990, 2001; 

Yackel & Cobb, 1996), the first author has been interested in using a variety of 

approaches to study the usual high school geometry contract and the practical 

rationality behind the teachers’ work managing the exchanges enabled by that 

contract. The reason for that is founded on the considerations about 

improvement made earlier. Sustainable improvement in instruction will not only 

need to provide new and better resources but also to be able to deal 

constructively with the inertia and possible reactions from established practice. 

Knowledge of how instruction usually works and what rationality underpins its 

usual operations is key for the design of reforms that are viable and sustainable. 

Furthermore, knowledge of how usual instruction works can encourage 
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piecemeal, incremental changes that don’t throw the proverbial baby with the 

bathwater.  

Instructional Situations and the Role of the Teacher 

The situation of “doing proofs” has been a useful starting point in that 

research agenda. Historical analysis (Herbst, 2002b; González & Herbst, 2006) 

has showed how the general skill “how to do proofs” became an object of study 

in and of itself, leaving behind the important relationships between proofs and 

specific concepts, theorems, and theories. The work that students do has also 

evolved to the current state in which what a student can prove from available 

givens matters much less than whether and how well they carry out a proof.  In 

exchange for a claim on that knowledge (to show that they know “how to do 

proofs”) students are to show that they can connect a “given” with a “prove” by 

making a sequence of statements justified with prior knowledge (regardless of 

the strength or the importance of the proposition proved): In other words 

students are learning the logical form of proof at the expense of its 

methodological function. In describing such exchange as an instructional 

situation, we posit that this exchange is facilitated by a specialized set of norms 

that elaborate how the didactical contract applies.  

From observing work in geometry classrooms we have noted that implicit 

expectations of who is to do what and when vary depending on the specifics of 

the object of study. In relation to diagrams, for example, the extent to which 

students can draw objects into a diagram or draw observations from a diagram 
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varies according to whether the work is framed as a construction, an exploration, 

or a proof (Herbst, 2004). While the didactical contract for a course may have 

some general norms that differentiate it from a contract for a different course, 

there is also differentiation between the more specific norms within a given 

course of studies, depending again on what is at stake. Much of those rules are 

cued in classroom interaction through the use of selected words such as prove, 

construct, or conjecture. These words frame classroom interaction by summoning 

special, mutual expectations, or norms, of who can do what and when. As noted 

above, we use the expression instructional situation to refer to each of those 

frames. Instructional situations are specialized, local versions of the didactical 

contract that frame particular exchanges of work for knowledge, obviating the 

need to negotiate how the contract applies for a specific chunk of work.  

“Doing proofs” is an example of an instructional situation in high school 

geometry; “solving equations” is an example of an instructional situation in 

algebra I (Chazan & Lueke, 2009). We contend that these frames for classroom 

interaction, these instructional situations, are defaults for classroom interaction, 

tacit knowledge held by the classroom as an organization (Cook & Brown, 1999) 

that specifies what to do; knowledge perpetuated through socialization (and 

with the aid of textbooks and colleagues) that, in particular, provides cues for the 

teacher on what to do and what to expect the student to do. Instructional 

situations are sociotechnical units of analysis; they organize joint action with 

specific content.  
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Our perspective centers on the situation rather than the individual and has 

the power to explain why the same individual might happen to do quite 

different things in different situations by no fault of their own. To implement this 

focus on the situations thus far we have created models of those situations. A 

model is not a portrait of what is desirable but rather a simplified operational 

description of a reality, in this case a human activity. Our models consist of 

arrays of norms that describe each situation in terms of who has to do what and 

when (Herbst & Miyakawa, 2008). Those models facilitate research on the 

content of practical rationality.  

Practical rationality is a container whose content includes the categories of 

perception and appreciation that are viable within the profession of mathematics 

teaching to warrant (or refute) courses of action in teaching. The notions of 

instructional situation, norm, and breach of a norm are the points of departure to 

study this rationality empirically. Based on the ethnomethodological notion of a 

breaching experiment (Mehan & Wood, 1975) we propose, as a methodological 

hypothesis, that if participants in an instructional situation are immersed in an 

instance of a situation where one of its norms has been breached, they will 

engage in repair strategies that not only confirm the existence of the norm but 

also elaborate on the role that the norm plays in the situation or on what might 

justify departing from the norm.  

Our data collection technique relies on representations of breached instances 

of instructional situations—representations made in videos, slideshows, or comic 
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strips, sometimes using real teachers and students (e.g., Nachlieli & Herbst, 2009) 

or using cartoon characters (Herbst, Nachlieli, & Chazan, 2011). We confront 

usual participants in an instructional situation with a breached representation. 

For example, the classroom scenario narrated above is quite close in content to an 

animated classroom story, “A Proof about Rectangles,” that we produced in 

order to study the rationality behind the tacit norm that the teacher is in charge 

of spelling out the givens and the prove. To find out about that rationality we 

attend to participants’ reactions to the representation: Do they perceive the 

breach of the norm? Do they accept the situation in spite of the breach? What do 

they identify as being at risk because of the breach? What opportunities, if any, 

do they see being created or lost because of the breach?  

Our aim is not to understand the participants themselves; our aim is to use 

the participants’ experience with the situation to understand the situation better. 

In particular we want to discover the elements of the practical rationality of 

mathematics teaching that teachers consider viable justifications of breaches of 

situations that would arguably be desirable, say because they might create a 

more authentic kind of mathematical work (see Weiss, Herbst, & Chen, 2009). In 

the case of the story narrated above we would pose the following concrete 

question:  On what account could a teacher justify (or rebuff) an action like the 

one Mr. Jones took? Clearly, researchers might be able to justify Mr. Jones’ action 

and we have tried to articulate that from a mathematical perspective. But in spite 

of the fact that some of us have had experience teaching we don’t know teaching 
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now in the way practitioners do. By virtue of the role that they play and the 

position from which they take on that role, teachers have to respond to specific 

obligations that shape their decisions.  

Experimentation and Teachers’ Responses to a Breach of a Norm  

In the previous section we noted that our technique to study the practical 

rationality with which practitioners might justify abiding by or departing from a 

norm in an instructional situation consists in creating a representation of practice 

that instantiates the situation and where the norm in question has been breached, 

then listening to how teachers respond to that representation. When teachers 

respond to a breach in an instructional situation, they might reject the situation 

or might repair the situation. By reject the situation we mean that they would 

come across as saying “this class is not doing a proof;” key in such a 

categorization is (1) the recognition that someone might argue that the target 

situation (doing proofs) describes the scenario being enacted and (2) their denial 

of the validity of such a description.  By repair the situation we mean a softer 

version of rejection: participants come across as describing the events using a 

different situation or as conforming to a contract different than the normative. 

For example, some teachers have said that Mr. Jones is leading students in an 

exploration rather than a proof.  
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“the only thing I could see him doing is that he was trying to get them the 

idea of making conjectures, okay?  What, what can we assume about this 

picture” (ITH062806, 4, 81, Tina)2 

“Maybe it's just like a -- kind of a like a blank canvas for just discussing 

without all of the restrictions tied on at this point just y'know lighter form 

of conversation y'know.” (ThEMaT082206, 10, 109, Lucille) 

Key in categorizing those expressions as repairs of the situation are that (1) 

participants are describing the events in terms of the larger grain size of the 

teacher’s instructional goal and that (2) participants are using some conventional 

labels for recurrent classroom activity to describe what happened in ways that 

fail to recognize the situation as one of “doing proofs” (e.g., conversation, 

making conjectures).  

 A third alternative, also present in our data, can be described as 

participants’ acceptance of the situation, namely recognized it as a case of “doing 

proofs.” For the sake of coding data, whenever participants don’t reject or repair 

the situation we take that as an acceptance, even if this is tacit. In some of these 

cases their acceptance of the situation came with comments that indicated that 

something about the particular task in which “doing proofs” was embodied had 

not been done as it should have been done. For example, some of our 

participants said  

                                                 
2 References to session data follow the convention (sessionid, interval, turn, speaker). 
All names are pseudonyms. 
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“So the fact that he's y'know not marking anything and asking them to 

kinda trust that drawing is kind of odd” (ThEMaT082206, 20,227, Edwin) 

“we tell them not to assume anything that we draw.” (ThEMaT082206, 

5,112,Tina) 

Among those comments accepting the situation as doing proofs, some comments 

indicated a positive appraisal of what the teacher had done. For example: 

“In the books we always go given-prove, right? So we don't really give 

them the option to even explore some of the nature of the figures.” 

(ThEMaT082206, 10,116, Jillian) 

We describe those responses as accepting the situation (the participant identifies 

or at least does not deny that the goal of the activity is to “do a proof”) but 

repairing the task (while the participant does not cast the situation as different 

than doing proofs, the participant recognizes some actions as deviating from the 

norm in that situation). A complete enumeration of contingencies includes, at 

least conceptually, the possibility that participants may accept the situation and 

accept the task: However, empirically one might observe those cases to be 

unmarked (e.g., the participant talks about something other than the breach). 

Incidentally, note that in this discussion we are proceeding rather globally and 

omitting considerations of the possible complexities of the unit of analysis for the 

sake of proposing how the experimental data could be aggregated: While the 

present considerations might be used to examine data gathered from individual 

practitioners providing a one-time response to a representation (for example, 
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responding to a multimedia questionnaire), data gathered from groups of 

practitioners in more extended conversations (such as those reported by Chazan 

& Herbst, 2012, or Herbst, Nachlieli, & Chazan, 2011) require more sophisticated 

considerations of the unit of analysis.  

From those broad considerations about the way we might code data from 

practitioners’ responses to a representation of an instructional situation we can 

anticipate a way of using this data to gauge the extent to which a hypothesized 

norm pertains to the situation under consideration—and in that way use 

experimentation to build basic knowledge about the practice of mathematics 

teaching. Consider first the case of practitioners responding to a representation 

of an instructional situation in which a hypothesized norm of that situation has 

been breached (e.g., the teacher asks students to provide the givens for a proof 

exercise). Consider further that the encounter between practitioners and 

representations is framed for them as a case of the situation (e.g., the instrument 

declares something to the effect of “we are going to see how a class works on a 

proof”) but no mention is made of the possibility that a norm might be breached 

nor is attention explicitly directed to the actions by which the breach is manifest. 

After the encounter, participants are asked to comment on how appropriately the 

teacher handled the situation (e.g., “what do you think of the way the teacher 

managed the class’s engagement in proving”). The data is then coded in ways 

that permit the aggregation shown in the contingency table below (and drawing 

on the definitions of reject, repair, and accept given above). 
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 Accept Situation Reject or Repair 

Situation 

Reject or Repair Task 2 1 

Accept Task 4 3 

 
 

The hypothesis that the norm breached is a norm for the situation being 

represented would justify the expectation that data would aggregate in cells 2 

and 3. Cell 2 represents responses of the kind ‘in this situation you’d rather do 

this other work instead’ (e.g., if you want students to do a proof, you give them 

the givens and the prove). Cell 3 represents responses of the kind ‘the kind of 

work you are doing there fits better in this other kind of situation’ (e.g., a 

question like that would be better off in a conversation than in a proof). Data that 

could be classified in any of those cells would provide evidence that adds 

credibility to the hypothesis that the norm applies. (Note that this evidence could 

but would not solely include repairs that specifically mention the norm 

breached—norms could stay tacit in spite of being breached and the evidence 

provided by participants might just reveal their sense that something has gone 

awry.) In contrast, cells 1 and 4 provide evidence that contradicts or at least 

provides no evidence in favor of the normative nature of the hypothesized norm.  

Intuitively, under the hypotheses that the norm applies to the situation, that 

the representation breaches the norm, and that the participants are experienced 
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enactors of the situation, one would expect the aggregate of Cells 2 and 3 (repairs 

of situation or of task) to be higher than the aggregate of Cells 1 and 4. One could 

define a measure of the extent to which the representation elicits repairs (2 + 3) 

or percentage of teachers who repaired over those who provided comments.. 

More generally, given a representation (related to a norm N of a situation S) and 

a sample of practitioners, the representation could be classified a priori as 

breaching or non breaching N, and each practitioner could be classified as 

experienced or not experienced in S. The percentages of repairs could be used in 

particular, to test (this time using the modern sense of experiment) the extent to 

which experienced practitioners in a situation hold norm N.  

Imagine a sample of experienced practitioners randomly assigned to one of 

the following two conditions. In the experimental condition the practitioners 

consider a breached representation, while in the control condition the 

practitioners consider a compliant representation.  The responses from 

practitioners would then be summarized in corresponding repair ratios r1,e and 

r0,e as defined above and the difference between these proportions could be 

tested for significance. Similarly, one could pose the question of whether this 

norm is significantly more salient for teachers experienced in the situation of 

interest than for teachers who do not have such experience. This question could 

lead one to compare the ratios r1,1 and r1,0, that is, the repair ratios for 

experienced and non experienced practitioners confronting a breached 

representation. Finally, one could consider randomly assigning practitioners who 
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are either experienced or inexperienced in the situation to either a breached or a 

compliant representation, and analyzing the table of contingencies below. The 

Chi Square test could be used to examine whether acknowledgment of Norm N 

is specific to teachers experienced in Situation S.  

 Experienced in S Inexperienced in S 

Breached Representation (of NS) r1,1 r1,0 

Compliant Representation (of S) r0,1 r0,0 

 
 

Of course the preceding argument is only a sketch of what the research ahead 

requires. In addition to the problem of determining the unit of analysis noted 

above, there remains the problem of finding operational ways of determining 

repairs, rejections, and acceptances of task and situation. While we have made 

some important progress identifying norms of situations to be researched and 

creating representations that breach those norms, the work of developing 

measures of the repairs that practitioners produce in response to those 

representations is still incipient. Our current work in this area investigates the 

use of elements of systemic functional linguistics, particularly the notions of 

modality and appraisal (Halliday & Matthiessen, 2004; Martin & White, 2007), to 

anchor the notion of repair in linguistic performance. Furthermore, as far as the 

implementation of the technique, these considerations oversimplify the certainty 

with which one can say that a representation of a situation breaches a norm or 
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complies with all norms—it isn’t only that the provisional nature of models 

challenges the extent to which one can ever say that a representation will be 

compliant, but the multidimensional and interactive nature of human activity 

makes it hard to represent breaches of a norm without other remarkable 

entailments needed for continuity’s sake. Along those lines, and because of the 

extent to which an instance of a situation may instantiate more than the actions 

specific to a norm, a third challenge consists of being able to reproduce the 

phenomenon (participants’ recognition of the norm) independently of the 

representation used: Would representations R and R’ of different instances of the 

same situation S, each of which breaches the same norm N, produce similar 

responses from practitioners experienced in S? Considering those 

methodological challenges, it is fitting to say that so far we have only been able 

to show how our theoretical agenda and basic research goals could use an 

experimental paradigm and within that to indicate more specific methodological 

goals.          

The sketch above does indicate a path for using an experimental approach in 

basic research on mathematics teaching—specifically, research that identifies and 

confirms the existence of specific norms for specific instructional situations. But 

as noted above, practical rationality includes more than the norms of 

instructional situations; it includes the categories of perception and appreciation 

with which practitioners can relate to actual and possible actions in teaching. In 

particular, practical rationality includes the grounds on which a breach of a norm 
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might be recognized as a breach and yet appraised favorably. Notwithstanding 

the possible use of the experimental design sketched above to test hypotheses, it 

is probably just as important for theory and practice to deepen the descriptive 

research that can lead to more refined hypotheses, especially hypotheses that can 

account for the difference between justifiable and unjustifiable breaches of 

norms.  

Practical Rationality and the Justifications for Breaches of Norms 

The data that we collect from practitioners in response to breached 

representations usually contains more than repairs of those breaches. 

Practitioners not only recognize the presence of a norm when they repair its 

breach, quite often they do so using discourse that commits a stance toward such 

a breach. Those stances are not always negative; when these stances are positive, 

practitioners may engage in a rather visible practical argument to justify an 

action in spite of the norm against it. As part of the agenda to flesh out the 

content of practical rationality we are interested in inventorying and accounting 

for the dispositions used by practitioners to warrant actions that breach norms 

(as well as those actions that comply with norms).    

 Sometimes, teachers’ responses to breaches of a norm may indict the 

teacher for breaching a norm and justify it with an argument that explicates why 

the norm exists. In the case presented above, the evidence we found suggests 

that the norm of providing the given and the “prove” may be justified on the 

grounds that it keeps students from making knowledge claims by relying on the 
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looks of a diagram. Indeed the line between, on the one hand, assuming 

something as given so as to start drawing necessary consequences from it and, on 

the other hand, assuming something else as true while one is drawing those 

consequences, may be blurry enough to justify keeping students from having to 

manage it. One could represent this argument for a norm by adapting Toulmin’s 

(1969; see also Inglis, Mejía-Ramos, & Simpson, 2007) argument layout, as shown 

in Figure 4 (where instead of data and claim we use circumstances and action 

respectively). 

 

Figure 4. A practical argument using Toulmin’s layout. 

 
The data also shows that teachers’ responses sometimes acknowledge the breach, 

but rather than indicting the teacher for the breach they might justify it while 

relaying whatever reasons they might have for that justification. In this sense, the 

breaching experiments give access to other elements of the practical rationality of 
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mathematics teaching. In the data shown above, one of the comments appeared 

to justify the breach by elaborating on the grounds for exception noted above. 

 

Figure 5. A practical argument for and against an action using Toulmin’s layout. 

 
 

The Norms and Obligations that Span Practical Rationality 

From our work in the past five years, looking at the responses from teachers 

to animations that represent breaches of situations in geometry and algebra, we 

have built an initial model of this practical rationality. In this model, conceivable 

moves by a teacher are justified or rebuffed on the basis of principles or warrants 

that attest to the presence of two sets of regulatory elements. One of those sets of 
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regulatory elements describes the roles the teacher is called to play in the 

contract, the instructional situations, or in mathematical tasks. As noted above, 

we call all of those norms: Some are norms of the contract (they regulate work 

across the many objects of knowledge in a course of studies), while others are 

norms of the instructional situation (they regulate work that is specific to an 

object of knowledge). A third kind of norms, norms of the task (regulating how 

the teacher supports the milieu for the students’ mathematical task) is also part 

of the model but is not discussed here (see Herbst, 2003; also Brousseau, 1997). 

The other set of regulations, which we explicate below, includes the professional 

obligations that tie an individual to the position of mathematics teacher, beyond 

the specific demands of a particular contract, situation, or task.     

In general, the first set of regulations for actions in teaching come from the 

structure of the different ‘games’ the teacher and the student play with specific 

content. The various norms that justify teachers’ actions respond to the 

requirements of the role the teacher is called to play in the contract for a course of 

studies, the situation that frames the different kinds of work that exchange for a 

particular object of knowledge, and a specific mathematical task. But these norms 

by themselves don’t explain why practitioners see some breaches of norms as 

acceptable (see, for example, Nachlieli & Herbst, 2009; Herbst, Nachlieli, & 

Chazan, 2011). The data that we have gathered shows not only that the norm 

exists and what problems it would help solve, but also on what grounds it could 

be breached. As we analyze the data from study groups that considered the 
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many animations we created in ThEMaT, a more systematic way of accounting 

for those warrants has become useful to us.     

Both the presence of norms and the breaches of norms can be accounted for 

by appeal to various professional obligations that we posit apply to the 

mathematics teacher (to some extent these obligations may also apply to the 

elementary teacher who teaches mathematics part of their time, but they likely 

need to be adapted). We propose that four professional obligations can organize 

the justifications (or refutations) that participants might give to actions that 

depart from a situational (or contractual) norm. We call these four obligations 

disciplinary, individual, interpersonal, and institutional (Herbst & Balacheff, 2009; 

see also Ball, 1993).  

The disciplinary obligation says that the mathematics teacher is obligated to 

steward a valid representation of the discipline of mathematics. This may include 

the obligation to steward representations of mathematical knowledge, 

mathematical practices, and mathematical applications.   

The individual obligation says that a teacher is obligated to attend to the well 

being of the individual student. This may include being obligated to attend to 

individual students’ identities and to their behavioral, cognitive, emotional, or 

social needs. 

The interpersonal obligation says that the teacher is obligated to share and 

steward their medium of interaction with other human beings in the classroom. 
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This may include attending to the needs and resources of shared discursive, 

physical, and social spaces within shared time.  

And the institutional (schooling) obligation says that the teacher is obligated to 

observe various aspects of the schooling regime. These include attending to 

school policies, calendars, schedules, examinations, curriculum, extra curricular 

activities, and so on.  

These obligations are not specific to a contract for a course of studies; they 

describe equally the teacher of AP Calculus and the teacher of informal 

geometry. They coalesce to justify contracts and their instructional situations; 

and they may combine with norms of contract, situation, or task in order to 

justify extraordinary actions. In general, combined with the norms of contracts, 

situations, and tasks these obligations span the practical rationality of 

mathematics teaching. The dispositions that compose practical rationality could 

be accounted for as combinations of norms and obligations. One can then say 

that the justifications for actions in teaching, either those actions that are usual or 

those that are unusual but viable, can be found by combining norms of the 

contract and situations that the teacher is enacting with obligations the teacher 

has to the profession of mathematics teaching.  

Within that rationality one can see specific contracts (high school geometry, 

algebra I) and their instructional situations (doing proofs, solving equations) as 

sociohistorical constructions that have persisted over time by complying in some 

way with those obligations. To the extent that the obligations could contradict 
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each other, it is quite an accomplishment for teaching to have been able to 

develop stable contracts and situations over time (Herbst, 2002a).  

Conclusion: Practical Rationality and Instructional Improvement 

The theory of practical rationality is a way of accounting for existing, stable 

practices. To the extent that our interest in improving practice stresses the need 

for improvements to be responsible, incremental, and sustainable, it is 

appropriate for us to try to understand what justifies the norms of stable 

contracts and situations, even if we might want to modify or do away with some 

of them: Understanding stable systems of practices as well as understanding how 

those systems react to perturbations is fundamental for the design of new 

practices.  Indeed, since improved practices will need to subject themselves to 

similar grounds for justification, practices that are close to those that are normal 

in existing instructional situations (as gauged by how many norms of a situation 

a practice breaches) may be easier to justify than others.  

The theory also provides the means for the researcher to anticipate how 

instruction may respond to new practices: A novel task such as “what is 

something interesting that could be proved about the object in Figure 1” conjures 

up by resemblance one or more instructional situations (e.g., “doing proofs” and 

“exploration”) as possible frames for the work to be done. Models of those 

situations provide the researcher with a baseline of norms that could be breached 

as the work proceeds. Researchers can then use the obligations to anticipate what 

kinds of reactions teachers may have to the enactment those breaches. This 
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anticipation can be useful in examining the potential derailments in the 

implementation of new practices in classrooms. That anticipation may also be 

useful in the examination of teachers’ responses to assessments or development, 

or their reactions to instructional interventions.  

Thus the theory provides not only the basis for the design of probes for the 

rationality of teaching (Herbst & Miyakawa, 2008) but also a framework for an 

analysis of the reactions from participants. Combined with finer tools from 

discourse analysis (e.g., Halliday & Matthiessen, 2004) teachers’ responses to 

representations of breaching (but arguably valuable) instances of an instructional 

situation can help us understand not only what justifies teaching as it exists 

today but also whether and how proposed new practices could be justified in 

ways that practitioners find compelling.  

