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THE JOURNAL (WHEEL) KEEPS ON TURNING  

Bharath Sriraman 
The University of Montana 

 
 

The title of this editorial is a spinoff on the opening lyrics of a famous Lynyrd Skynyrd song (fill 
in the blank: Sweet Home__________). When the song came out in the 70’s the popular media 
misunderstood the song and took some of its lyrics to mean support for the (infamous) George 
Wallace’s governorship of Alabama, when in fact the band sarcastically boo’ed his segregative 
policies that scarred the South. The song goes 

 

In Birmingham, they love the governor (boo boo boo) 
Now we all did what we could do 

Now Watergate does not bother me 
Does your conscience bother you? 

 

 
These lines bring me to the theme of this editorial, which is namely: (1) What does it take to 
keep the journal’s wheel turning (running, moving, progressing), and (2) “Does your conscience 
bother you?” 
 
Issue #3 brings volume 6 for the year 2009 of the journal to an end. It consists of 14 feature 
articles, one Montana feature and a book review which total ~ 250 pages and could easily 
constitute another double issue. Since 2008, we have increased the number of issues of the 
journal to 3 per year with occasional supplemental issues, but this has also increased the time and 
effort needed to consistently produce high quality issues that address the scope the journal 
purports to cover. In addition the Montana Monograph Series in Mathematics Education is also 
thriving. This year alone three new monographs have been produced:  Interdisciplinarity, 
Creativity and Learning (Monograph 6), Critical Issues in Mathematics Education (Monograph 
7), and Relatively and Philosophically Earnest (Monograph 8) which is a Festschrift to celebrate 
Paul Ernest’s 65th Birthday this year. Several other monographs are in the works on the topics of 
discourse in addition to a Sourcebook on Nordic Research in Mathematics Education.  
 
The size, breadth and depth of this issue is a good indicator that The Montana Mathematics 
Enthusiast continues to flourish thanks to support and the continual flow of manuscripts from all 
over the world. However, it has become increasingly difficult for us to get timely reviews on 
some manuscripts because the critical mass of reviewers seem to be spread thin across the 
numerous journals in mathematics education, and tend to be otherwise busy people. Having said 
that, if we as a community want to keep this journal as an outlet for diverse ideas (mathematical, 
educational, political, cultural), innovation, with free access, as well as consistently maintain 
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quality control to ensure high standards of scholarship, then we need your time, support and 
conscience in the review process. As opposed to the lyric that said “Now we all did what we 
could do”, we all now have to do, what we can do. Readers interested in getting listed as 
reviewers should contact me and list areas in which they can review manuscripts. Again, we are 
interested in those that believe in constructive reviews and we continue to encourage researchers 
from under-represented regions of the world to consider the journal as an outlet for their 
scholarship. 
 
 
In this issue, we have articles that cover a wide spectrum of mathematics and mathematics 
education. Two of the articles are slanted towards geometry and art, and some others build on 
topics covered in earlier issues such as the article by Xia and Xia that makes use of Maple to 
automate theorem proving in elementary geometry. As usual the articles have been written by a 
diverse array of authors from 9 different countries, some of whom have recently completed their 
doctorates, some that are on the cusp of finishing their dissertations, and others by more 
experienced and seasoned authors. Three of the papers happen to be from Canada- and I’m 
happy about our northern neighbors supporting the journal. The international reader may be 
unaware that Montana shares a border with British Columbia, Alberta and Sasketchwan. 
 
 
Several papers in this issue relate directly to teaching and learning situations in mathematics 
classrooms that hopefully interest mathematics teachers that read the journal. In addition there 
are articles that report on research in mathematics education that cover mathematical modeling, 
cognition and affective issues. The Montana feature by Elijah Bodish is an expository article on 
the relationship between the work of the Cubists and the 4th dimension. Finally, a review of Anna 
Sfard’s Thinking as Communicating is also included in this issue.  
 
 
In keeping with the theme of the journal wheel turning- 2010 promises to be another good year 
for the journal. Two special issues are planned, one on creativity and giftedness (vol7, no2) being 
guest edited by Ali Rejali (Iran) and Viktor Freiman (Canada), and another issue (vol7, no3) 
focused regionally on Montana and its neighbors. On a parting note, anyone interested in guest 
editing a special issue of the journal is encouraged to send in a proposal outlining the topic they 
propose to cover with a list of authors and reviewers. Again, offers to review books and 
commentaries on previously published papers are also welcome. Thank you for making the 
journal an integral part of the community. Have a great summer (or winter) depending on your 
hemispheric orientation. 
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Two Applications of Art to Geometry

Viktor Blåsjö∗

Geometry and art exploit the same source of human pleasure: the exercise of our spatial in-
tuition. It is not surprising, then, that interconnections between them abound. Applications
of geometry to art, of which we shall indicate a few, go back at least to Alberti’s De Pictura
(1435). But although geometry started out, as it so often does, as a most courteous suitor in
its relationship with art, it was soon to be affectionately rewarded. We shall study two of these
rewards.

Geometry applied to art
Let us indicate briefly how geometry may be applied to art. A perspective painting distorts sizes
and shapes. A building in the distance may be smaller than a man’s head, the circular rim of a
cup becomes an ellipse, etc. Lines, however, always remain lines. This simple fact is the key to
drawing tiled floors (figure 1), as Alberti explained in De Pictura, because it guarantees that the
diagonal of the first tile is also the diagonal of successive tiles. Furthermore, all lines parallel to
the viewer’s line of sight will meet at one point in the picture, namely the point perpendicularly
in front of the viewer’s eye (the so-called “centric point”). The horizon is the horizontal line
through this point, because if the observer looks downwards from there, no matter how little,
then the ray from his eye will hit the ground, whereas is he looks upwards it will not, so this is
indeed the boundary between ground and sky (here we are assuming, of course, that the earth
is flat). Thus, for example, placing the centric point close to the ground gives the viewer the
impression that he is lying down. This trick is used to great effect by Mantegna in St. James led
to Execution (figure 2). It also follows, in the words of Alberti, that the horizon is “a limit or
boundary, which no quantity exceeds that is not higher than the eye of the spectator . . . This is
why men depicted standing in the parallel [to the horizon] furthest away are a great deal smaller
than those in the nearer ones—a phenomenon which is clearly demonstrated by nature herself,
for in churches we see the heads of men walking about, moving at more or less the same height,
while the feet of those further away may correspond to the knee-level of those in front.” (De
Pictura, Book I, §20, quoted from the Penguin edition, Alberti (1991, p. 58).) For more on the
role of geometry in Renaissance art see, e.g., Kline (1985, ch. 10) and Ivins (1973).

∗E-mail: viktor.blasjo@gmail.com.
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Figure 1: Drawing a tiled floor.

Figure 2: Mantegna’s St. James led to Execution.

Newton’s classification of cubic curves

Let us now turn to the applications of art to geometry. Our first example is Newton’s classi-
fication of cubic curves. The classification of curves is the zoology of mathematics—indeed,
Newton spoke of dividing curves into different “species.” Art provides a picturesque criteria for
whether two curves should be considered to be of the same species or not: two curves are of
the same species if one is a projective view of the other, i.e., if when painting the picture of one
curve you obtain the other. Newton (1695), §5, used this idea to classify cubics “by shadows,”
as he said, into the five equivalence classes illustrated in figure 3 (for more details see Newton
(1981), vol. VII, pp. 410–433, Newton (1860), Ball (1890), Brieskorn and Knörrer (1986),
Stillwell (2002)). We shall show where y = x3 fits into this classification by showing that it is
equivalent to y2 = x3 (the mirror image of the middle curve in figure 3). The classification of
cubics is a natural setting for the use of projective ideas because cubics are the next step beyond
conics, which are themselves too easy: projectively, they are all the same; any section of a dou-
ble cone projected from the vertex of the cone (the eye point) onto a plane perpendicular to the
axis (the canvas) comes out as a circle.

We imagine ourselves standing on top of the flat part of y = x3 and painting its image on a
canvas standing perpendicular to the plane of the curve (figure 5a). I say that the painting comes
out looking like figure 5b. First of all, the dashed line represents the horizon. Let us focus first



TMME, vol. 6, no. 3, p. 299

Figure 3: The five projective equivalence classes of cubic curves. (From Newton (1860).)

y = x3 y2 = x3

Figure 4: Two equivalent cubic curves.

on the part of figure 5b below the horizon, which is supposed to be the image of everything
in front of us. Apparently, even though the curve y = x3 goes of to our right, we will see it
meeting the horizon straight ahead of us. We understand why by looking at the support lines
drawn in the figures. The dotted line and the brush stroke line on our right are parallel so in the
picture they should meet at the horizon (like railroad tracks, if you will). Since the curve y = x3

essentially stays between these two lines (almost all of it, anyway), it must stay between them
in the picture as well, so it is indeed forced to meet the horizon straight ahead of us. The part
above the horizon is similar, but we must allow for a mathematical eye that can see through the
neck, so to speak. To draw the image of any point in front of us we connect it to our eye with
a line and mark where this line intersects the canvas. To draw the image of any point behind us
we use the same procedure, ignoring the fact that the canvas is no longer between the eye and
the point.
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(a) (b)

Figure 5: Projective equivalence of y = x3 and y2 = x3.

Desargues’ theorem

We shall now see how Desargues’ theorem emerges beautifully from natural ideas of perspective
painting, namely the “visual ray construction” of ’sGravesande (1711) (see Andersen (2006) for
a modern commentary). Desargues’ theorem is one of the great results of projective geometry.
Let us first look briefly at what it says and how we can think about it. The theorem says: if two
triangles (ABC and A′B′C ′) are in perspective (i.e., AA′, BB′, CC ′ all go through the same
point, O) then the extensions of corresponding sides (AB and A′B′; BC and B′C ′; AC and
A′C ′) meet on a line. Desargues’ theorem is especially easy to think about in three dimensions,
as indeed Desargues himself did (as conveyed to us by Bosse (1648); see Field and Gray (1987,
chapter VIII)). Consider a triangular pyramid. Cut it with two planes to get two triangles. The
three points of intersection of the extensions of corresponding sides will or course be on a
line (the intersection of the two planes). By projecting the triangles onto one of the walls of
the pyramid we get two plane triangles in perspective and the theorem holds for them also. So
Desargues’ theorem holds for any two triangles in perspective that can be obtained by projection
from a triangular pyramid. We feel that any triangles in perspective can be obtained in this way
so Desargues’ theorem is proved. Now let us see what it has to do with art.
Visual ray construction of the image of a line. We shall draw the perspective image of a
ground plane. To do this we rotate both the eye point and the ground plane into the picture
plane: the ground plane is rotated down about its intersection with the picture plane (the “ground
line”) and the eye is rotated up about the horizon. Consider a line AB in the ground plane. The
intersection of AB with the ground line is of course known. The image of AB intersects the
horizon where the parallel to AB through the eye point meets the picture plane, and parallelity is
clearly preserved by the turning-in process. So to construct the image of AB we turn it into the
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B'
A

B
C

A' C'

O

Figure 6: Desargues’ theorem.

picture plane and mark its intersection with the ground line and then draw the parallel through
the eye point and mark its intersection with the horizon; the image of AB is the line connecting
these two points.
Collinearity property of the visual ray construction. Draw the line connecting a turned-in
point A and the turned-in eye point. The image of A is on this line because if we turn things back
out the eye-point–to–horizon part of the line will be parallel to the A–to–ground line part of the
line, so that the image part of this line is indeed the image of the A–to–ground-line line.

horizon

ground plan
e

ground line

eye plane

picture plane

horizon

ground line

turned-in eye plane

turned-in ground plane

turned-in eye point

A

B

Figure 7: The visual ray construction.

Desargues’ theorem by the visual ray construction. Construct the perspective image A′B′C ′

of a triangle ABC. By the image-of-a-line construction, intersections of extensions of corre-
sponding sides are all on a line, namely the ground line, and by the collinearity property A′B′C ′

and ABC are in perspective from the eye point, so we have Desargues’ theorem.
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A

B

C

A'
C'

B'

Figure 8: Desargues’ theorem by the visual ray construction.

A more conventional proof of Desargues’ theorem would be to use projective simplification, fol-
lowing Poncelet (1822, cf. §168). This proof is less directly influenced by art, but nevertheless
the basic idea comes from our intuition with paintings, namely the idea of the horizon—“the
line at infinity.” In real life the horizon is intangible, but in a painting it is just a line like any
other. And in real life parallel lines never meet, but in the painting they meet at the horizon, at
a point like any other. Thus art suggests an alternative to Euclidean geometry where the line at
infinity is just as real as any other line and where there is no such things as lines that never meet.
Now let us use these ideas to prove Desargues’ theorem. AB and A′B′ will meet somewhere,
and BC and B′C ′ will meet somewhere; grab the line determined by these two points and put it
at the line at infinity, which is, as we said, a line like any other. This means that, in our picture
(figure 9), AB will be parallel to A′B′, and BC will be parallel to B′C ′. We need to show that
AC and A′C ′ meet at the same line, i.e., at the line at infinity, i.e., that AC and A′C ′ are also
parallel. Recall that AC is parallel to A′C ′ if and only if OA/AA′ = OC/CC ′. Using this
result on the two pairs of lines that we already know are parallel gives OA/AA′ = OB/BB′

and OB/BB′ = OC/CC ′. So OA/AA′ = OC/CC ′ and thus AC and A′C ′ are parallel.

A

B

C

O

A'

B'

C'

Figure 9: The simplified Desargues’ configuration.
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Intuitions of “infinite numbers”: Infinite magnitude vs. infinite representation 

 

Ami Mamolo1 
Simon Fraser University 

 

Abstract. This study examines undergraduate students’ emerging conceptions of 

infinity as manifested in their engagement with geometric tasks. Students’ attempts to 

reduce the level of abstraction of infinity and properties of infinite quantities are 

described. Their arguments revealed they perceive infinity as an ongoing process, rather 

than a completed one, and fail to notice conflicting ideas. In particular, confusion 

between the infinite magnitude of points on a line segment and the infinite 

representation of real numbers was observed. Furthermore, students struggled to draw a 

connection between real numbers and their representation on a number line. 

 

Keywords: Infinity; Infinite numbers; Intuition; Magnitudes; Real numbers; 

Representations;  
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From time immemorial, the infinite has stirred men’s emotions 

more than any other question. Hardly any other idea has 

stimulated the mind so fruitfully (Hilbert, 1925, p.136). 

 

Infinity has played an important role in the historical development of mathematics and 

mathematical thought. From as early as 450 BC, mathematicians and philosophers have been 

intrigued by the ethereal dance of infinity. Over the centuries, as an understanding of infinity 

developed and changed, mathematics too evolved, reflecting the community’s emerging 

understanding of a concept so heavily shrouded in mystery. With time it eventually became clear 

that not one, but many, concepts of infinity have a place in mathematics. This paper is concerned 

with two types of infinity, and the interplay between them: potential infinity, that which is 

inexhaustible, and actual infinity, “the infinite present at a moment in time” (Dubinsky, Weller, 

McDonald, & Brown, 2005, p.341).   

This study is part of broader investigations regarding university students’ naïve and 

emerging conceptions of infinity and transfinite arithmetic as they attempt to coordinate intuition 

and reflection with formal instruction. In what follows, students’ engagement with geometric 

representations of infinity are described and used as a lens to their understanding of infinity and 

arithmetic properties of ‘infinite numbers’. In particular, students’ conceptions as they attended 

to the number of points ‘missing’ from the shorter of two line segments are of interest. This 

paper also explores what sort of connection, if any, participants made between a geometric 

representation of infinity and a numeric one. These can be seen as the main contributions of this 

study, complementing and extending prior research, which focused on learners’ conceptions 

regarding the comparison of infinite sets. 
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This story of ‘infinite numbers’ begins with an exposition of the related literature 

regarding students’ conceptions of infinity, as well as the theoretical perspectives that guided this 

study. Following that, the design of the study is described, and key findings are presented and 

analysed. The paper concludes with a summary of the main findings and suggestions for future 

avenues of investigation. 

1. BACKGROUND 

Students’ reasoning concerning cardinal infinity has been a popular focus of current research 

(see among others: Dreyfus & Tsamir 2004; Tsamir, 1999, 2001; Tsamir & Dreyfus, 2002; 

Weller, Brown, Dubinsky, McDonald, & Stenger, 2004). The body of literature ranges from 

expositions of learners’ intuitive understanding of infinity (e.g. Fischbein, Tirosh, & Hess, 1979) 

to developing pedagogical tasks that will encourage a deliberate use of formal definitions (e.g. 

Tsamir & Tirosh, 1999). A prominent trend has been to examine learners’ conceptions through a 

lens of set theory – that is, students are presented with numeric sets, such as {1, 2, 3, …} and {2, 

4, 6, …}, and are asked to draw cardinality comparisons. Their conceptions are then analysed 

based on the techniques or principles they apply to the task.  

In a study conducted by Tsamir and Tirosh (1999), they noticed that visual presentations 

of sets had an impact on high school students’ intuitive responses. For instance, one task had 

students compare the cardinalities of the two sets {1, 2, 3, …} and {4, 8, 12, …}. When the sets 

were expressed numerically, many students relied on the inclusion or ‘part-whole’ method for 

comparison and concluded that the set of natural numbers was greater than the set of multiples of 

four. Tsamir and Tirosh (1999) created a follow up task that presented the corresponding sets 

geometrically in such a way as to emphasize their one-to-one correspondence. Students were 

asked to consider a set of line segments with increasing lengths – i.e. {1cm, 2cm, 3cm,…} – and 
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then to imagine constructing squares in such a way that the segments were of the same lengths as 

the sides of the squares. Both the set of line segments and the set of squares were depicted 

pictorially with the lengths and perimeters written below each segment and square, respectively. 

Through this analogy students could attend to the natural correspondence between a side and a 

perimeter of a square, and as such, they were more likely to recognise the one-to-one 

correspondence between the sets {1, 2, 3, …} and {4, 8, 12, …}. Tsamir and Tirosh (1999) were 

able to make use of the tangible nature of a geometric figure in order to emphasise 

correspondences between numerical sets, and also to draw students’ attention to the 

inconsistencies of comparing infinite sets with different methods.  

Inconsistencies in middle school students’ intuitions about infinity were documented by 

Fischbein et al. (1979), who interpreted students’ intuitions as they addressed issues such as the 

divisibility of line segments of different lengths, or the number of points on geometric figures of 

different dimension. The divisibility task consisted of comparing the number of times two line 

segments could be halved. The majority of students reasoned that although both line segments 

could be halved infinitely, the process would finish sooner on the shorter segment. Similarly, 

when comparing the set of points on a line segment with the set of points on a square, the 

common response alluded to infinities of different ‘size’. Students appealed to ‘part-whole’ 

arguments, and reasoned that as the line segment was included as part of the square, the two sets 

must have different cardinalities, though both were infinite. These responses were in contrast to 

other observations of Fischbein et al. (1979), which suggested infinity was conceived of as a 

single, endless entity. Fischbein et al. concluded that the intuition of infinity is very labile and 

“sensitive to the conceptual and figural context of the problem” (1979, p.31). 
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The belief that there is only a single, endless infinite surfaced as a persuasive intuition of 

middle school students when they addressed set comparison tasks in a similar study by Fischbein 

et al. (1981). As part of the study, participants were asked to compare the cardinality of the set of 

natural numbers with the cardinality of the set of real numbers represented as a number line. The 

typical response that “there is an infinity of points on the line, and there is an infinity of natural 

numbers” (Fischbein et al., 1981, p.506), and so the two sets must be equinumerous is incorrect 

when judged by mathematical convention. Students’ responses indicated that infinity was 

conceived of mainly as potential, that is, as an inexhaustible process. The association of infinity 

with inexhaustibility has also surfaced in undergraduate university students’ views regarding 

limits in calculus (Sierpinska, 1987; Schwarzenberger & Tall, 1978; Williams, 1991). Fischbein 

suggested that such an association is “the essential reason for which, intuitively, there is only one 

kind, one level of infinity. An infinity which is equivalent with inexhaustible cannot be surpassed 

by a richer infinity” (2001, p.324). 

2. THEORETICAL FRAMEWORK 

Three inter-related frameworks are used in this study to interpret students’ intuitions of infinity 

as well as their ideas after instruction: reducing abstraction (Hazzan, 1999), APOS: Action, 

Process, Object, Schema (Dubinsky & McDonald, 2001), and ‘measuring infinity’ (Tall, 1980). 

In Hazzan’s (1999) perspective, reducing the level of abstraction of a mathematical entity 

occurs as a learner attempts to understand unfamiliar and abstract concepts. Hazzan (1999) 

described several ways students make sense of new concepts by reducing levels of abstraction. 

For instance, Hazzan noted “students’ tendency to work with canonical procedures in problem 

solving situations” (1999, p.80). That is, by basing arguments on familiar mathematical entities 

to cope with unfamiliar concepts, students lower the level of abstraction of those concepts. In the 
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context of infinity, one such example is students’ use of familiar (finite) measuring properties to 

interpret infinite quantities of measurable entities, such as the quantity of points on a line 

segment. This example of reducing the level of abstraction of infinity relates to Tall’s (1980) 

notion of ‘measuring infinity.’ 

Tall (1980) suggested intuitions of infinity can develop by extrapolating measuring, 

rather than cardinal, properties of numbers. Many of our everyday experiences with 

measurement and comparison associate ‘longer’ with ‘more.’ For example, a longer inseam on a 

pair of pants corresponds to more material. Likewise, a longer distance to travel corresponds to 

more steps one must walk. Tall (1980) proposed extrapolating this notion can lead to an intuition 

of infinities of ‘different sizes.’ A measuring intuition of infinity coincides with the notion that 

although any line segment has infinitely many points, the longer of two line segments will have a 

‘larger’ infinite number of points. Tall (1980) called this notion ‘measuring infinity’ and 

suggested it is a reasonable and natural interpretation of infinite quantities, especially when 

dealing with measurable entities such as line segments. I would like to suggest that the intuition 

of ‘measuring infinity’ might develop as a consequence of learners’ attempts to lower the level 

of abstraction of comparing the infinite cardinalities of points on line segments of different 

lengths. 

Reducing the level of abstraction is further proposed by Hazzan (1999) to reflect a 

process conception of an entity. Process and object conceptions of mathematical entities are 

described in another of the theoretical frameworks to which I refer: that of the APOS (Action, 

Process, Object, Schema) theory (Dubinsky & McDonald, 2001). Dubinsky, Weller, McDonald, 

and Brown (2005) proposed an APOS analysis of two conceptions of infinity: actual and 

potential. The distinction between potential infinity, which can be thought of as endless, and 
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actual infinity, a completed entity that encompasses what was potential, was first made by 

Aristotle. He, like many after him, denied the existence of actual infinity (Moore, 1995). The 

idea that infinitely many objects could be gathered together and thought of as a totality, was, and 

continues to be, very difficult. A more natural conception of infinity is that of potential, or 

dynamic, infinity (Fischbein, 2001). Fischbein considered dynamic infinity as “processes, which 

are, at every moment, finite, but continue endlessly” (2001, p.310).  

Dubinsky et al. (2005) suggested that an understanding of potential infinity corresponds 

to a process conception in APOS terminology. That is, infinity is imagined as performing an 

endless action, although without having to execute each and every step. Conversely, an 

understanding of actual infinity develops when one is able to consider the process as a totality, 

i.e., when one can encapsulate it into an object. To connect this perspective to the infinite 

number of points on a line segment, a conception of potential infinity would correspond to, say, 

an action of marking or ‘creating’ points on a segment that is imagined to continue indefinitely. 

While actual infinity is illustrated by the idea that the infinite number of points exists as a 

completed entity, without needing to be marked.  

Dubinsky et al. proposed encapsulation occurs once one is able to think of infinite 

quantities “as objects to which actions and processes (e.g., arithmetic operations, comparison of 

sets) could be applied” (2005, p.346). They also suggested that encapsulation of infinity entails 

“a radical shift in the nature of one’s conceptualisation” (2005, p.347). In terms of APOS theory, 

Hazzan argued that a “process conception of a mathematical concept can be interpreted as on a 

lower level of abstraction than its conception as an object” (1999, p.79).  

APOS theory and the idea of ‘measuring infinity’ are used in my study to interpret 

undergraduate students’ emergent conceptions as they attempt to reduce the level of abstraction 
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of infinity. Specifically, the questions addressed in this paper are: 1. What connections do 

students make between geometric and numeric representations of infinity, i.e. between points on 

a line and real numbers? 2. What can be learned about students’ conceptions of infinity as they 

address properties of transfinite arithmetic? 

3. SETTING AND METHODOLOGY 

The participants of this study were 24 undergraduate university students in an interdisciplinary 

design and technology program, who had no mathematical background beyond high school. 

They were enrolled in the course “Foundations of Academic Numeracy”, which was designed to 

develop quantitative and analytic reasoning. One of the objectives of the course was to provide 

an opportunity for students to engage in critical analysis and reflection regarding some of the 

fundamental ideas in mathematics. The topic of infinity was included as one of these 

fundamental ideas. 

Data collection relied on two main sources: (i) individual written responses to “reflection 

activities”, and (ii) follow up interviews with two of the participants. The “reflection activities” 

were essentially a series of written questionnaires administered over several weeks. The rationale 

behind these reflections was to elicit students’ naïve conceptions and then to encourage them to 

reconsider, develop, and critique the underlying ideas through subsequent questioning. Tasks 

were formulated based on students’ previous responses and common themes that emerged from 

the class. It was important, both for research and instructional purposes, that students’ responses 

were not affected by seemingly correct solutions or the desire to appease their instructor. In order 

to avoid swaying students’ responses, very little instruction was provided initially, and it was 

made clear that there was no one ‘right’ answer being sought. The activities reflected this in their 
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design by, for example, recalling students’ previous responses and presented them with a slight 

twist, so as to encourage them to challenge the issues they had unearthed. Other questions 

presented students with a dubious argument that claimed to be from one of their peers, in order to 

provoke a critique of the ideas involved. The basis for both styles of question was to avoid 

presenting an authoritative position. Students addressed each issue based on its appeal to their 

own emerging ideas. 

At the end of the course, an instructional discussion on cardinality and infinite sets 

occurred. The discussion included comparing cardinalities of countable and uncountable infinite 

sets through one-to-one correspondences, or the idea of ‘coupling’. Some of the specific 

conceptions that arose in students’ reflections were also addressed. In the subsequent months, 

follow up interviews were conducted with two students, Lily and Jack. The interviews further 

explored their naïve and emerging conceptions of infinity. 

The study began with two preliminary questionnaires, which included items a) and b) 

below. These tasks set the stage for exploring students’ connection between numeric and 

geometric representations of infinity. 

a) How many fractions can you find between the numbers 
1

 19  and 
1

 17 ? How do you 

know? 

b) How many points are there on a line segment? How do you know? 

Later questionnaires focused on the sets of points on line segments of varying lengths, and were 

intended to investigate ideas regarding ‘infinite numbers’ as well as ‘infinite number properties.’ 

Due to the contingent nature of the activities, details concerning the specific questions are 

developed in the following section. 
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The primary focus of this paper is on students’ responses to two questionnaires in 

particular. The first (Q1, section 4.2) confronted students with an idiosyncrasy of infinite 

quantities and asked for an explanation. Of particular interest was the response of one 

participant, Lily. Her attempt to formulate an argument that was consistent with her experiences 

and intuitions prompted a follow up to Q1. In this follow-up (Q2, section 4.3), students were 

asked to respond to Lily’s argument as well as to a variation of it.   

4. RESULTS AND DISCUSSION 

4.1 Infinite values, finite points 

From the early stages of the study, a clear disconnect in students’ conceptions of points on a real 

number line and numbers was observed. Typical arguments to item a), which concerned the 

number of fractions between 
1
19  and 

1
 17 , are exemplified by the following two responses: 

“Infinite. Because there are endless numbers that can be put into the numerator or the 

denominator and still making sure the fraction is larger than 
1
19  and smaller than 

1
17”;    

and 

“You can find an infinite amount of fractions in between 
1
17 and 

1
19  because you can 

continue to add digits after the decimal point forever (e.g. 
1
18, 

1.3
18 , 

1.3625
18 , etc.) making 

the fractions a little bigger or smaller.” 

There are two common threads in these responses. One is the idea of potential infinity. The 

notions of “endless numbers” or adding “digits after the decimal point forever” imply infinity is 

conceived of as a process. The idea of changing the numerator or denominator corresponds to an 

action that is imagined to continue “forever”, and is consistent with Fischbein et al.’s (1981) 
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suggestion that infinity is intuitively thought of as inexhaustible. The second common thread in 

these and similar responses relates to students’ conceptions of number. Both of these arguments 

describe processes being carried out with fractions. That is, students were attending to the 

rational numbers within the interval, but failed to address the irrational numbers. This might a 

consequence of the task itself, as the endpoints of the interval were rational numbers rather than 

irrational ones. However it may be more likely due to students’ familiarity and comfort with 

rational numbers over irrational ones. 

In response to item b), regarding the number of points on a line segment, the majority of 

participants (17 out of 24) indicated that points were either the places that a line segment begins 

and ends, or else they were markers that partition a line segment into equal units. These 

responses were surprising in light of students’ responses to item a), and their ideas regarding the 

infinite number of ‘values’ on any line segment. Students’ arguments supporting an infinite 

number of ‘values’ on a line segment were similar in nature to their arguments regarding item a) 

above. They described processes of finding “as many values as we want”, however they 

distinguished between the finite number of points that existed on a line segment and the infinite 

number of points that could be “given a value” or labelled. As before, these arguments indicate a 

process conception of infinity. Further, the idea of ‘finding values’, or ‘creating points’ by 

assigning them values, may be interpreted as an attempt to reduce the level of abstraction of an 

infinite yet bounded quantity. 

Students’ distinction between point and value prompted a class discussion regarding the 

geometry of points and lines to establish a shared understanding (to use the term loosely) of the 

infinite magnitude of points (rather than ‘values’) on a line segment. The questionnaire following 

this discussion related to the number of points on line segments of different lengths, and 
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prompted students to reflect on the number of points ‘missing’ from the shorter of the two 

segments. The following specific question was posed: 

Consider line segments A and C again.  Suppose that the length of A is equal to the 

length of C + x, where x is some number greater than zero, as depicted below.  What 

can you say about the number of points on the portion of A whose length is x? 

 

In order to investigate both students’ rationale when comparing the number of points on line 

segments of different lengths, and students’ intuitions regarding subtracting infinite quantities, 

Q1 presented their conclusions with a slight twist.  

4.2 Subtracting infinity 

Q1. On a previous question, you reasoned that two line segments A and C both have 

infinitely many points.   

      

Suppose that the length of A is equal to the length of C + x, where x is some number 

greater than zero. You also previously suggested that the segment with length x has 

infinitely many points. That is, the ∞ points on A minus the ∞ points on C leaves an ∞ 

number of points on the segment with length x. Put another way,  

∞ - ∞ = ∞. 

Do you agree with this statement? Please explain. 

Participants’ responses to Q1 revealed inconsistencies in students’ conceptions, as well as a 

strong intuitive resistance to the idea of subtracting infinite quantities. Jack, for instance, 

experienced a conflict as a conception of infinity emerged that contrasted his intuition. 
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Previously, Jack had described infinity as a “hypothetical number” that is “the biggest number 

you can get”, and for which “you’d have to count your whole life and you still would never get 

there.” Intuitively, Jack seemed to conceive of infinity as an unattainable extension of ‘very big’. 

