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On the Idea of Learning Trajectories: Promises and Pitfalls1 
 

Susan B. Empson2 
The University of Texas at Austin 

 
 

Learning mathematics is a complex and multidimensional if not an inherently 

indeterminate process. A necessary goal of research on learning is to simplify 

this complexity without sacrificing the ability of research to inform teaching. This 

goal has been addressed in part by researchers focusing on how to represent 

research on learning for teachers and on how to support teachers to use and 

generate models of students’ learning (e.g., Franke, Carpenter, Levi, & Fennema, 

et al., 2001; Hammer & Schifter, 2001; Simon & Tzur, 2004; Steffe, 2004). Recently, 

the idea of learning trajectories has gained attention as a way to focus research on 

learning in service of instruction and assessment. It is influencing curriculum 

standards, assessment design, and funding priorities. In this paper – which grew 

out of my response to Michael Battista’s keynote address on learning trajectories 

at the last annual meeting of the North American chapter of Psychology in 

Mathematics Education (Battista, 2010) – I examine the idea of learning 

trajectories and speculate on its usefulness in mathematics education. 

                                                 
1 Thanks to Jennifer Knudsen of SRI International for invaluable feedback. 
2 empson@mail.utexas.edu  
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The National Research Council (2007) described learning progressions as 

“successively more sophisticated ways of thinking about a topic that can follow 

one another as children learn about and investigate a topic” (p. 214). The recently 

released Common Core Standards in Mathematics (CCSM) (2010), noted that the 

“development of these Standards began with research-based learning 

progressions detailing what is known today about how students’ mathematical 

knowledge, skill, and understanding develop over time” (p. 4). The idea of 

learning trajectories has a great deal of intuitive appeal and may offer a way to 

bring coherence to how we think about learning and the curriculum. As research 

on learning trajectories proliferates and is brought to bear on some of the most 

vexing problems in teaching and learning mathematics, however, it is worth 

considering what it foregrounds and what it may obscure. 

In this paper, I briefly describe the origins of learning trajectories in 

mathematics education and then consider three points for us to keep in mind as 

we study learning and apply our findings to serve the purposes of 

understanding and addressing the problems of practice.  

1) The idea that learning progresses is not especially new. What do we know 

about learning mathematics and how does it fit with the idea of a 

trajectory? 

2) Learning trajectories focus on specific domains of conceptual development 

and may be limited in characterizing other valued aspects of the 

mathematics curriculum. 
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3) Learning in school is function of teaching. Too tight a focus on learning 

trajectories may lead us to oversimplify or ignore critical drivers of 

learning associated with teaching. 

My goal in making these points is not to state the obvious but to foreground the 

question of what the idea of learning trajectories affords us education researchers 

and practitioners, and what it might obscure. 

Origins of Learning Trajectories 

The term learning trajectory appears to have been first used in mathematics 

education in Marty Simon’s oft-cited 1995 paper, “Reconstructing Mathematics 

Pedagogy from a Constructivist Perspective.” As I reread this paper, the most 

important things I noticed – besides the fact that that the actual words “learning 

trajectory” did not appear until 21 pages into the article – were that a) a learning 

trajectory did not exist for Simon in the absence of an agent and a purpose and b) 

it was introduced in the context of a theory of teaching. According to Simon, a 

hypothetical learning trajectory is a teaching construct – something a teacher 

conjectures as a way to make sense of where students are and where the teacher 

might take them. It is hypothetical because an “actual learning trajectory is not 

knowable in advance” (p. 135). Teachers are agents who hypothesize learning 

trajectories for the purposes of planning tasks that connect students’ current 

thinking activity with possible future thinking activity. A teacher might ask, 

“What does this student understand? What could this student learn next and 
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how could they learn it?” and create a hypothetical learning trajectory as a way 

to prospectively grapple with these questions.  

The idea of learning progressions appears to have emerged first in the context 

of science education and is now virtually synonymous with learning trajectory. 