Along these lines, the theory also provides a framework for teacher 

development. This framework puts a premium on the teachers’ noticing of 

actions in teaching, their consideration of alternative actions, and the 

consideration of justifications for those different actions. The various tools we 

have created, which include not only the animations and the cartoon characters 

but also software to create scenarios with them, software to annotate the 

scenarios individually or in forums, and software to author online sessions3 that 

                                                 
3 A dedicated software tool enables teacher educators to create an agenda for users to 
interact with representations of practice (e.g., videos, images), prompts and questions, 
and tools for the user to interact with the media (e.g., annotating, marking moments, etc.) 
and with each other. 
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use the materials, can be useful in implementing this development program.4 It is 

important to note that at the core of these developments there is a theory of 

teaching and its rationality that accounts for the teaching that is customarily seen 

in classrooms: At its base the theory attempts to be descriptive and explanatory 

rather than axiological or prescriptive. This is particularly visible in our 

identification of the obligations: We posit the institutional obligation in all its 

strength not necessarily out of advocacy for it but out of our recognition that 

practitioners are obligated to it regardless of anybody’s feelings about it.  

The theory does identify mechanisms for exploring empirically teaching that 

might be conceivable and desirable: The notions of situation, norm, breach, 

repair, and obligation can help examine a priori attempts to improve teaching 

and examine a posteriori the data from implementation. In that sense, the theory 

can support the piecemeal exploration of instructional improvement. The theory 

is a basic theory of mathematics instruction, a basic account of the activity of 

teaching mathematics in the school classroom—not an applied theory that 

reduces that phenomenon to the psychology of individual teachers. The 

psychology of mathematics teachers may still be useful to inform what enables 

and motivates individual teachers to do things, but the logic of action in 

mathematics teaching addressed by practical rationality may help us understand 

why some of those actions can be responsible, viable, and sustainable. 

                                                 
4 These tools and content, including examples of these learning experiences are available 
at www.lessonsketch.org 
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An important limitation of the theory in its current formulation is that it does 

not quite incorporate an explicit account of learning5 either by students or by 

teachers. Indeed the theory described above represents instruction as composed 

of stable patches of specific practices (contracts, situations, and tasks) and one 

might conclude that the theory describes only how knowledge is used by 

students and attested by teachers. Building on situated and socio-cultural 

accounts of learning and practice (e.g., Engestrom, 1992; Wenger, 1999) we 

contend that learning (by students and by the teacher) is accomplished in and 

through their practice in contracts, situations, and tasks.  Additionally, the notion 

that contracts and situations can be breached by tasks that fall outside the norms 

of a situation or a contract is key in describing how the teacher might promote 

adaptive learning deliberately; and it has been foundational for Brousseau’s 

(1997) theory of didactical situations. An explicit account of how this theory of 

instructional practice interfaces or complements accounts of student and teacher 

learning is needed and it remains a goal as we move ahead.    

  

                                                 
5 We appreciate Ron Tzur’s comment to this effect in the occasion of the first author’s 
plenary lecture at the 2010 PME-NA Conference. 
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Grossman and McDonald (2008) recently argued that the research community 

needs to move its “attention beyond the cognitive demands of teaching … to an 

expanded view of teaching that focuses on teaching as a practice (p. 185).” 

Building on the work of Bourdieu (Bourdieu and Wacquent, 1992; Bourdieu, 

1985, 1998), Herbst and Chazan (2003, 2006) have written about mathematics 

teaching as a practice, just as law and medicine are considered practices, in an 

attempt to better understand the rationality that produces, regulates, and 

sustains mathematics instruction. This practical rationality is the commonly held 

system of dispositions or the “feel for the game” (Bourdieu, 1998, p. 25) that 

influences practitioners as to those actions that are appropriate in the classroom.  

It is practical rationality that: 

not only enables practices to reproduce themselves over time as the 

people who are the practitioners change, but also regulates how 

                                                 
1  dam29&buffalo.edu 



Moore-Russo & Weiss 

 

instances of the practice are produced and what makes them count 

as instances. (Herbst and Chazan, 2003, p. 2) 

 

To better understand the practice of mathematics teaching, whether to 

improve it or communicate it to others, one must understand the practical 

rationality that guides it. However, practical rationality often “erases its own 

tracks” (Herbst and Chazan, 2003, p. 2) so that its practitioners come to view 

these practices as being natural. This rationality provides the regulatory 

framework that socializes its current and future practitioners into ways of 

thinking and acting that conform to expectations. For that reason, it is important 

to bring to the forefront a deliberate, conscious understanding of the rationality 

that drives the practice of mathematics teaching. 

While practical rationality allows for a certain amount of diversity in its 

similarity, it is nevertheless given structure and cohesion by a complex system of 

norms. The word “norms” is used here not in the sense of a “standard” or 

something that is necessarily desirable, nor in the sense of an absolute 

requirement, but rather to denote that which is customary, typical, commonplace 

— behavior that passes without remark. Departures from a norm may occur, but 

when they do they are usually remarked upon and justified, thereby 

simultaneously confirming the norm and articulating the conditions under which 

it may be breached. These norms, and the grounds to which practitioners appeal 

to justify the norms and their breaches, provide the persistent continuity of the 
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practice. 

Although norms are held in common among practitioners, they are usually 

not explicitly taught to novices. On the contrary, well before future teachers ever 

enroll in education courses, they already have firmly-established ideas about 

schools in general and mathematics instruction in particular (Ball, 1988a, 1988b). 

Through an apprenticeship of observation, they develop deep-seated ideas about 

mathematics and its teaching and learning (Lortie, 1975). These ideas often form 

the foundation on which they will eventually build their own practice of 

mathematics teaching (Millsaps, 2000; Skott, 2001).  

 

A Look at Geometry 

What do we know about the rationality that underpins geometry instruction? 

Herbst and Brach (2006) draw our attention to the practice of geometry 

instruction and provoke thought regarding the norms surrounding the teaching 

of proof,2 but what about other key components of geometry courses? For 

example, definitions play a critical role in geometry. What norms exist for the 

teaching of definitions in geometry? Is the norm for students to be presented 

with finalized definitions? Under what conditions are students given 

opportunities to create, reflect on, and compare definitions (de Villiers, 1998)?  

What is normative in regards to the introduction and use of the diagrammatic 

register (Weiss & Herbst, 2007) commonly encountered in geometry classes? 

                                                 
2 Additional information on norms surround proving and proof is found at Herbst and Brach (2006). 
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What rationality guides teachers’ and students’ expectations in regard to the role 

of perception in the reading of geometric diagrams? What norms influence the 

teaching of subtle, yet key, concepts of geometry like existence and uniqueness? 

Are students given impossible problems3 as a means to discover existence? Are 

students allowed to explore situations that demonstrate uniqueness?4 

 

Mathematics: Teachers’ Beliefs and Practices  

While many of the above questions are particular to geometry, others apply 

to the many branches of mathematics. Is it normative to encourage students to 

modify a problem (either to make it tractable, or to generate new avenues for 

exploration), or to introduce their own assumptions when solving problems? Do 

teachers commonly encourage students to pose their own problems? Do teachers 

model or introduce strategies like Brown and Walters’ (2004) “what-if-not” 

strategy as a relatively simple means of generating new problems in their 

teaching practice?5  

                                                 
3 Questions of existence (or non-existence) arise in a wide range of problems, such as:  Can one form a 
triangle with sides of lengths 2 cm, 3 cm and 10 cm? Can one locate a point in the interior of any polygon 
that is equidistant from all of its vertices? Under what conditions can a circle be constructed tangent to two 
intersecting lines at two specified points? This last problem is shown as a part of an instructional episode 
modeled in the ThEMaT (Thought Experiments in Mathematics Teaching) animations found at 
http:grip.umich.edu/themat.  
4 Questions of uniqueness in geometry likewise arise in a range of problems, such as:  Given two sides of a 
triangle and a non-included angle, how many different triangles can be constructed? Given any 
parallelogram, is there a uniquely determined quadrilateral whose midpoints are the vertices of the given 
parallelogram? 
5 For example of a what-if-not application, consider how a compass and straightedge are used to construct a 
perpendicular bisector for a given line segment. Applying the “what-if-not” strategy could lead to the 
following questions. What if you wanted to construct a bisector that was not perpendicular to the line 
segment? How could you construct a perpendicular that did not bisect the segment? 
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Unfortunately, a large number of teachers view mathematics “as a discipline 

with a priori rules and procedures that … students have to learn by rote” 

(Handal, 2003, p. 54). For many teachers in the U.S. “knowing” mathematics is 

taken to mean being efficient and skillful in performing rule-bound procedures 

and manipulating symbols (Thompson, 1992). Ball (1988b), in her doctoral study 

of preservice teachers’ ideas about the sources of mathematics and how 

mathematics is justified, found that many of them viewed mathematics as a 

mostly arbitrary collection of facts. While there are surely many factors that 

influence teachers’ practices, it would be naïve to assume that these and other 

beliefs teachers hold do not play a significant role. As a consequence, 

mathematics students often are “not expected to develop mathematical meanings 

and they are not expected to use meanings in their thinking” (Thompson, 2008, p. 

45).  

 

Targeting the Disciplinary Obligation 

Herbst and Balacheff (2009) have suggested four obligations of teachers that 

frame their practical rationality. These obligations — which they refer to as the 

disciplinary, individual, interpersonal, and institutional obligations — may be 

invoked by teachers to justify normal instruction, but they also have the potential 

to organize a departure from normative practice.  

Of the four, we focus here on the disciplinary obligation — the obligation of 

the teacher to faithfully represent the discipline of mathematics. We begin from 



Moore-Russo & Weiss 

 

the premise that if teachers come to a more textured and authentic view of 

mathematics, this could lead to changes in what teachers deem as valid 

representations of mathematics, in the mathematical tasks they assign students, 

and in the ideas and attitudes they foster in students. Following Yackel and Cobb 

(1996) we note that what is taken as  

mathematically normative in a classroom is constrained by the current 

goals, beliefs, suppositions, and assumptions of the classroom 

participants. At the same time these goals and largely implicit 

understandings are themselves influenced by what is legitimized as 

acceptable mathematical activity. (p. 460) 

This focus on the disciplinary obligation brings into focus the question of 

what kind of work is “legitimized as acceptable mathematical activity” (in the 

words of Yackel and Cobb)?  How does it correspond to the kind of work that 

mathematicians do?  

 

Authentic Mathematical Practices 

In Weiss, Herbst and Chen (2009) it was noted that, while the notion of 

“authentic mathematics” is frequently invoked in the literature, nevertheless 

“many of those who call for ‘authentic mathematics’ (or who use similar words 

or phrases, such as ‘genuine’ or ‘real’) in the classroom are actually talking about 

different things” (p. 276). In particular, Weiss, Herbst and Chen identify four 

distinct meanings of the slogan “authentic mathematics education”. Of particular 
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interest to us here is the one they refer to as AMP, i.e. the call for the cultivation of 

the practices that characterize the work of research mathematicians. Note, 

however, that in acknowledging the polysemy of the phrase “authentic 

mathematics” we allow for, and even anticipate, the possibility that these 

multiple kinds of “authenticity” may come into conflict with one another. 

Mathematicians, those whose goals are to generate new and refine existing 

mathematical ideas and methods, are more than just proficient at mathematics. 

While they demonstrate exactly those qualities and competencies that have been 

identified by the National Research Council (2001) as goals of mathematics 

learning (namely conceptual understanding, procedural fluency, strategic 

competence, adaptive reasoning, and productive disposition), mathematicians 

also demonstrate habits of “mathematical wondering” and an appreciation of 

mathematics that extends past their professional careers into their personal lives. 

They spend much of their time crafting new problems from existing ones, both 

out of pragmatism (some problems are more tractable than others at a given 

time) and out of curiosity. 

In seeking to articulate the elements of the sensibility that characterizes 

mathematicians’ practices, Weiss (2009) analyzed a collection of narratives 

written by and about research mathematicians. This analysis reveals the 

fundamentally generative nature of mathematical practice, in which problem 

posing (asking fruitful and difficult questions of oneself and others) plays a role 

just as important as problem solving. The result of Weiss’ analysis is a partial 
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model of the mathematical sensibility, consisting of 15 mathematical 

dispositions, organized in 8 dialectical pairs (one disposition is its own dialectical 

counterpart). Weiss refers to the first five of those dispositions as generative moves 

by which a problem currently under consideration (whether solved or unsolved) 

can spawn a number of related problems. The five generative moves are shown 

in Fig. 1. 

 
 (strengthen/weaken) hypothesis (strengthen/weaken) conclusion 
 generalize   specialize 
 consider converse    consider converse 
 
 
Figure 1. Generative moves for problem posing taken from Weiss (2009), p. 81. 
 

Authentic Mathematical Practice in the Work of Teachers 

To what extent do the mathematical activities commonly seen in classrooms 

reflect authentic mathematical work? Do current norms in mathematics 

instruction promote either mathematical proficiency or curiosity? Does the 

rationality that drives mathematics teaching help encourage an appreciation of 

mathematics?  

Herbst and Chazan (2011) has suggested that it is crucial that we recognize 

how instruction typically works, understanding the practical rationality that 

underpins teaching, if we are to design reforms that are viable and sustainable.  

It is through incremental changes, which recognize current practice, that 

permanent transformation is most likely to occur, but how might incremental 



                                                                                                      TME, vol8, no.3, p .471 

 

changes be introduced? What form might such changes take? 

The key role of problem posing in mathematics instruction has long been 

recognized. Silver (1994) noted that problem posing is not only a prominent 

feature of mathematical activity; it also features heavily in “inquiry-oriented 

instruction” and can serve to create an environment in which students are more 

engaged. 

Here we describe briefly how the five generative moves for problem posing 

(Fig. 1) could be relevant when describing the potential for secondary 

mathematics education to include instances of “authentic mathematical work”. 

Suppose a high school geometry class has been studying the properties of 

triangles, and has found (either through empirical exploration, deductive proof, 

or a combination of the two) that the three angle bisectors of any acute triangle 

always intersect in a single point. The following scenarios show how 

instructional interventions can change the direction of the task and have the 

potential to depart from normative geometry instruction.6 

 One possibility is that the teacher might ask, “Does it really matter 

whether the triangle is acute or not?” Investigating this question could 

lead the class to the conclusion that, in fact, the initial restriction to the 

case of acute triangles was unnecessary, and that the conclusion obtains 

                                                 
6 The end goal is not for the instructor to make such interventions, but that all classroom participants, 
including students, begin to adopt this problem posing mindset.  
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for all triangles — a case of weakening the hypothesis, the first generative 

move in Fig. 1. 

 Another possibility is that the teacher might encourage the class to seek to 

strengthen the conclusion of what has been proven, for example by 

providing additional properties that characterize the intersection point of 

the three angle bisectors of a triangle such as offering, “Not only do they 

intersect at a single point, but that point is the center of a circle that can be 

inscribed in the triangle.” 

 A third possibility is that the class might seek to generalize their findings, 

for example by asking, “What happens if you construct the angle bisectors 

of other polygons? Do they meet at a point, and if not, what do you get?” 

 A fourth possibility is that the class might seek to specialize their findings, 

for example by observing, “If you do this with an equilateral triangle, there 

seems to be more than can be said about the resulting figure — for 

example the point of intersection seems to equidistant from the three 

corners of the triangle as well.” 

 A class that has observed this last property might then consider the converse 

question:  “If the angle bisectors of a particular triangle meet at a point 

that is equidistant from the three corners of the triangle, does that mean 

that the triangle in question must be equilateral?” 
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The examples above illustrate how the generative moves identified in Weiss 

(2009) can be used to describe and promote the practice of wondering 

mathematically about what is true, a core component of authentic mathematical 

practice. More examples could be generated ad lib by iterating and recombining 

these moves. For example, the generalization to the case of other polygons could 

lead to a subsequent specialization to the case of quadrilaterals (which in turn 

could be subsequently refined to the case of various “special quadrilaterals”). 

The many variations on this “angle bisector problem” have played a key role in 

the representations of mathematics teaching used by Herbst and his collaborators 

as probes of geometry teachers’ practical rationality (see Aaron, 2010; Herbst & 

Chazan, 2006; Weiss & Herbst, 2007; Weiss, 2009). 

 

Authentic Mathematical Practice in Teacher Education 

Many of the norms that characterize contemporary mathematics education 

are at a great distance from authentic mathematical practice. Herbst and 

Balacheff (2009) argue that an appeal to the disciplinary obligation can, in some 

cases, provide grounds for departing from those norms. This, however, requires 

that teachers hold a fuller and more nuanced view of authentic mathematical 

practice. In this section we address the role of teacher education in cultivating 

such a view. 

Ball (1988b) identified a number of widespread views among preservice 

teachers, including “Mathematics is a mostly arbitrary collection of facts,” 
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“Doing mathematics means following set procedures,” and “Doing mathematics 

means using remembered knowledge and working step-by-step” (pp. 104-108). 

Her findings showed that preservice teachers predominantly view mathematics 

as a “closed” field, one in which there are no new questions left to ask. When 

asked to respond to the statements “Some problems in mathematics have no 

answers” and “There are unsolved problems in mathematics”, the preservice 

teachers in Ball’s study expressed confusion. For them, “wondering 

mathematically” simply does not exist as an activity. 

The impact of these views of mathematical practice is significant. In a recent 

study, Cross (2009) showed that teachers who understand mathematics to be 

primarily about “formulas, procedures, and calculations” consistently defaulted 

to an initiate-respond-evaluate pattern in their interactions with students. In 

contrast, teachers who regard mathematics primarily as being about the “thought 

processes and mental actions of the individual” were more likely to engage their 

students in extended, continuous discourse (Cross, pp. 332-3). Cross concludes 

that teachers who do not hold beliefs consonant with supporting “learner-

oriented classroom environments” should be engaged in programs intended to 

transform their beliefs. 

The responsibility for cultivating an awareness of authentic mathematical 

practice in preservice teachers rests, by necessity, with teacher education. 

Mathematics teacher educators “have the dual responsibility of preparing 

teachers, both mathematically and pedagogically (Liljedahl, Chernoff, and Zazkis, 
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2007, p. 239).” Although many colleges and universities preserve an institutional 

separation between mathematics content courses and mathematics methods 

courses, undergraduate mathematics courses should not be the only 

opportunities for future teachers to develop a sense of and appreciation for 

authentic mathematical work. Learning to wonder mathematically can, and 

should, be a goal of teacher education courses. Experiences with mathematical 

discovery have been shown to have a profound, transformative effect on future 

teachers’ beliefs about the nature of mathematics and its teaching and learning 

(Liljedahl, 2005). Mathematics teacher education should make the processes and 

mechanisms of problem posing (including the generative moves of Table 1) 

explicit, and draw attention to how they can be used to navigate productively 

through open-ended problem spaces. Through engagement in, and explicit 

attention to, such mathematical activities, teachers might come to view 

mathematics differently. If they come to view mathematics differently, the 

disciplinary obligation that partly frames their instruction could lead to changes 

in what they deem valid representations of mathematics.  

Besides implementing tasks that model authentic mathematical practice, 

mathematics education classes could provide future teachers with exposure to 

examples of the rich mathematical thinking that students are capable of and 

often bring to the classroom. Mathematics education classes should also help 

future teachers consider how to value and capitalize on students’ wondering as 

well as how to promote problem posing by and mathematical curiosity in their 
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students. Future teachers need exposure to and interaction with representations 

of classroom instruction (like case studies, videos, animations, etc.) that model 

authentic mathematical practice. Ideally teacher educators should be able to 

provide both actual and hypothetical episodes of instruction to show both what 

is currently possible and being done as well as foreshadowing what might be 

possible if current norms were questioned.  

Mathematics educators could provide future (and also current) teachers 

opportunities to witness episodes of instruction that depart from normative 

practice but that exemplify authentic mathematical work. For teacher educators, 

a direct encounter with teachers’ reactions to such breaches can help make visible 

the (usually tacit) norms that guide the rationality of teaching. These encounters 

have the potential to shape or transform teachers’ views of the nature of 

mathematics and its teaching and learning. 

 

Conclusions 

The mathematics education community has a long history of efforts to 

improve teaching, and yet teaching remains largely resilient in the face of reform. 

One possible reason for this difficulty is that teacher education has struggled to 

instill a mathematical sensibility in preservice teachers, many of whom have little 

or no direct experience with authentic mathematical practice. A second possible 

reason for this difficulty is that reform efforts often fail to consider the norms that 

drive and sustain the practice of mathematics teaching as it exists currently. A 



                                                                                                      TME, vol8, no.3, p .477 

 

strong case can be made for the use of practical rationality as a lens for viewing 

both research and teacher education: if we are to design reforms that are viable 

and sustainable, it is crucial to understand the practical rationality that 

underpins teaching (Herbst & Chazan 2011). 

It may be somewhat naïve to expect that, simply by providing preservice 

teachers with opportunities to experience authentic mathematical practice, we 

will somehow transform them into a different kind of teacher, one who creates 

opportunities for his or her own students to engage in such practices. On the 

other hand, it seems to us unassailable that such preservice teacher education is a 

necessary, even if not sufficient, condition for such an outcome. It is almost 

impossible to imagine teachers engaging students in the processes of wondering 

mathematically, when the teachers themselves have never experienced such 

activity. Cultivating a richer vision of mathematics as a discipline may make it 

possible (although by no means certain) that teachers can, in the future, appeal to 

the disciplinary obligation as grounds for change. 
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Although educational reformers have disagreed on many issues, there is a 

widely shared concern for enhancing opportunities for students to learn 

mathematics with understanding and thus a strong interest in promoting teaching 

mathematics for understanding. (Silver, Mesa, Morris, Star, & Benken, 2009, 

P.503). 
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Introduction 

In recent decades our global community has rapidly become a knowledge driven 

society, one that is increasingly dependent on the distribution and exchange of 

services and commodities (van Oers, 2009), and one that has become highly 

inventive where creativity, imagination, and innovation are key players. At the 

same time, the world has become governed by complex systems—financial 

corporations, the World Wide Web, education and health systems, traffic jams, 

and classrooms are just some of the complex systems we deal with on a regular 

basis. For all citizens, an appreciation and understanding of the world as 

interlocked complex systems is critical for making effective decisions about one’s 

life as both an individual and as a community member (Bar-Yam, 2004; Jacobson 

& Wilensky, 2006; Lesh, 2006). 

Complexity—the study of systems of interconnected components whose 

behavior cannot be explained solely by the properties of their parts but from the 

behavior that arises from their interconnectedness—is a field that has led to 

significant scientific methodological advances. With the proliferation of complex 

systems have come new technologies for communication, collaboration, and 

conceptualization. These technologies have led to significant changes in the 

forms of mathematical thinking that are needed beyond the classroom. For 

example, technology can ease the thinking needed in information storage, 

representation, retrieval, and transformation, but places increased demands on 

the complex thinking required for the interpretation of data and communication 
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of results. Computational skills alone are inadequate here—the ability to 

interpret, describe, and explain data and communicate results of data analyses is 

essential (Hamilton, 2007; Lesh, 2007a; Lesh, Middleton, Caylor & Gupta, 2008). 

The rapid increase in complex systems cannot be ignored in mathematics 

education. Indeed, educational leaders from different walks of life are 

emphasizing the importance of developing students’ abilities to deal with 

complex systems for success beyond school. Such abilities include: constructing, 

describing, explaining, manipulating, and predicting complex systems; working 

on multi-phase and multi-component component projects in which planning, 

monitoring, and communicating are critical for success; and adapting rapidly to 

ever-evolving conceptual tools (or complex artifacts) and resources (Gainsburg, 

2006; Lesh & Doerr, 2003; Lesh & Zawojewski, 2007). 

In this article I first consider future-oriented learning and then address some 

of the understandings and competencies needed for success beyond the 

classroom, which I argue need to be incorporated within the mathematics 

curriculum. A discussion on complex learners and complex learning, with 

mathematical modeling as an example, is presented in the remaining section. 