His comment that counting your whole life “still would never get [you] there” typifies a process 

conception of infinity. However, this fundamental notion of infinity was challenged by the visual 

representation of the two line segments. In response to Q1 Jack wrote:  

What I’m thinking is that if you got infinite points on A and if you got infinite on C, 

well, you’re seeing that they’re not equal. So how can you say that infinite points are 

equal? Like, visually, you’re seeing that A is bigger, so therefore the infinite number 

has to be bigger on A than the infinite number on C. But then again, infinite is the 

largest you can get, so that’s kind of confusing. 

Jack observed that the two line segments are not equal in length, and thus concluded that the two 

could not have an equal amount of infinite points despite his insistence that infinity is “the 

largest you can get.” The conflict in Jack’s conceptions might be attributed to an attempt to 

extrapolate everyday experiences with finite measurements, where length and quantity are often 

directly proportional. Using familiar experiences to make sense of novel situations is considered 

by Hazzan (1999) as an attempt to reduce the level of abstraction of the new concept. In the case 

of infinity, extrapolating experiences with measurement can be deemed as a conception of 

‘measuring infinity’. Jack’s conception of ‘measuring infinity’ is at odds with his intuition of a 

single, never-ending infinity, and his recognition of this created a cognitive conflict that he was 

unable to resolve. 

The notion of ‘measuring infinity’ surfaced in several students’ responses to Q1, however 

most students neglected the inconsistency between it and their intuition of potential infinity. For 

instance, Rosemary rationalized the expression “∞ - ∞ = ∞” by arguing that while any line 
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segment will have infinitely many points, a longer segment would have a larger infinite number 

of points. She also claimed that subtracting an infinite quantity from another (albeit “larger”) 

infinite quantity would leave “a lot of points… extending into infinity” and “it will take forever” 

to count them. The inconsistency between a process conception of infinity, as exhibited by 

Rosemary’s description of “extending into infinity” and taking “forever”, and her measuring 

conception of a “larger” infinity went unnoticed. 

Of the various responses to Q1, Lily’s was unique. In her response, she disagreed with the 

possibility that ∞ - ∞ = ∞. She wrote: 

I disagree with this statement. For example, π is an infinite (on going) number. If we 

subtract π – π the answer is 0, NOT ∞. But, if there is a restriction that says we can’t 

subtract by the same number it could still be an infinite number, but just a smaller 

value. For example, π – 2π = −π, is still an infinite number, only negative. 

Lily appeared to conceive of infinity as potential – her use of the qualifier “on going” to describe 

her notion of an “infinite number” corresponds to a process conception of infinity. However, the 

on-going process in Lily’s conception is applied, not to the magnitude of her “infinite number”, 

but to its infinite decimal representation. Lily’s objection to Q1 seems to stem from confusion 

between an infinite magnitude, such as the number of points on a line segment, and the infinite 

number of digits in the decimal representation of π. Her use of π to justify claims about infinite 

magnitudes is indication of a disconnect between points on a line and real numbers. Further, not 

only did Lily overlook the particular value of π itself, but she also failed to distinguish the 

differences between acting on one specific element as opposed to infinitely many. Lily reasoned 

that since π is an “infinite (on going) number” and π – π = 0, then the difference ∞ − ∞ must also 

be 0. Lily’s generalization of properties of π to draw conclusions about the entire set of points 
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can be interpreted as an attempt to reduce the level of abstraction of dealing with an infinite 

number of elements. The use of one number to explain properties of infinitely many coincides 

with Hazzan’s (1999) observation that students will try to reduce the level of abstraction of a set 

by operating on one of its elements rather than all of them.  

Another interesting aspect of Lily’s response was her use of “restrictions.” She proposed 

that the difference of two ‘infinite numbers’ might be another ‘infinite number’ if there are 

appropriate restrictions placed on the quantities. By restricting the ‘values of infinity’ she 

reasoned that it is possible to attain “an infinite number, it [will] just be a smaller value.” 

Appending “restrictions” allowed Lily to conceive of ‘infinite numbers’ with different sizes, 

despite the conflict with her description of infinity as “on going”. The notion of infinities with 

‘different values’ is consistent with an intuition of measuring infinity (Tall, 1980), and serves as 

an example of reducing the level of abstraction. According to Hazzan, this can be seen as a case 

of using familiar procedures to cope with novel and abstract concepts: Lily applies the familiar 

procedure of subtracting real numbers to cope with the concept of subtracting transfinite ones. 

4.3 ‘Infinite numbers’ 

Lily’s confusion between an infinite number of elements and an infinite number of digits in one 

particular element emphasised the disconnect between numeric and geometric representations of 

infinity that appeared in the early stages of the study. The question of whether other students 

shared Lily’s ideas regarding the magnitude of a number with infinite decimal expansion 

naturally arose. Thus, a follow up questionnaire (Q2) recalled Q1, presented Lily’s argument 

verbatim, as well as a similar one, and asked students to elaborate on whether or not they agreed 

with the arguments.  

Q2. Recall [Q1 as quoted above]. 

Student X: [Lily’s response as quoted above] 



Mamolo 

 

 

Student Y: I disagree with this statement. You can subtract two infinite numbers and 

NOT end up with ∞. For example, 
1
3 is an infinite number, but 

1
3 – 

1
3 = 0, NOT ∞. Also, 

4
6 and 

1
6 are both infinite (on going) numbers, but if we subtract 

4
6 – 

1
6 = 

3
6 = ½ = 0.5, 

which is not an infinite number. But sometimes it’s possible to subtract two infinite 

numbers and get an infinite number. For example, 
1
3 – 

1
6 = 

1
6, which is infinite and 

smaller than 
1
3. So, sometimes ∞ - ∞ = ∞, but usually not. 

Most participants (22 out of 24) agreed with at least one of the arguments in Q2, which came as a 

surprise in light of the common description of infinity as the “largest you can get”. The 

confusion between infinite magnitude and infinite decimal representation revealed two distinct 

interpretations of ‘infinite numbers’. For the students who agreed with both arguments, 

confusion between magnitude and representation was broad: they ignored the finite magnitude of 

both rational and irrational numbers. For instance, Jim wrote: 

4
6 and 

1
6 are both infinite (on going) numbers but when subtracting them your result is 

1
2 

which is not infinite. This proves that an infinite number subtracting by another infinite 

number is not always another infinite number. As a result the statement ∞ - ∞ = ∞ is 

not true because sometimes the result is infinite but a different value and other times the 

result is not infinite. 

In his response, Jim readily accepted the arguments of students X and Y, neglecting the 

differences between a particular (finite) value and an infinite quantity. Jim used the infinity 

symbol to represent numbers of different magnitudes, and as such, exemplified students’ notions 

that infinity has no ‘specific value’. The dynamic nature of this conception can be interpreted as 

an attempt to reduce the level of abstraction of an entity that is beyond the realm of his 



  TMME, vol6, no.3, p.321  

 

imagination. Jim’s attempt to extrapolate his experiences with finite quantities, and also to use 

them explicitly (though perhaps unknowingly) to justify his notions of infinity, is further 

indication of an attempt to reduce the level of abstraction of the expression ‘∞ - ∞’. 

Other students held a slightly different conception of ‘infinite number’ – they recognized 

rational numbers as finite quantities and associated them with points on a number line, but did 

not make the same association with irrational numbers, mistaking them with infinite quantities. 

This interpretation was exemplified in Rosemary’s response to Q2. When addressing student X, 

Rosemary remarked: 

π – π = 0 that is correct because one is taking away the same amount of points from 

what they initially began with will give 0, but in the line segment question, the amount 

of points in x (which is ∞ amount) is much less than the amount of points in A and C. 

Which because of this, I agree with Student X’s second statement of how there should 

be restrictions. In this case, points in x are less than points in A or C.  

As in Q1, Rosemary’s response is consistent with the idea of ‘measuring infinity’, using Lily’s 

notion of ‘restrictions’ to accommodate the possibility that a longer segment will have a greater 

number of points. Further, Rosemary identified with Lily’s argument regarding π – π, and alludes 

to the possibility of a line segment having π-many points. Her remark that π – π = 0 is correct 

because “one is taking away the same amount of points from what the initially began with” 

illustrates participants’ general confusion regarding the magnitude of irrational numbers. 

Additional evidence of Rosemary’s attempts to reduce the level of abstraction of 

subtracting transfinite numbers is seen in her response to student Y: 

Student Y states: 
1
3  – 

1
6  = 

1
6  (which is an ∞ number) but 

4
6  – 

1
6  = 

3
6  (which is only 0.5 

and not an ∞ number). Well, when we represent these numbers on a number line [drew 

two line segments, one from 0 to 
1
6  and one from 0 to 

1
2, and labelled the segments A 
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and B, respectively] then won’t both line segments have ∞ points? (But of course 

segment B will have more than segment A) 

Once again, Rosemary appealed to her intuition of ‘measuring infinity’ as she related student Y’s 

numeric example to its geometric representation. In contrast to her use of π, Rosemary 

distinguished rational numbers from infinite quantities. Although she stated that 
1
6  was an 

“infinite number,” she observed its specific value on the number line. Similarly, she remarked 

that though 
1
2 was not infinite itself (it “is only 0.5”), when represented on a number line she 

acknowledged there were still infinitely many points between 0 and 
1
2. This distinct handling of 

rational and irrational numbers suggests a misconception about real numbers: whereas rational 

numbers were associated with points, irrational numbers were not. Nevertheless, Rosemary 

seemed to use the words “infinite number”, both to represent a number with infinitely many 

(nonzero) digits in a decimal representation, as well as to represent the infinite quantity of points 

on a line segment. It would be interesting to see if Rosemary’s measuring conception would be 

so persuasive had she not applied the same terminology to two different notions. 

4.4 After instruction: Lily and Jack 

At the end of the course, the class was instructed on equivalences of infinite sets, as well as the 

distinction between an infinite decimal expansion and an infinite quantity. Specifics of the 

instruction are detailed below. In the months following the end of the course, follow up 

interviews were conducted with two students: Lily and Jack.  

The interview with Lily took place roughly six months after instruction regarding the 

distinction between infinite magnitude and infinite representation, and included a discussion on 
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the finite value of π. The interview with Lily focused on her conception of π as an ‘infinite 

number’, and since it was the number of decimal digits that gave π it’s infinite quality, Lily was 

asked to speculate on the number of decimal digits of a rational scalar of π. She reasoned, “if we 

times [π] by 3 it’ll just be a bigger number, with more digits.” As with the line segments, Lily 

expressed ideas consistent with ‘measuring infinity’: she associated “bigger” with “more,” 

believing that 3π would be infinite but a “bigger infinite” than π. 

Lily’s perception of the “infinite size” of π persisted despite instruction and also in 

conflict with her ideas regarding 3.14 as an approximation of π. She claimed that 3π was “3 

times a number that’s really big.” To determine the magnitude of 3π, Lily used the familiar 

number 3.14, yet she was surprised to calculate that triple this number was only about 9: “let’s 

say π is 3.14, then times 3 is going to be big. Well, not big, but (pause) well, kind of triple?” 

Notwithstanding Lily’s attempts to reduce the level of abstraction of π by working with 3.14, it 

seemed difficult for her to accept π as a small number. When asked about the possibility of 

measuring a length of π cm, she claimed that one would need “a really big ruler” with huge 

spaces between each whole number to accommodate all of π’s decimal digits. She argued that 

since π’s expansion was infinite and never-ending, then any segment of length π would have to 

be “really long, until, if possible, there’s an end to it.” Lily seemed to ignore the actual 

magnitude of each of π’s decimal digits, which, together with her process conception of a never-

ending infinite, might have contributed to her notion of π as very large, despite the relatively 

small magnitude of 3.14. 

The struggle to accommodate conflicting ideas, such as Lily faced with her conceptions 

of π, also surfaced in the interview with Jack. In his written responses, Jack had struggled with 

the conflict between his competing conceptions of potential and measuring infinity. Following 
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instruction, Jack continued to express inconsistent notions of infinity as he attempted to reconcile 

his naïve understanding with a normative one. The interview with Jack, which took place two 

months after the end of the course, began by recalling class instruction on the correspondence 

between points on line segments of different lengths. 

The instructional class discussion included the following well-known geometric 

construction of a bijection between two line segments AB and CD. The construction begins by 

connecting the endpoints of AB and CD with line segments that extended past the endpoints of 

CD to meet at a point labelled p, as depicted in Figure 1. An arbitrary point, w, can be labelled on 

AB and connected to the point p by a line segment. The connecting segment will intersect CD at 

a point r, as depicted in Figure 2. With this construction, it is possible to pair up each point on 

AB with exactly one point on CD. Conversely, a ray from p to any point on CD can be extended 

to meet a point on AB in a unique way. In this manner, every point on CD is paired with exactly 

one point on AB. Thus a one-to-one correspondence is constructed between the set of points on 

AB and the set of points on CD. Most students easily followed the construction, though there 

was significant resistance to the idea that the longer line segment would not have more points.   

 

Figure 1: 
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Figure 2: 

 

 

Jack had no trouble recreating the above argument. However, he insisted, “that A [AB] is 

bigger, so therefore the infinite number has to be bigger on A [AB] than the infinite number on C 

[CD].” Jack’s conception of measuring infinity was very compelling, and he continued to 

struggle with the conflict between it and his intuition that infinity “is the largest you can get” and 

is “never-ending.” In an attempt to challenge his measuring intuition, Jack was asked to consider 

the number of points on two circles of different circumference. He claimed there were an infinite 

number of points because “drawing a line from the centre to the side [drew the radius of the 

circle], you can draw infinite of them.” Furthermore, he noted that the circles would have the 

same number of points because “you’re not caring about the length of the radius, which makes 

your circle bigger or smaller. You’re caring about the 360 degrees,” that is, the number of radii, 

which is the same in both circles. We then proceeded to ‘cut open’ and ‘flatten’ each circle, such 

as in Figure 3.   

Figure 3: 
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Jack judged that even though the shape of the circles was now different, the number of 

points had not changed2. Jack reasoned that the two flattened circles would still have an 

equinumerous set of points because “you still have that imaginary [centre] point, and all the 

[radii] connecting to it.” This construction is essentially the same as the triangle argument above: 

the number of rays from p that intersect with the longer line segment is the same as the number 

that intersect with the shorter line segment. The visual representation had a significant effect on 

Jack’s perceptions. Comparing and equating the number of radii of two circles was canonical, 

even when they were flattened. However, Jack noted “if you go back to this [lines AB and CD], 

still, if you look at it this way it still doesn’t make sense. The circle way kind of does. Well, not 

kind of, it actually does.” Eventually, Jack accepted that two line segments of different lengths 

could have the same quantity of points, stating it was “hard to believe, but it makes sense.”  

5. CONCLUDING REMARKS 

This paper examines undergraduate students’ emerging conceptions of infinity during their 

efforts to coordinate intuition with conventional mathematical properties. As students grappled 

with properties of actual infinity, they unearthed features that were at odds with their personal 

experiences – participants were challenged by competing and inconsistent notions of infinity as 

endless or as a large number whose size was relative. In resonance with earlier work (e.g. 

Fischbein et al., 1979), students often remained unaware of these inconsistencies. Further, 

students’ responses support the argument that infinity is conceived of intuitively as an 

                                                 
2 Topologically, the line segment and circle do differ: an open line segment is isomorphic to S1 \ {N}, for some point 

N. However, since the goal was to compare two circles in their ‘new form’ and not to compare the line segment with 

the circle, this fact was not addressed at that moment in the conversation. 
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inexhaustible process, rather than a completed object, in APOS terminology. However, it is 

notable that the conception of ‘measuring infinity’ which emerged in students’ attempts to 

reduce the level of abstraction of comparing geometric infinite sets was a persuasive factor in 

students’ reasoning, and at times overshadowed the association of infinite with endless. 

This study sheds new light on students’ emerging conceptions of infinity as manifested in 

their engagement with geometric tasks. Geometric representations provided a useful analogy for 

demonstrating qualities of transfinite arithmetic, and as such, confronted students with the 

property that transfinite subtraction is undefined. It has been shown that many students are 

tempted to treat infinity as simply a very big number (e.g. Sierpinska, 1987), however students’ 

conceptions regarding arithmetic with transfinite numbers is lacking in mathematics education 

literature. This study offers a first glimpse at learners’ attempts to reduce the level of abstraction 

of transfinite subtraction. The issue of learners’ conceptions regarding transfinite arithmetic is of 

interest in my ongoing investigations. 

Students’ attempts to cope with the expression “∞ - ∞” revealed significant 

misconceptions regarding the size of real numbers. Their confusion between the infinite 

magnitude of points on a line segment and the infinite decimal representation of both rational 

and irrational numbers created an obstacle to a conventional understanding of mathematical 

infinity, and demonstrated a shortcoming in their understanding of number and place value. 

Furthermore, students’ failure to identify specific numbers as points on a number line highlighted 

a disconnect between their conceptions regarding numeric and geometric representations of 

infinity. The use of finite quantities to explain phenomena of transfinite ones misguided students’ 

intuitions and, ultimately, their understanding. Students’ various attempts to reduce the level of 

abstraction of infinitely many points on a line segment by considering properties of a single point 
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revealed an intuition of infinity that may be at odds with future instruction on limits and set 

theory.  

This study opens the door for further investigation regarding some issues that may be 

taken for granted, such as the relationship between magnitude and representation, and the 

connection between points on a line and numbers. Future research will attend to the persuasive 

factors that can influence change in learners’ emerging conceptions, as well as to the different 

conceptual challenges learners face when addressing properties of ‘infinite numbers’ and 

transfinite arithmetic. 
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Abstract: In this paper uses an analytical tool refereed to as the MAD (Modelling Activity 
Diagram) framework adapted from Schoenfeld’s parsing protocol coding scheme to address the 
issues of how to introduce mathematical modelling to upper secondary students. The work of 
three groups of students engaged in solving so called realistic Fermi problems were analysed 
using this framework, and it was observed that the processes involved in a typical mathematical 
modelling cycle were richly represented in the groups’ solving processes. The importance of the 
social interactions within the groups was noted, as well as the extensive use of extra-
mathematical knowledge used by the students during the problem solving session. 
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1. INTRODUCTION 

The study of mathematical modelling in mathematics education has been a steadily growing 
branch of research since at least the late 1960’s (Blum, 1995). The arguments for including 
mathematical modelling in mathematics education have been collected under the formative 
argument; critical competence; utility; picture of mathematics; and the promoting mathematics 
learning argument (Blum & Niss, 1991; Niss, 1989), and mathematical modelling is nowadays 
explicitly included as part of the mathematics curricula in many countries all over the world.  

Although mathematical modelling is getting more and more emphasised in governing curricula 
documents and despite extensive research efforts (e.g. ICTMA2 publications), the adjustment and 
change in classroom practise on broad (national) scales are slow. Teacher-training courses, in-
service courses for practicing teachers, textbooks and teaching materials, as well as ways of 
working with mathematical modelling in the classroom, need to be further developed and made 
accessible.  

This paper addresses the issue of how to introduce mathematical modelling to upper secondary 
students in the very beginning of a modelling course or before engaging in a modelling project. 
In principle, such an introduction can be done using a direct or an indirect approach, where 
typically the direct approach is to present some sort of ‘heuristics’ to the students for how to 
model mathematically. This paper however, investigates the potential of an indirect approach, 
where groups of students are set to work on so called Fermi problems, which are open, non-
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standard problems requiring the students to make assumptions about the problem situation and 
estimate relevant quantities before engaging in, often, simple calculations.  

 

2. CONTEXT AND AIM OF THE STUDY 

The study reported here is part of a bigger research project aiming to both get an overall picture 
of the past and present state and status of mathematical modelling in the Swedish upper 
secondary school, and to develop, design, implement and evaluate small teaching modules 
(sequences of lessons) on mathematical modelling in line with the Swedish national curriculum. 
In connection to the latter, the issue of how to introduce mathematical modelling in the 
beginning of these modules was first given priority. However, previous research and reports 
accounting for the designing and developing of courses and lessons on mathematical modelling 
(e.g. J. S. Berry, Burghes, Huntley, James, & Moscardini, 1987; Blum, Galbraith, Henn, & Niss, 
2007, especially chapter 3.6) are sparse about how the actual introduction of mathematical 
modelling was implemented. One exception is Legé (2005), who contrasts a reductionist and a 
constructivist instructional approach to the introduction of mathematical modelling at high 
school level. Irrespective of some positive results, Legé’s introductions of mathematical 
modelling are activities lasting over two weeks of time, which for my purpose is too long. To try 
to shred some light over if this could be done in a more time efficient way and to facilitate the 
design of the teaching modules, this pilot study was conducted. 

The aim of the study reported on here was to investigate if Fermi problems could be used to 
introduce mathematical modelling at the Swedish upper secondary level. The question in focus 
can in general terms be formulated as: What mathematical problem solving behaviour do groups 
of students display when engaged in solving Fermi problems? This preliminary research question 
will be reformulated and specified in section 5 in terms of the theoretical framework that will be 
outlined. 

The structure of the paper is as follows. First I briefly discuss perspectives on Fermi problems 
and mathematical modelling, before looking at previous research done in connection with this 
area. Then, I describe the methodology, the definition of realistic Fermi Problems, the concept of 
mathematical modelling sub-activities, and the developing of the MAD framework. The paper 
proceeds with accounting for the result and the analysis of the empirical study, before finally the 
discussion and conclusion are presented3. 

3 FERMI PROBLEMS 

The term Fermi problem originates from the 1938 Italian Nobel Prize winner in physics Enrico 
Fermi (1901-1954), who was also a highly appreciated and popular teacher (Lan, 2002). He had 
a predilection for posing, as well as solving, problems like How many railroad cars are there in 
US? (Goldberger, 1999) or How many piano tuners are there in the US? (Efthimiou & 
Llewellyn, 2007), and by using a few reasonable assumptions and estimates, he gave 
astoundingly accurate and reasonable answers. Fermi was of the opinion that a good physicist as 
well as any thinking person could estimate any quantity quantitatively accurate just ‘using one’s 
head’; that is, just by reasoning, making some realistic and intelligent order of magnitude 
estimates and doing some simple calculations. Often, the questions came from everyday 
situations and phenomena he saw or experienced, as illustrated by Wattenberg (1988); “Upon 
                                      
3 This paper is an extend version of the paper by Berman Ärlebäck and Bergsten (in press) 
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seeing a dirty window, he [Fermi] asked us how thick can the dirt on a window pane get?” (p. 
89). These types of problems are called Fermi problems, back-of-envelope calculation problems 
or order of magnitude problems. To my knowledge, Fermi himself did not define the 
characteristics of such problems explicitly and different authors in the literature emphasise 
different things.  

3.1. Fermi Problem in physics education 

Historically the ability to perform order of magnitude calculations was crucial for physicists 
before investing time and effort in engaging in a long and complicated calculation (Robinson, 
2008). Nowadays, when today’s extensive use of computers and computer packages easily and 
fast make these calculations for us, other arguments for including Fermi problems in physics, 
science and teacher education are used.  

According to Chandler (1990), Fermi problems typically are intended to end up in estimates “to 
the nearest power of ten without using reference books or calculators” (p. 170). Carlson (1997), 
on the other hand, elaborates a bit more and describes the process and essence of solving Fermi 
problem as “the method of obtaining a quick approximation to a seemingly difficult 
mathematical process by using a series of ’educated guesses’ and rounded calculations” (p. 308) 
and argues for their effective motivational potential in students. Following the same line of 
reasoning, Efthimiou and Llewellyn (2007, p. 254) characterize a Fermi problem as initially 
always seeming rather vague in its formulation, giving limited or no information on relevant 
facts or how to attack the problem. However, after a closer inspection and analysis, they 
undeniably allow an unfolding of the problem into simpler problems that eventually lead to a 
final answer to the original question. Another argument put forward by Efthimiou and Llewellyn 
(2007) is to use Fermi problems in general education and introductory science courses to foster 
students’ critical thinking and reasoning. 

Robinson (2008) puts forward a view in line with Carlson (1997), but is more specific when he 
writes that “[i]n order to solve a Fermi problem, one has to synthesize a physical model, examine 
the physical principles which are in operation, determine other constraints such as boundary 
conditions, decide how simple the model can be while still maintaining some realism, and only 
then apply some rough estimation to the problem.” (p. 83). Drawing on this characterization, he 
argues that in the process of solving Fermi problems, the same set of skills is used which 
professional physicist use in their everyday work, but seldom are learned before the beginning 
graduate training. Thus, according to Robinson, the main argument for the use of Fermi 
problems in education is to introduce key skills and methodologies to students in an early stage 
of their schooling. 

3.2. Fermi Problems in mathematics education 

Turning to the field of mathematics education one can find both similarities and differences of 
how Fermi problems are characterized as compared to in physics education. Ross and Ross 
(1986) write that “[t]he essence of a Fermi problem is that a well-informed person can solve it 
(approximately) by a series of estimates” (p. 175), and that “[t]he distinguishing characteristic of 
a Fermi problem is a total reliance on information that is stored away in the head of the problem 
solver… Solving Fermi problems presents an artificial challenge” (p. 181). With a moderately 
free interpretation of the meaning of ‘well-informed person’ most authors agree with the first of 
these quotes, but concerning the latter there is diversity. Others, such as Peter-Koop (2004) and 
Sriraman and Lesh (2006), are of the opinion that the concept of Fermi problems is better and 
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more useful if one allows the problems not to be purely intellectual in nature, but situated in the 
real world and in an everyday context. 

Other characteristics ascribed to Fermi problems by some authors are their accessibility and/or 
self-differentiating nature, which means that the problem can be worked on and solved in 
different school grades as well as at different levels of complexity (Kittel & Marxer, 2005). Also, 
as expressed by Sowder (1992), there should not exist an exact answer: “[s]uch problems must be 
answered with an estimate, since the exact answer is not available” (p. 372, italics in original). 

Some authors define the characteristics sequentially and more implicitly by describing the steps 
that are needed, or the understandings or insights that need to be achieved, to successfully come 
up with an answer. For example, Dirks and Edge (1983) list four “things typically required” 
when solving Fermi problems, namely “sufficient understanding of the problem to decide what 
data might be useful in solving it, insight to conceive of useful simplifying assumptions, an 
ability to estimate relevant physical quantities, and some specific scientific knowledge” (p. 602). 

According to Ross and Ross (1986), the reason for teachers to use Fermi problems in teaching is 
twofold; first “to make an educational point: problem-solving ability is often limited not by 
incomplete information but the inability to use information that are already available” (p. 175, 
italics in original); and secondly, to give the students a more nuanced picture of mathematics, 
showing that doing mathematics is not always about getting exact answers through well-defined 
procedures. A more recent argument for the use of Fermi problem in mathematics education is 
the possibility to use them as a bridge between mathematics and other school subjects, engaging 
students in different interdisciplinary activities (Sriraman & Lesh, 2006). 

Compared to how Fermi problems are viewed in physics education, it is notable that both 
disciplines to some extent describe the same procedure about how to approach and solve such 
problems; making simplifying assumptions, estimating, and doing rounded calculations are 
important aspects of the problem solving process. In addition, the more recent references from 
both fields argue for the potential inherent in the problems for foster students’ critical thinking. 
The biggest difference between mathematics and physics education is the view of why to the use 
Fermi problems. In the latter, Fermi problems in themselves are seen to illustrate and emphasise 
basic and fundamental principles of physics, whereas in mathematics education, at least in the 
early references, they are artificial in nature, used as tools for teaching and learning some 
mathematical content. However, this view expressed in some of the references seems to be 
changing (e.g. Sriraman & Lesh, 2006). 

 3.3. Some previous research involving Fermi problems in education 

Focusing on mathematics education research, Fermi problems seem to be used fairly sparse and 
are in principle mentioned in two different contexts at the lower educational level. First and 
foremost, they are mentioned in connection with (measure) estimates (sometimes called 
numerosity problems); and secondly, they are mentioned in connection with modelling. 
Recently, Fermi problems have also been suggested and used in fostering students’ critical 
thinking (Sriraman & Lesh, 2006; Sriraman & Knott, 2009). The focus in this paper is on the use 
of Fermi problems in connection with modelling. However, for a review of the research on 
estimates see Sowder (1992), and the more recent Hogan and Brezinski (2003). 

Although there exist extensive literature about mathematical problem solving, only a handful of 
papers explicitly use Fermi problems. Furthermore, most of the articles are theoretical in the 
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sense that they discuss ‘what one can do with Fermi problems’ (see the references in the section 
about Fermi problems in mathematics education above). However, Peter-Koop (2003; 2004; 
2009) used Fermi problems in third and fourth grade to, among other things, investigate students’ 
problem solving strategies. She concluded that (a) Fermi problems were solved in a sensible and 
meaningful way by the students, (b) the students developed new mathematical knowledge, and 
(c) solution processes “revealed multi-cyclic modelling processes in contrast to a single 
modelling cycle as suggested in the literature” (2004, p. 461). The impact and use of these results 
on a broader scale are however unclear and remains to be researched further. 

Beerli (2003) reports on Swiss teaching materials for grades 7 to 9 which emphasize Fermi 
problems in a thematic way throughout; and, because of the way problem solving is connected to 
reality, opportunities are provided to use mathematization and modelling as means to develop 
mathematical knowledge and skills. Beerli also suggests that Fermi problems could effectively 
be used in assessment (pp. 90-91). 

Schoenfeld (1985b, pp. 278-281) writes about a Fermi problem called the cell problem used for 
investigating cognitive issues connected to, and the developing of, methodologies for the study 
of students’ problem solving processes. He describes how different constellations of students try 
to estimate how many cells there might be in an average-sized human body, to think about 
criteria of what might count as a reasonable upper/lower estimate, and to decide how much 
confidence they have in their estimates. The result of his analysis formed part of the foundation 
for the research approach he used in his book Mathematical Problem Solving (Schoenfeld, 
1985b). 

4. MATHEMATICAL MODELLING 

In mathematics education one can find many different approaches to and perspectives on 
mathematical modelling in the research literature (Blum, Galbraith, Henn et al., 2007; Haines, 
Galbraith, Blum, & Khan, 2007). The variety of perspectives is illustrated by Sriraman and 
Kaiser (2006) in their report of an analysis of the papers presented in Working Group 13: 
Applications and modelling at the CERME4 conference4 written by European scholars. They 
conclude “that there does not exist a homogenous understanding of modelling and its 
epistemological backgrounds within the international discussion on applications and modelling” 
(p. 45) and argue and call for a more precise clarification of the concepts involved in the 
different approaches to make communication and discussions more simple and fruitful. 

However, Kaiser, Blomhøj and Sriraman (2006) are optimistic about the chances for such an 
understanding to develop and they argue that there already in certain respects exists  “a global 
theory for teaching and learning mathematical modelling, in the sense of a system of connected 
viewpoints covering all didactical levels” (p. 82), but that this “theory of teaching and learning 
mathematical modelling is far from being complete” (p. 82). Hence, in the last years, efforts have 
been made to clarify and differentiate different approaches (Kaiser & Sriraman, 2006; Kaiser, 
Sriraman, Blomhøj, & García, 2007) and work in this direction continues (Blomhøj, 2008). 
According to Kaiser and Sriraman (2006), different perspectives on, and approaches to, 
mathematical modelling can be classification as realistic or applied modelling; contextual 
modelling; educational modelling (with either a didactical or conceptual focus); socio-critical 
modelling; epistemological or theoretical modelling, or cognitive modelling.  
                                      
4 The 4th conference organized by ERME, European society for Research in Mathematics Education, held in Sant 
Feliu de Guíxols, Spain, 17-21 February 2005. 
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Research on mathematical modelling in mathematics education, regardless which perspective on 
modelling is adapted, typically uses or develops some general description of the process of 
mathematical modelling (Kaiser et al., 2006). This general description is often given or 
summarised in a so called modelling cycle, which schematically and idealised illustrates how the 
modelling process connects the extra-mathematical world (domain) and the mathematical world 
(domain) (Blum, Galbraith, & Niss, 2007). Depending on the purpose and focus of the research 
these modelling cycles might look different and highlight different aspects of the modelling 
process (Haines & Crouch, in press; Jablonka, 1996). 