In a special issue of the Canadian Journal of Science, Mathematics, and Technology 

Education devoted to the topic of “long-term studies” of learning in science 

education, Shapiro (2004) traced the notion of learning progression in part to 

Rosalind Driver in her 1989 article, "Students' Conceptions and the Learning of 

Science." In it, Driver drew attention to the increasing number of studies of the 

development of children’s thinking in specific science domains that documented 

patterns in what she called conceptual progressions and sequences of conceptual 

progressions, which she termed conceptual trajectories  (Shapiro, 2004, p. 3). In 

contrast to Simon, the focus in that special issue of CJSMT was on describing 

children’s learning as it had actually occurred under a given set of conditions, 

rather than on a thought experiment about how it could occur. Neither of these 

senses of learning trajectory – as a teacher-conjectured possible progression or a 

researcher-documented progression of actual learners– predominates in current 

conceptions of the notion.  

Since 2004, there has been a groundswell of research that explicitly identifies 

itself as concerned with learning trajectories or progressions, as reflected in 

conferences and special journal issues (Clements & Sarama, 2004; Duncan & 

Hmelo-Silver, 2009), reports (Catley, Lehrer, & Reiser, 2005; Cocoran, Mosher, & 
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Rogat, 2009; Daro, Mosher, & Cocoran, 2011), and books (Clements & Sarama, 

2009). A report by the Center for Continuous Improvement in Instruction (Daro, 

et al., 2011) treats learning trajectories as interchangeable with learning 

progressions, reflecting the general trend. 

Because the metaphor of trajectory implies a sequenced path, researchers who 

focus explicitly on learning trajectories have taken pains to draw attention to 

their multidimensional character. For example, Clements and Sarama (2004) 

defined learning trajectories as complex constructions that include “the 

simultaneous consideration of mathematics goals, models of children’s thinking, 

teachers’ and researchers’ models of children’s thinking, sequences of 

instructional tasks, and the interaction of these at a detailed level of analysis of 

processes” (p. 87). Confrey and colleagues (2009) defined them as “researcher-

conjectured, empirically-supported description[s] of the ordered network of 

experiences a student encounters through instruction … in order to move from 

informal ideas … towards increasingly complex concepts over time” (p. 2).  

Three Points to Keep in Mind 

Learning Trajectories are Not Really New – So What does the Metaphor Buy Us? 

The idea that students’ learning progresses in some way as a result of 

instruction is at the very heart of the enterprise of mathematics education. 

Researchers have been studying students’ mathematics thinking and what it 

could mean for that thinking to progress in identifiable ways since long before 

the term learning trajectories was introduced. Chains of inquiry focused on 
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children’s mathematics learning – we could call these research trajectories – have 

stretched over decades. For example, Glenadine Gibbs’s (1956) study of students’ 

thinking about subtraction word problems helped to pave the way for later 

researchers such as Carpenter and Moser (1984) to create frameworks portraying 

the development of children’s thinking about addition and subtraction, and for 

Carpenter, Fennema, and Peterson to study how teachers used this information 

about children’s thinking to teach for understanding (Carpenter, et al., 1989; 

Carpenter, et al., 1999). Les Steffe and John Olive’s recent (2010) book on 

Children’s Fractional Knowledge detailing the evolution of children’s conceptual 

schemes for operating on fractions synthesized two decades’ worth of prior 

research, as did Karen Fuson’s findings on the development children’s multidigit 

operations (1992). None this work mentioned learning trajectories as such, but 

each focused on elucidating the development of children’s understanding and 

identifying major conceptual advances.  

Why then talk about learning trajectories now? The metaphor emphasizes the 

orderly development of children’s thinking and draws our attention to learning 

targets and possible milestones along the way.  

To what extent is this kind of assumption about learning warranted? That is, 

in what sense does children’s mathematics learning follow predictable 

trajectories? Some domains appear to readily lend themselves to analysis in 

terms of a pathway, such as the development of young children’s counting skills 

(Gelman & Gallistel, 1986). The progression of children’s strategies for addition 
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and subtraction story problems from direct modeling, to counting, to the use of 

derived and recalled facts also has been well established (Carpenter et al., 1999; 

Carpenter, 1985; Fuson, 1992). Yet even given such a robust progression in a 

basic content domain, how and when – and sometimes whether – children come 

to understand and use these strategies depends on a variety of factors differing 

from classroom to classroom and from child to child. Trying to represent 

research on learning in terms of trajectories quickly gets complicated, even for as 

fundamental a concept as rational number (e.g., Figure 2 “Learning Trajectories 

Map for Rational Number Reasoning,” in Confrey, Maloney, Nguyen, et al., 

2009) or measurement (Figure 1).  