 

Future-oriented learning 

Every advanced industrial country knows that falling behind in science and 

mathematics means falling behind in commerce and property. (Brown, 2006).  
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Many nations are highlighting the need for a renaissance in the mathematical 

sciences as essential to the well-being of all citizens (e.g., Australian Academy of 

Science, 2006; Pearce, Flavell, & Dao-Cheng, 2010; The National Academies, 

2009). Indeed, the first recommendation of The National Academies’ Rising above 

the Gathering Storm (2007) was to vastly improve K-12 science and mathematics 

education. Likewise the Australian Academy of Science has indicated the need to 

address the “critical nature” of the mathematical sciences in schools and 

universities, especially given the unprecedented, worldwide demand for new 

mathematical solutions to complex problems. In addressing such demands, the 

Australian Academy emphasizes the importance of interdisciplinary research, 

given that the mathematical sciences underpin many areas of society including 

financial services, the arts, humanities, and social sciences. 

The interdisciplinary nature of the mathematical sciences is further evident in 

the rapid changes in the nature of the problem solving and reasoning needed 

beyond the school years (Lesh, 2007b). Indeed, numerous researchers and 

employer groups have expressed concerns that schools are not giving adequate 

attention to the understandings and abilities that are needed for success beyond 

school. For example, potential employees most in demand in the mathematical 

sciences are those that can (a) interpret and work effectively with complex 

systems, (b) function efficiently and communicate meaningfully within diverse 

teams of specialists, (c) plan, monitor, and assess progress within complex, multi-

stage projects, and (d) adapt quickly to continually developing technologies 
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(Lesh, 2008). Research indicates that such employees draw effectively on 

interdisciplinary knowledge in solving problems and communicating their 

findings. Furthermore, although such employees draw upon their school 

learning, they do so in a flexible and creative manner, often generating or 

reconstructing mathematical knowledge to suit the problem situation (unlike the 

way in which they experienced mathematics in school; Gainsburg 2006; 

Hamilton 2007; Zawojewski, Hjalmarson, Bowman, & Lesh, 2008). Indeed, such 

employees might not even recognize the relationship between their school 

mathematics and the mathematics they apply in solving problems in their daily 

work activities. We thus need to rethink the nature of the mathematical learning 

experiences we provide students, especially those experiences we classify as 

“problem solving;” we also need to recognize the increased capabilities of 

students in today’s era. 

In his preface to the book, Foundations for the Future in Mathematics Education, 

Lesh (2007b) pointed out that the kinds of mathematical understandings and 

competencies that are targeted in textbooks and tests tend to “represent only a 

shallow, narrow, and often non-central subset of those that are needed for 

success when the relevant ideas should be useful in ‘real life” situations” (p. viii). 

Lesh’s argument raises a number of issues, including: 

What kinds of understandings and competencies should be emphasized to 

reduce the gap between the mathematics addressed in the classroom (and in 

standardized testing), and the mathematics needed for success beyond the 
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classroom? 

How might we address the increasing complexity of learning and learners to 

advance their mathematical understanding within and beyond the 

classroom? 

 

Understandings and competencies for success beyond the classroom 

The advent of digital technologies changes the world of work for our students. 

As Clayton (1999) and others (e.g., Hoyles, Noss, Kent, & Bakker, 2010; Jenkins, 

Clinton, Purushotma, Robinson & Weigel, 2006; Lombardi & Lombardi, 2007; 

Roschelle, Kaput, & Stroup, 2000) have stressed, the availability of increasingly 

sophisticated technology has led to changes in the way mathematics is being 

used in work place settings; these technological changes have led to both the 

addition of new mathematical competencies and the elimination of existing 

mathematical skills that were once part of the worker's toolkit. 

Studies of the nature and role of mathematics used in the workplace and other 

everyday settings (e.g., nursing, engineering, grocery shopping, dieting, 

architecture, fish hatcheries) are important in helping us identify some of the key 

understandings and competencies for the 21st century (e.g., de Abreu, 2008; 

Gainsburg, 2006; Hoyles et al., 2010; Roth, 2005). A major finding of the 2002 

report on workplace mathematics by Hoyles, Wolf, Molyneux-Hodgson and 

Kent was that basic numeracy is being displaced as the minimum required 

mathematical competence by an ability to apply a much wider range of 
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mathematical concepts in using technological tools as part of working practice. 

Although we cannot simply list a number of mathematical competencies and 

assume these can be automatically applied to the workplace setting, there are 

several that employers generally consider to be essential to productive outcomes 

(e.g., Doerr & English, 2003; English, 2008; Gainsburg, 2006; Lesh & Zawojewski, 

2007). In particular, the following are some of the core competencies that have 

been identified as key elements of productive and innovative work place 

practices (English, Jones, Bartolini Bussi, Lesh, Tirosh, & Sriraman, 2008; Hoyles 

et al., 2010). I believe these competencies need to be embedded within our 

mathematics curricula: 

- Problem solving, including working collaboratively on complex problems 

where planning, overseeing, moderating, and communicating are essential 

elements for success; 

- Applying numerical and algebraic reasoning in an efficient, flexible, and 

creative manner; 

- Generating, analyzing, operating on, and transforming complex data sets; 

- Applying an understanding of core ideas from ratio and proportion, 

probability, rate, change, accumulation, continuity, and limit; 

- Constructing, describing, explaining, manipulating, and predicting complex 

systems; 

- Thinking critically and being able to make sound judgments, including 

being able to distinguish reliable from unreliable information sources; 
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- Synthesizing, where an extended argument is followed across multiple 

modalities; 

- Engaging in research activity involving the investigation, discovery, and 

dissemination of pertinent information in a credible manner; 

- Flexibility in working across disciplines to generate innovative and effective 

solutions. 

-  Techno-mathematical literacy (a “techno-mathematical literacy, where the 

mathematics is expressed through technological artefacts.” Hoyles et al., 2010, p. 

14).  

 

Although a good deal of research has been conducted on the relationship 

between the learning and application of mathematics in and out of the classroom 

(e.g., de Abreu 2008; Nunes & Bryant 1996; Saxe 1991), we still know 

comparatively little about students’ mathematical capabilities, especially 

problem solving, beyond the classroom. We need further knowledge on why 

students have difficulties in applying the mathematical concepts and abilities 

(that they presumably have learned in school) outside of school—or in classes in 

other disciplines. 

A prevailing explanation for these difficulties is the context-specific nature of 

learning and problem solving, that is, competencies that are learned in one 

situation take on features of that situation; transferring them to a new problem 

situation in a new context poses challenges (Lobato 2003). This suggests we need 
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to reassess the nature of the typical mathematical problem-solving experiences 

we give our students, with respect to the nature of the content and how it is 

presented, the problem contexts and the extent of their real-world links, the 

reasoning processes likely to be fostered, and the problem-solving tools that are 

available to the learner (English & Sriraman, 2010). This reassessment is 

especially needed, given that “problems themselves change as rapidly as the 

professions and social structures in which they are embedded change” 

(Hamilton, 2007, p. 2). The nature of learners and learning changes likewise. 

With the increasing availability of technology and exposure to a range of 

complex systems, children are different types of learners today, with a potential 

for learning that cannot be underestimated. 

 

Complex learners, complex learning 

Winn (2006) warned of the “dangers of simplification” when researching the 

complexity of learning, noting that learning is naturally confronted by three 

forms of complexity—the complexity of the learner, the complexity of the 

learning material, and the complexity of the learning environment (p. 237). We 

cannot underestimate these complexities. In particular, we need to give greater 

recognition to the complex learning that children are capable of—they have 

greater learning potential than they are often given credit for by their teachers 

and families (English, 2004; Lee & Ginsburg, 2007; Perry & Dockett, 2008; Curious 

Minds, 2008). They have access to a range of powerful ideas and processes and 
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can use these effectively to solve many of the mathematical problems they meet 

in daily life. Yet their mathematical curiosity and talent appear to wane as they 

progress through school, with current educational practice missing the goal of 

cultivating students’ capacities (National Research Council, 2005; Curious Minds, 

2008). The words of Johan van Benthem and Robert Dijkgraaf, the initiators of 

Curious Minds (2008), are worth quoting here: 

What people say about children is: “They can’t do this yet.” 

We turn it around and say: “Look, they can already do this.” 

And maybe it should be: “They can still do this now.” 

 

As Perry and Dockett (2008) noted, one of our main challenges here is to find 

ways to utilize the powerful mathematical competencies developed in the early 

years as a springboard for further mathematical power as students progress 

through the grade levels. I offer three interrelated suggestions for addressing this 

challenge: 

1. Recognize that learning is based within contexts and environments that we, 

as educators shape, rather than within children’s maturation (Lehrer & 

Schauble, 2007). 

2. Promote active processing rather than just static knowledge (Curious Minds, 

2008). 

3. Create learning activities that are of a high cognitive demand (Silver et al., 

2009). 
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In the remainder of this paper I give brief consideration to these suggestions. 

In doing so, I argue for fostering complex learning through activities that 

encourage knowledge generation and active processing. While complex learning 

can take many forms and involve numerous factors, there are four features that I 

consider especially important in advancing students’ mathematical learning. 

These appear in figure 1. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Key Features of Complex Learning 

 

Research in the elementary and middle school indicates that, with carefully 

designed and implemented learning experiences, we can capitalize on children’s 

conceptual resources and bootstrap them towards advanced forms of reasoning 
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not typically observed in the regular classroom (e.g., English & Watters, 2005; 

Ginsburg, Cannon, Eisenband, & Pappas, 2006; Lehrer & Schauble, 2007). Most 

research on young students’ mathematical learning has been restricted to an 

analysis of their actual developmental level, which has failed to illuminate their 

potential for learning under stimulating conditions that challenge their 

thinking—“Research on children's current knowledge is not sufficient” 

(Ginsburg et al., 2006, p.224). We need to redress this situation by exploring 

effective ways of fashioning learning environments and experiences that 

challenge and advance students’ mathematical reasoning and optimize their 

mathematical understanding. 

Recent research has argued for students to be exposed to learning situations in 

which they are not given all of the required mathematical tools, but rather, are 

required to create their own versions of the tools as they determine what is 

needed (e.g., English & Sriraman, 2010; Hamilton, 2007; Lesh, Hamilton, & 

Kaput, 2007). For example, long-standing perspectives on classroom problem 

solving have treated it as an isolated topic, with problem-solving abilities 

assumed to develop through the initial learning of basic concepts and procedures 

that are then practised in solving word (“story”) problems. In solving such word 

problems, students generally engage in a one- or two-step process of mapping 

problem information onto arithmetic quantities and operations. These traditional 

word problems restrict problem-solving contexts to those that often artificially 

house and highlight the relevant concept (Hamilton, 2007). These problems thus 
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preclude students from creating their own mathematical constructs. More 

opportunities are needed for students to generate important concepts and 

processes in their own mathematical learning as they solve thought-provoking, 

authentic problems. Unfortunately, such opportunities appear scarce in many 

classrooms, despite repeated calls over the years for engaging students in tasks 

that promote high-level mathematical thinking and reasoning (e.g., Henningsen 

& Stein, 1997; Silver et al., 2009; Stein & Lane, 1996). 

Silver et al.’s recent research (2009) analyzing portfolios of “showcase” 

mathematics lessons submitted by teachers seeking certification of highly 

accomplished teaching, showed that activities were not consistently intellectually 

challenging across topics. About half of the teachers in the sample (N=32) failed 

to include a single activity that was cognitively demanding, such as those that 

call for reasoning about ideas, linking ideas, solving complex problems, and 

explaining and justifying solutions. Furthermore, the teachers were more likely 

to use cognitively demanding tasks for assessment purposes than for teaching to 

develop student understanding. While Silver et al.’s research revealed positive 

features of the teachers’ lessons, it also indicated that the use of cognitively 

demanding tasks in promoting mathematical understanding needs systematic 

attention. 

Modeling Activities 

One approach to promoting complex learning through intellectually 

challenging tasks is mathematical modeling. Mathematical models and modeling 



English 

 

have been interpreted variously in the literature (e.g., Romberg, Carpenter, & 

Kwako, 2005; Gravemeijer, Cobb, Bowers, & Whitenack, 2000; English & 

Sriraman, 2010; Greer, 1997; Lesh & Doerr, 2003). It is beyond the scope of this 

paper to address these various interpretations, however, but the perspective of 

Lesh and Doerr (e.g., Doerr & English, 2003; Lesh & Doerr, 2003) is frequently 

adopted, that is, models are “systems of elements, operations, relationships, and 

rules that can be used to describe, explain, or predict the behavior of some other 

familiar system” (Doerr & English, 2003, p.112). From this perspective, modeling 

problems are realistically complex situations where the problem solver engages 

in mathematical thinking beyond the usual school experience and where the 

products to be generated often include complex artifacts or conceptual tools that 

are needed for some purpose, or to accomplish some goal (Lesh & Zawojewski, 

2007). 

In one such activity, the Water Shortage Problem, two classes of 11-year-old 

students in Cyprus were presented with an interdisciplinary modeling activity 

that was set within an engineering context (English & Mousoulides, in press). In 

the Water Shortage Problem, constructed according to a number of design 

principles, students are given background information on the water shortage in 

Cyprus and are sent a letter from a client, the Ministry of Transportation, who 

needs a means of (model for) selecting a country that can supply Cyprus with 

water during the coming summer period. The letter asks students to develop 

such a model using the data given, as well as the Web. The quantitative and 
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qualitative data provided for each country include water supply per week, water 

price, tanker capacity, and ports’ facilities. Students can also obtain data from the 

Web about distance between countries, major ports in each country, and tanker 

oil consumption. After students have developed their model, they write a letter 

to the client detailing how their model selects the best country for supplying 

water. An extension of this problem gives students the opportunity to review 

their model and apply it to an expanded set of data. That is, students receive a 

second letter from the client including data for two more countries and are asked 

to test their model on the expanded data and improve their model, if needed. 

Modeling problems of this nature provide students with opportunities to 

repeatedly express, test, and refine or revise their current ways of thinking as 

they endeavor to create a structurally significant product—structural in the sense 

of generating powerful mathematical (and scientific) constructs. The problems 

are designed so that multiple solutions of varying mathematical and scientific 

sophistication are possible and students with a range of personal experiences and 

knowledge can participate. The products students create are documented, 

shareable, reusable, and modifiable models that provide teachers with a window 

into their students’ conceptual understanding. Furthermore, these modeling 

problems build communication (oral and written) and teamwork skills, both of 

which are essential to success beyond the classroom. 
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Concluding Points 

The world’s increasing complexity, competitiveness, interconnectivity, and 

dependence on technology generate new challenges for nations and individuals 

that cannot be met by “continuing education as usual” (The National Academies, 

2009). In this paper I have emphasized the need to incorporate future-oriented 

understandings and competencies within the mathematics curriculum, through 

intellectually stimulating activities that draw upon multidisciplinary content and 

contexts. I have also argued for greater recognition of children’s learning 

capabilities, as increasingly complex learners able to deal with cognitively 

demanding tasks.  

The need for more intellectually stimulating and challenging activities within 

the mathematics curriculum has also been highlighted. It is worth citing the 

words of Greer and Mukhopadhyay (2003) here, who commented that “the most 

salient features of most documents that lay out a K-12 program for mathematics 

education is that they make an intellectually exciting program boring,” a feature 

they refer to as “intellectual child abuse” (p. 4). Clearly, we need to make the 

mathematical experiences we include for our students more challenging, 

authentic, and meaningful. Developing students’ abilities to work creatively with 

and generate mathematical knowledge, as distinct from working creatively on 

tasks that provide the required knowledge (Bereiter & Scardamalia, 2006) is 

especially important in preparing our students for success in a knowledge-based 

economy. Furthermore, establishing collaborative, knowledge-building 
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communities in the mathematics classroom is a significant and challenging goal 

for the advancement of students’ mathematical learning (Scardamalia, 2002). 
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Learning progressions (LP) are playing an increasingly important role in 

mathematics and science education (NRC, 2001, 2007; Smith, Wiser, Anderson, & 

Krajcik, 2006).  They are strongly suggested for use in assessment, standards, and 

teaching.  In this article, I discuss the nature of learning progressions and related 

concepts in mathematics education, and I illustrate issues in their construction 

and use. I emphasize the different ways that LP and related constructs represent 

learning for teaching.  Finally, I illustrate the need that teachers have for LP.  
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Definitions and Constructs  

According to the National Research Council, “Learning progressions are 

descriptions of the successively more sophisticated ways of thinking about a 

topic that can follow one another as children learn about and investigate a topic” 

(2007, p. 214).  A similar description of learning progressions is given by Smith et 

al. who define a learning progression “as a sequence of successively more 

complex ways of thinking about an idea that might reasonably follow one 

another in a student’s learning” (2006, pp. 5-6).  Unlike Piaget's stages, but 

similar to van Hiele's levels3, it is assumed that progress through learning 

progressions is "not developmentally inevitable" but depends on instruction 

(Smith et al., 2006). 

Common Characteristics of the LP Construct 

In the research literature, descriptions of the LP construct possess both 

differences and similarities.  The characteristics that seem most common to 

different views of learning progressions are as follows: 

 LP "are based on research syntheses and conceptual analyses” (Smith et 

al., 2006, p. 1); "Learning progressions should make systematic use of 

current research on children’s learning " (NRC, 2007, p. 219). 

 LP "are anchored on one end by what is known about the concepts and 

reasoning of students. … At the other end, learning progressions are 

                                                 
3 Because many of my examples refer to the van Hiele levels, I have included a very brief synopsis of the levels in 

Appendix 1. 
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anchored by societal expectations. … [LP also] propose the intermediate 

understandings between these anchor points that … contribute to 

building a more mature understanding" (NRC, 2007, p. 220). 

 LP focus on core ideas, conceptual knowledge, and connected procedural 

knowledge, not just skills.  LP organize "conceptual knowledge around 

core ideas" (NRC, 2007, p. 220).  LP "Suggest how well-grounded 

conceptual understanding can develop" (NRC, 2007, p. 219). 

 LP "recognize that all students will follow not one general sequence, but 

multiple (often interacting) sequences" (NRC, 2007, p. 220). 

Differences in LP Construct 

There are several differences in how the learning progressions construct is 

used in the literature. 

 LP differ in the time spans they describe.  Some progressions describe the 

development of students' thinking over a span of years; others describe 

the progression of thinking through a particular topic or instructional 

unit. 

 LP differ in the grain size of their descriptions.  Some are appropriate for 

describing minute-to-minute changes in students' development of 

thought, while others better describe more global progressions through 

school curricula. 
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 LP differ in the audience for which they are written.  Some LP are written 

for researchers, some for standards writers, some for assessment 

developers (formative and summative), and some for teachers. 

 LP differ in the research foundation on which they are built.  Some LP are 

syntheses of extant research; some synthesize extant research then 

perform additional research that elaborates the syntheses (the additional 

research may be cross-sectional or longitudinal). 

 LP differ in how they describe student learning.  Some focus on 

numerically "measuring" student progress, while others focus on 

describing the nature or categories of students' cognitive structures and 

reasoning. 

Learning Trajectories 

 Another important construct that is similar to, different from, and 

importantly related to, learning progressions is that of a "learning trajectory4."  I 

define a learning trajectory as a detailed description of the sequence of thoughts, 

ways of reasoning, and strategies that a student employs while involved in 

learning a topic, including specification of how the student deals with all 

instructional tasks and social interactions during this sequence.  There are two 

types of learning trajectories, hypothetical and actual.  Simon (1995) proposed 

that a "hypothetical learning trajectory is made up of three components: the 

                                                 
4
 Although some people use the terms "learning progression" and "learning trajectory" similarly, I think it 

is extremely useful to carefully distinguish learning progressions and learning trajectories. 
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learning goal…, the learning activities, and the hypothetical learning process—a 

prediction of how the students' thinking and understanding will evolve in the 

context of the learning activities" (p. 136).  In contrast, descriptions of actual 

learning trajectories can be specified only during and after a student has 

progressed through such a learning path. Simon states that an "actual learning 

trajectory is not knowable in advance" (p. 135).  Steffe described an actual 

learning trajectory as "a model of [children's] initial concepts and operations, an 

account of the observable changes in those concepts and operations as a result of 

the children's interactive mathematical activity in the situations of learning, and 

an account of the mathematical interactions that were involved in the changes. 

Such a learning trajectory of children is constructed during and after the 

experience in intensively interacting with children" (2004, p. 131).   

 Clements and Sarama's (2004) "conceptualize learning trajectories as 

descriptions of children's thinking and learning in a specific mathematical 

domain and a related, conjectured route through a set of instructional tasks 

designed to engender those mental processes or actions hypothesized to move 

children through a developmental progression of levels of thinking, created with 

the intent of supporting children's achievement of specific goals in that 

mathematical domain" (2004, p. 83).  In their hypothetical learning trajectories, they 

specify instructional tasks that promote (and assess) progression through their 

levels of thinking. 
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One critical difference between my definition of learning progressions and 

my definition of learning trajectories is that trajectories include descriptions of 

instruction, progressions do not.  One of the most difficult issues facing researchers 

who are constructing learning trajectories for curriculum development is 

determining how instructional variation affects trajectories.  That is, how specific 

is the trajectory to the instructional sequence in which it is embedded?  If the 

sequence has been tested for one curriculum, how well does it apply to other 

curricula?  Also, how do actual trajectories for individual students vary from the 

hypothetical trajectory for a curriculum?  That is, a learning trajectory for a 

curriculum is in some sense an "average" of actual trajectories for a sample of 

individual students—and, as an average, it is a prediction for a target population, 

and thus it is necessarily hypothetical.  And the "standard deviation" of the 

distribution of actual trajectories may be as relevant as the mean.  

Pedagogical Uses of LP  

Beyond the scientific value of LP/LT descriptions of students' 

mathematics learning, these descriptions are powerful tools for teaching.  LP/LT 

can be used for formative and summative assessment, and to guide instructional 

decisions made in curriculum development and moment-to-moment teaching.  

Indeed, Simon states, "I choose to use 'hypothetical learning trajectory' … to 

emphasize aspects of teacher thinking that are grounded in a constructivist 

perspective and that are common to both advanced planning and spontaneous 

decision making" (1995, p. 135).  Such a hypothesized trajectory (or LP) helps 
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teachers make instructional decisions based on their "best guess of how learning 

might proceed" (Simon, 1995, p. 135). Thus, from the constructivist perspective, 

LP and LT should ideally help teachers not only plan instruction, but understand 

students' learning on a moment-to-moment basis and appropriately and 

continuously adjust instruction to meet students' evolving learning needs. 

Another difference between learning progressions and learning 

trajectories derives from their intended use and consequent development.  If one 

is designing and testing a curriculum, one is more likely to develop a learning 

trajectory based on the fixed sequence of learning tasks in that curriculum.  If, in 

contrast, one is focusing on a formative assessment system that applies to many 

curricula, one is more likely to develop a learning progression based on many 

assessment tasks, not those in a fixed sequence.  A general learning progression 

describes students' various ways of reasoning about a topic, irrespective of 

curriculum; it focuses on understanding and reacting to students' current 

cognitive structures.  A curriculum-based learning trajectory describes students' 

ways of reasoning within a fixed curriculum; it focuses on understanding and 

reacting to students' cognitive structures, relative to the curriculum sequence.  

The advantage of learning progressions is that they are widely applicable and 

focus tightly on general student cognition.  The advantage of learning trajectories 

is their specificity in tracing students' movement through a fixed curriculum. 

LP as Cognitive Terrain 
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It is useful to think of learning progressions as describing the terrain on a 

mental mountain slope that students must ascend to learn and become fluent 

with particular mathematical topic.  From a curriculum-development, 

instructional planning perspective, we try to determine the most efficacious 

ascent path (the one for which most students are most likely to succeed), as 

depicted by the fixed path in Figure 1a (the hypothetical prototypical learning 

trajectory).  But to meet individual students' learning needs, often we must zoom 

in on individual deviations from the path to more precisely determine the next 

steps that students can make successfully.  Critical to aiding a student's moment-

to-moment climb is flexibly and reactively choosing tasks that provide them with 

successful hand- and foot-holds in this cognitive terrain (Figure 1b).   