In the Swedish context, where the present study is situated, the present mathematics curriculum 
and syllabus for the upper secondary level is founded in a reform from 1965. Since then, a 
number of reforms and revisions have been made with the affect that the emphasis on 
mathematical modelling in the written curricula documents governing the content in Swedish 
upper secondary mathematics courses has gradually been gaining more momentum (Ärlebäck, 
submitted). In the latest formulation from 2000, using and working with mathematical models 
and modelling is put forward as one of the four important aspects of the subject that, together 
with problem solving, communication and the history of mathematical ideas, should permeate all 
mathematics teaching (Skolverket, 2000). It is also stressed that “[a]n important part of solving 
problems is designing and using mathematical models” and that one of the goals to aim for is to 
“develop their [the students’] ability to design, fine-tune and use mathematical models, as well as 
critically assess the conditions, opportunities and limitations of different models” (Skolverket, 
2000). However, a more detailed definition or description of what a mathematical model is or 
what it means to model mathematically, is not provided. Lingefjärd (2006) summarizes the 
development and situation as “it seems that the more mathematical modeling is pointed out as an 
important competence to obtain for each student in the Swedish school system, the vaguer the 
label becomes” (p. 96). The question that naturally arises is why this is the case and what can be 
done about it. Research in this area is lacking in Sweden, but challenges and barriers to 
overcome are likely to be similar to those reported by Burkhardt (2006). Some support for this 
assumption is found in research reports on the dominant role of the use of traditional textbooks in 
Swedish mathematics classrooms, greatly influencing class organisation as well as content 
(Skolverket, 2003). 

The perspective on mathematical modelling I take in this paper is the view that mathematical 
modelling is a complex (iterative and/or cyclic) problem solving process, here illustrated in 
Figure 1. When analysing such complex problem solving process in more detail, one can do so 
using the notion of competencies (Blomhøj & Højgaard Jensen, 2007; Maaß, 2006), modelling 
skills (J. Berry, 2002), or dividing the modelling cycle into sub-processes or sub-activities. For 
example, Borromeo Ferri (2006) describes the modelling process in Figure 1 in terms of 6 phases 
(real situation, mental representation of the situation, real model, mathematical model, 
mathematical result, and real results) and transitions between these phases (understanding the 
task, simplifying/structuring the task, mathematizing, working mathematically, interpreting, and 
validating). 
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Figure 1: The modelling cycle by Blum and Leiβ (2007) as adapted and 

presented by Borromeo Ferri (2006, p. 92) 
 
This choice of view on mathematical modelling is in line with how mathematical modelling is 
described in the Swedish upper secondary curriculum (see above) and other scholars have made 
analogous interpretations (e.g. Palm, Bergqvist, Eriksson, Hellström, & Häggström, 2004). In my 
interpretation of the classification of the approaches by Kaiser and Sriraman (2006) briefly 
mentioned above, this research is carried out in alignment with the educational perspective, 
where the goal to strive for is to learn students mathematical modelling. Some of the arguments 
of Kaiser, Blomhøj and Sriraman (2006) about different purposes for using such a view on the 
modelling process in research also motivate this choice of perspective; as the driving motivation 
is as a didactical tool for planning the very introduction of mathematical modelling in a 
modelling course or small modelling project, as a point of reference to the particular curricular 
element of modelling in governing curricula, and as the point of departure for developing an 
analytical tool to retrospectively determine which part of the modelling cycle the students’ have 
been working with.  
 
5. METHODOLOGY 

Part of my research is done in collaboration with two teachers aiming to design a number of 
small modelling teaching modules5 in line with the national curriculum for the Swedish upper 
secondary school. A natural question that arises in the early stages of the design process is how 
to introduce the topic of mathematical modelling in a gentle, efficient and interesting way. The 
paper entitled Modeling conceptions revisited by Sriraman and Lesh (2006), where they say in a 
paragraph about estimation and Fermi problems that “estimation activities can be used as a way 
to initiate mathematical modeling” (p. 248), caught my interest. However, not finding any 
reported empirical research on this specific matter, the decision was to design and conduct this 
small pilot study. 

5.1. Developing an analytic tool 

5.1.1 Schoenfeld’s protocol coding scheme 

For the present study I developed and used an adapted version of Schoenfeld’s ‘graphs of 
problem solving’ (Schoenfeld, 1985b) to get a schematic picture of the problem solving process 
of students working on a Fermi problem. Originally, Schoenfeld’s ‘graphs of problem solving’, 

                                      
5 A modelling teaching module is here a sequence of lessons with a planned focus on mathematical modelling. 



Ärlebäck 

adapted from Wood (1983, cited in Schoenfeld, 1985b), is part of “an analytic framework for the 
macroscopic analysis of problem-solving protocols, with emphasis on executive or control 
behaviour” (p. 271) in decision-making during problem-solving. His idea is to try to characterize 
the problem-solving process of an individual, or a group of individuals6, by analysing 
transcriptions of verbal data generated during “out load problem-solving session” (p. 270). This 
he achieved through partitioning protocols7, which is what Schoenfeld calls his verbal data, “into 
macroscopic chunks of consistent behaviour called episodes. An episode is a period of time 
during which an individual or a problem-solving group is engaged in one larger task … or a 
closely related body of tasks in the service of the same goal.” (p. 292). Each episode was then 
characterized as either reading, analysis, planning, implementation, exploration, verification, or 
transition8. All the categories are briefly described together with so called associated questions, 
and “[a] full characterization of a protocol is obtained by parsing a protocol into episodes and 
providing answers to the associated questions.” (p. 297). 

In his original work, Schoenfeld claims that the reliability of the coding, done by three 
undergraduate students trained for the coding, is quite high (Schoenfeld, 1985b, p. 293), but no 
measure or methods of how this conclusion was drawn is presented. Scott (1994), attempting to 
replicate some of Schoenfeld’s results, argues that “[t]here are clearly problems of interpretation 
in several of his [Schoenfeld’s] behaviour categorisations” (p. 538), and through examples Scott 
illustrates that “fundamental ambiguity remains regarding the meaning of some of the parsing 
categories” (p. 527). However, Schoenfeld (1985b) ends the chapter on his framework for 
analysing the protocols in a humble way arguing that “it is best thought of as work in progress.” 
(p. 314).  

Although Scott (1994) is critical about the reliability of Schoenfeld’s method, he expresses his 
conviction that “concurrent verbalisation with no interviewer intervention is least prone to the 
effects of the study environment, and to the incompleteness and inconsistency of some verbal 
data” (p. 537, italics in original). The debate on the suitability and usefulness of verbal data in 
research is reviewed and discussed in some length by Goos and Galbraith (1996). Drawing on 
the work by Nisbett and Wilson (1977), Ericsson and Simon (1980), Genest and Turk (1981) and 
Ginsburg, Kossan, Schwartz, and Swanson (1983), among others, they discuss the three different 
approaches of talk/think aloud, concurrent probing and retrospective probing. Especially, they 
acknowledge differences in limitations in terms of reactivity (such as stress, task demands and 
influences from the direct environment), incompleteness (what is spoken out load is selective of 
what a subject thinks), inconsistency (observed behaviour do not correspond to what is 
verbalized), idiosyncrasy (the question of generalisability due to sensitivity for subjects 
individual differences), and subjectivity (the researches bias influences and interpretation).  

Schoenfeld (1985a) also discusses the reliability and usefulness in mathematics education 
research of data in the form of “verbal reports (protocols) produced by individuals or groups” (p. 
171), but at a more pragmatic level. He lists and discusses five ‘variables’ which might affect 
and reduce the limitations mentioned above when problems are solved ‘in the load’. These five 
variables are the number of persons being taped, the degree of intervention, the nature of 
instruction and intervention, the environment, and task variables (pp. 174-176). These variables 

                                      
6 In the case when the problem-solving process of a group is under consideration, the process refers to the process of 
the whole group as a collective, not being constituted of each individual problem-solving process.   
7 Or rather the transcription of the verbal protocols.  
8 Some episodes were characterized as both planning and implementation (Schoenfeld, 1985b, p. 296) 
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are not independent and can both reinforce or obstruct each other effects on the displayed 
behaviour. For example, an artificial environment (as a laboratory taped problem solving 
situation often is) making the students feel uneasy can be balanced with letting the students work 
in group constellations familiar to them. In a way, all five of Schoenfeld’s variables deal with 
reactivity, and the ‘values’ of the variables will affect how comfortable the students are in a 
taped problem solving situation and the expectations and obligations felt by the students towards 
the task given them and toward the researcher. The variables controlling instruction and 
intervention are also connected to the limitations of incompleteness and inconsistency.    

The idea to build on the work of Schoenfeld (1985b) is by no means new, and other researchers 
have used, modified and developed his ideas. For instance, in their study of two students’ 
collaborative problem solving activity in an applied mathematics course, Goos and Galbraith 
(1996) used “a selective extension of Schoenfeld’s episode analysis” (p. 241) combined with 
another framework. Stacy and Scott (2000) follows Schoenfeld’s methodology “as closely as 
circumstances permitted” (p.123) when studying how and to what extent students use the 
problem solving strategy of trying examples in a problem solving situation. Exploring pairs of 
students’ problem-solving process involving functions using a graphical calculator, Brown 
(2003) uses a modified framework for identifying and singling out interesting “defining 
moments” (p. 83) on a macroscopic level, before exploring these in greater detail on a 
microscopic scale in the search for possible explanation of the observed behaviour. In a closer 
look at decision making in group solutions’ involving Bayes’ formula in probability also 
Stillman (2005) makes use Schoenfeld’s protocol parsing scheme. In contrast to Scott (1994), 
Goos and Galbraith (1996), Stacy and Scott (2000), and Stillman (2005), who use Schoenfeld’s 
categories to code episodes as (part of) their framework, my adaptation is more in line with the 
approach taken by Brown (2003). Brown modified and extended the number of categories to 
better suit the characteristics of the problem solving situation she studied, as I did developing the 
MAD framework used in this study (see section 5.1.3.).  

5.1.2. Realistic Fermi problems 

Based on the earlier overview of the meaning and use of Fermi problems, I here describe my use 
of the concept by giving it the following definition. What I call Realistic Fermi problems are 
characterized by: 

 their accessibility, meaning that they can be approached by all individual students or 
groups of students, and solved on both different educational levels and on different levels 
of complexity. A realistic Fermi problem does not necessarily demand any specific pre-
mathematical knowledge; 

 their clear real-world connection, to be realistic. As a consequence a Realistic Fermi 
problem is more than just an intellectual exercise, and I fully agree with Sriraman and 
Lesh (2006) when they argue that “Fermi problems which are directly related to the daily 
environment are more meaningful and offer more pedagogical possibilities” (p. 248); 

 the specifying and structuring of the relevant information and relationships needed to 
tackle the problem. This characteristic prescribes the problem formulation to be open, not 
immediately associated with a know strategy or procedure to solve the problem, and 
hence urging the problem solvers to invoke prior constructs, conceptions, experiences, 
strategies and other cognitive skills in approaching the problem; 
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 the absence of numerical data, that is the need to make reasonable estimates of relevant 
quantities. An implication of this characteristic is that the context of the problem must be 
familiar, relevant and interesting for the subject(s) working in it; 

 (in connection with the last two points above) their inner momentum to promote 
discussion, that as a group activity they invite to discussion on different matters such as 
what is relevant for the problem and how to estimate physical entities. 

Using the nomenclature of Schoenfeld (1985a), the first four of these characteristics are all task 
variables that taken together define a type of problem quite different from the typical problems 
students normally encounter in their mathematics classes. In other words, one can expect that the 
students, at least initially, will behave a little lost, not knowing how to proceed. To some extend 
the last characteristic is also a task variable with the intention to, as a group activity, 
counteracting the problem solving process from stalling and the group to get stuck, which relates 
to the variable of number of students being taped.  

The characteristics of Realistic Fermi problems were used for guidance when constructing the 
problems used in the study. From this point on, whenever the term (Realistic) Fermi problem is 
used in this paper, it refers to problems with these characteristics. It can be noted that there are 
some similarities to the six principles used in the Models and Modeling perspectives (Lesh & 
Doerr, 2003) for designing “thought revealing activities for research, assessment, and 
instruction” (Lesh, Hoover, Hole, Kelly, & Post, 2000, p. 595) called modeling-eliciting 
activities. Especially the Reality Principle bears resemblance to the realistic character of a 
Realistic Fermi problem; the Self-evaluation Principle is similar in the sense that a Realistic 
Fermi problem ‘invites’ the problem solver(s) to validate assumptions, estimates and calculations 
performed during the solving process; an analogue to the Simplicity Principle is the accessibility 
characteristic of a Realistic Fermi problem; and, as will be clear from the formulation of the 
Realistic Fermi problem used, also to the Construct Document Principle. The six principles for 
constructing modeling-eliciting activities of the Models and Modeling perspectives were not 
taken as point for departure for the construction of the Realistic Fermi problems used in this 
study, since these are embedding and situated in a multi-layer research framework with a broad 
focus facilitating a much wider research agenda.  

5.1.3 The MAD framework 

Comparing the phases and transitions in the modelling process described according to Borromeo 
Ferri (2006), and the character of a Realistic Fermi problem as presented above, one can see that 
there are obvious similarities. One might therefore try to describe and analyse the process of 
solving Fermi problems using this framework as it is. However, since the estimating of different 
sorts of quantities when solving Fermi problems is essential, and this is usually not a typical 
feature of a mathematical modelling problem, it seems that this activity also needs to be 
incorporated into the framework to give a more nuanced picture of the problem solving process 
of a realistic Fermi problem.  

To adopt Schoenfeld’s (1985b) categories to the present study, I started from the view of 
modelling presented above and included the central estimation feature of Realistic Fermi 
problems to identify the following six modelling sub-activities to be used as codes for the 
activities the students engage in when solving a Femi problem:  

Reading: this involves the reading of the task and getting an initial understanding of the task 
Making model: simplifying and structuring the task and mathematizing 
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Estimating: making estimates of a quantitative nature 
Calculating: doing maths, for example performing calculations and rewriting equations, 
drawing pictures or diagrams  
Validating: interpreting, verifying and validating results, calculations and the model itself 
Writing: summarizing the findings and results in a report, writing up the solution 

Here, the activity of reading is similar to Borromeo Ferri’s ‘understanding the task’; making 
model incorporates parts of both ‘simplifying/structuring the task’ and ‘mathematizing’; 
calculating is the same as ‘working mathematically’; and validating is both ‘interpreting’ and 
‘validating’. The reason for these fusions is that it is often hard to separate 
‘simplifying/structuring the task’ from ‘mathematizing’ and vice versa, and that to some extent 
‘interpreting’ and ‘validating’ are intertwined. The sub-activity of estimating is implicit in 
Borromeo Ferri’s modelling cycle, in my understanding found both as a component of 
‘simplifying/structuring the task’ when constructing a ‘real model’, and as a component of 
‘mathematizing’ in the transition from a ‘real model’ towards a ‘mathematical model’. 

A graphical representation of the problem solving process, analogue to the graphs Schoenfeld 
(1985b; 1992) describes, using these categories is called a modelling activity diagram, and is 
used as an analytical tool in this study to capture the macroscopic behaviour displayed by the 
students engaged in the activity of solving Fermi problems9. Examples of how such diagrams can 
look like are shown in Figures 2, 3 and 4 below. 

5.1.4. Research question 

Using the developed vocabulary from the previous sections it is now possible to rephrase the 
preliminary research question presented before in more specific terms:     

 What mathematical modelling sub-activities do groups of student display when the 
  engage in solving Realistic Fermi problems? 

                                      
9 I will refer to this framework as the MAD framework. 
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6. METHOD 

Using the characteristics of Realistic Fermi problems, two such tasks were constructed for this 
pilot study. This paper reports from students’ work on one of these problems (the problem the 
students started with), The Empire State Building Problem. In this problem students were asked 
to come up with an answer for the time it takes to go from the street level to the top observatory 
floor in the Empire State Building using the elevator and stairs respectively. The very 
formulation of the problem given to the students was the following: 

 

There is an information desk on the street level in the Empire State 
Building. The two most frequently asked questions to the staff are: 
 How long does the tourist elevator take to the top floor observatory? 
 If one instead decides to walk the stairs, how long does this take? 

Your task is to write a short letter answering these questions, including the 
assumptions on which you base your reasoning, to the staff at the 
information desk. 

 

An a priori analysis was made of the two questions of the problem to identify what the students 
reasonably must estimate and model to be able to solve these problems. In addition to this 
scrutinizing of the problems, possible extension and more elaborated features to incorporate in 
the situation were also identified. As a result of this analysis, the information that students 
reasonably must use in the case of the Empire State Building problem are the height of the 
Empire State Building, the speed of the elevator and the speed when walking the stairs. As for 
more elaborate extensions to include in the model, we have the elevator queuing time and the 
capacity of the elevator. The time for getting in and out of the elevator might also be considered. 
In the problem on walking the stairs on the other hand one could start thinking of how to model 
the endurance and one’s fitness. 

Seven students volunteered, all from a class enrolled in a university preparatory year taking the 
upper secondary courses in mathematics taught by the author, and divided themselves into three 
groups, A, B and C. In group A these were the three male students Axel, Anders, and Axel; 
group B was constituted by one female, Birgitta, and one male student, Björn; and group C’s 
members were the two male students Christer and Claes. All the names used are pseudonyms. 
The group constellations are by no means random; in class they normally sit together helping 
each other out on the problems to be covered in a specific lesson. After a short introduction, 
dealing with ethical issues of the study and urging the students to do their best and to think 
aloud, the groups were placed in different rooms equipped with videotape recorders and were set 
to work. The two problems were distributed one at a time, and the groups worked on each 
problem for as long as they wanted. 

The work of all three groups on the problems captured on the videotapes was transcribed using a 
modified and simplified version of the TalkBank conversational analysis codes10 as a guide for 
the transcription. The students’ written short answers were also collected. 

                                      
10 www.talkbank.org. In this paper ‘(.)’ means a short pause, and ‘((text))’ is a comment added by the researcher to 
clarify the context or meaning. 
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The transcriptions were coded by the categories of the six modelling sub-activities described 
above. The categorization was done both on the level of utterances, here taken to be “stretch of 
continuous talk by one person, regardless of length and structure" (Linell, 1998, p. 160), and on 
the level of dialogues constituted by a sequence of utterances made by the group members taking 
turns making utterances. The question asked to, and guiding the categorization of, each utterance 
and dialogue was ‘What sub-activity is the utterance/dialogue indicating that the student/group is 
engaged in?’. This process was repeated to refine the coding and test the reliability of the 
process, and the procedure was validated by looking at the video-recordings as well as the 
written short answers from the three groups. Examples of the coding are given in next section. 
The final result of this analysis was graphed in a modelling activity diagram for each group, 
showing the time spent and the moves between the different modelling sub-activities during the 
work with the problem. It was decided to graph the sub-activates in the modelling activity 
diagram using time intervals of 15 seconds to make the description as clear as possible.  

7. EMPIRICAL RESULTS AND ANALYSIS 

When the groups were given the Empire State Building Problem, the students’ first reactions in 
all three groups involved surprise and frustration of not knowing the data needed to solve the 
problem: 

 “It’s just to estimate everything!” (Christer, group C) 

 “It’s just to make something up!” (Axel, group A) 

  “That’s a bad question since we don’t get to know how high it ((the Empire State 
     Building)) is!” (Björn, group B) 

However, after this initial shock, the groups were very active and spent approximately 30 
minutes engaged in solving the two parts of the problem. The work of the groups naturally 
divides into three main phases. After the initial reading of the problem formulation, these are the 
two phases dealing with the solving of the two parts of the problem (phase one dealing with the 
elevator and phase two with the stairs), and a third writing phase where they compose the letter 
asked for in the task. All groups spent about one minute reading the problem. How the groups 
distributed their time on the three main phases is summarised in Table 1. 

Table 1. Summary of how the groups used their time on the three main phases 

Group Time spent on 
first part 

Time spent on 
second part 

Time spent on 
writing 

Total time 
spent on task 

A 5 minutes 18 minutes 6 minutes 30 minutes 
B 9 minutes 10 minutes 11 minutes 31 minutes 
C 7.5 minutes 16.5 minutes 7.5 minutes 32.5 minutes 

 

When solving the first part of the Empire State Building Problem regarding the use of the 
elevator, none of the groups elaborated their solution to incorporate the extensions of the 
problem suggested from the a priori analysis presented above or any other elaborations. All 
groups simply calculated that time equals the height divided by the average speed, a model taken 
for granted. However, in dealing with the second part of the problem, they developed quite 
different ways to approach how to model the endurance of the stair climbers, and also spent time 
discussing how the stairs actually where constructed (if it was a spiral staircase, if there were 
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landings on each floor, and so on and so fourth). Group A used the same model as in the problem 
with the elevator (using an estimated average speed), and group C a variant of the same approach 
estimating the average time needed to walk the stairs of one floor and adding some additional 
time for resting before walking the next one. Group B developed a more advanced model where 
the time taken for a given floor depended on how high up in the building the floor is situated. 
Some of the key estimations done by the groups, and their answers to the problem, can be found 
in Table 2 below11. It could be noticed that the mathematical demands were kept at a very 
elementary level throughout the problem solving activity in all groups. 

Table 2. Some of the groups’ estimated quantities and their answers to the problems (see the 
Appendix) 

Group Estimated 
height 
(m) 

Estimated 
elevator speed  
(m/s) 

Answer, time 
for using the 
elevator  

Answer, time 
for using the  
stairs 

A 300 5 60 s 40 min 
B 175 3,6 48,6 s 16 min 15 s 
C 350 2 2 min 55 s 1 h 55 min 

 
The modelling activity diagram for the solving process for group A, B and C is shown in Figure 
2, 3 and 4, respectively. On the vertical axis the modelling sub-activities Reading, Making 
model, Estimating, Validating, Calculating and Writing are displayed. Time in minutes, starting 
from the point when the students got the problem formulation and to the time they handed in the 
written solution (the letter), is displayed on the horizontal axis. 
 
7.1. Group work 

7.1.1. Group A 

The work of group A is driven forward by Alfred and Axel, who talk approximately twice as 
much as Anders12, and it is their initiatives and ideas that form the strategies the group chooses to 
pursue. On the few occasions where Anders comes with a suggestion or a comment outside the 
black box in which Alfred and Axel are working for the moment, his ideas are given very little 
attention and eventually fade away. Alfred and Axel are both high achieving students in class, 
while Anders is just above average. The group is focused in the sense that all three students seem 
to be engaged in the same sub-activity most of the time. During the session a legible difference 
in attitude toward the problem and what the solution should look like and contain becomes 
apparent between Alfred and Axel. Axel takes the task to get as good estimates as possible very 
seriously. He is the one that initiates the group in the sub-activity of validating most of the times 
and makes it his priority to make the group’s solution as realistic as possible. Alfred, on the other 
hand, is not interested in getting good estimates of the needed quantities, but rather more focused 

                                      
11 From http://www.esbnyc.com/ one can read that the 86th Floor Observatory is situated 320 meters above street 
level and that for the 102th Floor Tower the figure is 373 meters. There are in all 73 elevators in the building 
operating at speeds between 3 m/s and 5 m/s, and that it is possible to ride from the lobby to the 86th floor in less 
than a minute (20090403 one can find several video-clips on http://www.youtube.com documenting this ride). The 
number of stairs are 1576 and each step is approximately 19 cm in height. Normally, walking the stairs is not 
permitted, but there is an annual stair climbing race, “the Empire State Building Annual Run Up”, and the record for 
running the stairs from the lobby to the 86th floor is 9 minutes and 37 seconds 
12 The number of utterances coded uttered by Anders is 113, by Axel 209, and by Alex 272. 
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on the principle arguments behind how to achieve the answer. In Alfred’s opinion, if the actual 
height of the Empire State Building is 200 meters or 300 meters is not important; what matters is 
how to use the estimated height to come up with an answer. This difference occasionally creates 
tensions in the group, but Axel is the most persistent one, and usually persuades Alfred (and 
Anders) to reconsider their sometimes naïve assumptions and estimates.  

 
 

Figure 2. The modelling activity diagram for the Empire State 
Building problem (group A) 

Figure 2 displays the modelling activity diagram of the work of group A on the Empire State 
Building problem. After a short initial reading phase, about 5 minutes are spent on the first part 
of the problem consisting of the dialectic interplay between making a model and estimating (with 
some minor elements of validating and calculating). When the group engages in solving the 
second part of the problem they first continue in this dialectic manner for another 8 minutes, 
followed by approximately 10 minutes composed of validating with a parallel element of 
calculating. The problem solving session ends with a 7 minutes phase of writing. In the writing 
phase all three members of the group are involved in dictating the letter with Alfred functioning 
as the secretary. The letter can be found in the appendix. 

Alfred, Anders and Axel use the same strategy to solve both parts of the problem, namely to 
calculate the time using an estimated height and an average speed of the elevator. However, in 
the second part, they first use this model to get time 33 minutes for climbing the stairs, but adjust 
this calculation to 40 minutes since their model of how the stairs look includes landings on every 
floor.  

7.1.2. Group B 
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Birgitta and Björn are two of the two most ambitious students in the class and they are used to be 
able to solve most of the textbook problems they encounter in class without too much effort. 
During this non-standard problem solving session they have difficulty in deciding whether or not 
an estimate is good enough and utterances expressing this insecureness are common (this is 
exemplified in the two dialogue extracts from the group found later in this paper). At one point in 
the beginning of their problem solving session, when I entered the room to check on the 
recording device, Birgitta and Björn quite obstinately wanted me to confirm whether their 
estimation of the height of the Empire State Building was correct, but naturally I neither 
confirmed nor rejected their estimate. 

 

 

Figure 3. The modelling activity diagram for the Empire State 
Building problem (group B) 

Group B starts with a short initial phase of reading (see figure 3) before Britta and Björn spend 
approximately 9 minutes on the first part of the problem, partly struggling to understand and 
make sense of what to do and how to do it. About the same amount of time, 10 minutes, is then 
devoted to the second part of the problem, followed by 11 minutes of writing.  

The model activity diagram for group B looks a bit different from group A. Their problem 
solving process is not as concord as the process group A displayed, and Björn and Britta’s 
modelling activity diagram appears to sprawl more than the diagram of group A. After about the 
first three minutes the problem solving process displayed in figure 3 jumps between making a 
model, estimating, validating and calculating (occasionally returning to the problem formulation 
for some re-reading) in a seemingly random but uniformed distributed manner until the phase of 
writing begins. 

To answer the second part of the problem, group B develop a model of how physical tiring it is 
to climb the stairs in a high building. In their model they group their estimated number of floors 
in Empire State Building, 50, into groups of 5. They then estimate that it will take 15 seconds to 
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walk from floor 1 to floor 5, and their model predicts that the next 5 floors will take the same 
amount of time that climbing the last 5 floors did plus additional as many seconds longer as the 
number of floors you already climbed. Hence, to climb from floor 6 to floor 10 will take 15 + 5 = 
20 seconds, from floor 11 to floor 15 will take 20 + 10 = 30 seconds, and so on (see the 
Appendix, group B’s letter for details). As a consequence of this model, the time it takes to climb 
the last 5 floors, from floor 46 to floor 50, is 240 seconds, meaning that climbing one floor in 
average takes almost a minute (58 s.). However, this is something neither noted or reflected on 
by Björn and Birgitta. 

Of the three groups, group B is the one that spent the longest time on writing. One reason for this 
is that Birgitta starts writing the letter but has trouble in formulating their reasoning in the second 
part of the problem so Björn has to take over. In addition, their solution to the second problem is 
the most sophisticated and complicated of the groups, which contribute to the larger amount of 
time needed to go through and account for all the details in the writing process. Bigitta’s and 
Björn’s letter can be found in the appendix. 

During the problem solving process Birgitta’s beliefs about what constitutes an answer to a 
(school) mathematics problem surface as the excerpt below illustrates. 

Birgitta: But if you think about it (.) we are supposed to give them an answer  
Björn: Mm 
Birgitta: But since we don’t have the values we can’t. We have to do like you 

said before ((to give and estimate)) 
Björn: Mm 
Birgitta: We have to sort of (.) but how do we do that without having any 

values? 
Björn: Mm (.) we can estimate 
Birgitta: Yes but then it’ll be (.) estimations 
Björn: Mm 
Birgitta: So that’s not an answer 
Björn: Mm 
Birgitta: Is it (.) or? 
Björn: Hm ((indicating that perhaps it is)) 

 

Another aspect of the same belief is the fact that they give an answer to the first part of the 
problem with a very high accuracy, 48.6 s, despite the rough estimates done for the calculation 
producing the answer. 

7.1.3 Group C 

Christer and Claes in group C are two lively, open, very talkative and mischievous students, 
which is reflected in their work on the problem. Being full of fun they now and then take more or 
less serious and reasonable assumption under consideration for inclusion in their solution. An 
example is when they work on how long it would take to climb the stairs and discuss the need for 
some extra time for stops and argue with the accompanying mother-in-law every now and then. 
Concerning their abilities in mathematics, Claes is an average student and Christer just below 
average. During the problem solving activity Christer shows a focus on getting an answer, 
whereas Claes wants to try different approaches and see if the answers these provide agree. Claes 
is the enthusiastic one of the two who brings many of the ideas to the table, while Christer is the 
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one questioning their work initiating validation processes. Among the three groups, group C 
seems to be the one enjoying the problem solving activity the most. 

 

 

Figure 4. The modelling activity diagram for the Empire State 
Building problem (group C) 

In Figure 4 the modelling activity diagram of group C starts with a short initial reading phase, 
followed by about 7.5 minutes spent on the first part of the problem and then approximately 16.5 
minutes on the second part. The writing phase that ends the problem solving session is about 7.5 
minutes. The modelling activity diagram of group C bears resemblance to the diagrams of both 
the other groups; the sub-activities Christer and Claes engage in when they struggle with the first 
part of the problem are similar to the one displayed by group A. However, when solving the 
second part of the problem, there are more similarities with the way group B engage in the sub-
activities. It is Christer who under silence does all the writing while Claes devotes himself to 
drawing pictures of skyscrapers; the letter can be found in the appendix. 

7.2. Examples of the coded categories  

The following section will provide examples of, and comments on, how the data was coded 
using the categories of the MAD framework. 