  

Figure 1. Battista’s (2010) representation of one student’s actual learning path in 
measurement 
 

Other research suggests that the development of much of children’s thinking 

is more piece-meal and context-dependent than representations of learning 

trajectories might lead us believe (DiSessa, 2000; Greeno & MMAP, 1998). For 
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example, in a cross-sectional, cross-cultural study, Liu and Tang (2004) found 

differences in progressions of students’ conceptions of energy in Canada and 

China over several years of schooling, which they attributed to differences in 

curriculum and instruction in each country. The topic of rational numbers in 

mathematics has an ample research base that illustrates, in some cases 

meticulously, how children’s thinking about fractions could progress (Behr, 

Harel, Post, & Lesh, 1992; Davydov & Tsvetkovich, 1991; Empson & Levi, 2011; 

Hackenberg, 2010; Steffe & Olive, 2010; Streefland, 1991; Tzur, 1999). Taken 

collectively this research does not appear to converge on a single trajectory of 

learning.  

Why might this be? In practice, learning cannot be separated from tasks and 

the instructional context; the “selection of learning tasks and the hypotheses 

about the process of student learning are interdependent” (Simon & Tzur, 2004, 

p. 93). What children learn is sensitive to the context in which they learn it – a 

context that is constituted by many factors, including most immediately the 

types of instructional tasks and how teachers organize students’ engagement 

with these tasks.  

For example, in classrooms where part-whole tasks (Fig. 2a) dominate 

instruction on fractions, children learn to think about fractions in terms of 

counting parts rather than as magnitudes (Thompson & Saldanha, 2003). 

Students are likely to think about 5/8 as “5 out of 8” and of 8/5 as an impossible 

fraction. In classrooms where teachers have students solve and discuss equal 
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sharing tasks (Fig. 2b), children learn to think about fractions in terms of 

relationships between quantities and later in terms of a multiplicative 

relationship between numerator and denominator (Empson, Junk, Dominguez, & 

Turner, 2005; Empson & Levi, 2011). They are more likely to think of 5/8, for 

example, as 5 groups each of size 1/8, instead of “5 out of 8.” In classrooms 

where teachers engage students in reasoning about multiplicative comparisons 

of measures (Fig. 2c), students learn to think about fractions as a ratio of 

measures (Brousseau, Brousseau, & Warfield, 2004; Davydov &Tsvetkovich, 

1991; Steffe & Olive, 2010). Children learn to interpret 5/8 as a multiplicative 

comparison between 5 and 8. Both of these latter types of tasks – equal sharing 

and measuring – coupled with norms for engaging in tasks that put a premium 

on intellectual effort and agency (Hiebert & Grouws, 2007) – appear to constitute 

productive approaches to learning fractions. 

 

How much pizza is left on the plate? 
 

 
(a) 
 
8 children want to share 10 candy bars so that each one gets 
the same amount. How many candy bars can each child 
have? 
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(b) 
 
How long is B compared to A? A compared to B? 

 
(c) 
 

Figure 2. Examples of types of tasks to teach fractions: a) part-whole, b) equal 
sharing (with sample solution), and c) measurement 
 

Within the context of documenting regularities and patterns in the 

development of children’s thinking, however, it’s important to recognize 

individual children’s ways of reasoning and the significant contributions this 

reasoning could make to a group’s learning. To return to my research on equal 

sharing, for example, we found that students frequently produced strategies for 

solving problems that were, from the perspective of a trajectory, “out of 

sequence” and presented rich learning opportunities for other students (e.g., 

Turner et al., in press). There was a progression in what students learned but 

“deviations” were consistent and numerous, and, I am suggesting, fruitful – not 

anomalies to be ignored but significant occurrences that teachers could use to 

advance everyone’s learning.  