           
     Figure 1a         Figure 1b 

Theoretical Frameworks for Learning Progressions 

Another way to understand differences between learning progressions is 

to examine their postulated learning mechanisms.  For instance, the original van 

Hiele theory relates progression through the levels of geometric thinking to 

phases of instruction.  In contrast, Battista uses constructivist constructs such as 
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levels of abstraction to describe students' progression through the van Hiele 

levels (see also the theories of abstraction of Simon, et al. (2004) and Mitchelmore 

& White (2000), as well as Pegg & Davey's analysis of geometric learning, 1998).   

We might also contrast a constructivist approach to teaching to the 

approach taken in Gagne's "programmed learning" hierarchies5, which seem 

much more fixed, logical, prescribed, and less interactive.   

Beginning with the final task, the question, is asked, What kind of 

capability would an individual have to possess if he were able to perform 

this task successfully, were we to give him only instructions? … Having 

done this, it was natural to think next of repeating the procedure with this 

newly defined entity (task). What would the individual have to know in 

order to be capable of doing this task without undertaking any learning, 

but given only some instructions? … Continuing to follow this procedure, 

we found that what we were defining was a hierarchy of subordinate 

knowledges [sic], growing increasingly "simple" … Our hypothesis was 

that (a) no individual could perform the final task without having these 

subordinate capabilities … and (b) that any superordinate task in the 

hierarchy could be performed by an individual provided suitable 

instructions were given, and provided the relevant subordinate 

knowledges could be recalled by him (Gagne, 1962, p. 356). 

                                                 
5 A hierarchy was empirically validated by examining student success rates on various items in the 
hierarchy (similar to examining item difficulties in current quantitative approaches).  So it was not intended 
that hierarchies be developed strictly logically. 
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It is interesting that, on the surface at least, representations of learning 

progressions from different theoretical frameworks can look similar.  For 

instance, compare the overall appearance of the learning progression of Confrey 

et al. (from a more constructivist perspective) to the Gagne-like hierarchy 

described by Novillis (see Figure 2).   It would be revealing to analyze how these 

progressions differ at a micro- versus macro-level. 

 
Confrey et al., 2009, p. 1-4 
Learning Trajectories Map for Rational Number Reasoning. 

 
Novillis, 1976, p. 132 
A Hierarchy of selected subconcepts of the fraction concept 

Figure 2.  Trajectory versus Hierarchy 
 

The Nature of Levels 

A critical component of learning progressions is the notion of "levels." 

Because the concept of level is not straightforward, and because how one defines 

level determines how one views (and measures) level attainment, I examine this 

concept in more detail, using the van Hiele levels as an example.  Indeed, the 

issues discussed below for the van Hiele levels are critical because any attempt to 

develop, assess, and use levels in learning progressions must address these 

issues in some way. 
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Levels, Stages, and Hierarchies 

Clements and Battista (1992) described the difference between researchers' 

use of the terms stage and level as follows.  A stage is a substantive period of time 

in which a particular type of cognition occurs across a variety of domains (as 

with Piagetian stages of cognitive development).  In contrast, a level is a period of 

time in which a distinct type of cognition occurs for a specific domain (but the 

size of the domain may be an issue).  Battista defines a third construct—a level of 

sophistication in student reasoning as a qualitatively distinct type of cognition that 

occurs within a hierarchy of cognition levels for a specific domain.   

Example: The van Hiele Levels 

In discussing the van Hiele levels, Clements and Battista (1992) suggested 

several characteristics that might apply to levels. 

• "Learning is a discontinuous process.  That is, there are 'jumps' in the learning 

curve which reveal the presence of discrete, qualitatively different levels of 

thinking. 

• The levels are sequential and hierarchical.  For students to function adequately 

at one of the advanced levels in the van Hiele hierarchy, they must have 

mastered large portions of the lower levels. … Progress from one level to the 

next is more dependent upon instruction than on age or biological maturation.  

… Students cannot bypass levels and achieve understanding (memorization is 

not an important feature of any level).  The latter requires working through 

certain “phases” of instruction" (1992, pp. 426-7). 
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Types of Levels-Hierarchies 

When considering hierarchies of levels in learning progressions, it is 

helpful to distinguish two types.  A "weak" levels-hierarchy refers to a set of 

levels that are ranked in order of sophistication, one above another, with no class 

inclusion relationship between the levels necessary.  A "strong" levels-hierarchy 

refers to a set of levels ranked in order of sophistication, one above another, with 

class inclusion relationships between the levels required.  That is, in a "strong" 

levels-hierarchy, students who are reasoning at level n are assumed to have 

progressed through reasoning at levels 1, 2,  … (n-1).  The van Hiele levels were 

originally hypothesized to form a strong levels-hierarchy (which is generally 

supported by the research—but there are issues), while Battista's levels of 

sophistication in reasoning about length to be discussed below form a weak 

levels-hierarchy.  (I will return to this idea when I discuss quantitative methods 

for examining learning progressions.) 

Being "At" a Level 

What, precisely, does it mean to be "at" a level?  Battista (2007) argued that 

students are at a van Hiele level when their overall cognitive structures and 

processing causes them to be disposed to and capable of thinking about a topic in 

a particular way.  So students are "at" van Hiele Level 1 when their overall 

cognitive organization and processing disposes them to think about geometric 

shapes in terms of visual wholes; they are at Level 2 when their overall cognitive 

organization disposes and enables them to think about shapes in terms of their 
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properties.  Also in this view, when students move from familiar content to 

unfamiliar content, their level of thinking might decrease temporarily; but 

because students are disposed to operate at the higher level, they look to use that 

level on the new material, and quickly become capable of using that level 

(Battista, 2007).  So, for instance, in moving from studying quadrilaterals to 

studying triangles, students who are at Level 2 for quadrilaterals might initially 

process triangles as visual wholes, but right from the start they look for, and 

fairly quickly discover and use, triangle properties. 

A Different Approach:  Vectors and Overlapping Waves 

Some studies indicate that people exhibit behaviors indicative of different 

van Hiele levels on different subtopics of geometry, or even on different kinds of 

tasks (Clements & Battista, 2001).  So an alternate view of the development of 

geometric reasoning is that students develop several van Hiele levels 

simultaneously.  To represent this view, Gutiérrez et al. (1991) used a vector with 

four components to indicate the degrees of acquisition of each of van Hiele levels 

1 through 4.  For example, a student’s degree of acquisition vector might be:  

96.67% for Level 1, 82.50% for Level 2, 50.00% for Level 3, and 3.75% for Level 4.  

Using this vector approach, Gutiérrez et al. described six profiles of level-

configurations in students’ reasoning about 3d geometry.  To illustrate, Profile 2 

was characterized by complete acquisition of Levels 1 and 2, high acquisition of 

Level 3, and low acquisition of Level 4.  However, even though level acquisition 

was described in terms of the vector model, the profiles could easily be re-
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interpreted in terms of levels only.  For instance, Profile 2 could be thought of as 

Level 2 or transition to Level 3.  

Similar to the vector approach to the van Hiele levels, several researchers 

have posited that different types of reasoning characteristic of the van Hiele 

levels develop simultaneously at different rates, and that at different periods of 

development, different types of reasoning are dominant, depending on the 

relative competence students exhibit with each type of reasoning (Clements & 

Battista, 2001; Lehrer et al., 1998; see Figure 3).  The "waves" depicted in Figure 3 

are the competence growth curves for the different types of reasoning.   

 
Figure 3.  Waves of acquisition of van Hiele levels 

Lehrer et al. (1998) argued that … geometric development should be 

characterized “by which ‘waves’ or forms of reasoning are most dominant at any 

single period of time” (p. 163).  Clements and Battista (2001) also proposed the 

view that the van Hiele levels (seen as types of reasoning) develop 

simultaneously but at different rates.  Visual-holistic knowledge, descriptive 

verbal knowledge, and, to a lesser extent initially, abstract symbolic knowledge 

grow simultaneously, as do interconnections between levels.  However, although 
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these different types of reasoning grow in tandem, one level tends to become 

ascendant or privileged in a child’s orientation toward geometric problems.  

Which level is privileged is influenced by age, experience, intentions, tasks, and 

skill in use of the various types of reasoning.  

Although the vector and wave models for the van Hiele theory have 

merit, embedded within both is a difficult issue—distinguishing type of reasoning 

from level of reasoning.  That is, sometimes the term visual-holistic is used to refer 

to that type of reasoning that is strictly visual in nature, and sometimes it is used 

to refer to a period of development of geometric thinking when an individual’s 

thinking is dominated and characterized by visual-holistic thinking.  For 

instance, Gutiérrez et al. (1991) used vectors to indicate students’ “capacity to use 

each one of the van Hiele levels” (p. 238).  This statement makes sense only if van 

Hiele levels are taken as types of reasoning, not periods of development 

characterized by qualitatively different kinds of thought.  Similarly, Clements 

and Battista (2001), along with Lehrer et al. (1998), talked about “waves of 

acquisition” of levels of reasoning defined by van Hiele.  Thus, broadly speaking, 

researchers have intermingled and not yet completely sorted out (a) van Hiele 

levels as types of reasoning, and (b) van Hiele levels as periods of development 

of geometric reasoning.  The waves theory described above is similar, but not 

identical, to Siegler's overlapping waves theory (2005).  Indeed, the vertical axis 

in Siegler's theory is "relative frequency" of use, not competence, as shown in the 

van Hiele interpretation above.  Frequency of use many be connected to 
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competence, but also to other factors such as personal preference, social pressure, 

and so on. 

In summary, given the variability in strategy use and reasoning that seems 

to accompany learning, even if we develop an adequate definition for what it 

means for a student to be "at" a level, the periods of time when students meet the 

strict requirement for being at levels may be short, with students spending most 

of the time "in transition."   

Level Determination 

Empirical determination of levels of reasoning is a major issue in the van 

Hiele theory, and LP/LT levels in general, because it operationalizes researchers’ 

conceptions of the qualitatively different types of reasoning that occur in the 

LP/LT.  For instance, consider some of the different ways that researchers have 

determined van Hiele levels. Some studies (Carroll 1998; Usiskin, 1982) used 

paper and pencil tests, judging that a level was achieved if a given number of 

items designed to assess that level were answered correctly.  In other studies 

(Fuys et al., 1988; Clements & Battista, 1992; Battista, in prep) students' reasoning 

(as recorded in interviews or open response written tasks) was coded by 

matching students' reasoning to characteristics of the van Hiele levels.  Beyond 

the answers versus reasoning dichotomy, there have been additional differences 

in level determination.  For instance, in the Usiskin van Hiele test, three of the 

tasks used to assess property-based (Level 2) reasoning about quadrilaterals 

involved diagonals, but the Battista and Clements and Battista studies focused on 
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visually salient "defining" properties of shapes.  Thus, the properties assessed by 

Usiskin's test were more likely to be unfamiliar to students than those assessed 

by Battista and Clements and Battista.  

A totally different approach to assessing van Hiele levels was devised by 

another group of researchers (Battista, 2007).  In a collaborative effort to find 

ways to assess elementary students’ acquisition of the van Hiele levels in 

interview situations, Battista, Clements, and Lehrer developed a triad sorting 

task, that, with variations, both Clements and Battista (2001), Lehrer et al. (1998), 

and Battista (in progress) used in separate research efforts.  In this task, students 

were presented with three polygons, such as those shown in Figure 4, and were 

asked, “Which two are most alike?  Why?”  Choosing B and C and saying that 

they “look the same, except that B is bent in” was taken as a Level 1 response.  

Choosing A and B and saying either that they both have two pairs of congruent 

sides or that they both have four sides was taken as a Level 2 response.  The 

purpose of this task was to determine the type of reasoning used on a task that 

students had not seen before (so it was unlikely to elicit instructionally 

programmed responses).   

 
Figure 4.  Triad polygon sorting task. 

One difficulty with this analysis is that giving the number of sides of a 

polygon is a “low-level” use of properties.  That is, there are different types of 
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geometric properties.  The simplest property involves describing the number of 

components in a shape.  For instance, a quadrilateral has four sides; a triangle 

has three angles.  A second, more sophisticated type of property describes spatial 

relationships that are particularly salient in identifying shapes (e.g., opposite 

sides of a rectangle are congruent and all angles are right angles).  In some sense, 

these properties are the "psychological defining characteristics" of shapes for 

Level 2 students. The third type of property describes other interesting but less 

salient relationships (e.g., the diagonals of a rectangle are congruent and bisect 

each other6).  These properties are likely to be derived once students understand 

the meaning of shape classification—so they are more likely to occur in Level 3.   

The distinction in properties described above suggests that students’ use 

of number of sides of a polygon may not be a very good indicator of Level 2 

thinking, which should focus on relational properties.  Thus some jumps in levels 

on triad tasks observed by Lehrer et al. (1998) may have been caused by coding 

students’ use of number of sides as Level 2.  Because a critical factor used in 

distinguishing van Hiele levels is how students deal with geometric properties, 

clarifying the meaning of properties, as it relates to the van Hiele levels, is 

important. 

Another factor that should be considered with the triad task is that saying 

Shape B is more like Shape C is not necessarily a less sophisticated response than 

focusing on number of sides.  That is, Shape B is actually more like Shape C if we 

                                                 
6 Of course, it is true that some "interesting" properties logically can be used to define shapes. 
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consider how much movement it takes to transform B into C, compared to B into 

A.  In fact, one could imagine a metric that quantifies the amount of movement 

required.  Thus, the “morphing” response described by Lehrer et al. (1998), and 

also observed by Clements and Battista (2001), may be an intuitive version of a 

notion whose mathematization is far beyond the reach of elementary students.   

Another issue with the triad-task approach is pointed out by differences in 

the ways the researchers used the triads.  Lehrer et al. (1998) construed each triad 

task as an indicator of type of reasoning.  So students’ use of different 

types/levels of reasoning on different triads was taken as evidence of differences 

in levels of response.  In contrast, Clements and Battista (2001) used a set of 9 

triad items as an indicator of level of students.  To be classified at a given level, a 

student had to give at least 5 responses at that level.  If a student gave 5 

responses at one level and at least 3 at a higher level, the student was considered 

to be in transition to the next higher level. Of course, because it aggregates 

responses, this approach obscures intertask differences and variability in 

reasoning.  It focuses on determining the predominant level of reasoning that a 

student used on the triad tasks.   

Another difference between the researchers’ approaches is also important.  

In analyzing students’ reasoning on the triad tasks, Lehrer et al. (1998) classified 

student responses solely on the basis of the type of reasoning that students 

employed.  In contrast, in determining students’ van Hiele levels, Clements and 

Battista (2001) attempted to also account for the “quality” of students’ 
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reasoning—each reason for choosing a pair in a triad was assessed to see if it 

correctly discriminated the pair that was chosen from the third item in the triad.  

In this scheme, the van Hiele levels for students were determined based on a 

complicated algorithm that accounted for both type of reasoning and 

discrimination score7,8.   

Cognition Based Assessment (CBA):  Levels, Progressions, Trajectories, and 

Profiles 

 I now describe my work on the Cognition Based Assessment project to 

illustrate the relationship between learning progressions and learning trajectories 

as representations of learning for teaching9.  The description of CBA also illustrates 

that to be useful for teachers, learning progressions must be embedded within an 

interconnected system of LP-based formative assessments, interpretations of 

students' reasoning, and instruction. 

The CBA View of Learning and Instruction 

According to the "psychological constructivist" view of how students learn 

mathematics with understanding, the way students construct, interpret, think 

about, and make sense of mathematical ideas is determined by the elements and 

                                                 
7
 Additional discussions of van Hiele levels measurement issues can be seen in articles by Wilson (1990), 

and Usiskin and Senk (1990). 
8 It is worth noting that quantitative methods for determining levels face the same issues described here for 
qualitative methods.  For instance, using the Saltus method can still leave us with many students who 
cannot be clearly placed in a level (e.g., Draney & Wilson, 2007).  
9 CBA development was partially supported by the National Science Foundation under Grant Nos. ESI 
0099047and 0352898.  Opinions, findings, conclusions, or recommendations, however, are those of the 
author and do not necessarily reflect the views of the National Science Foundation.  
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organization of the relevant mental structures that the students are currently 

using to process their mathematical worlds (e.g., Battista, 2004).  To construct 

new knowledge and make sense of novel situations, students build on and revise 

their current mental structures through the processes of action, reflection, and 

abstraction.  A major component of psychological constructivist research on 

mathematics learning and teaching is its attention to students' construction of 

meaning for specific mathematical topics.  For numerous mathematical topics, 

researchers have found that students' development of conceptualizations and 

reasoning can be characterized in terms of "levels of sophistication" (e.g. Battista 

& Clements, 1996; Battista et al., 1998; Cobb & Wheatley, 1988; Steffe, 1992; van 

Hiele, 1986).  These levels lie at the heart of the CBA conceptual framework for 

understanding and building upon students' learning progress. Selecting/creating 

instructional tasks, adapting instruction to students' needs, and assessing 

students' learning progress require detailed, cognition-based knowledge of how 

students construct meanings for the specific mathematical topics targeted by 

instruction.  

CBA Assessment and Instruction 

To implement mathematics instruction that genuinely and effectively 

supports students' construction of mathematical meaning and competence, 

teachers must not only understand cognition-based research on students' 

learning of particular topics, they must be able to use that knowledge to 

determine, monitor, and guide the development of their own students' 
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reasoning. Cognition-Based Assessment supports these activities by including 

the following five critical components. 

1. Descriptions of core mathematical ideas and reasoning processes that 

form the foundation for students' sense making and understanding of 

elementary school mathematics.   

2. For each core idea, research-based descriptions of levels of sophistication 

in the development of students’ understanding of and reasoning about the 

idea (these are CBA LP).  

3. For each core idea, coherent sets of assessment tasks that enable teachers 

to investigate their students' mathematical thinking and precisely locate 

students' positions in the cognitive terrain for learning that idea. 

4. For each assessment task, a description of what each level of reasoning 

might look like for the task. 

5. For each core idea, descriptions of instructional activities specifically 

targeted for students at various levels to help them move to the next 

higher level.   

These five components are critical for an assessment "system" that focuses 

on understanding and guiding the development of students' mathematical 

reasoning. 

Learning Progressions and Trajectories for Length 

The CBA levels of sophistication, or learning progressions, for a topic (a) 

start with the informal, pre-instructional reasoning typically possessed by 
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students; (b) end with the formal mathematical concepts targeted by instruction; 

and (c) indicate cognitive plateaus reached by students in moving from (a) to (b).  

As an example, Figure 5 outlines the CBA levels of sophistication for the concept 

of length. 

Non-Measurement Reasoning Measurement Reasoning 
 
N0:  Student Compares Objects’ Lengths in Vague 

Visual Ways 
N1:  Student Correctly Compares Whole Objects’ 

Lengths Directly or Indirectly 
N2:  Student Compares Objects’ Lengths by 

Systematically Manipulating or Matching Their 
Parts 
N2.1.  Rearranging Parts to Directly Compare 

Whole Shapes 
N2.2.  One-to-One Matching of Parts 

 
 
 
 
 
 
N3:  Student Compares Objects’ Lengths Using 

Geometric Properties  

 
M0:  Student Uses Numbers in Ways Unconnected to Iteration 

of Unit-Lengths 
M1:  Student Iterates Units Incorrectly 

M1.1:   Iterates Non-Length Units (e.g., Squares, Cubes, 
Dots) and Gets Incorrect Count of Unit-Lengths  

M1.2:  Iterates Unit-Lengths but Gets Incorrect Count 
M2.  Student Correctly Iterates ALL Unit-Lengths One-by-One 

M2.1:  Iterates Non-Length Units (e.g., Squares, Cubes) 
and Gets Correct Count of Unit-Lengths for 
Straight Paths  

M2.2:  Iterates Non-Length Units (e.g., Squares, Cubes) 
To Correctly Count Unit-Lengths for Non-Straight 
Paths 

M2.3:  Explicitly Iterates Unit-Lengths and Gets Correct 
Counts for Straight and Non-Straight Paths 

M3:  Student Correctly Operates on Composites of Visible 
Unit-Lengths 

M4:  Student Correctly and Meaningfully Determines Length 
Using only Numbers—No Visible Units or Iteration 

M5:  Student Understands and Uses Procedures/Formulas for 
Perimeter Formulas for Non-Rectangular Shapes 

Figure 5. CBA Levels for Students' Reasoning about Length (Battista, accepted) 
The set of CBA levels of sophistication for the topic of length are 

graphically depicted in Figure 6.  Also shown, are an ideal hypothetical learning 

trajectory (in red) and a typical actual learning trajectory for students (in green).  

The CBA levels represent the "cognitive terrain" that students must ascend 

during an actual learning trajectory.    
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Figure 6.  Levels of Sophistication Plateaus and Learning Trajectories for CBA Length 

 

A CBA levels-model for a topic describes not only cognitive plateaus, but 

what students can and cannot do, students’ conceptualizations and reasoning, 

cognitive obstacles that obstruct learning progress, and mental processes needed 

both for functioning at a level and for progressing to higher levels.  The levels are 

derived from analysis of both the mathematics to be learned and empirical 

research on students' developing conceptualizations of the topic.  The jumps in 

the ascending plateau structure of a CBA levels-model represent cognitive 

restructurings evidenced by observable increases in sophistication in students' 

reasoning about a topic.  Furthermore, an ideal CBA levels-of-sophistication 

model for a topic provides indications of jumps in sophistication that are small 

enough to fall within students "zones of construction."  That is, a student should 

be able to accomplish the jump from conceptualizing and reasoning at Level N to 
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conceptualizing and reasoning at Level N+1 by making a significant abstraction, 

in a particular context, while working to solve an appropriate problem or set of 

problems10.  For instance (See Figure 7), in Situation A the student has to make a 

cognitive jump that is too great.  In Situation B, the student can progress from 

Level 1 to Level 2 by making cognitive jumps to successive sublevels. 

 
Figure 7 

 

However, because the levels are compilations of empirical observations of 

the thinking of many students, and because students' learning backgrounds and 

mental processing differ, a particular student might not pass through every level 

for a topic; he or she might skip some levels or pass through them so quickly that 

the passage is difficult to detect.  Even with this variability, however, the levels 

still describe the plateaus that students achieve in their development of 

reasoning about a topic. They indicate major landmarks that research has shown 

students often pass through in "constructive itineraries" or learning trajectories 
                                                 
10 The jump in reasoning may apply to restricted contexts, not to all contexts connected with the 
mathematical topic.  That is, the jump may be tightly situated rather than global. 
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for these topics.  Thus, such levels provide an excellent conceptual framework for 

understanding the paths students travel to achieve meaningful learning of a 

topic.   

 

Digging Deeper into the LP/LT Representations 

As hypothetical or average learning trajectories, the trajectories depicted 

in Figure 6 are still simplifications of actual learning trajectories traversed by 

individual students.  To illustrate, I describe one portion of the actual learning 

trajectory of a fifth grader, RC, who was having particular difficulty with the 

concept of length (the trajectories of most other students were much simpler).  

Figure 8 shows RC's learning trajectory for 34 consecutive length items (start 

with the green point, end with the red point).  This actual learning trajectory is 

extremely complex because it contains so much back-and-forth movement 

between levels.  Note that RC's performance is consistent with the variability in 

strategy choice described by Siegler (2007, var). 

 
Figure 8 RC's learning trajectory for 34 consecutive length items 
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Figure 9 provides a better representation of this complicated portion of 

RC's learning trajectory.  This figure starts with RC's levels on initial assessment 

items, moves to his responses during an instructional intervention, and ends 

with his reasoning on reassessment items. 

 

Figure 9.  Another representation of RC's learning progress 
 
But even Figure 9 does not represent RC's learning trajectory with enough 

detail to be maximally useful for instruction.  We need a narrative description of 

(a) what tasks he was attempting, and (b) his level of reasoning on each task.  

Below, this information is provided for the critical period of instructional 

intervention in which RC made progress (see the three starred items in Figure 9).   