7.2.1. Making model 

A typical segment of the group work, which was categorized as making model deals with 
negotiating and agreeing on how to structure the problem and which assumptions or idealizations 
to make. This is briefly illustrated in the following excerpt which takes place around 3 minutes 
into the discussion of group A. The group just estimated the height of the Empire State Building 
to be 200 meters and now turned to properties of the elevator: 

Alfred: But in the case of a tourist elevator (.) shall we then assume that it 
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just goes from the ground to the absolute top ((floor))? 
Anders: Yes 
Axel: Without stopping 
Anders: Yes 

 

Another example of a small dialogue coded as making model is the following when Christer and 
Claes decide on with method to use to calculate an estimate for the time it takes to use the stairs. 
They have just spent quite some time discussing how to take into account that it is physically 
tiring to walk the stairs in terms of resting a given amount of time after a given interval of floors. 
So far, their idea has been to let the amount of time spent resting depend on how high up in the 
building you are, but they had not come to an agreement on the details: 

Christer: Ok, shall we try to use some sort of average in this case to (.) ‘case 
it’s not interesting to calculate (.) I mean it’s (.) ‘case it’ll (.) it’ll (.) 
the velocity will decrease the higher up one gets 

Claes: Mm, but (.) but 
Christer: Let’s settle for using an average all the time 
Claes: ((nodding)) Then, then we can (.) Put it like this, we can make an 

estimate (.) let’s say that you start to rest on every 10th floor and rest 
for a minute. Otherwise, if you’re a fatso you’ll never make it 

 

7.2.2. Estimating  

Estimation segments are often initiated with a direct question as for example “Yes, but how high 
is the poor building?”, “How fast can an elevator run?” or “How many floors are there?”. The 
discussions that follow such a question are all aimed to produce an estimate of some quantity, a 
number: 

Alfred: Shall we estimate a speed by which an elevator can travel upwards? A 
typical elevator in a building of a regular height of say 200 meters (.) 
going all the way up (.) in meters per seconds 

Axel: Yes, say that (.) a typical elevator might travel by the speed of 3-4, 3 
meters per second 

Alfred: Shall we say 5? It’s a quite fast elevator 
Axel: Mm, yes, let’s settle for 5 ((m/s)). 
Alfred: 5 ((m/s))? 
Anders: Hm ((nodding his head)) 

The following excerpt comes from when Björn and Birgitta try to get an estimate of the height of 
the Empire State Building. They have just come to terms with the fact that they have to make 
some estimates to be able to solve the problem. This example also to some extent illustrates the 
insecureness that characterizes Birgitta and Björn’s way of working: 

Birgitta: Ok, sure. Let’s start making up some values then 
Björn: Mm 
Birgitta: Mm (.) eh (.) Empire State (.) State Building (.) well, how high was the 

World Trade Centre for example?  
Björn: How high was what? 
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Birgitta: World Trade Centre 
Björn:  What? ((inaudible)) 
Birgitta: I stink at this (.) estimating stuff 
Björn: Yeah, me too ((inaudible)) 
Birgitta: ((laughter)) But 
Björn: But (.) I don’t know (.) it must (.) take 50 floors (.) it can’t be more than 

say (.) sort of 100 meter say (.) more than 300 meter sort of (.) no (.) 150 
((inaudible)) (.) Say that a floor is like 3 meters 

Birgitta: Yes 
Björn: Or if you think about (.) they might be higher that that ((inaudible)) 

Before Björn and Birgitta use the estimated number of floors and how high each floor is to 
calculate the height of the building in a validation process of the suggested height of 150 meters 
by Björn above, the dialogue when Birgitta expresses her beliefs about what should constitute a 
(mathematical) answer to the problem takes place (see the section on group B above). 
Eventually, they agree to estimate the height of the Empire State Building to 175 meters. 

7.2.3. Validating 

Questions also often start up segments of validation (“Shall we really say 100 floors?”), as do 
statements of doubt (“It feels like that’s too fast (.) for that building”). In these segments 
previous assumptions, estimates, calculations and results are looked at critically and are either 
made manifest or rejected in favour of better versions, as in the following example where the 
calculated elevator time evokes questioning of the previous estimated height of the Empire State 
Building (of 200 meters): 

Axel: It feels like that’s too fast (.) for that building 
Anders: Hm (.) it does 
Axel: I think it is (.) and now I’m stretching it (.) I think it is 300 

((meters)) (.) I think it is 280 meters, that I was off with a hundred 
((meters)) before 

Alfred: We can say that it ((the Empire State Building)) is 200 meters, that’s 
fine 

Axel: Yes ((10 seconds of quiet mumbling, Axel is working on his 
calculator)) 60 seconds, one minute to go up there. Is that 
reasonable? 

Anders: Yes 
Alfred: If we assume, how high 
Axel: Yes, ‘cause that’s almost probable  
Alfred: Yes, 300 meters (.) 300 meters 
Axel: One minute then. One minute can be really long 
Alfred: Yes, especially in an elevator 

 

Although Axel’s second statement expresses a re-estimation of the height of the Empire State 
Building, and indeed that he afterwards is doing some calculations, this excerpt is coded as the 
group being engaged in the activity of validating. This extract exemplifies the type of 
considerations that must be dealt with when using the codes of the MAD framework; it codes the 
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activity on the group level and not on the individual level. Nevertheless, Axels’ contribution in 
this excerpt (estimating) has a big influence on the groups’ final result. 

7.2.4. Calculating, Reading and Writing 

Calculating is an activity normally preformed by one of the group members in the background of 
some other activity, so here the video recording is crucial for the coding. Occasionally the whole 
group focus on the actual calculation, but regardless of how it is obtained and by whom, the 
result of a calculation is important for how the solving process evolves. 

The sub-activities reading and writing are rather self-explaining, but it is notable that when the 
group came to writing down their answers (in the form of a letter) they just reproduced and 
retold what they said before without any reflections or critical scrutiny. 

7.3. The use of extra-mathematical knowledge 

It could also be observed in the data that the students frequently used their personal extra-
mathematical knowledge and experiences from outside schools in the solving process. It seems 
that they did this in at least three different ways: in a creative way to construct a model or to 
make an estimate, in the process of validating a result or an estimate, and finally in a social way 
as a narrative anecdote. 

In the following excerpt Axel shares a personal experience from an amusement park in a creative 
way in hope to easier get an estimate of the elevator speed. However, in this specific case his 
reasoning makes him question the estimated height of the Empire State Building (200 m) which 
the group had agreed on two minutes earlier. Hence he is also using this piece of extra-
mathematical knowledge to (involuntary) initiate a validating process: 

Axel: Hm (.) Did anyone ride the FREE FALL13  
Anders: ((in unison with Alfred)) Nope. 
Axel: I was thinking that since (.) hm, it is 90 meters ((high)), how long does it 

take to get up there? (.) I think it takes 15, 20-25 seconds (.) and that’s 90 
meters. 

Alfred: Yes. 
Axel: It ((the Empire State Building)) must be higher than 200 meters. 

 
As it turned out, all seven participants had a common friend living at the top apartment in a four 
storage apartment building. All groups used their knowledge and experiences about this 
apartment whereabouts as point of departure for modelling and estimating the elevator speed, the 
height and number of the steps of the stairs, time for walking the stairs. Other extra-mathematical 
knowledge invoked included experience from working as a postman, visiting a high tower in 
Malaysia, the whereabouts of other friends’/relatives’ apartments, different elevator-experiences, 
climbing up in a radio tower on a Jacobs’ ladder, and mounting climbing, just to mention a few. 
 
7.4. Similarities and differences between the groups 

From the constructed modelling activity diagrams (figures 2, 3 and 4) one can observe that the 
students engage in all of the predefined different sub-activities, that they do spend a considerable 
amount of time in each sub-activity, and that they go back and forth between the different types 

                                      
13 FREE FALL is an attraction in the amusement park Gröna Lund in Stockholm, Sweden. 
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of activities numerous times. In other words, the processes involved in the mathematical 
modelling cycle pictured in Figure 1 are richly represented in the groups’ problem solving 
processes. 

Looking at the problem solving process of the three groups one can observe both similarities and 
differences. To get an overview of the amount of time categorized as spent on the different sub-
activities for each group and phase of the problem solving process Table 3 was complied. From 
this table it is clear the group A spent by far the least time engaged in Making models compared 
to the other two groups. One reason for this might be that group A quickly decided to base their 
work on the model that time equals height divided by average speed, and did not have to engage 
in discussing more advanced models. Group B had initial problems in coming to terms with how 
to attack the problem, which explains why they devote twice as much time making model during 
the first part of the problem than the other groups. In the second part of the problem, on the other 
hand, group C spend the most time Making models since they started to think in the same line as 
group B, but gave up this idea and ended up in just a slightly different model than the one 
adapted by group A. 

Table 3. Summary of the amount of time categorized as the different sub-activities 
 for each group and part of the problem solving process, respectively 

 First part Second part Writing Total 

 A B C A B C A B C A B C 
R 0:45 0:45 1:15 0:30 0:15 0:45 0:00 0:30 0:15 1:15 1:30 2:15 
M 1:15 3:30 1:45 3:30 4:00 6:15 0:00 0:00 0:00 4:45 7:30 8:00 
E 2:45 4:15 2:15 3:15 2:30 4:15 0:00 0:00 0:00 6:00 6:45 6:30 
V 1:30 2:00 3:45 8:30 1:15 5:00 0:00 0:00 0:00 10:00 3:15 8:45 
C 0:15 1:45 1:30 3:45 2:45 2:45 0:00 0:00 0:30 4:00 4:30 4:45 
W 0:00 0:00 0:00 0:00 0:00 0:00 5:45 11:15 7:30 5:45 11:00 7:30 
          31:45 34:30 37:45

 

On the whole the groups spent approximately the same amount of time Estimating and 
Calculating. However, group B is the only group who spend more time Estimating on the first 
part of the problem relative to the second part. One explanation of this behaviour might be the 
insecureness expressed by the group, due to not being able to relate the Empire State Problem to 
the types of problem they normally encounter in their mathematics classrooms. This insecureness 
makes the group seriously doubt their capabilities and even hard to engage in making 
assumptions and estimates at all. When solving the second part, on the other hand, they more or 
less focus on the procedure of how to come up with an answer and Estimating becomes 
secondary. 

When it comes to Validating, group B engage by far the least in this sub-activity of the three 
groups. This is due to the little time group B spent validating on the second part of the problem, 
and the group seems to be happy when they have calculated an answer and do not express any 
inclination to question their numbers coming from a calculation. To a certain extent this 
behaviour is not surprising knowing some of the beliefs expressed by Birgitta about (school) 
mathematics. 
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In Writing the letter asked for in the task, the groups used between approximately six to eleven 
minutes; group A used the least amount of time and group B the most time. Why group B spent 
so much time writing in comparison to the other two groups has already been discussed (see 
7.1.2.), and looking at the letter produced by group A and C (see the Appendix) one can observe 
that much more effort and detail is put into the letter by group C, giving a possible explanation 
for group C using more time than group A in writing the letter. 

Finally, taking a look at how much time was spent totally on the different sub-activities, one can 
see that group A spends the least time, group B somewhat more time, and group C the most time. 
This is in line with the observed behaviours of the groups; group A works in a cohesive way 
where the members of the group dynamically follow each other if one starts to engage in another 
sub-activity. This makes group A’s work very focused and thus, relative to the other groups, not 
so many sub-activities are being engaged upon simultaneously. The other two groups exhibit less 
of this behaviour. In the case of group B their issue of not having a clear way to approach the 
problem makes their behaviour more searching and ambivalent in trying to cope with the 
situation. The behaviour of group C, on the other hand, is more or less the opposite to the one 
found in group A, and is explained by that fact that group C is engaged in multiple sub-activities 
four times as much as group A. 

8. SUMMARY AND DISCUSSION 

The modelling activity diagram is a different way to describe students’ modelling processes than 
has been done in many empirical studies. Borromeo Ferri (2007a; 2007b) pictured what she 
called “individual modelling routes” of her students by drawing arrows in the modelling cycle 
shown in Figure 1. In the context of picturing the processes engaged in during solving modelling 
tasks, the modelling activity diagram can be used to visualize a group or an individual student’s 
modelling sub-activities in a more linear way along a timeline.  Thus, it provides a simple 
dynamical picture of the activities involved. From the results presented above, the modelling 
activity diagram shows that Fermi problems might serve well as a means to introduce 
mathematical modelling at this school level: All modelling sub-activities are richly represented 
and contributed in a dialectic progression towards a solution to the task. 

It is clear from the three modelling activity diagrams produced, that the view presented on 
modelling (see Figure 1) as a cyclic process is highly idealised, artificial and simplified. This 
way of conceiving mathematical modelling was useful for the developing of the MAD 
framework, but real authentic modelling processes are better described as haphazard jumps 
between different stages and activities, as is also noted by Haines and Crouch (in press).  

Borromeo Ferri (2006; 2007a; 2007b) also notes that students use extra-mathematical knowledge 
in the modelling process when deriving the mathematical model and validating results. In the 
latter case, she differentiates between “intuitive” and “knowledge-based validation” (2006, p. 
93) and notes that students mostly only make what she calls “inner-mathematical validation”, 
and that validating for students means “calculating”. However, the data in this study provides 
numerous examples where personal extra-mathematical knowledge is used by the students in the 
validation of both models and estimates as well as in the validation of calculations.  

One of the reasons for using Realistic Fermi problems was to urge the groups into discussions 
about the problem setting and how to approach the problem. In my opinion this worked out 
nicely, but the study also suggests that to some extent such problems take the focus away from 
the mathematics, which I believe students experience hard to discuss. It also makes the problem 



Ärlebäck 

available in an indirect way through the discussions about how to structure the problem and what 
(and how) to estimate. In this respect the realistic feature of the problem is crucial. Although the 
mathematics was kept at a very elementary level, one could have tried to deepen it by explicitly 
asking for, say, an equation relating height and time spent in the elevator or in the stairs.  

Looking at the three letters produced by the groups (see the Appendix), and taking into account 
how much time the they spent on composing them, it is astonishing how little information they 
contain about the groups’ activities during the 30-minutes long problem solving session. This 
brings to the fore the issue of how to assess modelling work and the development of modelling 
competencies, an active area of research where some results and methods are emerging, but 
which in my opinion still needs to be further researched. 

In the data material one can note that the group dynamics are essential for the evolution of and 
activation of the different sub-activities during the problem solving process. It is the discussions 
and interactions in the groups, when different beliefs and opinions are confronted, that drive and 
shape the modelling process. Group behaviour is strongly influenced by individual preferences 
and group composition, making it one of the most important task variables to consider. Group B 
is an example of a constellation which was not optimized, whereas group C displayed a better 
blend of personalities, in the sense that members of group C complemented each other, bringing 
different attitudes and perspectives to the collaboration. The members of group B on the other 
hand, were in a sense too alike, with the result that the group got stuck within their expectations 
and way of thinking. Indeed, this social dimension of the problem solving process is something I 
feel the framework and methodological choices need to take into account more seriously in the 
future. 

Schoenfeld reminds us that “any framework for gathering and analyzing verbal data will 
illuminate certain aspects of cognitive processes and obscure others” (1985a, p. 174). In line with 
Schoenfeld (1985a), I wanted to minimize my degree of intervention once the groups were set to 
work, and after giving the students the initial instructions I only briefly visited them to check on 
the recording devices. On some occasion I got a question from the students (see the section on 
group B above), but otherwise the nature of instruction and intervention was limited to the initial 
instruction and later the problem formulation, in order not to affect and interfere in the problem 
solving activity more than absolutely necessary. The environment in which the groups where 
situated was naturally superficial. Although the departmental group rooms where nicely 
furnished, the students had never been there before, and in addition there was a camera directed 
at them. They were also asked to ‘think aloud’ and to work on a non-standard problem. The 
question now is if the subjects felt so uncomfortable that it induced an atypical and pathological 
behaviour in the students’ problem solving process? I would argue that most circumstances 
above had little or no effect on the students’ behaviour. For one thing, they had all volunteered to 
participate, and more over, they all knew me very well, infusing some sort of confidence in them. 
In addition, working in groups of two or three students quickly seemed to make them forget the 
camera and the direct surroundings. However, all these task variables are hard to keep track of 
and to try to realise their consequences for the displayed behaviour. 

For the validity of the study using adult students in a special university preparatory course may 
be questioned. However, the mathematical pre-knowledge was the same as for adolescent 
students in school taking the same courses, and the increased extra-mathematical knowledge that 
came into play when working on the problems studied were not of a kind that could not have 
been experienced also by the latter group. That the participants chose the groups themselves can 
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be considered to be an advantage for this pilot study, facilitating openness in the discussions. An 
alternative method of using a grounded theory approach could also have been applied to the data. 
However, the results of a study can only be interpreted within the research framework chosen, 
which in this case was linked to the mathematical modelling perspective where the pre-defined 
categories used make it easier to relate to and locate the results in previous research. 

9. CONCLUSIONS AND FUTURE RESEARCH 

Returning to the research question, one can conclude that all the modelling sub-activities 
proposed by the framework (reading, making model, estimating, calculating, validating and 
writing) are richly and dynamically represented when the students get engaged in solving 
Realistic Fermi problems. Thus this study shows that small group work on Realistic Fermi 
problems may provide a good and potentially fruitful opportunity to introduce mathematical 
modelling at upper secondary school level.  

This research may be continued in a number of ways. First, the tool modelling activity diagram 
as an instrument of analysis has a potential to be developed further in different directions, 
depending on what it will be used for. One idea is to incorporate the group dynamics into the 
diagram by indicating in a sub-activity segment how much each group member contributes to the 
discussion. One could also try to modify the framework to be more general; reading in this study 
is just reading, but in a more general setting reading could stand for the gathering of any external 
information. In some situations it may be needed to try to split the sub-activity making model 
into the two sub-activities structuring and mathematizing. 

Second, in a setting of teaching mathematical modelling, a joint follow-up session with the three 
groups in close connection to the problem solving session could serve well as a meta-cognitive 
activity, discussing the problem and their way of solving it, in order to highlight the processes 
involved in mathematical modelling. In future research the outcome of such an intervention 
might be fruitful to investigate. 

Third, the data also pose interesting questions about how the students validate their results, 
models and estimates – why do they choose to do this the way they do? A (calculated) result 
depends on the model developed, the estimates done and the performed calculation. So, in 
validating a result it is desirable that all these three “influences” are looked upon critically (see 
Figure 5). Since all of these three types of validation are present in the data it would be 
interesting to investigate this phenomenon in more detail. 



Ärlebäck 

 

Figure 5. Possible validation routes 
 
One of the most evident results produced by the MAD framework, illustrated in figures 2, 3, and 
4 respectively, is the non-cyclic nature of the modelling process. Although the idealised view of 
mathematical modelling as described in terms of a modelling cycle has been much employed in 
mathematics education research, the discrepancy with what actually happens when students 
engage in modelling activities is palpable. My opinion is that this ‘inconsistency’ is something 
that researchers ought to take more seriously to refine current theories and methods to be able to 
better validate our research findings. Reference to elaborated epistemological analyses of 
mathematical modelling and authentic mathematical models in relation to education (e.g. 
Jablonka, 1996) is needed as well as discussions from the learner’s perspective. Using a 
competence approach (Blomhøj & Højgaard Jensen, 2007; Maaß, 2006) might provide one 
alternative to the commonly used modelling cycle, but surely there must be other routes as well 
to investigate? 
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APPENDIX, Letter produced by group A 
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APPENDIX, Letter produced by group B 

     

 
 
 

 We assume that the building is 175 meters high, that is 50 floors x 3.5 m. 
We assume that the elevator travels with a speed of 3.6 m/s  
 

175 m

3.6 m/s
 48.6 s 

 
 We assume that a person moves with the speed of 1.5 m/s in the beginning of 

the staircase. Then, it should reasonably take 3 s to walk one floor (= 3.5 m) as 
you become tired. Vi assume that you in average per every 5 floors get tired 
with as many seconds per every 5 floors as floors you already walked, that is 
when you walked 10 floors the next 5 floors will take 10 more seconds. 
Totally: 15+20+45+65+90+120+155+195+240=975 s = 16 minutes 15 
seconds  
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Appendix, Letter produced by group C 
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Mathematical Beauty and its Characteristics 

- A Study on the Students’ Points of View 
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Abstract: Based on the statement, that the experience of mathematical beauty has a 
positive influence on students’ motivations and attitudes towards mathematics and 
its study, the focus of this paper is the aesthetic component of mathematics. First, 
the role of aesthetics for perception and education is addressed. The appreciation of 
the beauty of mathematics is one of the wellsprings of this subject, not only in 
research but also in school education. This should have implications for the teaching 
of mathematics. However the beauty making elements have not been very well 
analysed. In particular, it is not clear to what extent the criteria for aesthetics found 
in literature are in agreement with emotions of students. A study on this topic is 
presented below. It involves students out of grades 5 to 12, as well as university 
mathematics teacher students, and reveals similarities and differences between the 
views of students of different educational levels. 

Keywords: Aesthetics; Affect; Attitudes; Beliefs; Emotions; Mathematical beauty;  

1. THE ROLE OF AESTHETICS FOR PERCEPTION AND 
EDUCATION 

In the literature there are many reports concerning the use of aesthetics as a guide when 
formulating a scientific theory, or selecting ideas for mathematical proofs (Brinkmann & 
Sriraman, 2009). 

The first who introduced mathematical beauty as well as simplicity as criteria for a physical 
theory was Copernicus (Chandrasekhar 1973, p. 30). Since then, these criteria have continued to 
play an extremely important role in developing scientific theories (Chandrasekhar 1973, p. 30; 
1979; 1987). This is especially so for truly, creative work that seems to be guided by aesthetic 
feeling rather than by any explicit intellectual process (Ghiselin 1952, p. 20). Dirac, for example, 
tells about Schrödinger and himself (Dirac 1977, p. 136): 

                                                 
1 E-mail: astrid.brinkmann@math-edu.de 
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It was a sort of act of faith with us that any questions which describe fundamental laws of nature must have great 

mathematical beauty in them. It was a very profitable religion to hold and can be considered as the basis of much 

of our success. 

 

Van der Waerden (1953 ) reports that Poincaré and Hadamard pointed out the role of aesthetic 
feeling when choosing fruitful combinations in a mathematical solution process. More precisely, 
Poincaré asked how the unconscious should find out the right, that is fruitful, combinations 
among the many possible ones. He gave the answer: “by the sense of beauty, we prefer those 
combinations that we like” (Van der Waerden 1953, p. 129; see also Poincaré 1956, p. 2047-
2048).  

A similar statement is given by Hermann Weyl (Ebeling, Freund and Schweitzer 1998, p. 209): 

My work has always tried to unit the true with the beautiful and when I had to choose one or the other I usually 

chose the beautiful. 

 

Thus theories, that have been described as extremely beautiful, as for example the general theory 
of relativity, have been compared to a work of art (Chandrasekhar 1987); Feyerabend (1984 ) 
even considers science as being a certain form of art. 

Mathematics and mathematical thought are obviously directed towards beauty as one profound 
characteristic. Papert and Poincaré (Dreyfus and Eisenberg 1986, p. 2; Hofstadter 1979) even 
believe that aesthetics play the most central role in the process of mathematical thinking. The 
appreciation of mathematical beauty by students should thus be an integral component of 
mathematical education (Dreyfus and Eisenberg 1986). But Dreyfus and Eisenberg remarked in 
1986, that developing an aesthetic appreciation for mathematics was not a major goal of school 
curricula (NCTM, 1980), and they suggested that "this is a tremendous mistake". However in the 
curricular guidelines of Northrhine-Westfalia, Germany (MSWWF 1999, p. 38), the 
development of students' appreciation of mathematical beauty is explicitly demanded in the 
context of the fostering of long-life positive mathematical views. The importance of this demand 
may be stressed by the following statement given by Davis and Hersh (Davis and Hersh 1981, p. 
169): 

Blindness to the aesthetic element in mathematics is widespread and can account for a feeling that mathematics 

is dry as dust, as exciting as a telephone book, as remote as the laws of infangthief of fifteenth century Scotland. 

Contrariwise, appreciation of this element makes the subject live in a wonderful manner and burn as no other 

creation of the human mind seems to do. 

In addition to the positive influence on students’ attitudes towards mathematics, the experience 
of mathematical beauty would surely have as well a positive influence on students’ motivations 
for the study of mathematics. Of course, this statement can only be confirmed on the basis of a 
classroom teaching that emphasizes students’ aesthetic feelings. 
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2. CRITERIA OF AESTHETICS 

If we want students to experience mathematical beauty, we first have to bring out the 
characteristics of mathematical aesthetics. What does it mean, for example, that a theorem, a 
proof, a problem, a solution of a problem (the process leading up to a solution, as well as the 
finished solution), a geometric figure, or a geometric construction is beautiful? 

Although assessments about beauty are very personal, there is a far-reaching agreement among 
scholars as to what arguments are beautiful (Dirac 1977). Thus it makes a sense to search for 
factors contributing to aesthetic appeal. Before starting on this journey, Hofstadter (1979, p. 555) 
sounds a note of warning when suggesting, that it is impossible to define the aesthetics of a 
mathematical argument or structure in an inclusive or exclusive way: 

There exists no set of rules which delineates what it is that makes a peace beautiful, nor could there ever exist 

such a set of rules. 

However we can find in the literature several indications of criteria determining the aesthetic 
rating. 

The Pythagoreans took the view that beauty grows out of the mathematical structure, found in 
the mathematical relationships that bring together what are initially quite independent parts in 
such a way to form a unitary whole (Heisenberg 1985). Chandrasekhar (1979) names as aesthetic 
criteria for theories their display of "a proper conformity of the parts to one another and to the 
whole" while still showing "some strangeness in their proportion". Weyl (1952, p. 11) states that 
beauty is closely connected with symmetry, and Stewart (1998, p. 91) points out that imperfect 
symmetry is often even more beautiful than exact mathematical symmetry, as our mind loves 
surprise. Davis and Hersh (1981, p. 172) take the view that: 

A sense of strong personal aesthetic delight derives from the phenomenon that can be termed order out of chaos. 

And they add: 

To some extent the whole object of mathematics is to create order where previously chaos seemed to reign, to 

extract structure and invariance from the midst of disarray and turmoil. 

Whitcombe (1988 ) lists as aesthetic elements a number of vague concepts as: structure, form, 
relations, visualisation, economy, simplicity, elegance, order. Dreyfus and Eisenberg (1986) 
state, according to a study they carried out, that simplicity, conciseness and clarity of an 
argument are the principle factors that contribute to the aesthetic value of mathematical thought. 
Further relevant aspects they name are: structure, power, cleverness and surprise. Cuoco, 
Goldenberg and Mark (1995, p. 183) take the view that: 
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The beauty of mathematics lies largely in the interrelatedness of its ideas. ... If students can make these 

connections, will they also see beauty in mathematics? We think so... 

Ebeling, Freund and Schweitzer (1998, p. 230) point out, that the beautiful is as a rule connected 
with complexity; complexity is necessary, even though not sufficient, for aesthetics. 

Complexity and simplicity are both named as principal factors for aesthetics: how do these 
notions fit together? If simplicity is named, it is mainly the simplicity of a solution of a complex 
problem, the simplicity of a proof to a theorem describing complex relationships, or the 
simplicity of representations of complex structures. It looks as if simplicity has to be combined 
in this way with complexity, in order to bring out aesthetic feelings (Brinkmann 2000). 

The criteria for aesthetics might give us an idea of how to choose mathematical objects for 
presentation in classroom, if we want to bring out aesthetic feelings in the students. However, we 
have to consider that the criteria for aesthetics noted above, have in the main been developed by 
mathematicians and scientists. Sinclair (2004) suggests, according to some prevalent experience 
of teachers, that there are stimuli that commonly trigger also students’ aesthetic response. But, it 
is not at all clear whether the criteria brought out above will point to worthwhile classroom 
activities which in turn will give rise to the looked for emotions of students.  

Furthermore, the quoted criteria for aesthetics are given by qualitative characteristics2, and hence 
by their nature they are fuzzy quantities. Thus aesthetic considerations will depend on individual 
judgements. Accordingly another point of interest will be to find out whether in mathematic 
classes the aesthetic sensation of students can be expected to be relatively homogenous. 

3. STUDENTS’ JUDGEMENTS ON MATHEMATICAL 
BEAUTY – A STUDY 

In order to gain more insight into the aesthetic feelings of students, a study was carried out by the 
author in Germany.3 

3.1 Design of the study 

The participants of the study were on the one hand 168 students attending two gymnasiums. 
They were in grades 5 to 8 (96 students) and grades 11 and 12 (72 students). On the other hand 
85 university mathematics teacher students were included in the study. 

The students were asked to work on the questionnaire given in Figure 1, which had been 
developed by the author. (The consecutive number in the left column in Figure 1 has been added 
here with regard to the evaluation of the study data.) 

                                                 
2 Birkhoff (1956) made an attempt to quantifying aesthetics in a general way, but his proposal 
seems not to be very convincing. 
3 First results have been published in Brinkmann 2004a, 2004b and 2006. 
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Figure 1: Questionnaire 
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What is a beautiful mathematical problem? 

1.  Write down one ore several mathematical problems, which appeal to you, respectively 
write down their contents. 

2.  What do you think is a “beautiful” mathematical problem? 

3.  Which are, in your view, characteristics of a beautiful mathematical problem? 

� The problem is tricky. 
� The problem has a simple solution. 
� The problem is complicated. 
� The problem looks complicated but it has a simple solution. 
� The problem is simple. 
� The problem has an elegant solution. 
� The problem is complex. 
� The problem and its solution are easily to be understood. 
� The problem is unfamiliar for me. 
� The topic of the problem is interesting. 
� The problem has a surprising solution. 
� The solution of the problem is obvious. 
� The nature of the problem is familiar to me. 
� The nature of the problem is new to me. 
� The solution of the problem can easily be guessed. 
� The problem looks simple but it has a complicated solution. 
� There are considered regular patterns or structures. 
� The solution of the problem is complicated. 
� The problem is a puzzle. 
� The problem requires several solution steps. 
� The problem is about symmetric figures. 
� It is possible to solve the problem by logical considerations, without calculating. 
� The solution of the problem shows unexpected regularities. 
� The problem refers to realistic applications. 
� The problem has got more than one possible solution. 
� The problem respectively its solution are clearly structured. 
� The facts are presented clearly. 
� The solution of the problem is significant for further applications. 
� The problem requires a complex intellectual examination. 
� … 
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While the first two items of the questionnaire are of an open format, the third item uses a closed 
format to refer to a number of specific characteristics of mathematical problems that might be 
related to aesthetical feelings of students. In this item, beauty-making elements referred to in the 
literature are used: 

- A number of statements refer to different nuances of simplicity (statements 2, 5, 8, 12, 13, 
15), or complexity (statements 1, 3, 7, 9, 18, 19, 29) of a mathematical problem or its 
solution, or to combinations of both (statements 4, 16). 

- The statements 26 and 27 refer to clarity and structure. 
- The statement 6 refers to the characteristic of elegance. 
- The statements 11 and 23 refer to the characteristic of surprise. 
- The statements 17, 21 and 23 refer to symmetry and regularities. 
- The statement 28 refers to the feature of power. 

Based on experiences of the author as a teacher, as well as on advice given by colleagues, further 
possibly beauty making characteristics of a mathematical problem were included: the aspect of 
interest (statement 10), the feature of novelty / not novelty (statements 14, 13), the reference to 
applications (statements 24, 28), the open ended problem feature (statement 25). 

Item 1 and 2 of the questionnaire provide qualitative responses that help us 

- to interpret the answers given to item 3 (e. g. to become an idea of that what is denoted as a 
simple problem), 

- to find further beauty making characteristics of problems, that are not yet considered in item 
3. 