Consider first a simple progression of strategies for equal sharing (Empson & 
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Levi, 2011). To figure out how much one person got if 8 people were sharing 6 

burritos equally, a child using a basic strategy might draw all 6 burritos, decide 

to split each burrito into 8 pieces, and give each person 1 piece from each burrito 

for a total of 6 pieces. A more sophisticated strategy would involve imagining 

that each burrito could be split into 8 pieces and mentally combining those pieces 

to conclude that one person’s share consisted of 6 groups of 1/8 burrito or 6/8 

burrito. Ultimately, children come to the understanding that the problem can be 

represented by 6÷8, which is the same as 6/8.  

Within this simplified progression, there are several other ways to solve the 

problem that do not fall into a sequence and do not appear as an inevitable 

consequence of development. These other strategies were a function of specific 

quantities in a problem as well as what tools children were using and children’s 

prior knowledge. For example, a fifth grader solved the problem by reducing it 

to an equivalent ratio involving 1 1/2 burritos and 2 children, which she easily 

solved by finding half of 1 and half of 1/2 and combining the amounts (Fig. 3). 

Another fifth grader used a similar strategy, but used cubes to represent each 

quantity (8 total cubes for sharers, 6 total cubes for burritos), specifically 

highlighting the ratio character of the strategy. These strategies were 

appropriated by several children who saw them as more efficient and they 

provided an opportunity for the teachers to address concepts of fraction and 

ratio equivalence. 
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Figure 3. A solution for 6÷8 involving the equivalent ratios 3 for 4 and 1 1/2 for 2 
 

As students’ understanding develops and diversifies, they become more 

likely to see and make connections between their ways of thinking and different 

ways of thinking expressed by their fellow students. Making these connections 

enriches learners’ understanding and cultivates their ability to recognize and 

pursue new avenues of reasoning independently of the teacher’s direction and to 

monitor their thinking. The balance in instruction between supporting students’ 

agentic initiative and aiming to instill specific conceptions can be difficult to 

manage. Indeed, some researchers have cautioned that representing learning as 

progressive sequences of content understanding could lead teachers to direct 

students through the sequences at the expense of allowing students to “express, 

test, and revise their own ways of thinking” (Lesh & Yoon, 2004, p. 206; Sikorski 

& Hammer, 2010). At the same time, other research suggests that, at the right 

level of abstraction, representations of the progressive development of students’ 

understanding can enhance teachers’ ability to respond to students’ thinking in 

ways that open up or are generative of new possibilities (e.g., Franke et al. 2001). 
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In either case, it’s important to recognize that research on learning in specific 

mathematics domains has a long history that, while concerned with progress, 

may not fit easily into the idea of a single trajectory.  

Learning Trajectories Involve Specific Domains of Conceptual Development – So Their 

Reach May be Limited 

Researchers have made the study of mathematics learning more tractable 

by focusing in particular on conceptual development in specific content domains, 

represented by sets of well-defined, interrelated tasks. Steffe and Olive’s (2010) 

research on the development of fraction concepts and Clements and Sarama’s 

(2009) research on children’s understanding of measurement are examples of 

such an approach. This work, like a great deal of the research in mathematics 

education including my own, is informed by a Piagetian-like view of learning, if 

not in its emphasis on levels, then certainly in its emphasis on a conceptual 

trajectory, in which less sophisticated concepts give way to more sophisticated 

concepts. Because this work is based on children’s thinking about specific types 

of tasks, its power lies in its capacity to inform teachers’ use and interpretation of 

these tasks to foster students’ conceptual development in a coherent unit of 

study (e.g., Fennema et al, 1996; Simon & Tzur, 2004).  