During the instructional intervention, RC was given items of the following 

type. 
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Item 23 (see Figure 10).  Suppose I pull the wires so they are 
straight. Which wire would be longer, or would they be the same?  
How do you know?  Predict an answer, then check with inch rods 
(the black/gray sections on the student sheet were each 1 inch in 
length). [Items 20-22 were similar.] 

 

Figure 10 

 On Item 23, RC counted unit lengths as 

shown in Figure 11 and concluded that the top wire 

was longer. He checked his answer by placing inch 

rods on both wires then straightening each set of 

rods to compare the lengths directly. 

 

Figure 11 

Importantly, on Item 23 and several other problems, RC used both M2.3 

and N2.1 reasoning.  On the last problem of this type (Item 24), RC did not check 

his answer by straightening—he seemed sure of his prediction, having 

empirically abstracted that comparing counts of unit lengths predicted the 

results of comparing straightened wires.    

In the reassessment period, RC's thinking regressed when he attempted 

problems that were different from the ones he successfully used M2.3 reasoning 

on.  For instance, on Item 27, at first, RC counted unequal segments, then dots 

(Measurement Reasoning), then imagined straightening paths (Non-

Measurement reasoning), forming contradictory conclusions. 
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Item 27.  Which path is shorter, or are they the same? How do you know? 

 
Figure 12 

RC: [Counts gaps between dots on the bottom path, then on the top path] 1, 2, 3, 4, 5.  1, 2, 3, 4, 5. 
Hmm.  Which one do I think is shorter… [Counts dots on the top path, then on the bottom path] 1, 
2, 3, 4, 5, 6. 1, 2, 3, 4, 5, 6. This one’s [pointing to the bottom path] shorter. … 

I: Okay. Now you got 6 both times?  But you still think this one [pointing to path B] is shorter? 
RC: Yep. 
I: Why is it shorter? 
RC: Because if you pull this one out [pinching the endpoints of A with his fingers]…it’ll be like right 

there [moving his fingers horizontally outwards to just past the endpoints of A]. You can’t pull this 
[pinching the endpoints of B] out anymore.  
So in the face of a seeming conflict between measurement and non-measurement 

reasoning, RC correctly relies on his non-measurement reasoning. 
I: Okay. Could using these rods help you think about this problem [placing inch rods on the paper]? 
RC: Yes.  [Counts the segments on path A.] 1, 2, 3, 4, 5.  … So here and right up here [draws marks at 

the two ends of the straight line of 5 rods he places above path A].  
 [RC counts gaps between dots on path B, then counts 5 inch rods that he places at the top of the 

sheet, between the two marks that he previously made when rearranging path A] 1, 2, 3, 4, 5.  1, 2, 
3, 4, 5. 

I: Okay, now how did you get 5? Is that for the bottom path? For B? 
RC: Yeah.  
I: How did you get B? Show me. 
RC: Because [counting gaps between dots on path B, then on path A] 1, 2, 3, 4, 5.  1, 2, 3, 4, 5.  
I: … Do 5 of these [rods] fit? Like if you put 1 here [placing a rod on the leftmost segment of the 

bottom path], and one here [places a second rod over the second and third gaps between dots from 
the left end of the bottom path]. 

RC: Well, I can make it like a string.  
I: Do you want to use this [hands RC a line of cylindrical inch rods strung on a wire]? 
RC: [Places the first 4 rods over path B and makes a mark at the right end with his pen.] 
I: So what are you thinking? 
RC: This one [pointing at line A] is longer. This one [pointing at path B] is shorter. 
I: Okay. And how did you figure that out?  
RC: I lined these up [pointing at the string of rods]. And there was some more right there [pointing to 

the ‘hill’ on the top path]. …   
In the above episode, the interviewer attempted to get RC to use inch rods and 

measurement M2 reasoning.  However, RC used the inch rods mainly to correctly 
implement the non-measurement N2.1 strategy.   

In the episode below, the interviewer was even more directive in encouraging RC 
to develop correct measurement reasoning. 
Item 32 
I: [See Figure 13a]  If these are wires and I pull them so they are straight, which will be longer, or 

will they be the same?  Is there any way that counting can help you solve this problem? 
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Figure 13a     Figure 13b 

 
RC: Um, yes. 
I: So what would you do? 
RC: Count these [counts the unequal straight portions of the bottom wire, but skips the second vertical 

segment from the left—see Figure 13b] 1, 2, 3, 4, 5, 6. [Counts the unequal straight portions  on 
the top wire] 1, 2, 3, 4, 5.  

RC: But this one [pointing to the top wire] would actually be longer.  Because if you pull it out it’ll 
come right there [pulling his hands out from the endpoints of the top wire to several inches past 
the endpoints]. And if you pull it out, it’ll come right there [pulling his hands out from the 
endpoints of the bottom wire to a few inches past the margins]. 

So RC uses incorrect measurement and non-measurement reasoning on this task. 
Item 34 
I: Okay, could counting rods like this [tracing the unit segment at the left end of the top wire] help at 
all? 

 
Figure 14 

 
RC: I already counted that. [Pointing at each straight portion of the top wire again] 1, 2, 3, 4, 5.  
I: Oh, but I was wondering if, could you count like [counting a few unit segments on the top wire, 

moving from left to right] 1, 2, 3, 4, 5 like that [see Figure 14]? Would that help?… 
RC: I think so. [Counting squares along the top wire; see Figure 15] 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 

13, 14, 15. [Counting squares along the bottom wire] 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15.  
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Figure 15 

 
I: So what do you think? 
RC: Probably the same length. 

Given this narrative data on RC's reasoning, how should we represent his 

current knowledge structure with respect to length in a way that is most helpful 

for instruction?  Rather than using an actual learning trajectory, the CBA 

approach is to construct a "profile" of RC's reasoning, using CBA LP levels of 

sophistication as the conceptual framework.  To see what this profile looks like, 

note that in the context of problems like Item 23, in which the "wires" could be 

straightened using actual inch rods, RC had seen empirically that counting unit 

lengths could predict which was longer.  So, for the last of these problems, he 

adopted the scheme of comparing wires by counting unit lengths in them.  At 

first, he checked his answers by physically straightening a set of inch rods for 

each wire; but he curtailed this physical check on the last problem.  We can 
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conclude that in this context, RC had abstracted a particular reasoning scheme.  

However, for problems in different contexts, where dots or squares were salient, 

RC did not apply his new scheme (but he also did not apply his original M0 

scheme).  Furthermore, throughout the sessions, RC kept returning to the non-

measurement scheme of straightening the paths (N2.1).  So, the profile of RC's 

reasoning in terms of the CBA LP for length is:  (a) he still relies heavily on non-

measurement N2.1 reasoning; (b) he has started to see that measurement 

reasoning M1.2 (counting rods) can help him determine which path is longer; but 

(c) he does not yet understand the critical properties of unit length iteration (no 

gaps, overlaps; uniform lengths—M2.3). 

So, future instruction must help RC (a) connect his iteration of inch rods 

(M2) to straightening paths (N2.1), (b) develop understanding of the properties 

of unit length iteration (M2.3), and (c) generalize a correct unit iteration scheme 

to new contexts (M2.3).  For instance, in problems like Item 32, we would 

encourage RC to use inch rods (matching square size) to check his answers by 

counting and straightening. In response to this type of instruction/intervention, 

many students constructed generally applicable schemes, overcoming the 

fixation on the visually salient squares.  Additionally, we also need to give RC 

tasks that highlight the importance of unit length iteration properties.  For 

instance, we need to give RC problems in which he can determine by 

straightening that counting unequal segments gives incorrect comparisons. 
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It is the condensed, synthesized narrative profile of RC's reasoning, 

described in terms of CBA tasks and levels, that enables us to appropriately 

characterize and diagnose RC's reasoning in a way that is most useful for 

designing instruction that best matches his learning needs.  Knowing the average 

CBA level for these tasks, or having a numerically valued vector or table of CBA 

level numbers, is insufficient for proper diagnosis and remediation.  

Qualitative versus Quantitative Approaches to Developing LP 

Both qualitative and quantitative methods have been used to develop 

learning progressions in mathematics (and science).  Both approaches are equally 

careful and scientific.  Generally, both approaches involve (a) synthesizing, 

integrating, and extending previous research to develop conceptual models of 

the development of student reasoning about a topic (hypothesized learning 

progressions); (b) developing and iteratively testing assessment tasks; (c) 

conducting several rounds of student interviews in support of steps (a) and (b); 

and (d) iteratively refining LP levels.  In qualitative approaches, the cycle of 

iteration, testing, and revising eventually "stabilizes" into final levels, as 

determined by current level descriptions being used to reliably code all data.  In 

contrast, quantitative methods compare the data to statistical model predictions 

(which often are derived using mathematical iteration), and, if needed, make 

adjustments to assessment item sets and levels. 
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Rash Rush to Rasch?  Issues with Quantitative Methods 

 There have been numerous recommendations (sometimes demands) to use 

quantitative techniques to develop learning progressions (e.g., NRC, 2001), with 

a hint that using non-quantitative techniques is less "scientific." For example, 

Stacey & Steinle state that there have been "repeated suggestions made by 

colleagues over the years, which implied that we had been remiss in not using 

this Rasch analysis with our data" (2006, p. 89).  However, using Rasch and other 

IRT approaches raises often-ignored serious issues that I now highlight. 

 First, Rasch/IRT models are "measurement" models.  For instance, Masters 

and Mislevy state that "The probabilistic partial credit model … enables measures 

of achievement to be constructed" [italics added] (1991, p. 16).  Or, Wilson, who 

describes the Saltus model as an example of "psychometric11 models suitable for 

the analysis of data from assessments of cognitive development" (Wilson, 1989, 

p. 276).   However, the whole enterprise of "measuring" in psychological research 

has been criticized, with less than compelling rebuttals (Michell, 2008). 

 Second, many of the assumptions of numerical models do not seem to fit 

our understanding of the process of learning and reasoning in mathematics.  For 

instance, the Saltus model "assumes that each member of group h applies the 

strategies typical of that level consistently across all items" (Wilson, 1989, p. 278).  

Or, "The saltus model assumes that all persons in class c answer all items in a 

                                                 
11 Of course psychometrics is "the measurement of mental capacity, thought processes, aspects of 
personality, etc., esp. by mathematical or statistical analysis of quantitative data" (OED online). 
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manner consistent with membership in that class…. In a Piagetian context, this 

means that a child in, say, the concrete operational stage is always in that stage, 

and answers all items accordingly.  The child does not show formal operational 

development for some items and concrete operational development for others" 

(Draney & Wilson, 2007, p. 121).  But, as has been discussed earlier, the levels in 

learning progressions are not necessarily stages, and often do not form a strong 

levels-hierarchy, making quantitative models problematic:  

"From this research, one can only conclude that there are situations in which 

students appear to reason systematically…When these situations arise, 

evidence about student understanding can be summarized by [numerical] 

learning progression level diagnoses, and educators can draw valid 

inferences about students’ current states of understanding. Unfortunately, 

inconsistent responding across problem contexts poses challenges to 

locating students at a single learning progression level and makes it unclear 

how to interpret students’ diagnostic scores. For example, how should one 

interpret a score of 2.6? A student with this score could be reasoning with a 

mixture of ideas from levels 2 and 3, but the student could also be reasoning 

with a mixture of ideas from levels 1, 2, 3, and 4. Such challenges prompt 

additional studies to support the valid interpretation of learning 

progression diagnoses" (Steedle & Shavelson,  2009, p. 704). 

 Thus, use of Rasch-like models to examine cognitive development, such as 

Wilson's Saltus model or latent class analysis, assumes that students are "at a 
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level" (Briggs…; Draney & Wilson), which returns us to the problem discussed 

earlier about a student being at a level.  Research on learning suggests that quite 

often, the state of student learning is not neatly characterized as "being at a 

specified level," which causes problems for interpretation of model results:  "The 

results from this study suggest that students cannot always be located at a single 

level of the learning progression studied here. Consequently, learning 

progression level diagnoses resulting from item response patterns cannot always 

be interpreted validly" (Steedle & Shavelson, 2009, p. 713).  See also my previous 

discussion of overlapping waves. 

 Third, Rasch/IRT models are based on item difficulty, which does not 

capture critical aspects of the nature of student reasoning, as Stacey and Steinle 

argue:  

Being correct on an item for the wrong reason characterises DCT2 [their 

decimal knowledge assessment]. It is one of the reasons why the DCT2 

data do not fit the Rasch model, because these items break with the 

normal assumption that correctness on an item indicates an advance in 

knowledge (or ability) that will not be ‘lost’ as the student further 

advances. …  A student’s total score on this test might increase or 

decrease depending on the particular misconception and the mix of items 

in the test. This does not fit the property of Rasch scaling stated in 

Swaminathan (1999), that 'the number right score contains all the 

information regarding an examinee’s proficiency level, that is, two 
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examinees who have the same number correct score have the same 

proficiency level' (p. 49). Neither the total score … nor Rasch 

measurement estimates provides a felicitous summary of student 

performance on the decimal comparison items of the DCT2 test" (2006, pp. 

87-88).   

 Indeed, Stacey and Steinle further state that, "Conceptual learning may not 

always be able to be measured on a scale, which is an essential feature of the 

Rasch approach. Instead, students move between categories of interpretations, 

which do not necessarily provide more correct answers even when they are 

based on an improved understanding of fundamental principles" (2006, p. 77).  

Even more, how to place rote performance on items becomes extremely 

problematic in such models.  For instance, in Noelting's hierarchy for 

proportional reasoning, the highest level is the formal operational stage in which 

the "child learns to deal formally with fractions, ratios, and percentages" (Draney 

& Wilson, 123). But using a formal procedure rotely is not a valid indication of 

formal operational reasoning. Stacey and Steinle concluded that there is nothing 

to gain in using the Rasch approach to the case of decimals that they studied and 

many other contexts.  "Learning as revealed by answers to test items is not 

always of the type that is best regarded as ‘measurable’, but instead learning may 

be better mapped across a landscape of conceptions and misconceptions" (2006, 

p. 89).   
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Methods for Determining Levels in Learning Progressions 

The most accurate way to determine levels in learning progressions (once the 

framework has been developed) is administering individual interviews, which 

are then coded by experts, using the LP levels framework.  The difficulty with 

this approach is that it is time consuming.  However, many teachers can learn to 

make such determinations, both with individual interviews and during class 

discussions.  Another way to gather such data is using open-ended questions.  

Again, students' written responses must be coded, and many students do not 

write enough for proper coding.  However, if teachers help students learn how to 

accurately describe their reasoning in writing, written responses can be a 

valuable means for gathering strategy information.  

An alternate, less time-consuming, way to gather data is through multiple 

choice items that have distracters that are generated from interviews and that 

correspond to specific levels (Briggs et al., 2006, have labeled format "Ordered 

Multiple-Choice").  CBA has also experimented with teacher coding sheets—

students describe their reasoning but the teacher or a classroom volunteer 

chooses the options in a multiple-choice-like coding sheet.  However, beyond 

convenience, there are several issues that one must consider when using these 

alternate formats (e.g., Alonzo & Steedle, 2008; Briggs & Alonzo, 2009; Steedle & 
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Shavelson, 2009)12?  For instance, students may not recognize which multiple-

choice description matches the strategy they used to solve the problem. 

When assessments are used summatively, however, taking a numerical 

approach can be both practical and useful. However, if one stores the data as 

numerical levels codes, in order to use the data for individual diagnoses, teachers 

must consult the theoretical model on learning that underlies the levels 

framework. 

In Summary 

When using quantitative methods to develop levels in learning progressions, 

the validity and usefulness of interpretations of results depends on (a) the 

adequacy of the underlying conceptual model of learning, (b) the fit between the 

statistical/mathematical model (including its assumptions) and the conceptual 

model of learning, and (c) the fit between the data and the 

statistical/mathematical model's predictions.  Unfortunately, use of quantitative 

methods often ignores factor (b).  For example, adopting the Saltus model might 

cause one to neglect explicit consideration of the critical issue of what it means to 

be at a level.  Also, although many users of quantitative approaches argue that 

implementing such approaches enables them to test their models, too often, these 

tests are restricted to factor (c).  Researchers in mathematics education need to 

resist external pressures to apply quantitative techniques without deeply 

                                                 
12 Also at issue is whether Rasch techniques are the appropriate model when Ordered Multiple-Choice 
format tasks are employed (Briggs & Alonzo, 2009).  
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questioning their validity, because such adoptions result in the techniques being 

applied in ways that we would call in other contexts instrumental or rote 

procedural.  Instead, researchers must investigate much more carefully the 

conceptual foundations of these techniques (a daunting task, given the 

statistical/mathematical complexity underlying the procedures)13.  

 

Learning Progressions and Curriculum/Assessment Standards 

In the current era of "high standards," testing, and accountability, it seems 

reasonable to base both the content and grade-level locations of standards on 

research-based learning progressions. Indeed, the CCSSM state, "the 

development of these Standards began with research-based learning 

progressions detailing what is known today about how students’ mathematical 

knowledge, skill, and understanding develop over time" (CCSSM, 2010, p. 4).  

However, there are aspects of the CCSSM, in particular for geometry, that seem 

to contradict this claim.  As an example, consider the consistency of the CCSSM 

with the van Hiele levels.  Although modern researchers have expressed several 

misgivings about the nature of the levels, recent reviews agree that "research 

generally supports that the van Hiele levels are useful in describing students' 

geometric concept development" (Clements, 2003, p. 153; Battista, 2007). 

A major landmark in the van Hiele levels is when students develop 

                                                 
13 One way to investigate the conceptual foundations of the approaches is to apply both to the same sets of 
data. 
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property-based reasoning about geometric shapes.  For instance, at van Hiele 

Level 2, a student conceptualizes a rectangle, not as a visual gestalt, but, say, as a 

figure that has the properties:14 "4 right angles," and "opposite sides parallel and 

equal."  The CCSSM rightly recognize the critical importance of Level 2 

reasoning.  However, they specify that the development of this reasoning occurs 

at grades 4 and 5, which ignores van Hiele-based research that strongly suggests 

that, for most students, this reasoning is very difficult to achieve before ninth 

grade (Battista, manuscript in preparation).  Indeed, the percent of students at or 

above Level 2, before and after high school geometry, has been reported as 31% 

before and 72% after by Usiskin (1982), and 51% before and 76% after by 

Frykholm (1994).  Even after high quality instruction specifically targeting 

increasing students' van Hiele levels, research shows that the highest percent of 

students in grades 5-7 that achieved Level 2 reasoning or above was about 58%.  

So existing research casts serious doubt on the achievability of the CCSSM 

geometry standards for most students.   

It should be noted, however, that this research often uses different kinds 

of level indicators.  For instance, in the Usiskin assessment of van Hiele levels 

(which was also used by Frykholm), property assessment tasks involved 

diagonals of quadrilaterals, which may have been studied less as opposed to 

basic defining, and more familiar, properties of classes of quadrilaterals.  

                                                 
14
 At Level 2, students do not understand minimal definitions.  Instead, definitions tend to be lists of all 

the visually salient properties that students know (stated in terms of formal geometric concepts). 
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Furthermore, in Battista's study of fifth grade students working in his Shape 

Makers curriculum, if Level 2 was assessed by the triad tasks described above 

(which should be considered "transfer" tasks), 58% achieved Level 2 or higher on 

the posttest.  But if Level 2 was assessed by students' knowledge of properties of 

shapes that had been explicitly explored in the curriculum, 83% were judged as 

achieving Level 2 or higher.  However, Battista's research also suggests that, in 

general, junior high students' level of reasoning on these same familiar 

quadrilaterals is quite low (only 22% achieving Level 2). 

This example illustrates several issues: 

1.  Standards too often are not sufficiently based on research.  For 

example, given the research cited above, expecting ALL fourth or fifth graders to 

achieve Level 2 reasoning seems unreasonable. 

2.  Integrating various research studies into coherent learning 

progressions can be difficult because of variability in methods and assessments.  

For instance, assessments of van Hiele Level 2 have variably focused on 

knowledge of properties of familiar shapes, use of properties in transfer tasks, 

and knowledge of derived/secondary, as opposed to defining, properties 

(Battista, in preparation).   

3.  Although it is sometimes possible for students to make great progress 

in LP when using LP-based curricula and being taught by excellent teachers, this 

situation is not the norm.  Basing standards on what happens in the best 

situations seems unwise.   
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4.  For learning progressions to be useful in standards setting, the goals of 

the standards must closely match the knowledge acquisition described in the 

progressions.  For instance, exactly which properties are targeted by CCSSM—

familiar defining properties, or unfamiliar derived properties? 

5.  Should standards set benchmarks that all or most (say 80%) students 

can achieve, or should they target benchmarks that only, say, 50% (or 30%) of 

students might reasonably be expected to achieve?  This is a critically important 

issue that may inadvertently place equity concerns in opposition to concerns 

about ensuring that sufficient numbers of students enter advanced mathematics 

and science careers in the US.  

Teachers' Use of and Need for Learning Progressions 

Professional recommendations and research advocate that mathematics 

teachers possess extensive knowledge of students' mathematical thinking (An, 

Kulm, Wu, 2004; Carpenter & Fennema, 1991; Clarke & Clarke, 2004; Fennema & 

Franke, 1992; Saxe et al., 2001; Schifter, 1998; Tirosh, 2000).  Teachers must "have 

an understanding of the general stages that students pass through in acquiring 

the concepts and procedures in the domain, the processes that are used to solve 

different problems at each stage, and the nature of the knowledge that underlies 

these processes" (Carpenter & Fennema, 1991, p. 11).  Research shows that such 

knowledge can improve students' learning (Fennema & Franke, 1992; Fennema et 

al., 1996).  Indeed, "There is a good deal of evidence that learning is enhanced 

when teachers pay attention to the knowledge and beliefs that learners bring to a 
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learning task, use this knowledge as a starting point for new instruction, and 

monitor students' changing conceptions as instruction proceeds" (Bransford et 

al., 1999, p. 11).  Thus, there is a great need to study teachers' learning, 

understanding, and use of learning progressions in mathematics. 

 Related to the study of teachers' use of learning progressions, there is 

much research investigating the nature of the knowledge teachers have and need 

to teach mathematics, with the scope of this work described by the "egg" domain-

map of Hill, Ball, and Schilling (2008, p. 377) (see Figure 16).  Battista's Cognition 

Based Assessment, Phase 2 (CBA2) research project is focusing on one 

component in this domain, “Knowledge of Content and Students” (KCS), which 

Hill et al. define as, “Content knowledge intertwined with knowledge of how 

students think about, know, or learn that content” (p. 378). 

 
Figure 16 

 The Hill/Ball/Schilling framework puts mathematical knowledge at the 

forefront in describing mathematics-related teacher knowledge.  Consistent with 

this content-primary perspective, Park and Oliver state, “it is transformation of 

subject matter knowledge for the purpose of teaching that is at the heart of the 

definition of PCK” (2008, p. 264). 



                                                                                                      TME, vol8, no.3, p .551 

 

 In contrast, the CBA2 approach to studying KCS focuses on teachers’ 

“cognitive/psychological knowledge” of students’ mathematical thinking, and a 

major component of this research is connected to teachers' understanding and 

use of learning progressions. Although cognitive/psychological knowledge and 

mathematical knowledge are distinct, they are intertwined with each other and 

with knowledge of teaching and curricula.  See Figure 17.  

 
Figure 17. Intertwined Teacher Knowledge [Mathematics gray, Psychological white, Teaching blue, 
Curricula red] 
  
In the CBA2 project, we are conducting case studies that qualitatively describe 

(a) the nature of teachers’ conceptualizations of students’ mathematical thinking, 

(b) the processes by which teachers come to understand research-based 

knowledge on the development of students’ mathematical thinking (as 

represented in CBA LP), and (c) how teachers use this knowledge (including 

CBA assessments and instructional guidance) in assessment and teaching.   