In the primarily developed questionnaire, the statements 20 and 22 were not yet enclosed. They 
have been added later, according to first study results, as these criteria have been named by some 
students under item 2 (see Brinkmann 2004a). Hence, 36 of the students out of grades 5 to 8 and 
72 students out of grades 11 and 12 (i.e. the participants of the first studies) had not been 
working on the completed questionnaire. 

The students were instructed to tick as many statements in item 3 they felt were correct. Of 
course it might be that the statements marked by a student do not have equal weighting. However 
the focus of the study was to explore beauty-making elements, without emphasizing individual 
rankings, hence this matter was not a real issue. 

Out of the students in grades 7 and 8, 36 had participated at the “Math Kangaroo” competition 
shortly before they completed this questionnaire, and thus could name problems out of this 
competition when working on task 1. 

The responses given by the 11th and 12th graders were differentiated according to the students’ 
mathematical achievement in school lessons (belonging to the best third of the class/course or 
not). 
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3.2 Results 

Students in grades 5 to 8: 

About two third of the 5th to 8th graders named puzzles as beautiful mathematical problems, but 
most of these students added that the puzzles should not be too difficult. One third of the students 
specified problems, that require drawing activities, as beautiful, especially geometry problems of 
this kind. 

As an example, the following problem out of the Math Kangaroo competition 2003 was named 
by about half of the students that had participated before at this competition (see above): 

 

 

 

 

 

 

 

 

 

 

Further beautiful problems given by the students were mostly modelling problems, where 
mathematics is applied in real world contexts, e. g.: 

- The problem of the garden cottage: The site plan is given on a scale of 1:500, and the 
allowance that the distance to the site borders has to be at least 2.5m and the distance to a 
street at least 5m. Find out the area where the cottage is permitted to be built. 

 

- The dog kennel problem: Draw the area where Bello can move. 

 

 

 

 

- Sparkling mineral water automat: Is it more favourable to make sparkling mineral water 
with a home automat, or to buy ready-made sparkling mineral water? 

dog leash, 10 m long 
1 m 

2 m 

Bello’s 
dog kennel 

A square piece of paper is folded twice and 
cut in the way you can see in the picture. 
How will the piece of paper look after 
unfolding? 



Brinkmann 
 

 

- The helicopter problem: There is given the map of an area where 2 helicopters have to be 
positioned, and also the maximal possible velocity of the helicopters. Where should the 
helicopters been positioned, such that every place of the area can be reached within 10 
minutes? 

 
 

Each of these problems had been named by some 15% to 30% of the students, which knew them. 

Regarding item 2, the majority of the students answered that a problem and its solution must be 
simple to be beautiful. As examples of this point they gave among others 1x1=1, and a problem 
without fractions or percents. Many students made their statement of simplicity more precise by 
adding that a problem is not beautiful if they cannot solve it by themselves, or if it is so 
complicated that they have no idea what to do. But a simple problem is also not beautiful if they 
had to work on this problem many times, or if it is boring, and too simple. One student wrote in 
response to item 2 that a very difficult but solvable problem is beautiful. 

In item 3, about two third of the students ticked interesting topic (statement 10), puzzles 
(statement 19), simple solution / simple problem (statements 2 and 5). Statement 22 (a problem 
solvable by logical considerations, without calculating), that had been added in the questionnaire 
after the first studies, turned out to be relevant: it has been ticked by 58% of the students that had 
this choice. As well the second later added statement 20 (several solution steps required) is of 
importance (27%). Further statements to matter are statement 4 (a problem that looks 
complicated but has a simple solution), statement 8 (the problem and its solution are easily to be 
understood) and statement 12 (obvious solution). 

 

Just the reference to realistic applications plays a subordinate role, although one might expect 
this when regarding the examples given to item 1. Rather the interesting topic is decisive. 

Table 1 shows a more detailed summary of the outcomes for item 3. 
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Table 1: Outcomes in item 3 of the questionnaire, grades 5 to 84 

Nr. Statement % 

10 The topic of the problem is interesting. 67 

2 The problem has a simple solution. 64 

19 The problem is a puzzle. 61 

5 The problem is simple. 60 

22 It is possible to solve the problem by logical considerations, without 
calculating. 

58 

4 The problem looks complicated but it has a simple solution. 47 

8 The problem and its solution are easily to be understood. 44 

12 The solution of the problem is obvious. 44 

11 The problem has a surprising solution. 30 

1 The problem is tricky. 29 

21 The problem is about symmetric figures. 28 

20 The problem requires several solution steps. 27 

25 The problem has got more than one possible solution. 27 

The number of statements ticked by the students for item 3 differed mostly from 3 to 7. The most 
preferred combination was statement 2 (simple solution), statement 5 (simple problem), and 
statement 12 (obvious solution). 

Students in grades 11 and 12: 

When working on item 1 of the questionnaire most of the students stated that they never really 
had come across a beautiful mathematical problem, but that it would be nice to do so. As 
“beautiful” examples out of the known problems, they mainly named very simple arithmetical 
problems (such as 1 a a  ), binomial formulas, and problems that can be solved by simple 
algorithms (e.g. systems of linear equations). Only in isolated cases (3 higher-achieving students) 
were some comparatively complex problems quoted (e.g. derivation of Pythagoras’ theorem, 
calculation of volumes with integrals). 

The answers to task 2 were quite varied. For the lower-achieving students a beautiful problem is 
mostly a problem that can be solved easily by well-known formulas or a well-known algorithm, 
or a problem where one sees what is to do immediately. But for these students the solution 
should not be too simple because that would make it boring, and hence it should consist of 
several (simple) steps. As well the solution should not be too obvious; it is better to have to first 

                                                 
4 There are listed only those statements ticked by at least 25% of the students. The percentages to 
number 20 and 22 refer only to the 60 students that had the possibility to tick the respective 
statements. 
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think a little about the problem. Contrarily to the younger students, a connection to the real world 
is also important, as is the feeling that the problem could be useful for life. 

For the higher-achieving students a beautiful problem must be a problem that he or she can 
solve, and it must be presented in a clear way. But these students did not stress the need for the 
problem to be solvable by using well-known formulas and algorithms. On the contrary, the 
aesthetic appeal seemed to be greater if one has to think about the problem in an unconventional 
way, if connections within mathematics have to be seen, if more than one well-known formula 
has to be used, and the successful combination of these formulas has to be found out by oneself. 

For task 3 (see Table 2) there were no great differences between high-achievers and low-
achievers with regards the frequency of selection of the statements. The most important 
characteristic of a beautiful problem for these students is an interesting topic (81%), followed by 
the reference to realistic applications (65%). Also important are a simple problem solution 
(60%), a familiar problem nature (60%, although more emphasized by low-achievers), and a 
clear presentation of the facts (58%). The characteristics of a simple problem, a complicated 
problem with simple solution, and a problem with a clear structure, were each marked by about 
40% of the students (the second one more emphasized by high-achievers). Three fourth of the 
high-achievers ticked problems with more than one possible solution. In contrast to the younger 
students, only one third of the students (about half of the high-achievers) marked puzzles and 
tricky problems as beautiful. About half of the high-achievers ticked problems with a surprising 
solution, and problems that require a complex intellectual examination. 
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Table 2: Outcomes in item 3 of the questionnaire, grades 11 and 125 

Nr. Statement % all % of 
low 

% of 
high 

10 The topic of the problem is interesting. 81 79 83 

24 The problem refers to realistic applications. 65 67 63 

2 The problem has a simple solution. 60 65 50 

13 The nature of the problem is familiar to me. 60 71 38 

27 The facts are presented clearly. 58 56 63 

5 The problem is simple. 43 46 38 

4 The problem looks complicated but it has a simple solution. 42 31 63 

26 The problem respectively its solution are clearly structured. 39 42 33 

25 The problem has got more than one possible solution. 36 17 75 

1 The problem is tricky. 31 21 50 

19 The problem is a puzzle. 28 19 46 

28 The solution of the problem is significant for further 
applications. 

26 27 25 

11 The problem has a surprising solution. 22 10 46 

29 The problem requires a complex intellectual examination. 22 8 50 

15 The solution of the problem can easily be guessed. 22 23 21 

The number of statements ticked by an older student for item 3 was generally greater compared 
to the number selected by a younger student: 22% ticked 2-5 statements, 64% ticked 6-10 
statements and the remaining 14% ticked 11-14 statements. Every listed statement was ticked at 
least once. In spite of this, there are visible favourites named by the majority of the students. 

University mathematics teacher students: 

The university mathematics teacher students named under item 1 mainly examples of 

- problems that have the character of a puzzle (e. g. : “How many squares can you draw in a 
chessboard?”), 

- problems with astonishing or unexpected solutions (e. g.: “You have a rope that is 1m longer 
than the equator. Imagine, you put this rope around the equator and stretch it concentrically. 
What distance would the rope than have from the earth surface?” Solution: 1/(2π) m, these 
are round 16 cm – a surprising solution, as it is contradictory to human intuition.), 

- problems where mathematics is applied in real life situations, as well as using geometry, 
algebra or combinatorics, 

- problems requiring logical thinking, 
                                                 
5 There are listed only those statements ticked by more than 20% of the students. 
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- problems requiring drafts or drawings. 

As for item 2, the students characterized puzzles, tricky problems, problems that prompt thinking 
as beautiful. Further they mainly named as characteristics of a beautiful problem the reference to 
realistic applications, clearness, the possibility for creative solutions, the existence of more than 
one solution, complex solutions composed of several steps. 

For item 3 the mathematics teacher students indicated as most important features of a beautiful 
mathematical problem, similar as the elder school students, an interesting topic, the reference to 
realistic applications and a clear presentation of a problem. Further tricky problems, puzzles and 
problems with a surprising solution are also identified by these students as beautiful. In contrast 
to the younger school students, the feature of having more than one possible solution is relevant 
for these students; but simplicity is not a beauty making element, though it is the combination of 
a complicated look but having a simple solution. Similar as for scientists, elegance is felt as a 
weighty feature. More detailed information is provided by table 3. 

Table 3: Outcomes in item 3 of the questionnaire, mathematics teacher students6 

Nr. Statement % 

24 The problem refers to realistic applications. 78 

10 The topic of the problem is interesting. 76 

1 The problem is tricky. 67 

27 The facts are presented clearly. 58 

6 The problem has an elegant solution. 54 

4 The problem looks complicated but it has a simple solution. 49 

25 The problem has got more than one possible solution. 41 

11 The problem has a surprising solution. 32 

19 The problem is a puzzle. 31 

22 It is possible to solve the problem by logical considerations, without 
calculating. 

29 

20 The problem requires several solution steps. 28 

14 The nature of the problem is new to me. 25 

23 The solution of the problem shows unexpected regularities 21 

The majority of the mathematics teacher students ticked 6-10 of the listed statements. 

 

 

 

                                                 
6 There are listed only those statements ticked by at least 20% of the students. 
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4. LIMITATIONS 

It goes without saying, that the results of the study are dependent on the learning experiences of 
the students involved: The students’ judgements can only refer on that what the students got to 
know. Further, the teacher’s personality, especially the enthusiasm with which a teacher deals 
with a certain mathematical problem, might have an influence on the emotions of learners and 
thus also on there judgements about aesthetics.  

Item 1 and 2 of the questionnaire provide qualitative statements, which may help us 

- to interpret the answers given in item 3 (e.g. to get an idea of what a student means when 
ticking “a simple problem”), 

- but also to get new ideas of what it is that makes a problem beautiful for a student. 

Clearly a characteristic expressed for items 1 or 2 does not necessarily occur in the list of item 3. 
In this case a quantitative statement giving the weight of such a characteristic is not possible at 
this stage, nor was it an aim of this project. For example, one such example is the statement that 
a problem requires several solution steps, expressed in one of the first studies to the topic and 
added later to the questionnaire (see above), or the statement given by mathematics teacher 
students that a problem should give possibility for creative solutions. In order to explore the 
relevance of such an argument, further studies would have to be carried out on the pre-condition 
that the participating students knew already respective problems. 

5. DISCUSSION 

In face of existing limitations, the study allows some core statements. The aesthetic feelings of 
school students towards a mathematical problem seem to be strongly connected with interest, 
with the problem having realistic applications (especially for elder students), and also giving 
students feelings of security and success: It seems to be a necessary condition that one has got to 
have the feeling that you could succeed in solving a certain mathematical problem, if it is going 
to be perceived as beautiful. In this respect it would appear that beautiful problems have to be 
simple enough for the group of students under observation. 

But a beautiful problem is not just a simple problem. On the contrary, it has to have a certain 
degree of complexity: it is more beautiful if one has to think about the problem, for example if 
the problem is a puzzle (especially for younger students); if the solution consists of several steps; 
and if one has to combine a number of formulas to get a solution. The different answers given by 
lower-achievers compared to those given by the higher-achievers on this point leads to the 
conclusion that the permissible degree of complexity for a beautiful problem depends on the 
mathematical ability of each individual. 7 

                                                 
7 The feedback of three teachers, who repeated the study in their school classes/courses confirm the results reported 
in this paper regarding school students. 
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With regard to university mathematics teacher students, feelings of security and success in the 
solving process of a mathematical problem seem not to be a pre-condition for aesthetic feelings 
to arise. These students could also get pleasure from a problem which they probably could not 
solve by themselves. Viewing the fact, that these students will be in future mathematics teachers, 
an important outcome of the study are the similarities to assert when comparing the judgements 
of these students with those of school students expressed in item 3. For both, the notions of an 
interesting topic and of a reference to realistic applications, are relevant, and a great deal of every 
student group consider tricky problems and puzzles as beautiful. However, it is not at all clear if 
the idea of that what an “interesting topic” is coincides – as for this point further studies are 
needed. 

If we want in schools to bring mathematical beauty within students’ experiences, we need to use 
a different style of mathematical problem. We have to consider the interests of the students and 
choose, if possible, problems referring to realistic applications. When doing so, we have to be 
very aware of the abilities of our students, in order to present to them challenging problems that 
they can solve. 

However, in my opinion it is desirable that students’ aesthetic feelings are not only restricted to 
those problems they feel they can solve by themselves. Thus, as a further conclusion of the 
study, we should create phases in classrooms, which have an atmosphere that is not 
predominated by the demand of success. On the contrary, these phases should give the students 
time for leisure, time and freedom to just enjoy mathematics. 
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Abstract. In this paper, we program a procedure using Maple's packages, 

with it we can realize mechanical proving of some theorems in elementary 

geometry. 
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1.  Introduction.   

Gröbner bases have been fruitfully applied to many problems, one of them is to deal with the 

problem of automated geometry theorem proving (see [1], [2], [3] and [4]). Maple is a comprehensive 

computer system for advanced mathematics, and its Gröbner package can be used to compute a 

Gröbner basis of a polynomial ring. In this paper, we will discuss how to use Maple's packages to 

realize mechanization of theorem-proving in elementary geometry. Generally, the problem of 

mechanical theorem-proving can be done by the following three steps. 

(1) The first step is to introduce a number system and a coordinate system such that a theorem of 

elementary geometry can be changed into an algebraic problem; 

(2) The second step is to sort the algebraic expressions of the involved theorem’s conditions, to set 

measures for checking if algebraic expressions of the involved theorem’s result can be induced from 

the sorted algebraic expressions;  

(3) The last step is to compile a program according to the above measures, and carry out it on a 

computer. 

 

 

                                                        
1 College of Science, Shandong Jianzhu University, Jinan 250101, China 

E-mail: summer_5069@yahoo.com.cn 
2 Shandong Institute of Architectural Science, Jinan 250031, China 



Xia & Xia 
 

 

3 41 2

1 2 3 4

.A AA A

A A A A

y yy y

x x x x




 

 

 

2. Some Algebraic Expressions of Common Geometric Relations. 

The method of Gröbner bases depends on the construction of a particular type of polynomials to 

represent given geometric relations. To illustrate the translation of geometric statements into a suitable 

system of polynomials, we consider a simple example: the line A1A2 is parallel to the line A3A4. Let the 

coordinates of points Aj  be (xAj,yAj),  j=1,2,3,4, in a coordinate system. In an analytic setting two 

lines are parallel if and only if they have the same slope. We can translate 1 2 3 4/ /A A A A  into an 

equation by relating their slopes,    

. 

 

In the form of a polynomial equation this condition is
1 2 3 4 1 2 3 4

( )( ) ( )( ) 0A A A A A A A Ax x y y y y x x      .  
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Although it may seem as if each polynomial function needs to be set equal to zero, this is not 

required for the Gröbner basis method. Hence in order to generalize these Maple functions for use in 

the method of Gröbner basis each Maple function returns only a polynomial in xi and yi. In a Maple 

command window, we input common geometric relations, and save the functions as a Maple internal 

file for conveniently using them later.  

 

3. Definitions and a Basic Principle. 

The method in this paper is based on the theory of Gröbner bases, so we introduce some concepts 

and a theorem about Gröbner bases.  
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Definition 1. Let I be a nonzero ideal of a ring A, G={g1, … , gs } be a nonzero finite set of 

polynomials. The G is called a Gröbner basis of the ideal I, if and only if for each polynomial f in I, 

there exists j, 1js, such that lp( g j)|lp( f ). Where lp( f ) denotes the leader product of power of  f. 

Definition 2. For polynomials f,  g,  h in a ring A, g0,  f is called one-step reduce to h by module 

g, denoted by gf h ,  if  and only if lp( g ) is a factor of nonzero monomial expression X of  f,  

and ,           , where lt(g) denotes the leader of g. 

Definition 3. Let f,  f1 , …, fs, and  fj 0 (1js), set F={ f1, …, fs},  f is called reduce to h about 

module F, denoted by hf F
 ,  if  and only if   21

21 hhf ii ff
 hht

f
ti ... ,  where 

f i jF ,  hi jA ( j=1,…,t). 

Theorem A. (Buchberger's Theorem [5]) Let I be a nonzero ideal of a ring A=[x1, …, xn], G={ f1, …, 

ft}I\{0}, then the followings are equivalent: 

(a)   G is a Gröbner basis of I; 

(b)  fI if and only if 0Gf .  

4. The Main Procedure. 

We have seen that we can translate conditions and the conclusion of a geometric theorem into 

polynomials: f1,…, fm (the hypotheses) and g (the conclusion) in the ring K[x1,…, xj ; y1,…, yj ]. In what 

sense then does our conclusion g, follow from the hypotheses f1,…, fm? An algebraic formulation of the 

problem is as follows: 

1 1 1( ,..., , ,... ),  ( 0 ... 0) 0.j j mx x y y f f g        

Let I be the ideal generated by the set { f1,…, fm } in K[x1,…, xj ; y1,…, yj ], then the conclusion g 

follows from the hypotheses f1,…, fm means that gI.  

Using the command gbasis of Maple, we can calculate a Gröbner basis of the ideal I, and a Gröbner 

basis of an ideal has the property that every polynomial in the ideal reduces to 0 with respect to the basis. 

Hence, to determine if the conclusion g is in the ideal I, we need only to use the command normalf of 

Maple to calculate the remainder of the conclusion polynomial g after division by a Gröbner basis of the 

ideal I. 

By above algorithmic principle, we compile a procedure provegeo in Maple language, with it we can 

realize mechanization of some geometry theorems proving. The source codes of the procedure 

'provegeo' are shown in Maple sheets of following examples. To use the procedure conveniently, we 

may save it as a Maple package. 

 

( )

X
h f g

lt g
 
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       Figure 1

C(xC,yC)D(xD,yC)

B(xB,0)A(0,0)

5. Examples 

Example 1. The diagonals of a rhombus are mutual perpendicular. 

Establishing a coordinate system as the figure 1, then we have the following conditions:      

1. AD//BC, 

2. AD=AB,  

3. The parallelogram ABCD is non-degenerate. 

Our conclusion is AC BD . The mechanical 

proof is as following Maple sheet: 
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D(xD,yD)

C(xC,yC)

B(xB,0)A(0,0)

 Figure 2

Remark: In the above proof, the non-generate condition xByC-a (i.e. xByC 0 ) of the parallelogram 

ABCD should be looked as a given condition, otherwise the proposition could not be checked correctly. 

The variable xD is not an independent variable, it is as a parameter. If xD is listed in 'vars', the 

proposition is also checked to be true. 

Example 2 (Apollonius' theorem). Given a ABC , if D is any point on BC such that it divides 

BC in the ratio n:m (mBD= nDC), then 2 2 2 2 2( )mAB nAC mBD nDC m n AD     . When m=n(=1), 

that is,  AD is the median falling on BC, the theorem reduces to 2 2 2 2 22AB AC BD DC AD     

Establishing a coordinate system as the figure 2, then we have 

the following conditions:  

1. D divides BC in the ratio n : m, 

2. ΔABC is non-generate. 

Our conclusion is 2 2 2 2 2( )mAB nAC mBD nDC m n AD     .  

The mechanical proof is as following Maple sheet: 

 

 

 

 

2 21
2 .

2
BC AD 
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Example 3. Supposed that CD bisects ACB, and AE//CD, then ACE  is an isosceles triangle.  

Establishing a coordinate system as the figure 3, 

then we have the following conditions: 

1. CD bisects ACB, 

2. A, B, D are collinear, 

3. AE//CD, 

4. ABC  is non-generate. Figure 3

D(xD,yD)

A(xA,,yA)

    E(xE,0)C(xC,0)B(0,0)
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Our conclusion is AC = CE.  The mechanical proof is as following Maple sheet: 
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Circumcircle

Simson line 

Figure 4

V(xV,yV)

P(xP,yP)

W(xW,yW)

C(xC,yC)

B(xB,0)U(xU,0)A(0,0)

O(xO,yO)
Circumcenter

Example 4 (Simson line ). Given any ABC  and a point P in the plane of the triangle, if 

perpendiculars from P on to the sides AB, AC, BC, meet those sides at U, V, W respectively,  then U, 

V, W are collinear if and only if P lies on the circumcircle of ABC . 

Establishing a coordinate system as the figure 4, 

for the sufficiency, we have the following conditions: 

1. P, B, C lie on the circumcircle of ABC , 

2. PUAB, PVAC, PWBC, 

3. V lies on the line AC, W lies on the line BC, 

4. ABC  is non-generate. 

Our conclusion is that U, V, W are collinear. The 

mechanical proof is as following Maple sheet: 
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In fact, since P lies on the circumcircle of ABC , yP is not an independent variable, yP is not 

listed in 'vars', in this case, the computation time is about 27 seconds. If yP is listed in 'vars', the 

proposition is correctly checked, but the computation time is about 103 seconds. 

For the necessity, one condition is that U, V , W are collinear, and the conclusion is that P lies on 

the circumcircle of ABC .  Exchanging c1 for result in the proof of the sufficiency, we can similarly 

check that the necessity is true. 
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Example 5 (Euler line ).  

In any triangle ABC , 

the orthocenter H, the 

centroid G and the 

circumcenter O are collinear, 

and GH=2OG. The line 

passing by these points is 

known as the Euler line of 

ABC . 

Establishing a coordinate 

system as the figure 5, we 

have the following conditions: 

1. O is the circumcenter 

of ABC , 

2. G is the centroid of ABC , 

3. H is the orthocenter of ABC , 

4. ABC  is non-generate. 

Euler line

Figure 5

W(xW,yW)
V(xV,yV)

U(xU,0) D(xD,0)

F(xF,yF)
E(xE,yE)

H(xH,yH)

G(xG,yG)

O(xO,yO)

C(xC,0)

A(xA,yA)

B(0,0)

Orthocenter

Circumcenter

Centroid
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Our conclusion is that O, G, H are collinear and GH = 2OG. The mechanical proof is as following 

Maple sheet: 

 

      The above five examples have been checked correctly on a microcomputer, in a similar way, 

other geometric propositions may be proved by the Maple internal file ‘geometry.m’ and the procedure 
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‘provegeo’. An appropriate coordinate system should be chosen to reduce variables as possible, and 

only those independent variables are listed in 'vars', the less variables in 'vars', the less time in the 

computation. 
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Abstract: Starting in a well known theorem concerning medians of triangle and using the 
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1. Introduction 

The 'What If Not (WIN) strategy (Brown and Walter, 1990) is based on the idea that 

modifying an attribute of a given statement could yield a new and intriguing conjecture which 

consequently may result in some interesting investigation. Using interactive geometrical 

software, let us apply the WIN strategy to the theorem: The three medians of a triangle divide 

it into 6 triangles possessing the same area. This paper presents some results obtained by 
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Figure 1: Schematic description of the problem 

modifying the premises so that each side of the triangle is devided into n equal segments 

instead of two. More precisely, given a triangle ABC, with sides a, b, c each diveded into 

n>2 equal segments. Each of the 
n

1
 dividing point is connected to the opposite vertex (Fig. 

1). Unlike the case of medians (n = 2), in this modified version, there appears to be some 

quadrangles as well. Is there anything particularly interesting about the new parts? – That is 

what we are set to examine. 
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Let us first look at the particular case n=3, and then generalize it for any value of n. 

2. The case of n = 3 

Figure 2 demonstrates the case of n=3.  

 

 

 

 

 

 

 

 

 

 

 

BE = ED=DA  ;  AI = IH = HC  ;  CG = GF = FB. 

Let S1 = area(JMK) ; S2 = area(BEJ)  ;  S3 = area(EAKJ)  ;  S4 = area(AIK)  ;   

S5 = area(KICL)  ;  S6 = area(LCG)  ;  S7 = area(BJLG)     

 

Based on measurements taken by means of dynamic geometry software, the following 

conjectures as regards to areas and segments were raised: 

 

KJ  = JB ; LK = KA ; JL = LC (1) 

S2 = S4 = S6 (2) 

3

b
 

S1 

S2 

S3 

S4 

S5 

S6 

S7 

Figure 2: Schematic description of the case:  n=3 
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Figure 3: Constructed segments KD, LH and JF and related areas 
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In order to prove the above conjectures, we join KD, LH and JF (Fig. 3) to generate triangles 

BDK, AHL and CF.   

As follows we prove the claim:  FJGLHLIKDKEJ ;;  .  

 

 

 

 

 

 

 

 

 

 

Proof: 

Let  S3(1) = area(EDKJ)  ; S3(2) = area(DAK)  ;  S5(1) = area(IHLK)  ;    

S5(2) = area(HCL)  ;  S7(1) = area(GFJL) and S7(2) = area(FBJ) (Fig. 3). 

We employ Affine Geometry to prove this claim: 

Let AC be on the x-axis, and AB on the y-axis, while the unit scale on the x-axis is the length 

of AC and the unit scale on the y-axis is AB. Hence, the coordinates of the vertices are: 
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For the equation of line CE we get:   
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And for line BI: 

xy
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BI
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B
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B 31
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Thus the coordinates of J ( )CEBI   are: 
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 Vectors 


JF and 


AG are: 

)
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1
,

3

2
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1
,0

3

2
(),(
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21
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yyxxAG

yyxxJF
 

 Therefore: 


 AGJF
7

2
,  and hence vectors 



JF and 


AG  are parallel.  

By symmetry considerations: DKEJHLIK and . This proves  

(1) KJ  = JB ; LK = KA ; JL = LC.  

Notice that parallelism is not affected by affine transformations. 

Referring to the notations in Fig. 3 we shall now prove that: 

3
)1(

2

3 
S

S
 

(6) 
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2
)2(

2

3 
S

S
 

(7) 

S3(1) = S5(1) = S7(1) (8) 

S3(2) = S5(2) = S7(2) (9) 

 

Since DKEJ  and HLIK  and FJGL  we get: 

CFJCGLAHLAIKBDKBEJ  ;; . The similarity ratio is 2. 

Consequently, 23 3 SS   and similarly: 6745 3)1(;3)1( SSSS  . As a result, (6) is 

proved, 

 

In addition, since  area(BDK) = 2area (DKA) we get: 

S2 + S3(1) = 2  S3(2)   S2 + 3  S2 = 2S3(2)  S3(2) = 2  S2.  

Similarly S5(2) = 2  S4 and  S7(2) = 2  S6. 

Thus  (7) is proved. 

The above relations are summarized in Fig. 4. 
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We shall now prove that: (2)   S2 = S4 = S6    

Since )(area
3

1
)(area)(area)(area ABCCBEACGBAI   it follows that:  

6S2 + S4 = 6S4 + S6 = 6S6 + S2   5S4 = 6S2 – S6  ;  6S4 = 5S6 +S2   

Thus: S4 = 6S6 - 5S2 . Therefore:  

6S4 + S6 =  6(6S6 - 5S2) + S6 = 6S6 + S2      

36 S6 - 30 S2 + S6 = 6S6 + S2;    31 S6 = 31 S2  S2 =  S6. 

Now: S4 = 6S6 - 5S2 = 6S6 - 5S6 = S6 .  

Hence (2) S2 =  S4 = S6 is proved.  

Following the above we obtain:  S3(1) = S5(1) = S7(1),    S3(2) = S5(2) = S7(2),   which imply 

that we also proved (3) S3 = S5 = S7,  

 We shall now show that:  (4) 3
2

1 
S

S
. 

Proof: 

)(area)(area4 AELADKAELADK  , hence if area(ADK) = 2S2 than    area(AEL) 

= 8S2 . Thus: 212122 3832)(area SSSSSSAEL  , and (4) is proved. 

Figure 4: Relations among areas 
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S2 2 3S4 2S4  

S4  

S6  

3S6   

S62 
 



Lavy & Shriki                                                                                                                                

 

The relations obtained are summarized in Fig. 5. 

It is now left to prove (5) 6
JE

CJ

LG

AL

KI

BK
. Clearly: 

66
6

2

2
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)(area

2

2 








KI

BK

S

S
hKI

hBK

AKI

BKA
. 

And 6
JE

CJ

LG

AL
, stems from symmetry considerations.  

Thus we complete the proof for all the connections that were discovered for the case of n = 3. 

 

 

 

 

 

 

 

 

 

 

3. The general case  

We shall now examine the general case, in which n = k.  

For the general case we will show that the following patterns hold:   
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Figure 5: relations among areas of the case:  n=3 
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S2 = S4 = S6 (11) 

S3 = S5 = S7 (12) 

2

1

S

S
= k(k-2)2 

(13) 

)1(  kk
KI

BK
 

(14) 

 
The terminology refers to Figure 6 and Figure 3. 

In order to prove (10)-(14) we join KD, LH and JF to generate triangles BDK, AHL and CF.  

E is the 
k

1
point of BD, I is the  

k

1
point of AH and G is the  

k

1
point of CF (Fig. 6). 

 

 
 

 

 

 

 

 

 

 

 

We first prove that:   FJGLHLIKDKEJ ;; .  

Proof: 

We employ Affine Geometry to prove this claim: 

Figure 6: Schematic description of the case of n=k 
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Let AC be on the x-axis, and AB on the y-axis. The unit scale on the x-axis is the length of AC 

and the unit scale on the y-axis is AB. Consequently, the coordinates of the vertices are: 
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For the equation of CE we get: 
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And for BI: 
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Therefore, for the coordinates of J ( )CEBI   we get: 
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Vectors 
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AG are: 
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Thus we get: 



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
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1
2

, and hence vectors 


JF and 


AG  are parallel.  

By symmetry considerations EJDKHLIK and . Thus we have proved that: 

BJkJK  )2()10( . Similarly .)2(;)2( CLkLJAKkKL   

We will now prove (11) S2 = S4 = S6.  
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From the parallelism it follows that CFJCGLAHLAIKBDKBEJ  ;;  with a 

similarity ratio 
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Similarly, 6
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By symmetry considerations  S2 =S4.  Hence (11) S2 =  S4 = S6. 