However powerful, these kinds of portrayals of learning necessarily 

represent only one dimension or a small set of what we value as a field about 

mathematics and wish for students to learn. Learning is a multidimensional 

process, comprised of a variety of intertwined cognitive and social processes. In 
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particular, since the publication of Everyone Counts (National Research Council, 

1989) and the Curriculum and Evaluation Standards (National Council of Teachers 

of Mathematics, 1988), mathematics educators have increasingly focused on 

teaching students to engage in practices such as posing and solving problems 

(Hiebert et al., 1996), constructing models (Lesh & Doerr, 2003), and making 

convincing arguments (Lehrer & Schauble, 2007) – that is, to do mathematics. 

Doing mathematics involves a complex and integrated set of content 

understanding and disciplinary practices (Bass, 2011; Kilpatrick, Swafford, & 

Findell, 2001) as well as the ability to monitor the interplay between these things 

(Schoenfeld, 1992).  

The ability to engage in mathematical practices such as the ones above is 

as critical as content knowledge to a well-developed capacity to think 

mathematically, but it is less amenable to analysis in terms of sequences of 

development. For example, students engaged in mathematical modeling or 

problem solving may draw on multiple content domains and work 

collaboratively on tasks that have many possible resolutions such that the 

solutions they produce appear to follow no predictable trajectory over time. 

Examples of such tasks include creating simulations of disease spread (Stroup, 

Ares, & Hurford, 2005), optimizing the occupancy of a hotel during tourist 

season (Aliprantis & Carmona, 2003), and designing a template to generate a 

quilt pattern (Lesh & Doerr, 2003). These kinds of tasks and thinking practices 

pose considerable challenge for researchers seeking to codify and systematically 
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represent learning in terms of a trajectory, because of the variety of 

understanding and practices that students bring to bear in the their solutions. 

Learning trajectories may be limited in what they can and cannot specify 

in terms of learning mathematics over time; and in particular, they may not be 

applicable to certain critical aspects of the mathematics curriculum. Catley, 

Lehrer, and Reiser (2005) recognized this potential limitation when they argued 

that “scientific concepts are never developed without participation in specialized 

forms of practice” and “concepts are contingent on these practices” (p. 4) – such 

as the ones listed in the Common Core Standards in Mathematics (2010). Among 

others, these practices include making sense of problems and persevering in 

solving them; using appropriate tools strategically; attending to precision; and 

looking for and making use of structure (CCSM, 2010, pp. 6-8). Most, if not all, 

current characterizations of learning trajectories do not address the practices that 

engender the development of concepts – although it’s worth thinking about 

alternative ways to characterize curriculum standards and learning trajectories 

that draw teachers’ attention to specific aspects of students’ mathematical 

practices as well as the content that might be the aim of that practice.  

What is a reasonable unit of students’ mathematical activity for teachers to 

notice? If a unit is too small or requires a great deal of inference (e.g., a mental 

operation), then teachers in their moment-to-moment decision-making may not 

be able to detect it and respond to it; likewise if a unit is too broad or stretches 

over too long a period of time (e.g., “critical thinking”), teachers may not 
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recognize it when they are seeing it. The most productive kinds of units of 

mathematical activity would allow teachers to see and respond to clearly defined 

instances of student’s thinking during instruction and to gather information 

about students’ progress relative to instructional goals. For example, in research 

in elementary mathematics, strategies and types of reasoning are productive units 

because we know that teachers can learn to differentiate students’ strategies and 

use what they learn about students’ thinking to successfully guide instruction 

(e.g., Fennema, et al., 1996). Catley and colleagues (2005) proposed “learning 

performances” as a way to represent the “cognitive processes and associated 

practices linked to particular standards” (p. 5). Formative assessments that 

include a variety of points of access and possible solutions and that require 

students to engage in various mathematics practices could also yield rich 

information about students’ understanding of and engagement in mathematics 

(cf., Aliprantis & Carmona, 2003; Lesh & Doerr, 2003). The important thing is to 

take into account the interplay of practices and content in students’ learning over 

time.  