One Teacher's Use of CBA 

Before describing several issues in teachers' understanding and use of 

learning progressions, it is worthwhile to note the power that many teachers 

obtain with CBA's linked  LP, assessments, and instructional guidance.  So I 
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quickly summarize a case study of one teacher in the CBA project who used 

several extremely detailed CBA learning progressions in his teaching and 

assessment.  As Teacher 19 learned and used CBA ideas and materials, he made 

major progress in:   

 understanding students’ learning progressions 

 understanding assessment tasks 

 deciding what’s most important in the curriculum 

 diagnosing and remediating students’ learning difficulties 

 deciding on the effectiveness of instruction—are there problems in the 

teaching, or are students not quite ready to learn a particular concept 

 improving informal assessments by helping to him ask better questions 

and more quickly understanding what students say 

 understanding and building on students' reasoning and procedures as 

they occurred in frequent class discussion 

 helping parents understand their children’s mathematics program and 

progress through it. 

In much of T19’s discussion of CBA, he described how important it was 

for him to be able to say to himself, “Well, they’re here and this is where I need 

to take them,” a major affordance of CBA LP.  This is practical, decision-making 

information needed for everyday mathematics teaching. Finally, T19 was 

impressed by the great progress in learning his students made (especially those 

who were struggling), which he attributed to his learning about and use of CBA 
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materials.  As an especially important example for him, he described how one of 

his struggling students started the school year at a kindergarten level in 

mathematics and by mid-year was functioning at a third grade level. 

Teachers' Understanding of Students' Reasoning about Length: The Need for 

LP 

 To illustrate why research-based LP are so important for teachers, I 

describe one example of teachers' understanding and misunderstanding of 

students’ reasoning about length measurement, a topic that almost all elementary 

students have difficulty with.  Examination of this example illustrates the kind of 

content that is needed in LP written for teachers.   

Teachers were shown the work of Student X and asked to analyze it (see 

Figure 18). 

 
Student Problem 
Which sidewalk from home to school is longer, the 

dotted one, the gray one, or are they the same?   
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Teacher Task 
Consider Student X who used the strategy below on 

the Student Problem (above). 

Student X: [Counts squares along the gray path 1-14, 

then along the dotted path 1-15.]  The gray 

path is shorter because it has less squares.  

(a) Is Student X’s reasoning correct or incorrect? If it 

is incorrect, what is wrong with it?  

(b) What would you do instructionally [to help 

Student X]?  

 
 

Figure 18.  Student problem and teacher task 
 
 To illustrate the difficulties that teachers had with analyzing Student X's 

reasoning, I describe two examples of how teachers conceptualized (a) X’s 

reasoning, and (b) subsequent instruction for X.   

Teacher1:  [X’s reasoning] is incorrect because … she is counting the boxes instead of the side length for 

the unit.  Like on this first box [in the gray path; see Figure 19] she is just counting it as one unit even 

though there are two sides there that should be measured.  

Figure 19.   
 
Teacher3:  [X’s reasoning] is incorrect.  She is not recognizing that she is counting two segments as one 

[pointing to the first turn in the gray path] because she is looking at area.  So she is looking at the 
area of the squares, not counting the sides or segments.  

 
 Although both teachers understood that X’s reasoning is incorrect, several 

features of the teachers’ conceptualizations of X’s reasoning are problematic.  

First, there was no evidence in any of X’s work that she was mistaking area for 

length.  Instead, X implemented the procedure of “placing” squares along a path, 

without properly relating this procedure to unit-length iteration.  X did not 

understand the concept of unit-length iteration or the procedure for 
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implementing it.  Conceptualizing X’s error as looking at area mis-conceptualizes 

X’s reasoning psychologically.  One of the key features of LP is that they provide 

psychologically sound, and pedagogically useful, interpretations of students' 

reasoning. 

 The second important feature is the statement by both teachers that X is 

counting 2 length units instead of 1.  Thus, both teachers misinterpret X's 

conceptualization and error.  X is iterating squares, not different-sized linear units.   

Both teachers focus on the mathematical consequences of X’s errant strategy, 

rather than its psychological root. 

To further examine this misinterpretation and its consequences, we look at 

how the teachers’ conceptualizations of X’s reasoning affects their view of the 

instruction X needs. 

 
Int: What would you do instructionally to move X to this next type of reasoning [correct iteration]?  
T1:  Well I think she needs to understand what the unit is, and that the units have to be … consistent as she 

is measuring. So she would need to see that this unit that she labeled as one [draws Figure 20A] is 
more than this unit [draws Figure 20B].  

Figure 20.   
 So like you could show her that this unit and this unit are not the same cause if you straighten it out 

this would be two units, and this would just be the one unit.  
T3:   We used inch rods cut out of straws … and physically put those along [the paths] … And that helped 

them to recognize that they weren’t counting the sides when they were using squares. They were 

missing something. 

  
T1 has a valid long-term instructional goal—X must learn to iterate a constant 

unit-length.  However, because T1 misinterprets X’s conceptualization, she 

chooses an inappropriate short-term/immediate instructional goal. Telling X that 
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she counted 2 units instead of 1 would confuse X.  Students who are 

conceptualizing length measurement as iterating squares along a path must first 

see that a totally different kind of unit—linear—must be iterated. This is 

surprisingly difficult for many elementary school students.  Understanding the 

properties of unit-length iteration—equal-length units, no gaps/overlaps—

comes after understanding the nature of the iterated unit.  LP provide not only 

long-term instructional goals but the kind short-term/immediate instructional 

goals that are critical for guiding and supporting students' moment-to-moment 

learning.    

 In summary, T1 understands X’s reasoning mathematically but not 

psychologically.  It seems that focusing on the mathematical consequences of counting 

squares, while critical to determining the validity of X’s reasoning, caused T1 to 

incorrectly conceptualize the nature of X’s reasoning.  Consequently, although T1’s 

instructional goal was worthwhile, her plan does not adequately build on X’s 

current reasoning.  Interestingly, although T3’s conceptualization of X’s 

reasoning was also problematic, probably because she had previously been 

interactively guided in the appropriate use of length activities by CBA staff, she 

was still able to appropriately choose which CBA instructional activity was 

appropriate for X.  Nevertheless, to appropriately build on X's current reasoning, 

teachers must fully and psychologically understand the nature of her reasoning.  

It is insufficient to merely know that X is getting incorrect counts of units, or 

even where the incorrect counts occur.  Teachers must understand that X is using 
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the wrong kind of measurement unit. And it is the CBA LP on length that 

provides the appropriate framework for this understanding. 

To fully understand and respond to misconceptions like those of X and 

other students, teachers need research-based learning progressions that describe 

the range of conceptualizations that students possess about length and length 

measurement.  Knowledge of such progressions not only helps teachers 

understand students' thinking psychologically, it expands a teacher's focus 

beyond mathematical, to pedagogically critical psychological, interpretations of 

students' mathematical thinking.  And for LP to be maximally useful for teachers 

in instruction, LP must be linked to (a) appropriate assessment tasks that reveal 

students' reasoning, and (b) instructional tasks specifically designed to address 

students' learning needs at various locations in the LP. 

Balance:  How Much Detail Is Needed in LP for Teachers? 

In discussing the use of learning progressions for formative assessment by 

teachers, Popham states, "It's important to stress that there must always be a 

balance between (1) the level of analytic sophistication that goes into a learning 

progression and (2) the likelihood of the learning progression being used by 

teachers and students" (2008, p. 29).  So a central issue in describing learning 

progressions written for teachers is how much detail teachers can handle in the 

progression descriptions.   
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Although space does not permit me to provide a full analysis of this issue 

in the CBA2 project, it is true that almost all of the teachers who participated in 

the CBA2 project for at least a year did learn to use the great amount of detail in 

CBA LP.  However, a comment made by many teachers who participated in the 

CBA2 project is that most/many teachers would have difficulty learning the 

great amount of detail in the CBA materials.  Consequently, some of these 

teachers suggested giving teachers simplified versions of the CBA materials.  The 

following episode illustrates that this approach, if it oversimplifies a LP, can lead 

to difficulties. 

Misinterpretation of "Simplified" Level Descriptions 

 One idea that we experimented with in the CBA2 project is providing 

"simplified" descriptions of CBA levels to teachers.  As an example, in the regular 

CBA materials, Level M1 for length was described and numerous examples of 

student work were provided.  In contrast, some teachers were given the very 

abbreviated description of Level M1 below.  Notice that in this abbreviated 

description, the terms "gaps" and "overlaps" were not elaborated or illustrated.  It 

was assumed that teachers would understand the terms, given the context. 

Abbreviated Version  
"CBA Length Level M1.  Incorrect Unit Iteration 
Students do not fully understand the process of unit-length iteration; their iterations contain gaps, 
overlaps, or different length units, and are incorrect."   
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How several teachers misinterpreted the terms "gaps" and "overlaps" is 

revealing.  T1715 made the following comment in deciding which CBA level 

Student X evidenced on the home-to-school problem. 

T17:  Well what do you mean gap? An opening that is not counted.  … [X] didn’t count it [pointing at 
the "2" on the dotted path, See Figure 21a]. …  So it has to be a gap. 

 
Figure 21a     Figure 21b 

 

In this case, T17 interpreted the term "gap" as a mismatch in the 

correspondence between the number sequence "1, 2, 3" and the sequence of 4 

unit-lengths that should have been iterated along the portion of the dotted path 

shown above.  If X were counting unit lengths, she should have counted "1, 2, 3, 

4" for this portion of the path.  But she omitted the count for the third segment; 

so there was a "gap" in her counting sequence (see Figure 21b).  T17's 

interpretation of gap was very different from the meaning of gap that the CBA 

author intended (see CBA document excerpt below).  And, like T3 and T1 above, 

T17's interpretation of gap seemed to contribute to her mis-interpretation of X's 

conceptual difficulty. 

"M1.2:  Iterates Unit-Lengths but Gets Incorrect Count   

Students iterate unit-lengths rather than shapes.  So when iterating unit-lengths, they draw line 

segments, not squares, rectangles, or rods.  However, because they do not understand the properties of 

                                                 
15
 T1 and T3 had read the full CBA document on length; T17 had not read any CBA length material other than the 

abbreviated desriptions like that shown above. 
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unit-length iteration, their iterations contain gaps, overlaps, or different length units (see below)" 

(Battista, in press). 

 
gaps  

overlaps  

different length units  

 
The issue of determining how teachers can use learning progressions in 

their teaching and formative assessment, and how learning progressions should 

be described to facilitate this use, is central to supporting mathematics teaching 

that develops deep conceptual knowledge and problem-solving proficiency in 

students. 
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Appendix 1:  The van Hiele Levels 
 
 Below I describe the van Hiele levels in a way that is consistent with 
Clements' and Battista's (1992) analysis and synthesis of research on the levels.  
My recent elaborations and extensions of the levels are described in Battista 
(2007, 2009). 

Level 0  Pre–recognition 
 At the pre-recognition level16, children perceive geometric shapes, but 

perhaps because of a deficiency in perceptual activity, may attend to only a 
subset of a shape's visual characteristics.  They are unable to identify many 
common shapes.  They may distinguish between figures that are curvilinear and 
those that are rectilinear but not among figures in the same class.  That is, they 
may differentiate between a square and a circle, but not between a square and a 
triangle.  

Level 1  Visual 
Students identify and operate on geometric shapes according to their 

appearance.  They recognize figures as visual gestalts.  In identifying figures, 
they often use visual prototypes, saying that a given figure is a rectangle, for 
instance, because "it looks like a door."  They do not, however, attend to 
geometric properties or traits that are characteristic of the class of figures 
represented.  That is, although figures are determined by their properties, 
students at this level are not conscious of the properties.  For example, they 
might distinguish one figure from another without being able to name a single 
property of either figure, or they might judge that two figures are congruent 
because they look the same; "There is no why, one just sees it" (van Hiele, 1986, p. 
83).  By the statement "This figure is a rhombus," the student means "This figure 
has the shape I have learned to call 'rhombus'"  (van Hiele, 1986, p. 109).   

Level 2  Descriptive/analytic 
Students recognize and can characterize shapes by their properties.  For 

instance, a student might think of a rhombus as a figure that has four equal sides; 
so the term "rhombus" refers to a collection of “properties that he has learned to 
call 'rhombus'" (van Hiele, 1986, p. 109).  Students see figures as wholes, but now 
as collections of properties rather than as visual gestalts; the image begins to fall 
into the background.  The objects about which students reason are classes of 
figures, thought about in terms of the sets of properties that the students 
associate with those figures.  Students experientially discover that some 
combinations of properties signal a class of figures and some do not.  Students at 
this level do not see relationships between classes of figures (e.g., a student might 
contend that figure is not a rectangle because it is a square).   

                                                 
16 Not described by van Hiele, but argued for by Clements and Battista (1992). 
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Level 3  Abstract/relational 
Students can form abstract definitions, distinguish between necessary and 

sufficient sets of conditions for a concept, and understand and sometimes even 
provide logical arguments in the geometric domain.  They can classify figures 
hierarchically (by ordering their properties) and give informal arguments to 
justify their classifications (e.g., a square is identified as a rhombus because it can 
be thought of as a "rhombus with some extra properties"). Thus, for instance, the 
"properties are ordered, and the person will know that the figure is a rhombus if 
it satisfies the definition of quadrangle with four equal sides" [van Hiele, 1986], 
p. 109).  

As students discover properties of various shapes, they feel a need to 
organize the properties.  One property can signal other properties, so definitions 
can be seen not merely as descriptions but as a way of logically organizing 
properties.  It becomes clear why, for example, a square is a rectangle.  The 
students still, however, do not grasp that logical deduction is the method for 
establishing geometric truths. 

Level 4  Formal deduction 
Students establish theorems within an axiomatic system.  They recognize 

the difference among undefined terms, definitions, axioms, and theorems.  They 
are capable of constructing original proofs.  That is, they can produce a sequence 
of statements that logically justifies a conclusion as a consequence of the "givens."  

Level 5  Rigor/metamathematical 
Students reason formally about mathematical systems. They can analyze 

and compare axiom sets.    
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Learning mathematics is a complex and multidimensional if not an inherently 

indeterminate process. A necessary goal of research on learning is to simplify 

this complexity without sacrificing the ability of research to inform teaching. This 

goal has been addressed in part by researchers focusing on how to represent 

research on learning for teachers and on how to support teachers to use and 

generate models of students’ learning (e.g., Franke, Carpenter, Levi, & Fennema, 

et al., 2001; Hammer & Schifter, 2001; Simon & Tzur, 2004; Steffe, 2004). Recently, 

the idea of learning trajectories has gained attention as a way to focus research on 

learning in service of instruction and assessment. It is influencing curriculum 

standards, assessment design, and funding priorities. In this paper – which grew 

out of my response to Michael Battista’s keynote address on learning trajectories 

at the last annual meeting of the North American chapter of Psychology in 

Mathematics Education (Battista, 2010) – I examine the idea of learning 

trajectories and speculate on its usefulness in mathematics education. 

                                                 
1 Thanks to Jennifer Knudsen of SRI International for invaluable feedback. 
2 empson@mail.utexas.edu  
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The National Research Council (2007) described learning progressions as 

“successively more sophisticated ways of thinking about a topic that can follow 

one another as children learn about and investigate a topic” (p. 214). The recently 

released Common Core Standards in Mathematics (CCSM) (2010), noted that the 

“development of these Standards began with research-based learning 

progressions detailing what is known today about how students’ mathematical 

knowledge, skill, and understanding develop over time” (p. 4). The idea of 

learning trajectories has a great deal of intuitive appeal and may offer a way to 

bring coherence to how we think about learning and the curriculum. As research 

on learning trajectories proliferates and is brought to bear on some of the most 

vexing problems in teaching and learning mathematics, however, it is worth 

considering what it foregrounds and what it may obscure. 

In this paper, I briefly describe the origins of learning trajectories in 

mathematics education and then consider three points for us to keep in mind as 

we study learning and apply our findings to serve the purposes of 

understanding and addressing the problems of practice.  

1) The idea that learning progresses is not especially new. What do we know 

about learning mathematics and how does it fit with the idea of a 

trajectory? 

2) Learning trajectories focus on specific domains of conceptual development 

and may be limited in characterizing other valued aspects of the 

mathematics curriculum. 
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3) Learning in school is function of teaching. Too tight a focus on learning 

trajectories may lead us to oversimplify or ignore critical drivers of 

learning associated with teaching. 

My goal in making these points is not to state the obvious but to foreground the 

question of what the idea of learning trajectories affords us education researchers 

and practitioners, and what it might obscure. 

Origins of Learning Trajectories 

The term learning trajectory appears to have been first used in mathematics 

education in Marty Simon’s oft-cited 1995 paper, “Reconstructing Mathematics 

Pedagogy from a Constructivist Perspective.” As I reread this paper, the most 

important things I noticed – besides the fact that that the actual words “learning 

trajectory” did not appear until 21 pages into the article – were that a) a learning 

trajectory did not exist for Simon in the absence of an agent and a purpose and b) 

it was introduced in the context of a theory of teaching. According to Simon, a 

hypothetical learning trajectory is a teaching construct – something a teacher 

conjectures as a way to make sense of where students are and where the teacher 

might take them. It is hypothetical because an “actual learning trajectory is not 

knowable in advance” (p. 135). Teachers are agents who hypothesize learning 

trajectories for the purposes of planning tasks that connect students’ current 

thinking activity with possible future thinking activity. A teacher might ask, 

“What does this student understand? What could this student learn next and 
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how could they learn it?” and create a hypothetical learning trajectory as a way 

to prospectively grapple with these questions.  

The idea of learning progressions appears to have emerged first in the context 

of science education and is now virtually synonymous with learning trajectory. 

In a special issue of the Canadian Journal of Science, Mathematics, and Technology 

Education devoted to the topic of “long-term studies” of learning in science 

education, Shapiro (2004) traced the notion of learning progression in part to 

Rosalind Driver in her 1989 article, "Students' Conceptions and the Learning of 

Science." In it, Driver drew attention to the increasing number of studies of the 

development of children’s thinking in specific science domains that documented 

patterns in what she called conceptual progressions and sequences of conceptual 

progressions, which she termed conceptual trajectories  (Shapiro, 2004, p. 3). In 

contrast to Simon, the focus in that special issue of CJSMT was on describing 

children’s learning as it had actually occurred under a given set of conditions, 

rather than on a thought experiment about how it could occur. Neither of these 

senses of learning trajectory – as a teacher-conjectured possible progression or a 

researcher-documented progression of actual learners– predominates in current 

conceptions of the notion.  

Since 2004, there has been a groundswell of research that explicitly identifies 

itself as concerned with learning trajectories or progressions, as reflected in 

conferences and special journal issues (Clements & Sarama, 2004; Duncan & 

Hmelo-Silver, 2009), reports (Catley, Lehrer, & Reiser, 2005; Cocoran, Mosher, & 
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Rogat, 2009; Daro, Mosher, & Cocoran, 2011), and books (Clements & Sarama, 

2009). A report by the Center for Continuous Improvement in Instruction (Daro, 

et al., 2011) treats learning trajectories as interchangeable with learning 

progressions, reflecting the general trend. 

Because the metaphor of trajectory implies a sequenced path, researchers who 

focus explicitly on learning trajectories have taken pains to draw attention to 

their multidimensional character. For example, Clements and Sarama (2004) 

defined learning trajectories as complex constructions that include “the 

simultaneous consideration of mathematics goals, models of children’s thinking, 

teachers’ and researchers’ models of children’s thinking, sequences of 

instructional tasks, and the interaction of these at a detailed level of analysis of 

processes” (p. 87). Confrey and colleagues (2009) defined them as “researcher-

conjectured, empirically-supported description[s] of the ordered network of 

experiences a student encounters through instruction … in order to move from 

informal ideas … towards increasingly complex concepts over time” (p. 2).  

Three Points to Keep in Mind 

Learning Trajectories are Not Really New – So What does the Metaphor Buy Us? 

The idea that students’ learning progresses in some way as a result of 

instruction is at the very heart of the enterprise of mathematics education. 

Researchers have been studying students’ mathematics thinking and what it 

could mean for that thinking to progress in identifiable ways since long before 

the term learning trajectories was introduced. Chains of inquiry focused on 
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children’s mathematics learning – we could call these research trajectories – have 

stretched over decades. For example, Glenadine Gibbs’s (1956) study of students’ 

thinking about subtraction word problems helped to pave the way for later 

researchers such as Carpenter and Moser (1984) to create frameworks portraying 

the development of children’s thinking about addition and subtraction, and for 

Carpenter, Fennema, and Peterson to study how teachers used this information 

about children’s thinking to teach for understanding (Carpenter, et al., 1989; 

Carpenter, et al., 1999). Les Steffe and John Olive’s recent (2010) book on 

Children’s Fractional Knowledge detailing the evolution of children’s conceptual 

schemes for operating on fractions synthesized two decades’ worth of prior 

research, as did Karen Fuson’s findings on the development children’s multidigit 

operations (1992). None this work mentioned learning trajectories as such, but 

each focused on elucidating the development of children’s understanding and 

identifying major conceptual advances.  

Why then talk about learning trajectories now? The metaphor emphasizes the 

orderly development of children’s thinking and draws our attention to learning 

targets and possible milestones along the way.  

To what extent is this kind of assumption about learning warranted? That is, 

in what sense does children’s mathematics learning follow predictable 

trajectories? Some domains appear to readily lend themselves to analysis in 

terms of a pathway, such as the development of young children’s counting skills 

(Gelman & Gallistel, 1986). The progression of children’s strategies for addition 
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and subtraction story problems from direct modeling, to counting, to the use of 

derived and recalled facts also has been well established (Carpenter et al., 1999; 

Carpenter, 1985; Fuson, 1992). Yet even given such a robust progression in a 

basic content domain, how and when – and sometimes whether – children come 

to understand and use these strategies depends on a variety of factors differing 

from classroom to classroom and from child to child. Trying to represent 

research on learning in terms of trajectories quickly gets complicated, even for as 

fundamental a concept as rational number (e.g., Figure 2 “Learning Trajectories 

Map for Rational Number Reasoning,” in Confrey, Maloney, Nguyen, et al., 

2009) or measurement (Figure 1).  

  

Figure 1. Battista’s (2010) representation of one student’s actual learning path in 
measurement 
 

Other research suggests that the development of much of children’s thinking 

is more piece-meal and context-dependent than representations of learning 

trajectories might lead us believe (DiSessa, 2000; Greeno & MMAP, 1998). For 
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example, in a cross-sectional, cross-cultural study, Liu and Tang (2004) found 

differences in progressions of students’ conceptions of energy in Canada and 

China over several years of schooling, which they attributed to differences in 

curriculum and instruction in each country. The topic of rational numbers in 

mathematics has an ample research base that illustrates, in some cases 

meticulously, how children’s thinking about fractions could progress (Behr, 

Harel, Post, & Lesh, 1992; Davydov & Tsvetkovich, 1991; Empson & Levi, 2011; 

Hackenberg, 2010; Steffe & Olive, 2010; Streefland, 1991; Tzur, 1999). Taken 

collectively this research does not appear to converge on a single trajectory of 

learning.  

Why might this be? In practice, learning cannot be separated from tasks and 

the instructional context; the “selection of learning tasks and the hypotheses 

about the process of student learning are interdependent” (Simon & Tzur, 2004, 

p. 93). What children learn is sensitive to the context in which they learn it – a 

context that is constituted by many factors, including most immediately the 

types of instructional tasks and how teachers organize students’ engagement 

with these tasks.  

For example, in classrooms where part-whole tasks (Fig. 2a) dominate 

instruction on fractions, children learn to think about fractions in terms of 

counting parts rather than as magnitudes (Thompson & Saldanha, 2003). 