Therefore (12) S3 = S5 = S7 is also proved. 
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Finally we prove that: (14) )1(  kk
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We will use the connection:  
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From symmetry considerations we get:    )1(  kk
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The findings can be summarized as follows:    

The three k-ians of a triangle divide the it into seven sections. The relations between the 

measures of the areas are described in Figure 7. 
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Figure 7: relations among areas of the case n=k 
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5. Theorem concerning k-ians of triangle 

Employing the WIN strategy once again, each side of the triangle can be divided into any 

number, p, q and r, of equal segments. Vertex A is connected to the 
1

p
-point, vertex B is 

connected to the 
1

q
-point, and vertex C is connected to the 

1

p
-point, as shown in Fig. 8.   

 

 

 

 

 

 

 

 

 

 

 

 

 

In this case we get: ( 1) ; ( 1) ; ( 1)
BY AU CT

p q r p q r
YL US TG

         . 

Proof: 

Employ again Affine Geometry to prove this claim: 

Let AC be on the x-axis, and AB on the y-axis. The unit scale on the x-axis is the length of AC 

and the unit sale on the y-axis is AB. Consequently, the coordinates are: 

Figure 8: schematic description of the k-ians 
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The last two results imply that ( 1)BY q p YL
 

   . We leave to the reader to verify 

that ( 1) ; ( 1)AU r p US CT q r TG
 

      . 

In Addition, we urge the reader to look for relations among areas that are formed as a 

consequence of the new division.    

Implication for class activities 

In this paper we describe a process which can be implemented on various well known 

mathematical theorems. Utilizing the WIN strategy, which is a useful tool which can easily 

be applied, combined with the working in an interactive computerized environment, enables 

the formulation of various inquiry activities such as the example given in this paper. Such an 

activity could be given as a long term project for developing inquiry skills and mathematical 

knowledge.  
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As mathematics educators, our focus of attention is mainly placed on the learning and 

teaching of mathematics. But, as we study phenomena of mathematical learning and teaching, we 
often come across intriguing mathematical phenomena that capture our interest. We find 
ourselves often bouncing mathematical ideas back and forth, not just looking for (new/better) 
ways of teaching or presenting a mathematical concept, but also of uncovering and discovering 
potential understandings of the concept. These mathematical issues we encounter represent for us 
a significant aspect of our work, and are also very stimulating. One of these issues arose for us as 
we were tackling issues of division of numbers and of conventions relating to the remainder; 
issues that are, mathematically speaking, as we hope to communicate, very interesting and 
thought provoking. Thus, we explore four different avenues/curiosities about division, where 
operations with positive and negative numbers are considered, as well as the meaning one can 
draw out of these operations.  
 
Curiosity 1: Division, integers and conventions 

Let’s take a very simple division, like 418  . One answer to this operation is “4 remainder 
2.” That said, what about 63r , 102r , 25 r ? The usual answer when dividing numbers requires 
one to ask how many times does 4 go into 18, and then describe what is leftover as the remainder 
after having taken out all the 4’s you can from 18. Thus, in this case, 24418 r . However, one 
could argue that all four answers given above are equivalent and make sense mathematically. 
Indeed, they are all mathematically correct and represent an understanding that division 
represents a partitioning of a number (the dividend) into equally sized parts (the divisor), where 
in some answers the dividend has not been fully partitioned. For 3r6, the number 18 has had 
three groups of size four taken out with six parts remaining, which can be represented by 18 = 3 · 
4 + 6. This is correct, but the idea of taking out as many 4’s as possible is not yet complete. 

With this in mind, as Brown (1981) explains, the division algorithm respects some 
conventions, given by its definition, since the remainder ( r ) is defined as, and needs to be, 
between zero and the divisor (i.e., remainder0 < divisor). Thus, 18 ÷ 4 gives 4r2 and not 3r6, 
even though both are conceptually acceptable. With infinitely many possibilities in any division 
                                                 
1E-mail :  proulx.jerome@uqam.ca 
2 The order of author names in this paper was decided on a coin flip. 
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problem, and in order to use the procedure appropriately, some conventions have to be respected. 
The issue of convention and definition play a significant role in the answer. Therefore, the last 
three answers ( 63r , 102r , 25 r ) would be ruled out because of the mathematical convention, 
just as 43416 r would be ruled out even if it is conceptually adequate.3 

With this rule or convention established for the remainder, what would now happen if 
negative numbers are used? If we attempt to calculate 418   by using the above convention, we 
obtain 25418 r   (and not 24418   r ). This seems counterintuitive in comparison to our 
calculations for the previous example 18 ÷ 4. As we could not go “over” or beyond 18 when 
calculating 418   (e.g., with 25418  r ), in the case of 25418 r   we do. Again the 
mathematical convention guides the way in which division and its algorithm are to be used. In 
that sense, one needs to know the adequate mathematical convention in order to obtain a 
mathematically acceptable answer, even if alternatives are conceptually meaningful. 

But, again, what would happen for 18  4? If we attempt to follow the convention, we need 
to have the remainder lying between 0 and the divisor. Hence remainder0 < –4, which is 
mathematically impossible. So, analyzing two potential answers, we obtain  
18  4 = 4r2 or 18  4 = 5r2. In both answers the remainders 2 or 2 are bigger than –4. The 
only answer that could satisfy the requirement that the remainder be smaller than –4 would be    
18  4 = 6r6, an answer that clearly goes “over” 18 and that appears conceptually acceptable, 
but would still be inadequate because –6 is smaller than 0, the lower bound for the remainder. 

Through browsing and searching different definitions for the remainder, one way that we 
have found to step away from this inconsistency for various cases of signed numbers is to 
redefine the remainder in terms of the divisor’s absolute value: remainder0 < |divisor|.4 In this 
case, 18  4 = 4r2 where the remainder is both bigger than 0 and smaller than |–4|. But this step, 
as often happens in mathematics (Hersh, 1987; Lakatos, 1976), requires reworking the definition; 
in this case for what a reminder is. Notice also in this case that the answer does not require us to 
go “over” 18 as was done for 18  4. That said, what about 18  4? With the new definition of 
the remainder, we obtain 18  4 = 5r2, which goes “over” –18. We therefore obtain two cases 
where the product of the quotient and divisor go “over” or beyond the dividend, and two cases 
where the product stays “under” or below the dividend. 

On an interesting note, one could argue that each time we claimed to go “over” –18 in the 
divisions, we in fact obtained a number that was “under” –18 (by attaining a smaller number than 
it). For example, 18  4 = 5r2 resulted in –20 + 2, and 18  4 = 5r2 resulted also in –20 + 2. 
We explore this issue in the next sections, as we attempt to understand what these computations 
mean conceptually and how we can contextualize them. 

This sort of interplay of convention and concepts is often hidden within the procedures we 
use, or even is taken for granted as part of the conceptual understanding of it. In this case, we are 
able to see the mathematical richness in digging deeper to understand the role that the 
conventions and algorithms are playing in the answers we obtain, both in regard to the concept 

                                                 
3 Brown (1981) explores the meaning of these various possibilities after one child, Sharon, offered him a similar 
answer to a division procedure.   
4 Another option could have been to remove the lower bound, as Brown (1981) does. But, in this case with integers, 
we wanted to explore the décision of taking the divisor’s absolute value as a lower bound. 
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itself and the conventional way of reporting it.5 This raises, we think, the interest in pulling these 
mathematical notions apart and exploring them in depth, and represents, as Brown (ibid.) 
suggests, “one way in which we can relate elementary and advanced knowledge of the discipline 
so that both perspectives are enriched rather than destroyed by the linkages” (p. 13).  

 
 
Curiosity 2: Conceptualizations of division 

Several metaphors or conceptualizations exist for dividing numbers. Here we work with three 
of these ideas in the context of the examples presented above. In particular, we look at division 
as a measurement concept and as a partitioning concept. Then, as division is the inverse of 
multiplication, we explore the connections between multiplication as repeated addition and 
division as repeated subtraction and how these conceptualizations can become quite difficult to 
make sense of when working with integers. 

One of the first conceptualizations of division is that of a measurement problem, where for 
the problem 18 ÷ 4 we can think of asking ‘how many groups of size four can be found in 18 
things?’ Here we are trying to find the number of groups when we already know the size of each 
group. In the second conceptualization, partitioning, we can think of 18 ÷ 4 as asking ‘if four 
people were to share 18 things equally, how many things would each person get?’ Here we are 
trying to find the size of each group when we know how many groups we have. The results will 
be the same for each conceptualization, but represent something different depending on how one 
approaches the problem (see, e.g., Hart, 1981; Simon, 1993). However, both of these 
conceptualizations can be difficult to make sense of as they sometimes break down when 
working with integers while at the same time continuing to adhere to the convention for the 
remainder. 

Case 1: 18 ÷ 4: In this case, where both the dividend and the divisor are positive, both 
conceptualizations are simple to apply. For the measurement concept, as was mentioned, we can 
ask ‘if we have 18 things and 4 things are given out at once, how many people/groups will be 
given four things?’ Here the answer 4r2 tells us that four people will receive four things and we 
will have two things left over. For the partitioning concept, we ask ‘if we have 18 things to be 
given equally to four people, how many things will each person have?’ The answer 4r2 denotes 
that each person will be given four things and we will have two things left over. In both of these 
conceptualizations, going “over” the quantity of 18, as was done previously to satisfy 
conventions, does not make sense because we cannot give out more things than we have. 

Case 2: 18 ÷ 4: In this case, the conceptualizations of division become problematic. In 
particular, from the measurement perspective, we ask the question ‘if we have 18 things and 
four things are given out at once, how many people/groups will be given four things?’ It is 
difficult to imagine having 18 things. And, more importantly, when we complete the problem 
with the result 18 ÷ 4 = 5r2, the 5 represents the number of groups that have each been given 
four things. But how can we have 5 groups? This is hard to imagine, and it has haunted 
mathematicians for years in the historical developments of negative numbers!  

Under the partitioning concept, we can make a bit more sense of this problem. From this 
approach, we ask ‘if we have 18 things to be given equally to four people, how many things will 
each person have?’ We can alter this question slightly to be a financial question, as we often do 
                                                 
5 Something reminiscent of Davis (1973) and Brown (1981) exploration of non-standard ways of children for 
subtracting and dividing numbers, as well as Kieren’s (1999, 2004) “missing fraction mysteries” task where children 
had to find fractions between ¼ and ¾ and began writing fractions like 5.9/6, 5.99/6, 5.999/6, etc. 
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to ease one’s understanding. We ask ‘if four people owe $18 and they are to split the debt evenly, 
how much money will they each owe?’ This makes sense on a conceptual level, where debt is 
represented by a negative value. However, when we look at the answer 5r2, again 5 could be 
said to be problematic since the debt is overpaid, though it helps to make sense division-wise, 
and it acts as a viable option to cover the entire expense! That said, for the next two cases, things 
become even trickier. 

Case 3: 18 ÷ 4: What are we to do in this case? Under the idea of division as measurement, 
the question becomes ‘how many groups of size 4 can we take out of 18 things’ and within the 
idea of division as a partitioning, we ask ‘how will negative four people share 18 things?’ Taking 
negative things out of positive ones does not make sense, nor does the idea that we have negative 
people. In the case of a positive dividend and negative divisor, the conceptualizations we are 
working with here do not help to make sense of the calculations and are unreasonable. 

Case 4: 18 ÷ 4: The measurement conceptualization is interesting with the example  
18 ÷ 4. The question we ask here is ‘how many groups of size 4 can be found in 18 things?’ 
Here we find that 18 can be divided up into groups of 4. When we do this, we see that we have 
four groups of 4. If we stop there, however, we have 2 remaining. And, as we mentioned 
previously, while this is mathematically correct, it is not appropriate in regard to the convention 
for the remainder, giving 4r2. So, we have to take out another group of 4, so this leaves us with 
five groups of 4 and a surplus remainder of 2 (i.e., 5r2). Unfortunately here, however, going 
“over” makes the conceptualization a bit hazy, whereas 4r2 makes more sense. 

The partitioning concept in this case is a bit more difficult to see. We ask ‘if we have 18 
things to be given to negative four people, how many will each person receive?’ Again, the idea 
of having negative people or a negative entity that is supposed to receive something is hard to 
imagine. The partitioning concept appears limited in helping to make sense of this case. 

Turning our attention to the connection between multiplication and division, we obtain 
additional, yet different ways of making sense of division. Multiplication is often presented as 
repeated addition. If we have 3 · 4, we can write this as 4 + 4 + 4. Since multiplication and 
division are closely connected as inverse operations of each other, if multiplication is repeated 
addition then division can be seen as repeated subtraction. This way of seeing division, fruitful in 
cases when the dividend and the divisor are of same sign, becomes quite complicated in the other 
cases presented above.  

For example, 18 ÷ 4 can be solved in the following way 18 – 4 = 14; 14 – 4 = 10; 10 – 4 = 6; 
6 – 4 = 2 at which we stop because we can not take out another 4 (because it would lead to 2). 
Our result is then 4r2. A similar thing happens when we have 18 ÷ 4. Here we have 18 – (4) 
= 14; 14 – (4) = 10; 10 – (4) = 6; 6 – (4) = 2; and finally 2 – (4) = +2 (if we accept 
going “over” 18).  

However, when the dividend and divisor are of opposite signs, this conceptualization of 
division becomes problematic. Let’s look at these two possibilities. Under the idea of repeated 
subtraction 18 ÷ 4 becomes 18 – 4 = 22; 22 – 4 = 26; 26 – 4 = 30; and so on. The result 
becomes more negative and we can ‘pull out’ infinitely many 4’s from the number 18 without 
ever closing in on an answer. 18 ÷ 4 appears similarly troublesome. 18 – (4) = 22; 22 – (4) = 
26; 26 – (4) = 30; and so on. In this case, our answer becomes more positive as we ‘take out’ 
4’s from 18 and again do not succeed on closing in an answer. Additionally, aside from the 
computations here, this appears difficult to conceptualize as how is one to remove negative 
quantities from a positive quantity, and vice-versa? 
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Thus, what the three different conceptualizations offer us is the fact that each of them can 
help to some extent in making more sense of the operations of division of integers, but they are 
also limited. There does not seem to exist a definitive conceptualization working for all of these 
examples as all have their limits and need to be reflected upon – and we believe it is in the 
thinking through that they become mathematically interesting and significant. That said, other 
aspects to look into concern the play with numbers, independently of any context or constraints. 
We look at this through the use of simple calculators in the next section. 
 
 
 
Curiosity 3: Division and calculators 

As we saw above, a purely conceptual approach made some aspects of division difficult to 
make sense of for different cases of integers. This raises the issue of exploring the numbers 
themselves and ideas of dividing integers and the remainder with a calculator. Again, in this 
calculator-context, we look at some of the previously explored outcomes and how these 
sometimes connect and sometimes don’t connect to results obtained through using a calculator. 
For example, in the case of 18 ÷ 4 the calculator produces the result 4.5, which makes sense for 
the remainder. One can look at it in the following way: 18 ÷ 4 = 4.5 = 4 + 0.5 = 4 + 4

2 , where 
the 2 of 4

2  was our remainder from the previous exploration of this case. Thus, the decimal 
number result coincides with the remainder result. 

In the case of 18 ÷ 4, the calculator produces the result 4.5. Compare this to our previous 
result that followed the convention for the remainder where we had 18 ÷ 4 = 5r2. Clearly the 
algorithm for division in the calculator is not following the convention for the remainder as the 
decimal portion of the result represents 0.5, which is  4

2 , where 2 is the remainder. Thus, a 

question arises ‘are these the same result numerically?’ Our previous answer of 5r2 can be re-
written as 5 + 4

2 = 5 + 0.5 = 4.5. So, these different approaches yield the same answer 
numerically, yet they go about finding and representing the solution differently. 

Similar to the example above, for 18 ÷ 4 a calculator gives 4.5 as a result. Applying the 
convention for the remainder to this problem yields 4r2. This is quite interesting in that while 
the calculator’s results are identical for both 18 ÷ 4 and 18 ÷ 4, the algorithm for division does 
not give the same result for them. Again, looking at the result 4r2 one can wonder if the result is 
the same as 4.5. Note here that 4r2 can be written as 4 + 

4
2
 , where 2 is the remainder and 4 

is the divisor. This then becomes 4 + (0.5) = 4.5, which is indeed the same as our calculator’s 
calculation. 

For the final case of 18 ÷ 4, the calculator offers 4.5 as a result. Our previous work with 
this problem and the remainder gave us the result 5r2. These results don’t appear to be the same. 
But if we look at 5r2, this can be written as 5 + 

4
2
 = 5 + (0.5) = 4.5, leading to the same 

numerical value in the end, but coming from different answers. These issues for calculators and 
of considering numbers only for themselves have in fact led us to consider issues about the long 
division algorithm, how it can function in these cases and how one can make sense of it in 
relation with integers. We explore this as our next and last curiosity. 
 
Curiosity 4: Long division algorithm  
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This final curiosity about the long division algorithm ties back to the conventions about the 
remainder, and has an obvious connection to the above explorations on calculators. The long 
division algorithm is peculiar in the sense that there are not necessarily conventions attached to 
it, but rather there are specific steps that one needs to follow to obtain the answer. For example, 
with two positive numbers the steps to solve 18  4 with long division looks like the following. 
Step 1 (Figure 1a): How many times does 4 go into 18? 4 times. Then, we multiply 4 by 4 and 
obtain 16. 18 minus 16 gives 2. There are two options here for Step 2: one is to obtain the answer 
in terms of remainder, which gives 4r2, where the remainder 2 leads to 4

2 or ½ (Figure 1b). The 
second choice is to opt for a decimal representation, leading one to place a decimal point after 
the 4 and add a zero after the two (Figure 1c).  
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Then, the question is ‘how many times does 4 go into 20?’ 5 times. 5 multiplied by 4 equals 

20, 20 minus 20 gives 0. We could spend time explaining the ins and outs of this procedure, but 
because we want to underline other dimensions for the division, we assume the reader is aware 
of these rationales and the reasons why it functions. Obviously, the aspects we want to 
emphasize concern the play with integers and how it causes us to take a step back and question 
the steps we are taking and the coherence of these steps. We approach this in a similar fashion as 
with the conventions in the first section. 

Looking at –18  4 and using the same steps as above, we obtain the following. Step 1: How 
many times does 4 go into –18? Right here, at Step 1, we have also two options. One option is to 
follow the same reasoning as for the convention and opt for –5 and the other is to opt for –4. Let’s 
have a look at the former (Figure 2a). –5 times 4 gives –20. –18 minus –20 gives +2. At this stage, 
again, there are two options: stopping with the remainder or continuing on with decimals. If we 
stop with the remainder (Figure 2b), it gives –5r2 where the remainder 2 leads to 4

2 . But, then 
the question becomes ‘is it +

4
2 or –

4
2 ?’ Taking +

4
2  seems counter-intuitive, as the quotient and 

its value created with the remainder would not be of the same sign (–5 and + 4
2 ). However, taking     

–
4

2  would mean –(5 4
2 ) and this is clearly wrong. The same thing happens if we opt for decimals 

(Figure 2c), as it gives –5 and “.5”. Is the “.5” positive or negative? In other words, is it              
“–5 + +.5” giving –4.5 or is it “–5 + –.5” giving –5.5? The former, –4.5, is definitely the answer, 
which means that the various quotient values need to be computed (added) in order to find the 
final answer. Therefore, the decimal point “+.5” does not belong to the quotient –5, but stands on 
its own and has its own sign (in this case, positive). This obviously does not happen when it is 
only positive numbers, as all quotients have the same sign – it also illustrates the mathematical 
richness underlying these operations as we address later. Therefore, the answers to 418   are   
“–5 + +.5” or “–5 + + 4

2 ”, leading to –4.5 or –(4 4
2 ). 
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This leads us to the second route in solving this problem, which is taking –4 for the quotient 

(Figure 3a). –4 times 4 gives –16. –18 minus –16 gives –2. Again there are two options at this 
point: stopping with the remainder or continuing with decimals. The remainder option gives –4r–

2 which means –4 and –
4

2  (Figure 3b). Here, because there is a sign attached to it, we know 
directly that both parts of the quotient obtained are the same sign and can be added together, 
giving –(4 4

2 ), the same answer we had above. For the decimals (Figure 3c), the question 
becomes ‘how many times does 4 go into –20?’ giving –5 as an answer. Here again, both parts of 
the quotient obtained are of the same sign, making it easy to see how they add and leading to the 
answer “–4 + –.5” or –4.5. However, it appears quite unfamiliar to see a sign before the tenths 
place after the decimal point. Also, some could raise the issue, with reason, that we have not 
respected the procedure, since –16 is bigger than –18 and therefore we would have taken too 
many 4’s from –18; the impact of which is that we obtain –2 as the result of –18 – –16, something 
that should not happen as one is not supposed to obtain a negative number at this stage since it 
indicates to the solver that the number taken is too big. This is a very interesting argument 
because it requires that one rethink what it means “to take all there is to be taken from the 
dividend.” In this case, again, what appears important is the understanding and the mathematical 
rationale one develops, and not the steps one follows. 
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An issue arises again if we opt for a division that takes one additional step, for example in the 

case of 419  . We won’t go into all the details but we look into the subtleties that could happen 
if one decides to go “over” –19. Thus, as in Figure 4a, our answer to the question ‘how many 
times does 4 go into –19?’ is –4 times, which leads to –19 minus –16 giving –3. Here, one can take 
directly the remainder and obtain –4r–3 and then –(4¾), albeit of course the convention for the 
remainder is not respected. A curious aspect, however, resides in the decimal answers (Figure 
4b to 4e). Here, after having positioned the decimal point and added the 0 to –3 (giving –30), one 
still has to consider two decisions: continuing to go “over” the number and then choosing –8 to 
give    –32, or staying “under” and going with –7 to give –28. Of course, one could continue with 
steps similar to those previously taken with the quotient of –4, that is, to not go “over.” But, as 
we have seen, what appears most important is the meaning one gives to each step rather than the 
taking of these steps. In the case of going “over” (Figure 4b), we obtain –4 and –.8, and with +2 
as a resultant of the operation. In the other case (Figure 4c), we obtain –4 and –.7, with –2 as the 
resultant. The next step is interesting but tricky, since in the case of Figure 4b the question is 
‘how many times does 4 go into 20?’, and in the Figure 4c the question is ‘how many times does 
4 goes into –20?’ Thus, in the latter case, as is reported in Figure 4e, we obtain –.05 as an 
answer, leading to –4 with –.7 and –.05 giving –4.75 as the result for the division; all values 
obtained to form the final quotient being of the same sign. But, in the former case, as is reported 
in Figure 4d, we obtain +.05 as the second decimal answer. This leads to the following sequence 
to obtain the resulting answer to the division: –4 + –.8 + +.05 = –4.8 + +.05 = –4.75. Both cases 
offer the same resulting value, albeit in different formats, but also require a different way of 
processing them as it could be easy to end up with –4.85 for the answer in the case of Figure 4d. 
These represent insightful subtleties inherent to these operations that require one to pay 
important attention to the meaning of each step and calculation. 
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What also appears fascinating and that emerges from issues of long division, as well as the 

play with calculators in the previous section, is the fact that the remainder is not considered alone 
in the production of an additional quotient, but gets assigned a “negative sign” when combined 
with the divisor. This leads to the realization that the sign of the numerical value produced by the 
combination of the remainder and the divisor needs to be reflected upon and is often taken for 
granted as giving a positive result. In these cases, as we have seen, the remainder is always 
connected to a divisor and the value of that additional part of the quotient takes a sign in relation 
to both. This is reminiscent of work done on comparison of fractions where a fraction can only 
be compared and understood in regard to its referent. Hart’s (1981) study is famous for having 
asked students a question of the type: If Mary spends ½ of her amount and Johnny spends the ¼ 
of it, who spent the most? (see p. 72), leading students to consider that ½ and ¼ are in relation to 
something (½ of a small amount can be smaller than the ¼ of a large amount). Thus, as well, in 
the case of the remainder and divisor, the value produced that completes the division quotient is 
always in relation not only to the divisor and the remainder but also to the sign of both of these. 

At this point, we have looked at two possibilities: 418  and 418  . What happens with     
18  4 and 18  4? Similar issues appear to pop-up as the play with the remainder requires that 
the solver pay attention to the signs attached to them, as well as consciously making the 
decisions to opt for going “over” or staying “under” for the first quotient when beginning the 
division. As a way of pushing your thoughts and developing your own ways of making sense of 
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these, we do not explore these options here and leave them for you to try them out with both 18  
4 and      18  4. As Descartes was famous for doing and announcing in his writing, we leave 
you the joy of working through these illuminating ideas on your own… 

  
Concluding remarks  

This paper raises an intriguing phenomenon that is present within other mathematical topics 
– that depending on the aspect we pay attention to (convention, conceptualizations, calculator, 
long division), the orientations taken sometimes make sense and sometimes do not. A fascinating 
aspect here is that, for the case of dividing integers, there does not appear to be a pattern present 
in the difficulties: each orientation helps to make sense of different type of division or hinders it 
(e.g., the conceptualization of measurement helped to make sense of 418    but partitioning 
did not, whereas it was the opposite for 418  ; other simplification and difficulties emerged for 
long-division or conventions). What this means is (1) each operation can be clarified by some 
orientations but blurred by others. It does not appear that one sort of division was easier to make 
sense of through all the means and conceptualizations explored (except, of course, cases of 
positive divided by positive). And, (2) it illustrates all the attention one needs to pay to, and the 
mathematical richness one can draw from, these operations and ways of approaching them. 
These mathematical explorations of division with integers cannot be taken care of in a machine-
like manner without deep mathematical thinking; they require important mathematical 
investments in the ideas by the solver. These are, therefore, rich mathematical contexts and 
situations to probe into. 

All this makes us rethink issues of understanding of division, as often one will offer bigger 
and bigger numbers to verify one’s understanding, assuming that if a person is able to operate on 
big numbers, then that person surely understands or even has demonstrated understanding of the 
concept at hand. We have offered here a different view in our explorations: that of staying with 
small numbers if one wishes to, but of digging into the concept itself through analysing its 
functioning and the meaning of the answers one obtains with integers. 

These issues raise for us the significance of working on the exploration of mathematical 
concepts as a genuine activity of mathematics educators. Albeit this is not research per se in its 
traditional sense, yet these explorations have something to offer to our understanding of the very 
concepts that we work on with students in classrooms. We see it important to delve deeply into 
mathematical concepts and ideas, to understand the concepts, to make sense of what is 
happening, to gain a stronger footing in our own understanding of seemingly simple ideas. These 
sorts of mathematical developments of school mathematics appear here as initiatives driven to 
enhance our understandings of mathematics, a clear intention of all work being done in 
mathematics education.  
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Abstract: The amount of overt structure in the presentation of a task affects students’ 
engagement, creativity, and willingness to tolerate frustration. In a professional development 
project, with algebra teachers from nine American schools, we tried to help teachers make 
judicious decisions in their use of structure by having them facilitate low-structure tasks, remove 
structure from overly structured tasks, and observe “at-risk” students engaged in learning 
through low-structure tasks. Project schools that worked on structuring generally improved their 
algebra passing rates, both overall and for African-American students. 
 
Keywords. Professional development, task structure, underrepresented minority students, US 
teachers, algebra, teacher change 
 
 

Generally, people become teachers because they want to help others.  They enjoy their 
work when through their effort and ingenuity, students actually learn and can do things they 
could not do before.  Their instinct is to try to make things easier for their students; however, this 
desire to help can have the unintended effect of creating boring classrooms full of disengaged 
students.  One of the major themes of our teacher development work has been to find effective 
ways to help teachers to structure their classroom tasks just enough so students are able use their 
creativity and inventiveness to reason their way to solutions. 

 
Three of us were the co-directors of a National Science Foundation Math Science 

Partnership project, REvitalizing ALgebra, (REAL), which aimed to improve the performance of 
secondary students in elementary algebra and college students in remedial elementary algebra 
(Hsu et al, 2007a and 2007b).  Our fourth author was the outside evaluator of the REAL 
program. Our specific goal was to improve the performance of students from underrepresented 
populations.  We worked intensely with some lead teachers from six high school and two middle 
school math departments. There were two groups of about nine teachers who came together in 
successive years.  Each group met for three hours a week during their first academic year and 
daily for three weeks the following summer.  During their second academic year they met daily 
with other department members at their schools in an extra preparation period paid for by the 
NSF grant.  There were about nine graduate students and nine undergraduate mathematics majors 
who also met with each group of teachers during their first year, but we will focus on the pre-
college teachers. 
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Six months before we began work with secondary teachers, we spent time in classrooms 
at their schools as “flies on the wall,” putting ourselves in the shoes of the students.  During 
those initial classroom visits, most teachers were asking questions that required short 
computations and little or no reasoning.  On further inspection the problems, even those 
originally designed to be open to multiple solution methods, had been augmented with 
“scaffolding” which reduced the tasks to a series of small steps that required little thinking.  For 
example, directions were added to tell students to make a chart and look for a pattern. Sometimes 
the directions even gave the column headings for the chart.  In other cases explorations were 
limited.  For instance, in a problem that originally asked students to come up with many kinds of 
function output patterns, the directions gave only linear patterns to “discover” and then broke 
down the process of finding the linear patterns into a to a step-by-step algorithm. 

 
Based on our observations and on the work of researchers on engagement and success 

(National Research Council and the Institute of Medicine, 2004), we knew we needed to help 
teachers to get their students more engaged in learning and doing mathematics.  We concluded 
that one way to get more students to succeed in algebra was to convince the teachers to structure 
their assignments differently, and generally to use less structure in the tasks they assigned both in 
class and for homework.  Advantages of less structure can include: 

 
1. more student creativity, flexibility, active problem solving, and the sense that 

mathematical struggle is an essential part of math and not something shameful; 
2. more and higher quality mathematical discourse in student groups; 
3. more student exploration, and assumption of responsibility for learning; 
4. student belief that math is more than a small number of computations to be done quickly 

and a large number of problems whose solution methods must be memorized; and 
5. more student engagement and interest in the mathematics! 

 
On the other hand, we realized that by restricting the choices and creativity of students and 
directing their thinking to a prescribed solution method, teachers often felt:  
 

6. more certainty about the mathematics being used and less anxiety about the  complexity 
of managing different groups working in different ways; 

7. more control over any resulting whole class interaction and greater ease of grading 
student work;  

8. more certain of student confidence as they succeed at tasks a teacher thinks they can 
accomplish;  

9. more control of the class, as students feel certain of how to start and which “direction” 
their thinking should take.  

 
Our concern was that most of the lower-level algebra classrooms, where students from 

underrepresented populations had been tracked and where lessons were highly structured, lacked 
all of the benefits of  (1)-(5) above and showed none of the positive aspects of (6)-(9) anticipated 
by teachers. We saw students who were unsure of themselves, unable to begin to work, and 
unable to take any risks.  Their goal was to get the right answer, and they were unwilling or 
afraid to try something and learn from the consequences. Students hid their work from each other 
and gave up quickly when they didn’t find answers right away. Teachers would explain how to 
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do many of the problems, classes were boring, and students often exhibited their lack of 
engagement through disruptive behavior.    

 
 We were concerned that the heavy structure used in their mathematical tasks did not reflect a 

careful balance of advantages and disadvantages, but instead stemmed from: 
a. teachers’ fear of or aversion to letting their students struggle with a problem; 
b. an unexamined belief that their students were not capable of succeeding at less structured 

tasks; 
c. lack of awareness of the resulting gains and losses from structure choices; 
d. teachers’ own lack of experience with good, creative problem solving in a less structured 

task. 
 