Teaching is Integral to Learning and Learning Trajectories 

Learning school mathematics depends on teaching. To support learning, 

teachers need be able to “understand, plan, and react instructionally, on a 

moment-to-moment basis, to students' developing reasoning” and coordinate 

these interactions with learning goals (Battista, 2010). Similarly, Daro and 

colleagues (2011) concluded that:  
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Teachers are going to have to find ways to attend more closely and regularly 
to each of their students during instruction to determine where they are in 
their progress toward meeting the standards, and the kinds of problems they 
might be having along the way. Then teachers must use that information to 
decide what to do to help each student continue to progress, to provide 
students with feedback, and help them overcome their particular problems to 
get back on a path to success. (Daro et al., 2011, p. 15)  
 
We know very little about how teachers do these things, in contrast to what 

we know about children’s learning, whether it falls under the rubric of learning 

trajectory research or not. As teachers interact with students and decide how to 

proceed, there are many types of decisions to be made – how to gather 

information about children’s thinking, how to respond to it appropriately in the 

moment, how to design tasks that extend it, and even what to pay attention to. 

With the right tools, teachers have access to the most up-to-date information 

about each student, what they understand and are able to do, their disposition, 

their history, and so on, and can make decisions based on their own informed 

understanding of these things and their relationships. Good tools, such as 

formative assessment frameworks in particular, enhance this knowledge and 

support teachers to engage in the active, contingent process of creating 

instructional trajectories informed by knowledge of actual children’s learning. 

Further, learning mathematics in school takes work and depends 

fundamentally on interpersonal relationships of trust and respect, which cannot 

be designed into a tool or a list of learning goals. Teaching is a relational act and 

the relationship between the teacher and the student is at the center of students’ 

learning in school (Gergen, 2009; Grossman & McDonald, 2008). These 
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relationships can have a profound effect on what students learn and how they 

come to see themselves.  

In the face of what can seem like a tidal wave of top-down mandates, I 

suggest that we mathematics educators keep sight of the fact that teaching is 

driven essentially by interpersonal relationships and happens from the bottom 

up, beginning with the teacher and the student relating to each other and the 

content. We need to be sure that teachers are equipped with knowledge of the 

domain and its learning milestones without forgetting that both teachers and 

students are active agents in learning.  

Closing Thoughts 

 “Clearly … the trajectories followed by those who learn will be extremely 

diverse and may not be predictable” (Lave & Wenger, 1991) 

In choosing to focus on learning trajectories, we embrace a metaphor that, for 

all its appeal, implies that learning unfolds following a predictable, sequenced 

path. Everyone knows it is not that simple; researchers and educators alike 

acknowledge the complexity of learning. As Simon (1995) emphasized, learning 

trajectories are essentially provisional. We can think of them as the provisional 

creation of teachers who are deliberating about how to support students’ 

learning and we can think of them as the provisional creation of researchers 

attempting to understand students’ learning and to represent it in a way that is 

useful for teachers, curriculum designers, and test makers.  
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I firmly believe that a critical part of our mission as researchers is to produce 

something that is of use to the field and serves as a resource for teachers and 

curriculum designers to optimize student learning. No doubt this includes 

creating, testing, and refining empirically based representations of students’ 

learning for teachers to use in professional decision-making and, further, 

investigating ways to support teachers’ decision-making without stripping 

teachers of the agency needed to hypothesize learning trajectories for individual 

children as they teach. This focus would add a layer of complexity to our 

research on learning and invite us to think seriously about how to support 

teachers to incorporate knowledge of children’s learning into their purposeful 

decision-making about instruction. Further, I suggest we consider, in the end, 

“Whose responsibility is it to construct learning trajectories?” (Steffe, 2004, p. 

130). If we researchers can figure out how to supply teachers with knowledge 

frameworks and formative assessment tools to facilitate their work, teachers will 

be able to exercise this responsibility with increasing skill, professionalism, and 

effectiveness.  

Because of the growing popularity of learning trajectories in education circles, 

it is worth thinking hard about the role of learning trajectory representations in 

teaching, and in particular, whether a learning trajectory can exist meaningfully 

apart from the relationship between a teacher and a student at a specific time and 

place. Simon’s (1995) perspective on teaching and learning suggests not. As the 

field moves forward with research on learning trajectories and strive for 
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coherence in learning across the grades, I would like to remain mindful of both 

the affordances and constraints this particular type of representation offers for 

teachers and students alike. 
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