Students are likely to think about 5/8 as “5 out of 8” and of 8/5 as an impossible 

fraction. In classrooms where teachers have students solve and discuss equal 
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sharing tasks (Fig. 2b), children learn to think about fractions in terms of 

relationships between quantities and later in terms of a multiplicative 

relationship between numerator and denominator (Empson, Junk, Dominguez, & 

Turner, 2005; Empson & Levi, 2011). They are more likely to think of 5/8, for 

example, as 5 groups each of size 1/8, instead of “5 out of 8.” In classrooms 

where teachers engage students in reasoning about multiplicative comparisons 

of measures (Fig. 2c), students learn to think about fractions as a ratio of 

measures (Brousseau, Brousseau, & Warfield, 2004; Davydov &Tsvetkovich, 

1991; Steffe & Olive, 2010). Children learn to interpret 5/8 as a multiplicative 

comparison between 5 and 8. Both of these latter types of tasks – equal sharing 

and measuring – coupled with norms for engaging in tasks that put a premium 

on intellectual effort and agency (Hiebert & Grouws, 2007) – appear to constitute 

productive approaches to learning fractions. 

 

How much pizza is left on the plate? 
 

 
(a) 
 
8 children want to share 10 candy bars so that each one gets 
the same amount. How many candy bars can each child 
have? 
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(b) 
 
How long is B compared to A? A compared to B? 

 
(c) 
 

Figure 2. Examples of types of tasks to teach fractions: a) part-whole, b) equal 
sharing (with sample solution), and c) measurement 
 

Within the context of documenting regularities and patterns in the 

development of children’s thinking, however, it’s important to recognize 

individual children’s ways of reasoning and the significant contributions this 

reasoning could make to a group’s learning. To return to my research on equal 

sharing, for example, we found that students frequently produced strategies for 

solving problems that were, from the perspective of a trajectory, “out of 

sequence” and presented rich learning opportunities for other students (e.g., 

Turner et al., in press). There was a progression in what students learned but 

“deviations” were consistent and numerous, and, I am suggesting, fruitful – not 

anomalies to be ignored but significant occurrences that teachers could use to 

advance everyone’s learning.  

Consider first a simple progression of strategies for equal sharing (Empson & 
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Levi, 2011). To figure out how much one person got if 8 people were sharing 6 

burritos equally, a child using a basic strategy might draw all 6 burritos, decide 

to split each burrito into 8 pieces, and give each person 1 piece from each burrito 

for a total of 6 pieces. A more sophisticated strategy would involve imagining 

that each burrito could be split into 8 pieces and mentally combining those pieces 

to conclude that one person’s share consisted of 6 groups of 1/8 burrito or 6/8 

burrito. Ultimately, children come to the understanding that the problem can be 

represented by 6÷8, which is the same as 6/8.  

Within this simplified progression, there are several other ways to solve the 

problem that do not fall into a sequence and do not appear as an inevitable 

consequence of development. These other strategies were a function of specific 

quantities in a problem as well as what tools children were using and children’s 

prior knowledge. For example, a fifth grader solved the problem by reducing it 

to an equivalent ratio involving 1 1/2 burritos and 2 children, which she easily 

solved by finding half of 1 and half of 1/2 and combining the amounts (Fig. 3). 

Another fifth grader used a similar strategy, but used cubes to represent each 

quantity (8 total cubes for sharers, 6 total cubes for burritos), specifically 

highlighting the ratio character of the strategy. These strategies were 

appropriated by several children who saw them as more efficient and they 

provided an opportunity for the teachers to address concepts of fraction and 

ratio equivalence. 
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Figure 3. A solution for 6÷8 involving the equivalent ratios 3 for 4 and 1 1/2 for 2 
 

As students’ understanding develops and diversifies, they become more 

likely to see and make connections between their ways of thinking and different 

ways of thinking expressed by their fellow students. Making these connections 

enriches learners’ understanding and cultivates their ability to recognize and 

pursue new avenues of reasoning independently of the teacher’s direction and to 

monitor their thinking. The balance in instruction between supporting students’ 

agentic initiative and aiming to instill specific conceptions can be difficult to 

manage. Indeed, some researchers have cautioned that representing learning as 

progressive sequences of content understanding could lead teachers to direct 

students through the sequences at the expense of allowing students to “express, 

test, and revise their own ways of thinking” (Lesh & Yoon, 2004, p. 206; Sikorski 

& Hammer, 2010). At the same time, other research suggests that, at the right 

level of abstraction, representations of the progressive development of students’ 

understanding can enhance teachers’ ability to respond to students’ thinking in 

ways that open up or are generative of new possibilities (e.g., Franke et al. 2001). 
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In either case, it’s important to recognize that research on learning in specific 

mathematics domains has a long history that, while concerned with progress, 

may not fit easily into the idea of a single trajectory.  

Learning Trajectories Involve Specific Domains of Conceptual Development – So Their 

Reach May be Limited 

Researchers have made the study of mathematics learning more tractable 

by focusing in particular on conceptual development in specific content domains, 

represented by sets of well-defined, interrelated tasks. Steffe and Olive’s (2010) 

research on the development of fraction concepts and Clements and Sarama’s 

(2009) research on children’s understanding of measurement are examples of 

such an approach. This work, like a great deal of the research in mathematics 

education including my own, is informed by a Piagetian-like view of learning, if 

not in its emphasis on levels, then certainly in its emphasis on a conceptual 

trajectory, in which less sophisticated concepts give way to more sophisticated 

concepts. Because this work is based on children’s thinking about specific types 

of tasks, its power lies in its capacity to inform teachers’ use and interpretation of 

these tasks to foster students’ conceptual development in a coherent unit of 

study (e.g., Fennema et al, 1996; Simon & Tzur, 2004).  

However powerful, these kinds of portrayals of learning necessarily 

represent only one dimension or a small set of what we value as a field about 

mathematics and wish for students to learn. Learning is a multidimensional 

process, comprised of a variety of intertwined cognitive and social processes. In 
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particular, since the publication of Everyone Counts (National Research Council, 

1989) and the Curriculum and Evaluation Standards (National Council of Teachers 

of Mathematics, 1988), mathematics educators have increasingly focused on 

teaching students to engage in practices such as posing and solving problems 

(Hiebert et al., 1996), constructing models (Lesh & Doerr, 2003), and making 

convincing arguments (Lehrer & Schauble, 2007) – that is, to do mathematics. 

Doing mathematics involves a complex and integrated set of content 

understanding and disciplinary practices (Bass, 2011; Kilpatrick, Swafford, & 

Findell, 2001) as well as the ability to monitor the interplay between these things 

(Schoenfeld, 1992).  

The ability to engage in mathematical practices such as the ones above is 

as critical as content knowledge to a well-developed capacity to think 

mathematically, but it is less amenable to analysis in terms of sequences of 

development. For example, students engaged in mathematical modeling or 

problem solving may draw on multiple content domains and work 

collaboratively on tasks that have many possible resolutions such that the 

solutions they produce appear to follow no predictable trajectory over time. 

Examples of such tasks include creating simulations of disease spread (Stroup, 

Ares, & Hurford, 2005), optimizing the occupancy of a hotel during tourist 

season (Aliprantis & Carmona, 2003), and designing a template to generate a 

quilt pattern (Lesh & Doerr, 2003). These kinds of tasks and thinking practices 

pose considerable challenge for researchers seeking to codify and systematically 
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represent learning in terms of a trajectory, because of the variety of 

understanding and practices that students bring to bear in the their solutions. 

Learning trajectories may be limited in what they can and cannot specify 

in terms of learning mathematics over time; and in particular, they may not be 

applicable to certain critical aspects of the mathematics curriculum. Catley, 

Lehrer, and Reiser (2005) recognized this potential limitation when they argued 

that “scientific concepts are never developed without participation in specialized 

forms of practice” and “concepts are contingent on these practices” (p. 4) – such 

as the ones listed in the Common Core Standards in Mathematics (2010). Among 

others, these practices include making sense of problems and persevering in 

solving them; using appropriate tools strategically; attending to precision; and 

looking for and making use of structure (CCSM, 2010, pp. 6-8). Most, if not all, 

current characterizations of learning trajectories do not address the practices that 

engender the development of concepts – although it’s worth thinking about 

alternative ways to characterize curriculum standards and learning trajectories 

that draw teachers’ attention to specific aspects of students’ mathematical 

practices as well as the content that might be the aim of that practice.  

What is a reasonable unit of students’ mathematical activity for teachers to 

notice? If a unit is too small or requires a great deal of inference (e.g., a mental 

operation), then teachers in their moment-to-moment decision-making may not 

be able to detect it and respond to it; likewise if a unit is too broad or stretches 

over too long a period of time (e.g., “critical thinking”), teachers may not 
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recognize it when they are seeing it. The most productive kinds of units of 

mathematical activity would allow teachers to see and respond to clearly defined 

instances of student’s thinking during instruction and to gather information 

about students’ progress relative to instructional goals. For example, in research 

in elementary mathematics, strategies and types of reasoning are productive units 

because we know that teachers can learn to differentiate students’ strategies and 

use what they learn about students’ thinking to successfully guide instruction 

(e.g., Fennema, et al., 1996). Catley and colleagues (2005) proposed “learning 

performances” as a way to represent the “cognitive processes and associated 

practices linked to particular standards” (p. 5). Formative assessments that 

include a variety of points of access and possible solutions and that require 

students to engage in various mathematics practices could also yield rich 

information about students’ understanding of and engagement in mathematics 

(cf., Aliprantis & Carmona, 2003; Lesh & Doerr, 2003). The important thing is to 

take into account the interplay of practices and content in students’ learning over 

time.  

Teaching is Integral to Learning and Learning Trajectories 

Learning school mathematics depends on teaching. To support learning, 

teachers need be able to “understand, plan, and react instructionally, on a 

moment-to-moment basis, to students' developing reasoning” and coordinate 

these interactions with learning goals (Battista, 2010). Similarly, Daro and 

colleagues (2011) concluded that:  
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Teachers are going to have to find ways to attend more closely and regularly 
to each of their students during instruction to determine where they are in 
their progress toward meeting the standards, and the kinds of problems they 
might be having along the way. Then teachers must use that information to 
decide what to do to help each student continue to progress, to provide 
students with feedback, and help them overcome their particular problems to 
get back on a path to success. (Daro et al., 2011, p. 15)  
 
We know very little about how teachers do these things, in contrast to what 

we know about children’s learning, whether it falls under the rubric of learning 

trajectory research or not. As teachers interact with students and decide how to 

proceed, there are many types of decisions to be made – how to gather 

information about children’s thinking, how to respond to it appropriately in the 

moment, how to design tasks that extend it, and even what to pay attention to. 

With the right tools, teachers have access to the most up-to-date information 

about each student, what they understand and are able to do, their disposition, 

their history, and so on, and can make decisions based on their own informed 

understanding of these things and their relationships. Good tools, such as 

formative assessment frameworks in particular, enhance this knowledge and 

support teachers to engage in the active, contingent process of creating 

instructional trajectories informed by knowledge of actual children’s learning. 

Further, learning mathematics in school takes work and depends 

fundamentally on interpersonal relationships of trust and respect, which cannot 

be designed into a tool or a list of learning goals. Teaching is a relational act and 

the relationship between the teacher and the student is at the center of students’ 

learning in school (Gergen, 2009; Grossman & McDonald, 2008). These 
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relationships can have a profound effect on what students learn and how they 

come to see themselves.  

In the face of what can seem like a tidal wave of top-down mandates, I 

suggest that we mathematics educators keep sight of the fact that teaching is 

driven essentially by interpersonal relationships and happens from the bottom 

up, beginning with the teacher and the student relating to each other and the 

content. We need to be sure that teachers are equipped with knowledge of the 

domain and its learning milestones without forgetting that both teachers and 

students are active agents in learning.  

Closing Thoughts 

 “Clearly … the trajectories followed by those who learn will be extremely 

diverse and may not be predictable” (Lave & Wenger, 1991) 

In choosing to focus on learning trajectories, we embrace a metaphor that, for 

all its appeal, implies that learning unfolds following a predictable, sequenced 

path. Everyone knows it is not that simple; researchers and educators alike 

acknowledge the complexity of learning. As Simon (1995) emphasized, learning 

trajectories are essentially provisional. We can think of them as the provisional 

creation of teachers who are deliberating about how to support students’ 

learning and we can think of them as the provisional creation of researchers 

attempting to understand students’ learning and to represent it in a way that is 

useful for teachers, curriculum designers, and test makers.  
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I firmly believe that a critical part of our mission as researchers is to produce 

something that is of use to the field and serves as a resource for teachers and 

curriculum designers to optimize student learning. No doubt this includes 

creating, testing, and refining empirically based representations of students’ 

learning for teachers to use in professional decision-making and, further, 

investigating ways to support teachers’ decision-making without stripping 

teachers of the agency needed to hypothesize learning trajectories for individual 

children as they teach. This focus would add a layer of complexity to our 

research on learning and invite us to think seriously about how to support 

teachers to incorporate knowledge of children’s learning into their purposeful 

decision-making about instruction. Further, I suggest we consider, in the end, 

“Whose responsibility is it to construct learning trajectories?” (Steffe, 2004, p. 

130). If we researchers can figure out how to supply teachers with knowledge 

frameworks and formative assessment tools to facilitate their work, teachers will 

be able to exercise this responsibility with increasing skill, professionalism, and 

effectiveness.  

Because of the growing popularity of learning trajectories in education circles, 

it is worth thinking hard about the role of learning trajectory representations in 

teaching, and in particular, whether a learning trajectory can exist meaningfully 

apart from the relationship between a teacher and a student at a specific time and 

place. Simon’s (1995) perspective on teaching and learning suggests not. As the 

field moves forward with research on learning trajectories and strive for 
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coherence in learning across the grades, I would like to remain mindful of both 

the affordances and constraints this particular type of representation offers for 

teachers and students alike. 
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This theoretical paper extends an article (Tzur, 2010b) in which I discussed Uri 

Leron’s (2010) plenary address during the last annual meeting of PME-NA. Being 

invited to discuss his paper re-acquainted me with the inspiring empirical and 

theoretical work that he and his colleagues were conducting in the last two 

decades (Leron & Hazzan, 2006, 2009). It also provided me with an important 

window into literature outside mathematics education (e.g., cognitive 
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psychology), which I consider as both thought provoking and relevant to our 

field. Last but not least, after reading his paper(s) I realized how naturally his 

approach linked with recent efforts in which I have been participating—to relate 

mathematics education research with cognitive neuroscience (brain studies). I 

concur with Leron’s belief that bridging between intuition and analytical 

thinking can contribute to optimizing student mathematical understandings and 

am delighted to provide my reflections on this endeavor. 

In itself, the main thesis that human thinking and judgment (or 

rationality) consist of two qualitatively distinct modes is not new to mathematics 

education. Skemp’s (1979) seminal work has already articulated and linked both 

modes, which he termed intuitive and reflective intelligences. To the best of my 

knowledge, Skemp’s constructivist theory evolved independently of the 

commencement of the ‘heuristic and bias’ approach (Kahneman, Slovic, & 

Tversky, 1982; Kahneman & Tversky, 1973; Tversky & Kahneman, 1973, 1983). 

Moreover, I believe that, in mathematics education, this distinction can be traced 

back to Dewey’s (1933) notion of reflective thought (contrasted with unconscious 

mental processes), and to Vygotsky’s (1986) notion of ZPD  and his related 

distinction between spontaneous and scientific concepts.  

However, two novelties in Leron’s contribution seemed very useful for 

mathematics education. First, his review of cognitive psychology literature 

pointed out to empirical studies in which a dual view of thinking processes has 

been robustly elaborated on (Evans, 2006; Kahneman & Frederick, 2002; 
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Stanovich, 2008) and ‘mapped’ onto corresponding, differentiated brain regions 

(Lieberman, 2003, 2008). Thus, a similarly important and timely direction, of 

linking mathematics education with brain studies (Medina, 2008), is supported 

by relevant findings from cognitive psychology (see Section 2). Second, he 

reported on studies (Leron & Hazzan, 2006, 2009) informed by DPT that 

demonstrated its applicability to our field, including articulation of instructional 

goals and design criteria. Next, I further discuss both contributions. 

1. SIGNIFICANT QUESTIONS! USEFUL THEORY? 

1.1 Significance of DPT 

Like many teachers of mathematics and mathematics educators, Leron 

and his colleagues noticed a phenomenon that seemed to equally puzzle 

researchers in other fields. Quite often, researchers observing people’s solutions 

to various problems framed them as recurring faulty judgments (reasoning 

processes and conclusions). Examples of such solutions abound in the 

aforementioned papers; I will present three of my own below. Interestingly, 

studies of such examples in the ‘80s and ‘90s fueled a debate about human 

rationality that quite tightly conjoined epistemology and psychology (Goldman, 

1994; Kim, 1994; Nisbett & Ross, 1994; Quine, 1994). For example, alluding to 

computational complexity, Cherniak (1994) considered ‘ideal’  (normative) 

rationality as intractable. Instead, using the example of mathematicians working 

on unfeasibly long proofs he proposed ‘minimal’ rationality, owing much of its 
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functionality to ‘quick-and-dirty’ heuristics that evade practical (mental) 

paralysis.  

As I see it, addressing this puzzling phenomenon and significant problem 

by mathematics educators is more pressing and weighty than by cognitive 

psychologists and/or economists. As challenging as it might be to solidly explain 

why/how the human mind produces erroneous judgments, in those other fields 

it may suffice. The works of Leron (Leron, 2010; Leron & Hazzan, 2006, 2009) and 

others (Katz & Katz, 2010; Viholainen, 2008) indicate, however, that in our field 

such an explanation is but a start. In this sense, Leron made two key 

contributions: (a) clarifying a goal for student and teacher learning—closing the 

rather prevalent gap between intuitive and analytic reasoning, and (b) explicating 

mathematics educators’ duty to figure out ways of thinking about, designing, and 

implementing teaching that can foster student development of and disposition 

toward analytic reasoning. To these ends, Leron identified four vital questions 

for mathematics educators: 

i) What differentiates among those who solve problems correctly and 

incorrectly, that is, why do the latter fail to use analytic reasoning 

whereas the former do so? 

ii) Using the above as a basis—how can we explain observations about 

the ‘cueing impact’ of changes in a problem format or context have on 

correctly solving a problem, and what does this entail for instructional 

design? 
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iii) When using puzzling problem situations in our teaching (e.g., earth 

circumference), what strategies can be used to effectively capitalize on 

students’ “Aha” moments that follow those puzzlements? 

iv) How may we design instruction to promote (a) students’ (and 

teachers’) awareness of the potential use of improper intuitive reasoning 

and (b) disposition toward constant activation of analytic reasoning to 

override the faulty intuitions (i.e., resist and critique the intuitive)? 

1.2 Dual Processing Theory (DPT): Is It Useful for Mathematics Education? 

To articulate what purposes DPT can serve in mathematics education, I 

first briefly present its key features by alluding to one of Leron’s examples and 

three of mine (to keep it short, language does not precisely replicate the original 

problems).  

A. Adults with college education were asked: Two items cost $1.10; the 

difference in price is $1. How much does each item cost? (Over 50% 

submit to impulse and respond: $1 & $0.10) 

B. In the elevator, the 7th floor button is already lit. A person who also 

wanted that floor gets on the elevator and, though seeing the lit button, 

pressed it again. 

C. Grade 3 students were asked to reason which side will a next (fair) coin 

flip show, ‘Head or Tail’, after it showed 4 ‘Heads’ in a row. Roughly 

50% said ‘Head’, because it’s always been the case; the rest said ‘Tail’, 
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because it could not always be ‘Head’. Virtually no one reasoned 50-50, 

and that previous flips were irrelevant. 

D. As a Sudoku enthusiast, I made two careless errors while solving a 

‘black-belt’ puzzle (see Figure 1). In the puzzle on the left (1a), I 

considered and almost wrote ‘4’ in the bottom-middle square while 

transposing the digits to a different cell and ignoring the vertical 

‘conflict’. Two minutes later, while solving the puzzle on the right (1b), 

I actually committed a similar error (considering only vertical ‘9’ and 

writing the small ‘9’ digits where the top one conflicts with a 

horizontal, given ‘9’). 

 

Figure 1a. Processing error not committed; 

almost placing ‘4’ in mid-lower left cell 

(transpose row, ignore vertical) 

 

Figure 1b. Same error repeated & 

committed; ‘9’ in left-lower cell 

(checked for vertical only)  

The key insight about human thinking, which led to different variants of 

DPT, is that responses to vastly diverse problems, faulty or correct, may all share 
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a common root. As implied by its name, the basic tenet of DPT is that two 

different modes of brain processing are at work (Evans, 2003, 2006; Stanovich, 

2008; Stanovich & West, 2000). The first mode, ‘intuitive reasoning’ (or 

‘heuristic’), is considered evolutionary more ancient and shared with animals. It 

is characterized by automatic (reflexive, sub-conscious), rapid, and parallel in 

nature processing, with only its final product available to consciousness. The 

second mode, ‘analytic reasoning’, is evolutionary recent and considered unique 

to humans. It is intentional (reflective, conscious), relatively slow, and sequential 

in nature. The principal roles attributed by DPT to the second mode are 

monitoring, critiquing, and correcting judgments produced by the first mode. 

Said differently, the second mode of processing suppresses/inhibits default 

responses; it serves as a failure-prevention-and-correction mental device. As 

Leron (2010) pointed out, some cognitive psychologists refer to the intuitive 

mode as System-1 (S1) and to the analytic mode as System-2 (S2). They further 

emphasize that, quite often, both systems work in tandem, which basically 

means that S1 produced a proper judgment that S2 did not need to correct. 

A second tenet of DPT is that, in essence, faulty responses given by 

problem solvers reflect failure of their analytic processes to prevent-and-correct 

output from their intuitive processes. A key, corresponding assumption that 

seems to be taken-as-shared by most proponents of DPT and to underlie the 

notion of ‘rational judgment/actions’, is that at any given problem situation a 

person intends to accomplish a correct solution that serves her or his own 
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purposes (e.g., economic benefit, academic success, etc.). In the four examples 

above, a person would like to properly solve the problems but, as DPT explains, 

the fast-reacting insuppressible S1 tends to “hijack” the subject’s attention and 

thus yields a non-normative answer (Leron, 2010). Thus, in Example A, S1 ‘falls 

prey’ to the cost of one item ($1) being equal to the difference. In Example B, S1 

brings forth and directs execution of the planned action (get on elevator, identify-

and-press 7th floor button) before S2 could re-evaluate necessity in the 

circumstances. In Example D (Figure 1b), S1 directed my actions to place the 

digits with only partial checking before S2 detected that partiality. This occurred 

soon after I actually thought of placing the ‘4’ where it is shown in Figure 1a, but 

then consciously (S2 override) avoided this error. Example C (predicting results 

of a coin flip) was selected to highlight a few hurdles with DPT, particularly the 

impact of problem solvers’ cognitive abilities on their solutions (Stanovich & 

West, 2000). Clearly, what to an observer would appear as non-normative 

responses (e.g., it’s most likely to be ‘Head’) was the proper response within the 

children’s cognitive system—a case of S1 and S2 working in tandem for the 

reasoner, though erroneously for an observer. 

Before turning to hindrances I find in DPT, a few more comments seem 

noteworthy. Evans (2006) highlighted a key distinction to keep in mind—

between dual processes and dual systems. This is important for mathematics 

education particularly because, as he asserted, dual system theories are too 

broad. Thus, he asserted the need to elaborate specific dual-reasoning accounts at 
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an intermediate level that explains solutions to particular tasks. To me, his goal 

(particular task) seems primary whereas the means (dual accounts, or singular, 

or triple) seems secondary.  