Based on our observations, we decided to make “structure” an important theme.  In most 

meetings we discussed readings and movies that addressed (a) and (b), and to a lesser extent (c). 
In addition to reading about the advantages of reducing the amount of structure in problems 
teachers worked on several assignments dealing with questions of how much structure.  They 
worked on low-structure mathematics problems themselves and then team-taught those problems 
to the other participants.  We gave them overly structured problems to redesign using less 
structure, and they discussed a provocative movie of a lesson study where teachers improved a 
task by redesigning it with less structure for the students.  In addition, some observed their peers 
who were using less structured tasks in their classes.  

 
Un-Structuring Tasks, First Try 
 
Experiencing low-structure tasks.  Participants worked on low-structure math problems in groups 
every week. We used problems from the Interactive Mathematics Program, from other sources, 
and of our own invention.  The key features of the problems were that they required some 
inventive thinking and exploration and rewarded multiple approaches.  We acted as group work 
facilitators, challenging groups to justify their work and to explain their work to each other, and 
asking key questions when groups were stuck.  

 
 

Teaching low-structure tasks. Once each semester, we divided into groups and gave each group a 
low-structure math problem that they would “teach” to subgroups of their classmates.  They 
would, of course, first have to work on the tasks themselves.  After the problem was sufficiently 
explored, one of us would facilitate their planning of what outcomes to aim for, how to guide the 
exploration, and what to anticipate. Then they would “teach” their problem to subgroups of 6 to 
12 classmates.  Finally, we helped them to reflect on their teaching experience. 

 
 
These tasks were not solely about un-structuring, but we definitely wanted people to notice 

and enjoy the benefits of mathematical exploration in safe and encouraging environments.  After 
a month of getting to know each other, teachers were enjoying doing math together. However, 
two issues worried us. First, many participants failed to grasp important aspects of facilitating the 
solution of unstructured problems.  When some teachers taught their lessons to their peers, they 
added a lot of scaffolding to the problem, even though they themselves had enjoyed a less 
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structured version.  Other teachers erred in the opposite direction. They had not noticed the 
teaching moves we had been making as facilitators, but interpreted “un-structuring” as doing 
nothing.  They had missed the fact that we had carefully considered in advance probable student 
reactions and had appropriate questions in our pockets, we were monitoring issues of status 
differences and work imbalance, and we were looking for excellent ideas and different strategies 
that groups might share with others.  Second, we were concerned that the teachers who had 
gained some new awareness were not adjusting their classroom practice. This lack of progress 
could be seen in classroom observations and in the exceedingly structured lesson plans teachers 
submitted when we worked on planning. Several people commented that low-structure activities 
were fine for well disciplined groups (like ours), but were not possible in their classrooms.  
 
Figure 1 
 

Consider the following problem: 

The Statue of Liberty in New York City has a nose that is 4 feet 6 inches long. What is 
the approximate length of one of her arms? 

1. Solve the problem. (Think about your own nose and arms.) 

2. Pick two other body parts and find the approximate length that these parts should be 
on the Statue of Liberty. 

3. Examine what you did with the three examples from Questions 1 and 2. How was your
work the same in the three cases? How did it change from case to case? 

 
A Fairly Open Version 
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We want to solve the following problem: 
 
The Statue of Liberty in New York City has a nose that is 4 feet 6 inches long. What is the 
approximate length of one of her arms? 
 

1. How long is the Statue's nose in inches? 
2. Estimate how long your nose is, in inches. 
3. What is the ratio of the length of the Statue's nose to your nose? 
4. Estimate how long your arm is. 
5. Multiply the answers from (4) and (3). What is the relationship between this number and the

length of the Statue of Liberty's arm? 
6. Write down a brief explanation of why you gave the answer you did in (5). 
7. Pick two other body parts on the Statue of Liberty, and using the strategy from (1) through

(5), figure out their lengths. 
8. Explain this strategy for figuring out lengths on the Statue of Liberty. Make sure a

classmate can understand it. 
 

 
A Closely Structured Version 

 
 
Un-Structuring Tasks, Follow-up 
 
Explicitly removing structure from a task.  We decided we were being too subtle and that we 
should directly call attention to the issue of structure. Midway through the second semester, we 
gave an assignment, the Statue of Liberty’s Nose, (See Figure 1) with two versions of two 
different activities, one version was fairly open and one closely structured. We then asked for a 
list of the pros and cons of the more structured approach.  As a homework assignment, they were 
given another structured activity and were asked to rewrite it so it would to be more open.  In the 
following class, we discussed the pros and cons of each approach and how to prepare questions 
to use with the less structured activity to get the benefits that the more structured activities 
promised.  Our goal was to drive home the idea that the support that students might need could 
come from sources other than breaking the problem down into little, tiny directed steps.  
Methods for facilitating effective small group mathematics discussions were discussed and 
sometimes illustrated in video clips, and teachers worked on what we called “pocket” questions 
for specific problems.  These are questions teachers have ready to ask, to challenge a complacent 
group, restart a frustrated group, or to give a gentle hint to a group. Pocket questions are often 
the questions that would be written out in an overly-structured task; we argued that it is better to 
structure as the need arises. 
 

In addition we asked participants to teach a specific problem in their own classes. (“What can 
you say about the repeating decimal expansion of fractions?”) We gave them the problem to 
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work on themselves, and then they worked in groups on plans for teaching the problem in their 
own classes.  

  
Responding to provocative videos.  We showed several videos.  One was a movie, “Brown Eyes” 
about a Korean boy on his first day at a new elementary school.  Both teachers and students 
made many assumptions because he did not speak.  It was unclear whether he was just shy or did 
not know English.  Before and after school, the film showed him at home where he was a 
resourceful and responsible problem solver. The discussion following the showing of this film 
was emotionally charged as participants examined their own assumptions about the problem 
solving and reasoning abilities of their students. 
 
We also arranged a viewing of a video of a group of elementary teachers working on lesson 
study (Lewis, 2005).  The task is for students to analyze a changing geometric pattern of 
triangles. For the initial lesson, students are told to fill out a pre-made table with data in a 
specific order and then to identify the pattern. When it is taught, the students fill in the table 
without thinking much about it, and the teachers notice that the over-structuring sabotages the 
students’ understanding. They revise the lesson in a perfect example of “un-structuring” by 
asking individuals to collect different data and to have them synthesize it as a group. The 
students who participate in the new lesson display deeper engagement and more creativity along 
with better reasoning in their explanations. 

 
Peer observation-live unstructured tasks. Project teachers still needed to see that it was possible 
to teach classes of  “at-risk” students using problems with less structure.   In each of the two 
cohorts there were a few teachers, who were already moving in the direction of using less 
structured problems, and we arranged for some teachers to be able to visit them.  

 
Results  
 
Immediate results were mixed, but over time the teachers continued to change their practices.  
Through interviews with teachers, through reading their written reflections and listening during 
their planning sessions with their home departments, we observed an increased appreciation of 
the amount of structure in a mathematical task as a choice that can have important consequences 
such as those described in (1) - (9).   Their discussions indicated that they realized there were 
careful choices and teaching moves required when leading low-structure activities, though they 
were not always sure what they were.  Deconstructing the roles of students and teachers in low-
structure classrooms to understand how their roles differ from a traditional classroom was not 
something most participants did on their own.  Participants began to focus on questioning as a 
key to facilitating low-structure tasks. It takes time, practice, and thoughtful reflection to become 
a good questioner who can create a safe learning environment where students can risk showing 
what they know and explaining their reasoning.  For many teachers becoming a good questioner 
seems to be a fairly advanced developmental stage of teaching.  In one high school, where 
teachers had already embraced many of the principles advocated by REAL, it took two years for 
teachers to fully realize the importance of the questions they ask when facilitating groups.   
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Many of the teachers seemed to believe that using low-structure activities was an ideal to 
aspire to, and they realized that they must teach their students how to work together, take risks, 
make mistakes, look for multiple strategies, and explain their thinking, but they still needed to 
learn how to make these things happen. 

 

 

We asked teachers to respond to questionnaires before and after the program began. 
Unfortunately, before it began we did not realize how crucial restructuring would be in 
improving teacher practice. So, we did not ask whether they considered that a factor when 
planning lessons.  However, in the post questionnaire, we can compare two groups of 
respondents: a "fully REAL" group of teachers that were at the school during all of the REAL 
program and “newer” teachers who came to the school sometime after REAL began.  When 
asked to what extent “Unstructuring lessons so students can use their own strategies for solving 
problems” was a key consideration in their planning math lessons, the "fully REAL" group had 
65% rank it 4 or 5 (the highest two scores) out of 5. The "newer" group had only 43% do so. We 
also asked teachers to check three top considerations out of a list of ten, and 23% of the "fully 
REAL" group picked unstructuring in their top three considerations, while only 4% of the newer 
group did. 
 
 
 
The REAL Project has collected data on academic achievement by algebra students in the 
partnership schools. Our original project involved two years work with two cohorts. For five 
sites, we continued working actively with their teachers and funding teacher projects.  For three 
other schools we gave no continuing support. Two departments were not interested in 
continuing, and when the district moved the third school to a new site, all of the REAL 
leadership left, leaving only first year teachers at the new location.  
 
 
 
In general, the "continuing work" schools gave above-average ratings for unstructuring in terms 
of importance in their planning. They also showed gains in algebra performance by African-
American students and overall. This is in contrast to the "no continuing work" schools which 
showed no change in student performance and rated unstructuring as 3.3 and 3.4 (below the 
school average of 3.6) in terms of importance in their planning. On the one hand, it is satisfying 
to feel that our work can lead to improved results in schools. On the other hand, one of our hopes 
was to create lasting change in all our departments.  
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The table shows data for the "continuing work" schools in more detail. 
 

Table 1 

 

REAL support after 
second year 

Algebra Failure 
 2003 or 2004 

Algebra Failure 2007 Importance of 
Structure  

High School (1) Total: 35% Total: 25% 4.1 

AfrAm: 40% AfrAm: 22.3% 

High School (2)  Total: 56.5% Total: 45.0% 3.2 

Afr.Am: 64% Afr.Am: 49% 

High School (3)  Total: 39.3% Total: 43.3% 3.6 

Afr.Am: 62.2% Afr.Am: 48.5% 

 2003 Percent of all 8th 
Graders Passing 
Algebra  

2007 Percent of all 8th 
Graders Passing 
Algebra 

 

Middle School (1)  20.2% 26.5% 4.3 

Middle School (2)  11.2% 27.2% 4.7 

 
 
The data from High School 1 shows a truly impressive drop in algebra failure rates both 
collectively (25% down from 35% at project start), and disaggregated by ethnicity. Especially 
notable was the failure rate of African-Americans  who are the second largest ethnic subgroup, 
and about a quarter of the student body (22.3% down from 40% at project start). Teachers at that 
school rated the post-survey question about unstructuring an average score of 4.1 for importance 
on the 5 point scale, where the average for all schools was 3.6. Note that this school was unusual 
for several reasons. First, the school had started changing their practices and improving their 
success with algebra classes before  they joined the REAL program. Second, we funded it 
directly for two years of co-teaching following the first year work with teacher leaders, instead of 
one year of teacher meetings as the other schools had.  
 
In High School 2, we met our targets for reducing absenteeism in every ethnic group, and we met 
our passing rate targets for every ethnic group (except Asian students). The absentee rates are 
down remarkably from the project start (down to 4.0 yearly absences/student from 12.3). Most 
encouragingly, the failure rate of African-American students has shown a big drop from 64% to 
49% since the start of the program. This rate is still unacceptably high, but we are encouraged 
that significant change has occurred in the right direction.  The overall failure rate dropped from 
56.5% to 45.0%. That school did not rate unstructuring as a key concern in planning lessons.  
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Their average was 3.2, which is below average, but note that most of their teachers are using a 
reform curriculum whose activities did not need unstructuring.  
 
In High School 3, the African-American failure rate has gone from 62.2% in the normal first year 
math course to 48.5%, which is very good progress. However, notice the curious overall drop in 
the passing rate. Statistically, this is due to the failure rate for Latino students increasing from 
30.6% to 45.6%. This presents a very mixed picture that we cannot explain but that could be 
related to changes in the Latino student population.  This school rated unstructuring an average 
of 3.6 in importance.   
 
The challenge in middle school is to give more students a chance to take algebra, while 
maintaining healthy passing rates.  For this reason, our main benchmark for Middle Schools 1 
and 2 is the number of students passing algebra as a percentage of the total student population 
(not just a percentage of the number of students taking algebra). At Middle School 1 the passing 
rate of students in their algebra classes has met our target and improved to 26.5% of all eighth 
grade students taking and passing algebra from an initial rate of 20.2%. of all eighth graders.  At 
Middle School 2 the rate went from 11.2% to 27.2%. The two middle schools rated unstructuring 
as 4.3 and 4.7 on the average. 
 
 
Conclusion 
 

On the whole, there was much more discussion of reducing structure than action in the 
classroom. Some lead teachers (teachers who directly participated in the REAL professional 
development class) did loosen up their activities with some excellent results. One lead teacher 
mentioned that she now assigns the book’s enrichment problems, whereas in the past she skipped 
over them. Other lead teachers began trying low-structure problems as supplemental activities or 
as introductions to new topics.  But many teachers reported that low-structure tasks were beyond 
their reach as teachers because of (1) their own limitations (fear of losing control, feeling 
mathematically unprepared to handle spontaneous questions, fear of a lack of skill in bringing 
tasks to resolution), (2) the limitations of their students, and (3) the limitations of their schedules 
by the demands of state standards and testing programs.  
  
 We do take some consolation in the broad acceptance among our lead teachers that low-
structure, exploratory tasks are a positive idea. Of the psychological obstacles (a) - (d) listed 
above, we think we successfully addressed all but (b) the belief that their minority and remedial 
students were not capable of succeeding at less structured tasks.  A proclaimed change of heart 
has yet to be matched by a change in teaching practice; however, with further support the latter 
change may occur. When teachers described their work in the second year, they would usually 
contrast their work against an ideal of lowering the amount of structure and express some guilt 
(with reasons) for falling short. 
 

Participants in REAL repeatedly said that their honors track or Advanced Placement 
students could work in groups on unstructured problems quite successfully.  However, they 
believed the students in their lower track algebra courses, who had previously struggled with 
math, could not.  These students, teachers said, couldn’t work together collaboratively and 
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resisted thinking out loud and explaining their strategies to each other.  By high school, students 
have learned that right answers rather than well  reasoned solution processes lead to success in 
school.  When asked about their reactions to less structured activities students tended to react 
negatively, complaining that their teachers weren’t explaining enough. 
 

In one sense, the behavior of the REAL teachers paralleled the behavior of their students. 
The teachers in REAL, like their students, resisted when pushed to think deeply and share with 
their peers their thinking about what math was important to teach and why, and how they might 
best teach it.  Some teachers came to REAL thinking that the project directors had already 
worked out those answers.  Similarly, students generally don’t question the norm that giving the 
right answer is what it takes to be successful in school.   In fact, what REAL advocated for both 
teachers and students was the value of the process of thinking and struggling with questions.  We 
could be more explicit in our future work about getting teachers to reflect on this parallel 
experience in their own learning as a preliminary step to shaping the learning experiences they 
create for their students. 
 

We did influence the classroom practice of most of our lead teachers. We also had 
significant effects on the work and culture of many departments, especially in how they spend 
their time together.  In particular, departments indicated increased communication about math 
course content, discussing common instructional strategies, and reflecting on lessons together, 
and attributed REAL with these increases. The project seemed to have given many partners the 
courage to undertake changes they had quietly hoped for in the past such as revision of 
curriculum, regular peer observations and collaboration, and even elimination of some tracking.  
  

On the other hand, we had to learn patience. First, we had hoped for more movement and 
growth during the first school year. This proved unrealistic, and in retrospect it seems difficult to 
ask teachers to change their practice dramatically in the middle of a school year. Indeed it was 
difficult for teachers to change their intellectual perspectives on their teaching during the year. 
The fall and spring semesters were marked by slow, cautious change and an opening of minds, 
followed by great leaps of attitude and ambition during the subsequent summer session, followed 
by slower but more visible change during the following school year.  There is no easy way 
around this dynamic, which was clear in both groups and across all schools. 

 
 Second, we needed patience in the second year waiting for our lead teachers’ visible 
changes of heart, mind, and talk to result in changes in their classrooms. A few teachers were not 
influenced by the program, but for the majority of participants changes of attitude were visible in 
their work, in their rhetoric, in their discussions with their peers, and in their private interviews 
with the outside evaluator.  Indeed, most teachers did try different things in the classroom, and as 
discussed above, some were profoundly influenced. But many of them would try to teach 
differently in one class, then return to their comfort zone for a few classes, and then try 
something different again (often when one of us came to visit). This is probably a very natural 
way for change in teacher practice to occur when the teacher gets to choose the pace. And in fact, 
we intentionally set up the program’s structure and incentives to allow teachers to change at their 
own pace.  Nonetheless, it taxed our patience to see the difference in the verbalized hopes and 
intents and the classroom reality. 
 



  TMME, vol6, no.3, p .433 
 

Acknowledgements 
This material is based in part upon work supported by the National Science Foundation under 
Grants No. 0226972 and 0347784. Any opinions, findings, and conclusions or recommendations 
expressed in this material are those of the authors and do not necessarily reflect the views of the 
National Science Foundation. 
 
 
References 
 
Hsu, E., Kysh, J., Ramage, K., & Resek, D. (2007a). Seeking Big Ideas in Algebra: The 
Evolution of a Task. Journal of Mathematics Teacher Education, 10(4--6), 325--332. 
 
Hsu, E., Kysh, J., & Resek, D. (2007b). Differentiated Instruction Through Rich Problems. New 
England Mathematics Journal, 39, 6--13. 
 
Lewis, C. (2005). How Many Seats? Excerpts from a lesson study cycle. (DVD) Oakland, CA: 
Mills College Lesson Study Group. 
 
National Research Council and the Institute of Medicine. (2004). Engaging Schools: Fostering 
High School Students' Motivation to Learn. Washington, DC: National Academies Press. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Hsu et al 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



       TMME, vol6, no.3, p .435 

 

The Montana Mathematics Enthusiast, ISSN 1551-3440, Vol. 6, no.3, pp.435- 448   
2009©Montana Council of Teachers of Mathematics & Information Age Publishing 
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Abstract: Using 2x  1  as an example, we discuss the cognitive load related to 
learning linear equation solving. In the framework of the Cognitive Load Theory we 
consider especially the intrinsic cognitive load needed in arithmetical, geometrical 
and real analytical approach to linear equation solving. This will be done e.g. from the 
point of view of the conceptual and procedural knowledge of mathematics and the 
APOS Theory. Basing on our observations, in the end of the paper we design a setting 
for teaching linear equation solving. 
 
Keywords: conceptual knowledge; cognitive load theory; linear equations; procedural 
knowledge 
 
1. Introduction 
 
Cognitive Load Theory, as Sweller (1988) defined it, proposes that optimum learning 
assumes conditions that are aligned with human cognitive architecture. While this 
architecture is not yet known precisely, there already exists consensus among 
cognition researchers that learning happens the easier the less short time working 
memory – the part of our mind that provides our consciousness and enables us to 
think, to solve problems, and to be creative etc. – is encumbered. The term cognitive 
load refers to the total amount of mental activity by which the working memory is 
oppressed at an instance in time. The most important factor that contributes to 
cognitive load is the number of knowledge elements that must be employed 
simultaneously. Basing on Miller (1956), Sweller suggests that most human beings 
can hardly deal with more than seven (plus minus two) elements in tandem. An 
immediate consequence of Cognitive Load Theory is that when we design 
instructional material or our action in mathematics class, we should try to minimize 
the working memory load by paying extra attention to choosing problem solving 
methods, how we represent background information, how we put forward exercises 
and so on.  
 
This paper has got two purposes. We shall first study the cognitive related to a few 
approaches to solving linear equations. More precisely, we aim to clarify what kind of 
intrinsic cognitive load a learner encounters in arithmetical, geometrical and real 
analytic approaches to linear equations. This will be done e.g. by analyzing what 
conceptual and procedural knowledge (Hiebert & Lefevre, 1986; Haapasalo & 
Kadijevich, 2000; Star 2005) is required in these approaches. Further, we also refer to 

                                                 
1 E-mail: tossavai@joyx.joensuu.fi 



Tossavainen 
 

the APOS Theory (Asiala et al, 1997) when we consider the complexity of the 
learning processes related to these approaches.  
 
The term intrinsic cognitive load refers to the load that is due to the content to be 
learned. The intrinsic cognitive load cannot be modified by instructional design but, 
of course, it must be acknowledged, for instance, in order to be able to customize the 
total cognitive load when designing teaching and instructional material etc. However, 
we shall also discuss the extraneous cognitive load, which is due to, for example, 
teacher’s activity in the class. This will be done in the last section. For the more 
detailed description of the intrinsic and extranous cognitive load, we refer to Sweller 
(1988). 
 
Another purpose of this paper is to give some aid in designing teaching linear 
equations. Modern technology makes possible to use illustrative methods also in 
teaching of arithmetic and algebra. Therefore geometrical aspect plays nowadays 
more essential role than in the past also on those fields of school mathematics where 
its potential has traditionally been seen very limited. Hence it is important to clarify, 
whether geometrical approach lightens – and if yes, then how – the cognitive load 
related to learning linear equation solving. 
 
For the sake of perfection, we shall also shortly discuss the amount of the cognitive 
load that is related to mathematically complete understanding of linear equations of 
one real variable. We shall see, among other things, that solving 2x  1  in ordered 
field with the least-upper-bound property requires much more than one might think at 
first glance. Of course, this real analytical approach cannot be taken into school as 
such but, in the last section, we shall ponder the pros and cons of all three approaches 
and then relying on our observations we shall design a more optimal approch for 
teaching linear equations both at school and in mathematics teacher training. 
 
Naturally, linear equations have already appeared in several mathematics educational 
research. The most of these however seem to concentrate not on the challenge itself 
that lies in learning to solve linear equations but, if anything, on measuring the 
development of learners’ arithmetical skills, or on the question how pupils learn to 
solve real life problems using linear equations, or they are some how related to the 
comprehension of the concept of equation, function etc. Nevertheless, some papers 
consider linear equations also from the perpective of cognitive scienses. For example, 
MacGregor and Stacey (1993) studied cognitive models underlying students' 
formulation of linear equations. Qin et al (2004) and Anderson (2005) focus merely 
on neuroscientific issues but are based on the data of a 6-day experiment in which 
children learned to solve linear equations and perfect their skills. Having browsed the 
ISI Web of Knowledge and Google Scholar, it seems that the present paper provides a 
new perspective on teaching linear equations. 
 
One easily thinks that, for example, 2x  1  is so simple equation that finding its 
solution hardly encumbers our cognition. On second thought, this is not the whole 
truth. There are several contexts in which this equation bears remarkably different 
content, e.g. mathematical models of rational numbers and real numbers differ from 
each others fundamentally, and on some more complicated occasions even the 
perception of the meaning of the symbols “ 2 ” and “1” may be an untrivial task. 
Indeed, the expression ax  b, a  0,  is reasonble in some contexts even thought 
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symbols a , b  and x  were not numbers, vectors or any other numeric variables. 
Nevertheless, we shall confine ourselves to dealing only with rational or real numbers.  
 
Using 2x  1  as an example we now study linear equation solving and what kind of 
cognitive load is related to solving this equation with profound understanding in 
arithmetical, geometrical and real analytical (i.e., in the contexts of the ordered field 
that has the least-upper-bound property) approaches.  
 
What constitutes a single knowledge element or cognitive load unit? It depends on 
both the learner’s familiarity and expertise on the subject to be studied and the content 
itself. According to the APOS Theory, an expert can handle several concepts, 
procedures etc. as a single schema whereas a novice may already be confused about 
the details related to a single concept. Therefore we consider only the relative intrinsic 
cognitive load of different approaches and do not give any quantitative measure of the 
load for each approach. That would require a large empirical data because the 
cognition research has already revealed that human brains can digest illustrated data 
easier than data given in form of lists, tables etc. In a theoretical paper like this one, it 
is not possible to realize a reliable quantitative comparision of the total cognitive load 
that an individual learner actually experiences in geometrical and other approaches 
and thus we only can reveal and discuss the mathematical details that constitute the 
intrinsic cognitive load. 
 
2. Arithmetical approach 
 
Lithner (2003) has noticed that even at university students most often base their 
reasoning and problem solving strategies on the identification of similarities. Since 
linear equations are easily identifiable, it is also very probable that most mathematics 
teachers in their teaching – and along them their pupils, too – strongly aim at 
constructing one general algorithm for linear equation solving. Such an arithmetical 
algorithm apparently presumes that ax  b, a  0,  is solved by applying the 
equivalence  

ax  b  x  b
a

. 

 
Applying this division-based rule is eventually a routine procedure and, therefore, the 
intrinsic cognitive load required to produce a correct solution for 2x  1  and other 
such linear equations may seem to be quite limited. However, from the point of view 
of conceptual knowledge, linear equations are not only related to division but also to 
multiplication and rational numbers. It is well-known that these concepts are not at all 
trivial for most pupils at school. Hence it is not so surprising to notice that, e.g., only 
45 percent of the eight-graders who took part in TIMMS 2003 gained full credits in 
“If 4(x  5)  80 , then x  ” (Gonzales et al, 2004). 
 
Moreover, many pupils, and even some university students, find it difficult to 
perceive that the division is actually carried out by the multiplication by the inverse of 
a : 

ax  b  a1ax  a1b  1x  a1b  x  1
a
b  b

a
. (1) 
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This is quite natural, since the chain of equivalences in (1) consists of several 
arithmetical operations and equalities and there are at least two ways to denote the 
inverse. Hence the number of knowledge elements that all must be pieced together in 
order to fully understand the operational equivalence between division and 
multiplication by an inverse is significant.  
 
Looking at the conceptual knowledge related to solving both 2x  1  and ax  b  
deeper, a natural question arises: Do we have to understand what rational numbers 
really are in order to be able to comprehend the division-based solving procedure of 
linear equations or is it vice versa: we learn the concept of rational number through 
solving linear equations? According to Haapasalo & Kadijevich (2000) both orders 
appear. The comprehension of the concepts of division and rational numbers cannot 
thus be separated from the deeper appreciation of the solving algorithm of linear 
equations.  
 
To be exact, solving 2x  1  using division-based algorithm does not necessarily 
require complete understanding of rational numbers and their arithmetics because in 
this case the division needs be applied only on integers.  Since calculating the ratio of 
two non-integer rationals is eventually multiplication of a rational number by an 
inverse of a rational number, i.e., 
 
p
q
 r

s
  p

q
 r

s 
1

 p
q
 1

r
s 

 p
q
 s
r

, 

 
the cognitive load related to conceptual understanding of the division-based solving 
algorithm is in the case of 2x  1  considerably lower than in the general case. More 

precisely, in this case, a learner can produce the correct answer x  1
2

 with reasonable 

conceptual understanding if he or she does not know the arithmetics of non-integer 

rationals but only perceives that 1
2

, and more generally any rational number, is a ratio 

of two integers. 
 
Of course, it is possible to solve 2x  1  also without using division but by simply 

observing that 2  1
2
 1or 1

2
 1

2
 1 . These approaches are clearly less burdening in 

the sense of intrinsic conceptual cognitive load than the division-based one above but, 
on the other hand, they rely on intuitive knowing or guessing the correct answer and 
then representing the left-hand side of the original equation as a suitable product or 
sum and thus are not as general as the one based on division.  
 
All in all, there are several acceptable arithmetical methods that may provide the 
correct solution for 2x  1  and similar linear equations. What can we say about the 
eventual cognitive load related to this approach?  
 
According to the APOS Theory, on the higher level a learner is, the more and more 
versatilely he or she exploits automated and routine procedures. For a learner at the 
level of Scheme (S) or Object (O), the division-based algorithm may constitute only a 
one single knowledge element and for a learner on the level of Action (A) or Process 
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(P) already the number of details in (1) may exceed the capacity of his or her 
perceptive skills (for the definition of the APOS levels, see Asiala et al, 1997). And as 
the TIMMS 2003 results show, learners with same educational background can be in 
very different stage of their learning process. This complicates even further giving 
any quantitative estimate of the cognitive load.  
 
On the other hand, it is very plausible that linear equations are in most cases 
introduced at school in such a way which we classify belonging to the arithmetical 
approach in this paper. Therefore we think that, instead of giving any numeric 
estimate of the cognitive load, it is more reasonable to compare the load of the other 
two approaches to the one of the arithmetical approach and then design, if possible, an 
optimal approach piggybacking onto pros of each three approaches. 
 
We conclude this section by observing that all procedures considered above share at 
least one fundamental problem: they do not explicitly say why there are no other 

solutions but x  1
2

 for 2x  1 .  

3. Geometrical approach 
 
Presumably only few mathematics teachers have applied, at least until the existence of 
modern computers and mathematical softwares, illustrations as a principal tool for 
finding the solution for linear equations but maybe a little more often they have used 
images for convincing their pupils of the fact that there are no other solutions. On the 
other hand, the more central role computing machinery takes in mathematics 
education, the more central geometrical approach also in solving equations may 
become. 
 
Before discussing the details, it is worth to consider shortly what solving equations in 
geometrical context really means. In geometry we first and foremost deal with 
geometrical objects. Straight lines, curves etc. are geometrical objects; equations, 
expressions etc. are primarily not. Lines and curves intersect, coincide and so on; 
equations and expressions have roots, factorize and so on. In other words, we ask 
different questions about geometrical objects and non-geometrical objects. Analytical 
geometry is the field of mathematics that relates these different kind of worlds to each 
others and hence it is possible to solve arithmetical problems also geometrically. For 
example, in the xy -plane solving 2x  1  is reasonable and it means finding the x -
parameters of the intersection points of the curves y  2x  and y  1. In Euclidean or 
other non-analytic geometry, we could speak only of the intersection points of curves 
without any chance to join this action to arithmetical concepts. 
 
Mathematically most natural and the only reasonable setting to study the solution of 
2x  1  in an illustrative way thus is the xy -coordinate plane. By presenting the both 
sides of the equation as straight lines and then studying the set of points where these 
lines intersect we find the complete solution of the equation. The illustration is given 
in Figure 1. 
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Figure 1. The illustration of 2x  1 . 
 
In order to be able to solve 2x  1  completely in this setting, a learner should at the 
minimum know that two non-parallel straight lines always intersect exactly at one 
point. Again, at first glance, this may seem to be a piece of cake but does a learner 
really know that? Is it only an intuitive conclusion justified by a prompted observation 
from elementary Euclidean geometry or can it been explained in any other way than 
by solving linear equations? Being punctilious, it seems that prerequisities to use this 
approach are more challenging than the problem itself to be solved or we must fool 
ourselves and accept at least one of the fundamental and non-trivial features of the 
machinery for granted. After all, mathematical reasoning should be beyond everyday 
facts!  
 
Let us now consider in more detail the load on working memory needed in 
understanding the relationship between the illustration in Figure 1 and the solution of 
2x  1 . First a learner must transform a single equation 2x  1  into a pair of 
equations 

y  1,

y  2x,





 

 
then construct the graphs of  these equations, find the intersection point of the lines in 
the plane, identify the value of the parameter x  of this point, and then finally go these 
steps backwards in order to be able to interpret this value as the only solution of the 
original equation. The number of operations and processes to be controlled 
simultaneously in the working memomy seems to exceed the magical seven easily if a 
learner has not yet gained, with respect to the APOS Theory, O- or S-level capacity in 
using the coordinate system.  
 