This leads to my second comment—the need to pay particular attention to 

solution processes—and kinds of problem situations—in which 

analytic/reflective processes successfully monitor and correct S1’s ‘run’ before 

reaching and submitting to the latter’s judgment. For example, when I first read 

Example A in Leron’s paper, I immediately identified the task as ‘inviting’ the 

faulty conclusion. I also immediately noticed my conscious, pro-active ‘flagging’ 

of this tendency and, consequently, selected an analytic process instead. This 

mental adjustment happened before I even calculated the faulty difference (90 

cents), precisely the desired state of affairs indicated in question #iv above. My 

case indicates the need for precisely analyzing the way intuitive and analytic 

processes interact. Initial forms of DPT assumed sequential operation, where 

outcomes of intuitive processes (or S1) serve as input for analytic processes only 

when/if S2 identified S1’s output as a faulty response. Recently, the possibility 

for parallel processing of both modes was postulated, including the idea that 

they often compete for the immediate or final judgment in a given problem 

situation (Evans, 2006). To further theorize such interaction, Evans suggested 3 

principles: (a) singularity—epistemic mental models are generated and judged 

one-at-a-time, (b) relevance—intuitive (heuristic) processes contextualize 

problems to maximize relevance to the person’s current goals, and (c) 
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satisficing—analytic processes tend to accept intuitive judgments unless there is a 

good reason to reject and override them. While essential, it seems that these 

principles fall short of accounting for how I solved Example A.  

My last comment refers to factors that were found to make a difference in 

ways groups of people, or even an individual, solve particular problems. 

Stanovich and colleagues (2008; Stanovich & West, 2000) provided a good review 

of those. Here, I refer to a critical factor for mathematics education that was 

highlighted in Leron’s (2010) address, namely, the impact of problem format 

(‘packaging’) on suppression of intuitive judgments. A substantial portion of 

Leron’s work, which I see as a major contribution to our field, focused on the 

design of bridging tasks that are more likely to trigger what he considered 

solvers’ available analytic processes. These tasks, in turn, enabled student 

solutions of the mathematically congruent tasks that were difficult to unpack 

without such bridging. This indirect allusion to assimilatory conceptions of those 

for whom bridging is required points to a hindrance. 

From a constructivist perspective, a major theoretical and practical 

hindrance I find in DPT is the unproblematic application of an observer’s frame 

of reference—considered as ‘normative’—to the evaluation of people’s 

responses—considered as ‘rational’ (or not, or partial). In essence, if the ‘same’ 

task is solved differently by people of different cognitive abilities (the observing 

researchers included), and if many who failed on a structurally identical task can 

solve a bridging task (and later also the failed one), then what a problem solver 
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brings to the task must be explicitly distinguished from the observer’s cognitive 

toolbox. Simply put, the presence of two cognitive frames of reference is glossed 

over by DPT’s equating of normative with rational (for more about this, see 

Nisbett & Ross, 1994).  

Theoretically, and crucial for mathematics education, what this lack of 

distinction fails to acknowledge is both the different interpretation(s) of a task 

and different mental activities available to the observed person for solving it. 

That is, it fails to acknowledge the core construct of assimilation (Piaget, 1980, 

1985; von Glasersfeld, 1995). Recent research in cognitive psychology did point 

out to possible differences between observer and observed interpretations 

(Stanovich & West, 2000), but the key theoretical implication of those findings—

simultaneously addressing two frames of reference—did not seem to follow. In 

my view, distinguishing the observer (Roth & Bautista, 2011; Steffe, 1995; von 

Glasersfeld, 1991) and using assimilation as a starting point is necessary in our 

field in order to move beyond cognitive psychology’s focus on thinking and 

reasoning into accounts of learning as a conceptual advance that can be 

observed, and fostered, in other people’s minds. And, as Skemp (1979) so 

eloquently asserted, for a mathematics education theory of teaching to be 

useful—at its core one must articulate learning as a process of cognitive change 

in what the learner already knows.  

Practically, overlooking learners’ available conceptions when analyzing 

their solutions, correct or faulty, precludes the powerful design of bridging tasks 
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demonstrated in Leron’s (2010) paper. Indirectly, both the specific features of 

those tasks (e.g., the need to cue for a nested sub-set, or steps to ‘see’ the 

invariant length of string-around-earth when different shapes increase) and the 

rationale and criteria he provided for introducing those features (e.g., make the 

problem accessible to the solver’s intuition), draw on conjectured inferences about 

how a person may interpret and solve the alternative tasks. That is, such tasks 

require inferences into students’ existing (assimilatory) conceptions. This leads to 

the discussion of DPT’s core hindrance.  

2. A CONSTRUCTIVIST LENS ON DPT: ‘BRAINY’ MATHEMATICS 

EDUCATION 

2.1 Taking Issue with DPT 

As a constructivist, I adhere to the core premise common to Piaget’s (1970, 

1971, 1985), Dewey’s (Dewey, 1902; 1949), and Vygotsky’s (1978, 1986) grand 

theories, that knowing (thinking, reasoning) cannot be understood apart from the 

‘historical process’ in which one’s knowing evolved. This premise entails my 

twofold thesis about hurdles in adopting and adapting DPT to mathematics 

education. First, a sole focus on normative and faulty modes of 

thinking/reasoning in mathematics or other domains (aka cognitive psychology), 

falls short of the theoretical accounts needed to intentionally foster optimal 

student (and teacher) understandings. Second, although DPT can inform our 

work, mathematics education already has frameworks that interweave 
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articulated accounts of knowing, coming to know (learning), and teaching 

(Dreyfus, 2002; Dubinsky & Lewin, 1986; Hershkowitz, Schwarz, & Dreyfus, 

2001; Pirie & Kieren, 1992, 1994; Sfard, 1991, 2000; Steffe, 1990, 2010; Tall & 

Vinner, 1981; Thompson, 2002, 2010; Thompson, Carlson, & Silverman, 2007). As 

I shall discuss below, one framework that my colleagues and I have been 

developing—reflection on activity-effect relationship (Ref*AER)—seems to (a) 

singularly resolve issues of faulty/normative reasoning and of conceptual learning 

(with or without teaching) and (b) explain different modes of thinking without 

alluding to 2 systems (or distinct processes). Moreover, the Ref*AER framework 

is supported by and gives support to cognitive neuroscience models of the brain. 

Due to space limitations, the brief exposition below makes wide use of references 

to comprehensive versions. I begin by listing seven critical questions for 

mathematics education that Leron’s work and accounts of DPT raised, and a 

framework such as Ref*AER needs to address:  

1. Why does the mental system of some people make an error (e.g., selects 

$1 and 10 cents in the price example A) whereas other people focus also 

on the difference? Unless one considers solvers’ assimilatory 

conceptions, this question (and 2-4 below) cannot be resolved by DPT 

assumptions that S2 has no direct access to the perceived information or 

that S2 selects accessible instead of relevant information. 

2. When a person’s response is non-normative, is it a case of (a) having the 

required conceptions but failing to trigger them (e.g., Sudoku and 
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elevator examples), (b) having a rudimentary form of those conceptions 

that require explicit prompting (e.g., sub-set in Leron’s (2010) bridging 

task; renegotiating the difference aspect in the price problem and/or 

making the numbers more ‘difficult’), or (c) not having a conception for 

monitoring S1 (e.g., my next coin-flip example and the original medical 

base-rate example in Leron’s paper)? And how can we distinguish 

among these three cases? 

3. How does S2, which failed to monitor S1 in a specific task, become 

capable of doing so? Is the process of learning different for each of the 

three cases above? 

4. How do new monitoring capacities learned by S2 ‘migrate’ to S1 

(become automatic)? 

5. What is the source of learners’ surprise (e.g., string-around-earth 

example), how may it be linked to learning, and how might teaching 

capitalize on this? 

6. What role do specific examples play in learning (by S2 and/or S1)? 

7. Can we explain why particular bridging tasks promote some learning 

in some students but not others, and provide explicit ideas for changing 

them in the latter case? 

2.2 A Brain-Based Model of Knowing and Learning 
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In recent years, a few cross-disciplinary meetings among cognitive 

neuroscientists and mathematics educators took place. One of those (Vanderbilt, 

2006) focused on the design of tasks that (a) reveal difficult milestones in 

mathematics and (b) can be examined at the brain level (e.g., fMRI). Using the 

Ref*AER framework of knowing and learning (Simon & Tzur, 2004; Simon, Tzur, 

Heinz, & Kinzel, 2004; Tzur, 2007; Tzur & Simon, 2004; Tzur, Xin, Si, Woodward, 

& Jin, 2009), I presented fractional tasks to the group. This presentation, and the 

fertile dialogue with brain researchers that ensued, led to an elaborated, brain-

based Ref*AER account (Tzur, accepted for publication) that seems highly 

consistent with DPT studies of the brain (Lieberman, 2003, 2008).  

Briefly, Ref*AER depicts knowing (having a conception) as anticipating and 

justifying an invariant relationship between a single (goal-directed) activity-

sequence the mental system executes at any given moment (Evans’ Singularity 

principle; see also Medina, 2008), potentially or actually, and the effect it must 

bring forth. Learning is explained as transformation in such anticipation via two 

basic types of reflection. Reflection Type-I consists of ongoing, automatic 

comparison the mental system executes continually between the goal it sets for the 

activity-sequence and subsequent effects produced and noticed. As Piaget (1985) 

asserted, the internal global goal (anticipated effect) serves as a regulator of the 

execution for both interim effects and the final one (Evans’ Relevance principle) 

(see also Stich, 1994). The effects either match the anticipation or not (Evans’ 

Satisficing principle). By default, the mental system runs an activity-sequence to 
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its completion as determined by the goal (e.g., the elevator example). Yet, the 

execution may stop earlier if (a) the goal detects unanticipated sub-effects (e.g., 

Sudoku example in Figure 1a) or (b) a different goal became the regulator, 

including possibly a sub-goal within the activity-sequence overriding the global 

goal. Reflection Type-II consists of comparison across (mental) records of experiences, 

each containing a linked, re-presented bit of a ‘run’ of the activity and its effect 

(AER), sorted as match or no-match. Critically, Type-II reflection does not 

happen automatically—the brain may or may not execute it. The recurring, 

invariant AER across those experiences are linked with the situation(s) in which 

they were found anticipatory of the proper goal and registered as a new 

conception.  

Accordingly, Ref*AER postulates that the construction of a new conception 

proceeds through two stages. The first, participatory, necessitates reflection Type-I 

and is marked by an anticipation that a problem solver can access only when and if 

somehow prompted for the novel, provisional AER (Tzur & Lambert, in press, 

linked this stage with the Zone of Proximal Development—ZPD). The second, 

anticipatory stage necessitates reflection Type-II and is marked by independent, 

spontaneous bringing forth, running, and possibly justifying the novel 

anticipation. It should be noted that although developed independently, Ref*AER 

is consistent with Skemp’s (1979) theory; the reflection types and stage 

distinctions extend his work. 
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To link the Ref*AER framework with brain studies, I separated and 

‘distributed’ von Glasersfeld’s (1995) tripartite notion of scheme—situation, 

activity, and result—across three major neuronal systems in which they are 

postulated to be processed. The assumption regarding both knowing and 

learning is that the fundamental unit of analysis in the brain is not a single 

synaptic connection or a neuron (Hebb, 1949, cited in Baars & Gage, 2007; Crick 

& Koch, 2003; Fuster, 1997, 2003). To stress neuronal ‘firing’ in the brain and the 

life-long growth, change, and decay of neuronal networks (Medina, 2008), I use 

the term Synapse Inhibition/Excitation Constellation (SIEC)—any-size aggregate 

of synapses of connected neurons that, once ‘firing’ and updating, forms a stable 

pattern of activity (Baars, 2007b). The roles and functions of SIECs are described 

in terms of the three neuronal networks where they may be activated (Baars, 

2007a): a ‘Recognition System’ (RecSys), which includes the sensory input/buffer 

and various long-term memories; a ‘Strategic System’ (StrSys), which includes 

the Central Executive; and an ‘Engagement-Emotive System’ (EngSys). Within 

these networks, solving a problem, as well as learning through problem solving, 

is postulated as follows (indices in the diagram correspond to those in the text 

below): 

1. Solving a problem begins with assimilating it via one’s sensory 

modalities into the Situation part of an extant scheme in the RecSys. 

This SIEC is firing and updating until reaching its activity pattern 
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(recognizing state), and activates firing and updating of a Goal SIEC in 

the StrSys. 

2. A Goal SIEC is set in the StrSys as a desired inhibition-excitation state 

that regulates the execution and termination of an activity sequence. The 

goal SIEC also triggers: 

a. Corresponding SIECs in the EngSys that set the desirability of the 

experience and the sense of control the learner has over the activity 

(McGaugh, 2002; Medina, 2008; Tzur, 1996; Zull, 2002). These were 

found linked to activity in the anterior cingulate cortex (Bush, Luu, 

& Posner, 2000; Lieberman, 2003, 2008). 

b. A temporary auxiliary SIEC checks if an activity has already been 

partly executed and can thus be resumed. If its output is ‘Yes’, it re-

triggers the AER’s execution in the StrSys from the stopping point 

(go to #4); if ‘No,’ it triggers the Goal SIEC to trigger #3 below. 
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Figure 2. Brain problem solving and learning processes 

3. A SIEC responsible for searching-and-selecting an available AER is 

triggered by the Goal SIEC. The search operates on three different 

long-term memory ‘storages’ of SIECs (3a, 3b, 3c below). Using a 

metaphor of ‘road-map’, Skemp (1979) explained that, within every 

universe of discourse (e.g., math, economy), the ‘path’ from a present 

state to a goal state may consist of multiple activity-sequences, among 

which one that is eventually executed is selected (see also multiple-
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trace theory in Nadel, Samsonovich, Ryan, & Moscovitch, 2000). 

Searched and selected AERs include: 

a. Anticipatory AERs – a mental operation carried out and its 

anticipated effect; 

b. Participatory AERs that the learner is currently forming and can 

thus be called up only if prompted, as indicated by the dotted 

arrow; 

c. Mental (e.g., mathematical) ‘objects,’ which are essentially 

anticipatory AERs established and encapsulated previously (e.g., 

‘number’ is the anticipated effect of a counting operation). 

4. Once an operation and an ‘object’ AERs were selected, the brain 

executes them while monitoring progress to the goal via a meta-

cognitive SIEC in the StrSys responsible for Type-I reflections. Skemp’s 

(1979, see ch. 11) model articulates this component in great details, 

including how it can be carried out automatically (intuitive) and/or 

reflectively (analytic). This goal-based monitoring component seems 

compatible with Norman and Shallice’s (2000) model of schema 

activation, Corbetta and Sulman’s (2002) notion of ‘circuit breaker’, 

and Kalbfleisch, Van Meter, and Zeffiro’s (2006) identification of brain 

internal evaluation of response correctness. Mathematical operations 

are mainly activated in the Intraparietal Sulcus (IPS, see Nieder, 2005). 
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5. The execution of the selected AER is constantly monitored by Type-I 

reflection to determine 3 features: 

a. Was the learner’s goal, as set in SIEC 2a, met? 

b. Is the AER execution moving toward or away from the goal (see 

McGovern, 2007 for relevant emotions)?  

c. Is the final effect of the executed portion of the AER different from 

the anticipated, set goal? Goldberg and Bougakov (2007) suggested 

that this is a function of prefrontal cortex (PFC). 

Each feature (5a, 5b, 5c) can stop the currently executed AER (e.g., 

seeing the lit elevator button halts the process leading to pressing it 

again). If the output of 5c is ‘No’, that ‘run’ of the AER is registered as 

another record of experience of the existing scheme (see Zull, 2002). 

Symbolically, such no-novelty can be written: Situation0-Goal0-AER0 

(Tzur & Simon, 2004). If the output is ‘Yes’, symbolized as Situation0-

Goal0-AER1, a new conceptualization may commence (see next). This 

perturbing state of the mental system (von Glasersfeld, 1995), seems 

related to anticorrelations of brain networks (Fox, et al., 2005). 

6. Type-II reflective comparisons may then operate on the output records 

of Type-I reflection. Whenever the output of Type-I question 5c is 

‘Yes,’ the brain updates a new SIEC for that recently run AER and stores 

it in a temporary auxiliary in the RecSys (symbolized A0-E1, or AER1). 
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Each repetition of the solution process for which the output of 5c is 

‘Yes’ adds another such record to the temporary auxiliary. 

7. The accruing records of temporary AER1 (novel) compounds are 

continually monitored by Type-II reflective comparison SIEC in terms 

of two features: 

a. Is the effect of the new AER (E1) closer to or further away from the 

Goal? 

b. How is the new AER1 similar to or different from the extant 

anticipatory and/or participatory AERs in the RecSys? This aspect 

of Type-II reflection seems supported by Moscovitch et al.’s (2007) 

articulation of the constant interchanges between MTL and PFC. 

The output of recurring Type-II reflective comparisons is a new SIEC 

(AER1). The anticipatory-participatory stage distinction implies that a new SIEC 

can initially be accessed by the Search-an-Select SIEC (#3) only if the learner is 

prompted for the activity (A0), which generates the noticed effect (E1) and thus 

‘opens’ the neuronal path to using AER1 in response to the triggering situation 

(Situation0). Over time, Type-II comparisons of the repeated use of AER1 for 

Situation0 produces a new neuronal pathway from the Situation0 SIEC to the 

newly formed AER1, that is, to the construction of a new, directly retrievable, 

anticipatory SIEC (scheme symbolized as Situation1-Goal1-AER1). This 

construction of an anticipatory AER seems to explain how repeatedly correct 

analytic judgments may become intuitive (automatic). 
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3. DISCUSSION: BRAIN-BASED REF*AER VS. DPT 

I contend that Ref*AER, with its brain-based elaboration, simultaneously 

resolves not only the reasoning puzzlement addressed by DPT, but also central 

problems of mathematics learning and teaching. Concerning what an observer 

considers normative solutions, Ref*AER explains and predicts their production as 

the outcome of either an anticipatory conception, which can run automatically 

and/or reflectively, or a compatible participatory conception that was made 

accessible by a prompt—self/internal (e.g., Soduku-1a) or external (e.g., Leron’s 

bridging task, apple falling on Newton’s head). Accordingly, faulty solutions may 

be the outcome of (a) partial, inefficient, and/or flawed execution of a suitable 

anticipatory conception (e.g., Soduku-1, elevator), (b) prompt-dependent 

inability to access a suitable participatory conception (e.g., solving the $1.10 

incorrectly when difference=$1 and correctly with other amounts), and, quite 

often, (c) lack of a suitable conception for correctly solving the given problem 

(e.g., 3rd graders facing the next coin-flip problem, Leron’s students who could 

not solve the bridging task).  

I further contend that, for mathematics education purposes, and possibly 

also cognitive psychology, Ref*AER resolves DPT problems better. Instead of 

postulating two systems (or processes), it explains how the brain gives rise to a 

multi-part single thought process by which a problem solver may reach a 

normative or a faulty answer. Furthermore, it stresses that a ‘solution’ must 

encompass not only the answer, but also the crucial (inferred) solver’s reasoning 
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processes used for producing it. A good demonstration of such analysis, and the 

vitality of intuitive solutions (e.g., for finding limits of sequences), were provided 

by Hersh (2011). Ref*AER accomplishes such inferences via analyzing the 

solver’s: (i) goal and sub-goals (see Stanovich & West, 2000, for differing 

researcher/subject goals), (ii) entire or partial activity-sequence selected and 

executed (see Kahneman & Frederick, 2002, for the notion of Attribute 

Substitution), (iii) suitability of objects operated on (see Leron’s, 2010, specific 

explication of objects, such as length gap in the string-around-earth task and the 

nested sub-set in his RMP task), (iv) sub- and final effects noticed, and (v) 

successful/failed reflections (both types).  

Most importantly, Ref*AER analyses are rooted in an explicit distinction 

between two frames of reference operating in the evaluation of solvers’ 

judgments—the observer’s advanced, well-justified frame and the observed’s 

evolving and sensible frame in terms of his or her extant conceptions (Roth & 

Bautista, 2011; Steffe, 1995). Thus, consistent with Stich’s (1994) assertion that 

cognitive systems serve one’s goals and not absolute truths, Ref*AER evades the 

pitfalls of equating normative with rational. Instead, it clarifies that upon a 

solver’s assimilation of a problem situation and setting her/his goal(s), one path 

among multiple extant activity-sequences (spontaneously known or prompted) is 

selected, executed and being monitored by the goal. By default, the brain runs 

the sequence to its completion, which is signaled via Type-I comparison (goal 

SIEC), and can thus be portrayed by an observer as intuitive/automatic. 
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However, at any given moment during the activity-sequence execution or after 

its completion, the system’s regulator (goal SIEC) may notice effects that require 

interruption and/or correction to the run and/or even to the goal itself 

(portrayed as analytic/reflective). In paraphrasing Gigerenzer’s (2005) “I think, 

therefore I err”, we shall say: “I learn to think, therefore I may adjust (initially) 

erroneous anticipations.” 

Consequently, Ref*AER seems to provide a basis for resolving two 

problems that, while not addressed by DPT, are vital for mathematics education, 

namely, explaining (a) how learning to reason—both intuitively and 

analytically—may occur and (b) how can teaching capitalize on it and foster 

(optimize) students’ mathematical progress. The former has been articulated 

above in a way that seems to address each of the 7 questions presented in Section 

2. The latter (implications for teaching) exceeds the scope of this paper; it was 

articulated elsewhere (Tzur, 2008a, 2008b, 2010a) as a 7-step cycle that proceeds 

from analysis of students’ extant conceptions. To briefly convey the potential of 

this Ref*AER-based 7-step cycle, I return to Leron’s example of a bridging (RMP) 

task.  

In designing that task, Leron made explicit the two-phase activity-

sequence of considering base-rate (1/1000) and diagnostic information (5% false 

positive) as necessarily linked sub-goals. What’s more, the ‘objects’ on which his 

alternative sequence would operate were replaced, from multiplicatively related 

quantities (fractions, percents) to frequencies of whole numbers considered 
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additively up to the final multiplicative calculation. In terms of Ref*AER, these 

alterations explain why some of the students who incorrectly solved the DMP 

problem could correctly solve the RMP problem. The alteration was more likely 

to orient solvers to (a) explicitly coordinated sub-goals (specifying each of the 

nested sub-sets) of the task’s global goal and (b) selection of and operation on 

accessible quantities—anticipatory AER (‘objects’)—in place of quantities that are 

notoriously prompt-dependent (or lacking) in youngsters and adults and thus, 

not surprisingly, ‘neglected’. Accordingly, these insightfully designed task 

alterations explain the educative power of a bridging task. It seemed to bring 

forth an anticipatory AER that, I conjecture, could have served Leron’s students 

as an internal prompt for correctly selecting-and-executing the entire activity-

sequence for operating similarly on the more difficult-to-grasp multiplicative 

quantities and relationships.  

Leron’s design of bridging task not only fits well within the Ref*AER-

based, 7-step teaching cycle, but also with a teaching practice we recently found 

in China (Gu, Huang, & Marton, 2006; Jin & Tzur, 2011). Our study was based on 

Xianyan Jin’s dissertation, which provided a penetrating inspection of how 

bridging (‘xianjie’) tasks are consistently fitted within a 4-component lesson 

structure in Chinese mathematics teaching. She further ‘mapped’ the 7-step cycle 

onto the Chinese lesson structure, while highlighting the role that bridging tasks, 

like those designed by Leron et al. (Leron, 2010; Leron & Hazzan, 2009), can play 

in the cycle’s critical first step—activating students’ extant (assimilatory) 
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conceptions. Alluding to Leron’s (2010) closing slogan, I believe that, without 

positing thinking dualities, mathematics teaching informed by the brain-based 

Ref*AER framework, and designed to bridge between available (assimilatory) 

and intended mathematical ideas, can nurture the power of natural (intuitive) 

thinking, address the challenge of stretching it, and inform the beauty of 

overcoming it (via anticipatory analytic processes). 
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