It is worth observing that a learner must go through all of the above steps also in that 
case if computers are applied. The most remarkable difference is that computers can 
provide ready-made operations for some of the subroutines, e.g. for finding the x -
parameter of the intersection point. In other words, computers can only lighten the 
arithmetical load but not provide an escape from understanding the relationship of the 
original problem and the illustration which constitutes the core of the cognitive load 
of the whole manoeuvre.  
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It seems that also the necessary conceptual knowledge in this manoeuvre readily 
exceeds the knowledge needed in the arithmetical approach; for example, can we 
assume the facility to create or read graphs of straight lines in the coordinate system 
without good knowledge of arithmetics of (at least) rational numbers? Already finding 
the correct slope requires good understanding of proportions.  
 
On the other hand, human brains can receive and manipulate data better in an 
illustrated than in a pure arithmetical form. Most propably, human brains can group 
larger data as a single schema or an information element for working memory if the 
data is given figuratively. Hence, let us look at Figure 1 once again. If it were, say, a 
Java applet based dynamic figure such that using it a learner easily perceived how the 
straight lines and the expressions 2x  and 1 are related to each others, and the figure 
automatically produced the cutted line and the value for the x -coordinate of the 
intersection point, this setting could provide all tools for controlling the geometrical 
solving of 2x  1  as a single schema. From this point of view, at least procedurally 
the geometrical approach is not more burdening than the arithmetical approach. 
 
Using the similar thinking as above, one may conclude that illustrations always makes 
mathematics easier. Counterexamples do however exist, as the following one related 
to elementary algebra verifies. 
 
Even at college and university one can meet every now and then student who claim 

that x
2
 x

3
 2x

5
. Having asked other students how this student could be corrected, a 

common answer has been that teacher should equip the example with an image like 
the one in Figure 2. 
 
 

=+

 
Figure 2. The illustration of x

2
 x

3
 5x

6
. 

 

Now, what is the point in this image? A half and a third of a disk is not equal to 2
5

 of 

the disk but 5
6

of the disk. But do we really think that understanding this is 

problematic to our student? Obviously not but more propably he or she does not sense 

any meaning for x
2

and x
3

 and hence cannot apply proper arithmetical rules for them. 

For the same reason the cognitive load that student must take over in order to be able 
to understand the correspondence between the image and polynomial expressions is 
greater compared to the aid that the image can provide. 
 
All in all, the cognitive load related to linear equation solving in the geometrical 
approach depends remarkably both on the learner’s capacity to use the coordinate 
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system and also on the computing tools that are available. For a learner at A- or P-
level in using the coordinate representations this approach is propably more burdening 
than the arithmetical approach and for an advanced user, the load is quite the same as 
in the arithmetical case.  
 
Nevertheless, geometrical approach provides a somewhat sufficient explanation for 
the uniqueness of the solution, at least in the context of school mathematics; the 
complete explanation would take good knowledge of the algebraic structure called 
group, which already belongs to university mathematics and to the real analytical 
approach in this paper. 
 
4. Real analytical approach 
 
Now we study 2x  1  in the context of real numbers as they are ultimately defined in 
real analysis, i.e., in the context of an ordered field that has the least-upper-bound 
property (e.g. Rudin, 1976, 8). To solve 2x  1  means then finding the sequence of 
necessary axioms to establish the chain of equivalences (or implications) between the 
equation 2x  1  and the solution. This is quite typical conventional problem in 
academic mathematics; it is to be solved using so-called means-ends analysis (see e.g. 
Larkin et al., 1980) whose principal idea is reducing differences between the current 
problem state and the goal state. Although this strategy is forceful in obtaining 
answers, unfortunately, it unavoidably induces high levels of cognitive load. This is 
because the strategy requires attention to be directed simultaneously to the current 
state, the goal state, differences between them, procedures to reduce those differences 
and any possible subgoals that may lead to solution. (Sweller, 1988). 
 
As a matter of fact, 2x  1  must be read so that it is the abbreviation for x x  1 
since it is not stated in the axioms that the natural numbers belonged to such an 
algebraic structure we are dealing with. This implies, for example, that we can solve 
the original equation by multiplying the equation by the inverse of 2 only if we are 
able to show that the natural number 2 belongs to the algebraic structure. Following 
this method – and there hardly are any other available – we soon run into a surprising 
challenge: there exist examples of fields, e.g. 0, 1  equipped with the usual (mod 2) 

–arithmetic, where x x  1 does not have any solution! Hence we deduce that in the 
field of real numbers, in addition to the axioms related to addition and multiplication, 
we need at least the axioms of order – in other words, the properties of inequalities! – 
in order to be able to solve this seemingly simple equation 2x  1 . The same holds 
again for the general case, too. Ultimately, as anyone familiar with axioms of real 
numbers can withness, it takes several hours of lectures to provide all necessary 
details and hence in most mathematics teacher training programs students never see 
them.  
 
As one could assume beforehand, in this setting both the conceptual and procedural 
knowledge required are of much greater dimension than in arithmetical or geometrical 
approaches. But this is the only approach that provides mathematically complete 
answer to 2x  1 . It is also self-evident that one cannot use this approach at school. A 
classical dilemma follows: the more advanced mathematical education we give to 
mathematics teacher students the less they benefit from it in the pedagogical sense. 
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5. A cognitive load generated effected approach to teaching linear equation 
solving 
 
As a summary of the previous sections, we can say that the cognitive load related to 
learning linear equation solving is quite the same in the arithmetical and geometrical 
approaches and remarkably heavier in the real analytical approach. Taking into 
account also the discussion in the beginning of Section 3, one is easily led to think 
that the most suitable educational arrangement is such that pupils are first put to solve 
linear equations in the arithmetical context and then they proceed to studying the 
graphs of linear functions in analytical geometry, and then finally, those few who 
wish to be real mathematicians, study axioms of real numbers at university. 
 
On the other hand, the arithmetical approach has least tools for motivation of the 
uniqueness of the solution and the geometrical approach provides at least a plausible 
solution to that. Moreover, the analysis in the previous sections merely deals with the 
intrinsic cognitive load and the total cognitive load that a learner experiences is 
remarkably affected also by the extraneous cognitive load, which is due to e.g. how 
the instructional materials is used to present information in actual teaching. Clever 
instructional solutions may smooth the peaks of the intrinsic load in minimizing the 
total load. 
 
So, could we enhance learning linear equation solving by modifying the traditional 
practice? Especially, if we evaluate the capacity to study problems in whole higher 
than the capacity to produce single solutions quickly, the uniqueness of the solution of 
linear equation should be emphasized right from the beginning. Representing this 
point of view, we now present the keynotes of an approach to teaching linear 
equations in which we try to apply as many cognitive load generated effects, i.e., 
instructional techniques that have been developed in Cognitive Load Theory to 
facilitate learning, as possible. In Table 1 the most typical effects are listed and 
compared to standard practice by Cooper (1998). The term ‘goal free effect’ refers to 
generating goal free problems which is just the opposite to generating problems that 
require the means-ends analysis. This effect should automatically induce forwards 
working solution paths and thus impose low leves of cognitive load (Cooper, 1998 
and the references therein). See Table 1 in Appendix 
 
In our view, an ideal setting for learning general linear equation (i.e. ax  b  cx  d ) 
solving is a dynamic two-part figure which combines the arithmetical and geometrical 
approaches so that  
 
1. In the arithmetic window, as the equation to be solved have been entered, the left-
hand side of the equation of is displayed, say, in blue color and the right-hand side in 
red color. The original equation and the current equivalent equation on which a 
learner performs arithmetical operations are both shown; 
 
2. The figure automatically generates in the graphics window (the xy -coordinate 
plane) the graphs of  y  ax  b  and y  cx  d  with the corresponding colors 
displaying also the equations of these straight lines; 
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3. In the arithmetics window, a learner can choose and perform any arithmetical 
operation, e.g. “Divide by 5”, and the figure performs the corresponding operation for 
both straight lines  and their formulas in the graphics window; 
 
4. A learner is auditorily guided to manipulate (using arithmetical operations) the 
original equation first into form ex  f  and then finally to divide this by e  so that it 

becomes x  f
e

; 

 
5. Especially in the last stages of the process, a learner is encouraged to pay attention 
to the positions of the straight lines and notice that one of the lines is horizontal and 
the other one goes through the origin; 
 
6. When the solution is found, i.e., when the current equivalent equation takes the 
form x  x0 , the figure automatically generates an extra vertical line through x  x0 , 
the line through the intersection point of the blue and red lines, marking the solution. 
The figure also displays this value numerically. 
 
 

y

y = -x + 3

y = 2x - 1Equation to be solved:

Help

Current equivalent
equation:

2x - 1 = -x + 3

Show history
x

2x - 1 = -x + 3

Choose operation

 
Figure 3. An exemplar view of a dynamic figure for learning linear equation solving. 
 
Clearly, this setting exploits the split attention and the modality effetcs. Also the 
redundancy effect is made good use of although two equation are shown at every turn. 
If the original equation is not shown, a learner may have a greater cognitive load in 
remembering the original task and in checking whether he or she got the right answer. 
And while a single arithmetical operation performed by a learner induces several 
changes in both arithmetic and graphics windows, it is necessary to display all these 
expressions in order to indicate the correspondence between the aritmetical and 
geometrical viewpoints. It is a little more difficult to say whether the straight lines 
corresponding to the original equation should be displayd throughout. On the other 
hand, it was logical and informative, on the other hand, it may be redundant. A 
possible solution is that these lines are displayed shadowedly in background after the 
first non-trivial arithmetical operation is performed or a learned is encouraged to use 
Show history –function so that an extra attention is paid to the position of the straight 
lines. 
 
How well the goal free effect and the worked example effect are made use of depends 
merely on the expertise of instructor. A pro of this setting is that all arithmetical 
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operations induce a single simple geometrical action. In other words, geometrically 
multiplication and division are not more complicated processes than addition or 
subtraction. Therefore it possible to head to solving general linear equations right 
after having worked a few examples of type x  a  b  and ax  b . This fact, in our 
view, is perhaps the most significant advantage of this setting compared with the 
traditional practices in which several weeks may be spent on solving only x  a  b  
and ax  b . Anyway, this kind of dynamics should easily allow using goal free 
problems and studying versatile worked examples also collaboratively. 
 
A few critical questions may also arise: for example, should we allow a learner also to 
move straight lines in the graphics window and let the figure automatically perform 
the corresponding arithmetical operations in the arithmetics window? Or should the 
figure somehow underline the coordinate values of the intersection point of  
y  ax  b  and y  cx  d  from the beginning? The answer to the first question is: No. 
Although freedom to move these lines may help a learner to understand the 
correspondence between the sides of the original equation and the lines, it easily leads 
to misconceptions and diversion, e.g. if a learner translates the lines in the graphics 
window so that the intesection point of lines remains fixed, a learner may think that he 
or she is still solving an equation equivalent to the original one. The latter question 
may also be answered negative while it is not so obvious. Namely, in this process the 
x -coordinate of the intersection point remains, of course, fixed. Hence, there is no 
urgent educational need to emphasize this value until the geometric solution is in its 
most visible form especially if this multiplied the cognitive load in perceiving the 
actions in the graphics window. On the other hand, seeing the coordinates of the 
intersection point at every turn would be of some relevance. Thus the best solution 
might be such that a user could choose whether the coordinates are displayed or 
hidden. 
  
The setting described above also facilitates so-called trialogical approach to learning 
which is related to innovative knowledge communites and especially to the 
knowledge-creation metaphor of learning. The term “trialogical” refers to the fact that 
in this approach the emphasis is not only on individuals or on community but also on 
the way people collaboratively develop mediating artifacts. (Paavola & Hakkarainen, 
2005).  
 
More precisely, if the dynamic figure is equipped with saving function, a learner can 
always trace back with his or her instructor or other learners the steps that he or she 
has performed. Moreover, since there are only a limited number of possible operations 
that lead to correct solution, it is possible to program the figure to interactively help a 
learner to perform necessary steps correctly. It is important to notice that although 
learners may adopt using the means-ends analysis in linear equation solving, it is also 
possible to program the help function of the figure so that the goal free effect and thus 
more communicative learning is applied. 
 
Finally, are there any elements in the real analytic approach that could be utilized in 
this approach, too? Perhaps, there is. First, the help function can be programmed so 
that in the arithmetics window it actively motivates a learner to pay attention to that 
subtraction and division are, respectively, addition of opposite number and 
multiplication by inverse. Moreover, if the figure allows a learner to enter also 
combinations of linear expressions to both sides of the equation to be solved, also the 
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need to operate properly with the distributive laws can be discussed within the 
figure’s interactive interface. Second, the need to solve also the existence of the 
solution can be discussed easily in this framework if the figure is also programmed to 
generate equations to be solved in varied domains. 
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Appendix 
 

Table 1. Cognitive load generated effects (Cooper,1998) 

Standard Practice  Cognitive  load  generated 
effect 

 

1. Use conventional problems 
which specify the goal so that 
students “know what they have 
to find” 

The goal free effect 

Use goal free problems 

 

2. Students need to solve many 
problems to learn because 
“practice makes perfect” 

The worked example effect 

Students  learn  by  studying  worked 
examples. Problem solving  is used to 
test if learning has bee effective 

 

3. Instructional materials which 
require both textual and 
graphical sources of instruction 
should be presented in a “neat 
and tidy” fashion where the text 
and graphics are located 
separately 

The split attention effect 

Instructional  materials  which  require 
both textual and graphical sources of 
instruction  should  integrate  the  text 
into  the  graphic  in  such  a way  that 
the  relationships  between  textual 
components  and  graphical 
components are clearly indicated 

 

4. The same information should be 
presented in several different 
ways at the same time 

The redundancy effect 

Simultaneous  presentations  of  similar 
(redundant) content must be avoided 

 

5. Similar to‐be‐learned 
information should be presented 
using an identical media format 
to ensure consistency in the 
instructional presentation 

The modality effect 

Mix media,  so  that  some  to‐be‐learned 
information  is  presented  visually, 
while  the  remainder  is  presented 
auditorily 
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If mathematics is a language, how do you swear in it? 
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Swears are words that are considered rude or offensive. Like most other words, they are 

arbitrary symbols that index meaning: there is nothing inherently wrong with the letters that spell 

a swear word, but strung together they conjure strong meaning. This reminds us that language 

has power. This is true in mathematics classrooms too, where language practices structure the 

way participants understand mathematics and where teachers and students can use language 

powerfully to shape their own mathematical experience and the experiences of others. 

When people swear they are either ignoring cultural norms or tromping on them for some 

kind of effect. In any language and culture there are ways of speaking and acting that are 

considered unacceptable. Though there is a need for classroom norms, there are some good 

reasons for encouraging alternatives to normal behavior and communication. In this sense, I want 

my mathematics students to swear regularly, creatively and with gusto. To illustrate, I give four 

responses to the question: If mathematics is a language, how do you swear in it?  

 

Response #1: To swear is to say something non-permissible. 

 I’ve asked the question about swearing in various discussions amongst mathematics 

teachers. The first time I did this, we thought together about what swearing is and agreed that it 

is the expression of the forbidden or taboo. With this in mind, someone wrote 1  on the 
                                                 
1 E-mail: dwagner@unb.ca 
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whiteboard and giggled with delight. Another teacher reveled in the sinful pleasure of scrawling 

n
0  as if it were graffiti. These were mathematical swears. 

 Though I can recall myself as a teacher repeating “we can’t have a negative radicand” 

and “we can’t have a zero denominator”, considering the possibility of such things helps me 

understand real numbers and expressions. For example, when the radicand in the quadratic 

formula is negative (b2 – 4ac < 0), I know the quadratic has no roots. And when graphing 

rational expressions, I even sketch in the non-permissible values to help me sketch the actual 

curve. Considering the forbidden has even more value than this. 

Though it is usually forbidden to have a negative radicand or a zero denominator, 

significant mathematics has emerged when mathematicians have challenged the forbidden. 

Imaginary numbers opened up significant real-world applications, and calculus rests on 

imagining denominators that approach zero. This history ought to remind us to listen to students 

who say things that we think are wrong, and to listen to students who say things in ways we think 

are wrong (which relates to response #3 in this article). We can ask them to explain their 

reasoning or to explain why they are representing ideas in a unique way. 

Knowing what mathematical expressions are not permitted helps us understand the ones 

that are permitted. Furthermore, pursuing the non-permissible opens up new realities. 

 

Response #2: Wait a minute. Let’s look at our assumptions. Is mathematics really a language? 

Good mathematics remains cognizant of the assumptions behind any generalization or 

exploration. Thus, in this exploration of mathematical swearing, it is worth questioning how 

mathematics is a language, if it is at all. 
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It is often said that mathematics is the universal language. For example, Keith Devlin has 

written a wonderful book called “The Language of Mathematics”, which is a history of 

mathematics that draws attention to the prevalence of pattern in the natural world. The book is 

not about language in the sense that it is about words and the way people use them. Its 

connection to language is more implicit. Humans across cultures can understand each other’s 

mathematics because we share common experiences of patterns in the world and of trying to 

make sense of these patterns. We can understand each other. Understanding is an aspect of 

language. There are other ways in which mathematics can be taken as a language, and there can 

be value in treating it as a language, as demonstrated by Usiskin (1996). 

However, it would not be so easy to find a linguist who calls mathematics a language. 

Linguists use the expression ‘mathematics register’ (e.g. Halliday, 1978) to describe the 

peculiarities of a mainstream language used in a mathematical context. David Pimm (1987) 

writes extensively about aspects of this register. It is still English, but a special kind of English. 

For example, a ‘radical expression’ in mathematics (e.g. “ 523  ”) is different from a ‘radical 

expression’ over coffee (e.g. “To achieve security, we have to make ourselves vulnerable.”) 

because they appear in different contexts, different registers. 

Multiple meanings for the same word in different contexts are not uncommon. Another 

example significantly related to this article is the word ‘discourse’, which has emerged as a 

buzzword in mathematics teaching circles since reforms led by the National Council of Teachers 

of Mathematics in North America. The word is often used as a synonym for ‘talking’ (the 

practice of language in any situation) and also to describe the structure and history of 

mathematics classroom communication (the discipline of mathematics in general), which, of 

course, has a powerful influence on the practice of language in the classroom. Both meanings 
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have validity, so it is up to the people in a conversation to find out what their conversation 

partners are thinking about when they use the word ‘discourse’. It is the same for the word 

‘language’. 

Who has the right to say mathematics is a language, or mathematics is not a language? 

Language belongs to all the people who use it. Dictionaries describe meanings typically 

associated with words more than they prescribe meaning. By contrast, students in school often 

learn definitions and prescribed meanings – especially in mathematics classes. This is 

significantly different from the way children learn language for fluency. 

When we are doing our own mathematics – noticing patterns, describing our 

observations, making and justifying conjectures – language is alive and we use it creatively. 

When we make real contributions to a conversation it is often a struggle to represent our ideas 

and to find words and diagrams that will work for our audience. For example, I have shown 

some excerpts from students’ mathematical explorations in Wagner (2003). The students who 

worked on the given task developed some new expressions to refer to their new ideas and in the 

article I adopted some of these forms, calling squares ‘5-squares’ and ‘45-squares’ (expressions 

that have no conventional meaning). When we are doing our own mathematics we try various 

words to shape meaning. By contrast, mathematical exercises – doing someone else’s 

mathematics repeatedly – are an exercise in conformity and rigidity. 

One role of a mathematics teacher is to engage students in solving real problems that 

require mathematical ingenuity, which also requires ingenuity in communication because 

students have to communicate ideas that are new to them. Once the students have had a chance to 

explore mathematically, the teacher has another role – to draw their attention to each other’s 

mathematics. When students compare their mathematical ideas to those of their peers and to 
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historical or conventional mathematical practices, there is a need to standardize word-choice so 

people can understand each other’s ideas. In this sense, the mathematics register is a significant 

language phenomenon worth attending to. However, there is also value in deviating from it with 

awareness. Teachers who resist the strong tradition of pre-reform mathematics teaching are 

swearing, in a way, by deviating from tradition. 

 

Response #3: Swear words remind us of the relationship between language and action. 

 There are connections between inappropriate words (swearing) and inappropriate actions. 

For example, it is inappropriate to use swear words publicly to refer to our bodies’ private parts, 

but it is even less appropriate to show these private parts in public. It is taboo. 

This connection between action and words exists for appropriate as well as inappropriate 

action. Yackel and Cobb (1996) describe the routines of mathematics class communication as 

‘sociomathematical norms.’ These norms significantly influence students’ understanding of what 

mathematics is. Because teachers use language and gesture to guide the development of these 

norms, this language practice relates to conceptions of what mathematics is and does. Thus, I 

suggest that there is value in drawing students’ attention to the way words are used in 

mathematics class, to help them understand the nature of their mathematical action. This goes 

beyond the common and necessary practice of helping students mimic the conventions of the 

mathematics register. Students can be encouraged to investigate some of the peculiarities of the 

register, and to find a range of ways to participate in this register. 

For example, we might note that our mathematics textbook does not use the personal 

pronouns ‘I’ and ‘we’ and then ask students whether (or when) they should use these pronouns in 

mathematics class. When I asked this question of a class I was co-teaching for a research project, 
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most of the students said personal pronouns were not appropriate because mathematics is 

supposed to be independent of personal particularities, yet these same students continued to use 

personal pronouns when they were constructing their new mathematical ideas. A student who 

said, “Personally, I think you shouldn’t use ‘I’, ‘you’, or ‘we’ or ‘me’ or whatever” also said 

later “I’m always thinking in the ‘I’ form when I’m doing my math. I don’t know why. It’s just, 

I’ve always thought that way. Because I’m always doing something.”  (The research that this is 

part of is elaborated in Wagner, 2007.) The tension between students’ personal agency in 

mathematical action and their sense of how mathematics ought to appear is central to what 

mathematics is. 

Mathematical writing tends to obscure the decisions of the people doing the mathematics. 

Students are accustomed to word problems like this: “The given equation represents the height of 

a football in relation to time…”. The reality that equations come from people acting in particular 

contexts is glossed over by the structure of the sentence. Where did the equation come from? The 

perennial student question, “Why are we doing this?”, may seem like a swear itself as it seems to 

challenge the authority of classroom practice. However, it is the most important question 

students can ask because even their so-called applications of mathematics typically suggest that 

equations exist without human involvement. 

Though I find it somewhat disturbing when mathematicians and others ignore human 

particularities, it is important to recognize that this loss is central to the nature of mathematics. 

Generalization and abstraction are features of mathematical thinking, and they have their place in 

thoughtful human problem solving. There is value in asking what is always true regardless of 

context. There is also value in prompting mathematics students to realize how mathematics 

obscures context and to discuss the appropriateness of this obfuscation. Mathematics students 
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should make unique contributions (using the word ‘I’) and find ways of generalizing (losing the 

word ‘I’). 

This connection between agency-masking language form and mathematics’ characteristic 

generalization, is merely one example of the way language and action are connected. Whenever 

we read research on discourse in mathematics classrooms we can consider the connections 

between mathematics and the aspects of discourse described in the research. As with the example 

given here, talking about these connections with students can help them understand both the 

nature of mathematics and the peculiarities of the mathematics register. A good way of starting 

such a conversation is to notice the times when students break the normal discourse rules – the 

times that they ‘swear’. We can take their mathematical swears as an opportunity to discuss 

different possible ways of structuring mathematical conversations. 

 

Response #4: I’m not sure how to swear mathematically, but I know when I swear in 

mathematics class! 

The connection between human intention and mathematics reminds me of one student’s 

work on the above-described investigation that had ‘5-squares’ and ’45-squares’. For the 

research, there was a tape recorder at each group’s table. Ryan’s group was working on the task, 

which is described in the same article (Wagner, 2003). Ryan had made a conjecture and was 

testing it with various cases. Listening later, I heard his quiet work punctuated with muffled 

grunts of affirmation for each example that verified his conjecture, until he exclaimed a loud and 

clear expletive, uttered when he proved his conjecture false. 

Linguistic analysis of swearing practices shows how it marks a sense of attachment 

(Wajnryb, 2005). Ryan swore because he cared. He cared about his mathematics. He cared about 
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his conjecture and wanted to know whether it was generalizable. His feverish work and his 

frustrated expletive made this clear. I want my students to have this kind of attachment to the 

tasks I give them, even if it gets them swearing in frustration or wonder (though I’d rather have 

them express their frustration and wonder in other ways). The root of their frustration is also 

behind their sense of satisfaction when they develop their own ways of understanding. As is 

often the case with refuted conjectures, finding a counterexample helped Ryan refine the 

conjecture into one he could justify. 

To help my students develop a sense of attachment to their mathematics, I need to give 

them mathematical investigations that present them with real problems. They may swear in 

frustration but they will also find satisfaction and pleasure. 

 

Reflection 

 Swearing is about bucking the norm. The history of mathematics is rich with examples of 

the value of people doing things that others say should not be done. Thus there is a tension facing 

mathematics teachers who want both a disciplined class and one that explores new ideas.  

Though my own experiences as a mathematics student were strictly discipline-oriented, I 

try to provide for my students a different kind of discourse – a classroom that encourages 

creativity. I want my students to swear mathematically for at least four reasons. 1) Understanding 

the non-permissible helps us understand normal practice and to open up new forms of practice. 

2) Creative expression casts them as participants in the long and diverse history of mathematical 

understanding, which is sometimes called the universal language of mathematics. 3) Attention to 

the relationship between language and action can help students understand both. 4) The student 
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who swears cares: the student who chooses a unique path is showing engagement in the 

discipline. 
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From Trapezoids to the Fundamental Theorem of Calculus 

 

William Gratzer1 & Srilal Krishnan 

Iona College 

 

Abstract: The philosophy of Mathematics Education undergoes changes from the school to college 

level and students generally have a tough time coping with the transition. It is our endeavor to 

impress the importance of introducing college level topics at an early stage, so that students are not 

lost in the transition. Keeping this in mind, we suggest an early exposure to an important topic from 

Calculus; approximating the area of a planar region.  Traditionally this topic is introduced using 

Riemann Sums but in this paper we try to follow a student’s natural inclination in approximating 

areas and explain how this approach can be adopted at the middle school or high school level. It is 

our belief that using suitable technology like TI- 83/84 or Maple, this approach can be adapted to 

various other college level topics providing the student with a sound footing to cope with college 

level mathematics.  

Keywords: Calculus; Collegiate math teaching; Fundamental theorem of Calculus; Riemann sums; 

Trapezoids; Teaching with technology  

 

Introduction via rectangles 

Every introductory calculus textbook, at some point or another, investigates the problem of finding 

the area of a region lying between two vertical lines, a curve, and the x-axis.  An examination of 

                                                 
1 E-mail: wgratzer@iona.edu 
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several popular textbooks ([6];[7];[4]) follow similar approaches when introducing students to the 

solution of this problem. 

 Remind students that for rectangles area = length  width 

 Draw a picture showing an approximation using left-handed rectangles 

 Draw a picture showing an approximation using right-handed rectangles 

 Suggest that more rectangles result in a better approximation 

 Introduce Riemann Sums 

 Introduce limits and define the definite integral 

 Demonstrate the need for the Trapezoidal Rule and Numerical Integration 

This approach, with minor additions, subtractions, and other alterations serves as the standard 

approach to this topic.   This approach, based on a student’s ability to recognize the utility of 

rectangles in the approximation process, works superbly.   However, it has been the authors’ 

experience that not all students are inclined to use rectangles to arrive at their first approximation of 

the area.  This paper will examine what can happen when students are allowed a different starting 

point. During this proposed mathematical journey students will discover a slope-area connection 

while discovering the need for mathematically rich concepts such as mathematical induction.   

 

Introduction via trapezoids 

Consider the following problem asked to a class of students studying calculus for the first time: 

Approximate the area between the x-axis, the curve y = x2 and the lines x = 0 to x = 3.  It has been 

the authors’ experience that many student’s first impulse is to use a triangle (see figure 1)  to find 

the required approximation.  This is not surprising since the hypotenuse of the triangle closely 

approximates the curve and students have known and used the formula for the area of a triangle is 
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A=1/2bh, where b is the length of the base of the triangle and h is the height of the triangle, for 

many years. Students rarely approximate this area with the rectangle of base 3 and height 9, after 

all it is obvious that the area of the rectangle is much larger that the requested area.  This paper will 

investigate what can happen if students are allowed to explore their initial impulse rather than be 

immediately redirected to rectangles. Before students proceed they must agree that a fixed triangle 

can be moved through two-dimensional space without changing its area.  After this agreement is 

reached students can be presented with the following question: 
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Find the area of the triangle below: 

Example 1 

 

                    y 

 

                     

       

                                  y = mx 

 

                      0                                          x 

Given this graph students will quickly state that Area = ½(x)(y) square units. 

 The authors suggest students be guided through the following derivation leading to an 

alternative form of this area formula. The first step in this alternative vision is to ask students to 

observe that the equation y = mx, defines the hypotenuse of the triangle in this position on the 

coordinate plane.  Knowing this students see that these triangles have base = x and height = mx.  

Thus the area of such a triangle is 1/2 (x)(mx) = 1/2mx2. This “new” formula suggests, that the area 

the area of a triangle can be thought of as dependent on the slope of the hypotenuse and the length 

of the base.  Thus a link between slope and area has been established.  At this point the line can be 

moved and the boundaries changed and the following graph (Figure 2) and question can be 

presented: 
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Find the area of the shaded region bounded by the x-axis, the line y = mx + kT and the vertical lines 

x = x0 and x = x1. 

 Students will recognize that the shape created in figure 2 is a trapezoid.  Some students will 

remember the formula for the area of a trapezoid to be A 
h(b1  b2)

2
, where b1 and b2 are the 

lengths of the two parallel sides of the trapezoid and h is the height (distance separating the parallel 

sides) of the figure.  Thus in the figure presented b1 = mx1 + kT,  b2 = mx0 + kT. and h = x1 – x0.  

Thus :  
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Area 
(x1  x0)[(mx1  kT )  (mx0  kT )]

2


x1(mx1  kT )  x1(mx0  kT )  x0(mx1  kT )  x0(mx0  kT )

2


mx1

2  x1kT  mx0x1  x1kT mx0x1  x0kT mx0
2  x0kT

2


mx1

2  2x1kT mx0
2  2x0kT

2


m(x1

2  x0
2)  2kT (x1  x0)

2


m

2
x1

2  x0
2  kT x1  x0       (1)

 

Again students see a  “new” formula in which the area of the figure is calculated using the slope of 

the line which forms one of its boundaries and the values of x that dictate its height and position on 

the x-axis.   

 

Using Technology and Algebra 

 The following program can be used on the TI 83/84 to calculate areas using equation (1). 

Input “slope”,M 

Input “Y Intercept”,K 

Input “Lower Limit”,L 

Input “Upper Limit”,U 

(M/2)*(U2-L2)+K*(U-L)A 

Disp A 

            

The following program can be used on Maple 11 to calculate area using equation (1). 

M: =; U: =; L: =; K: = ;    (Input values of M, U, L, K) 

Area: = (M/2)*(U2-L2)+K*(U-L); 
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Area; 

Evalf(%); 

          

  The area can be computed using the traditional trapezoidal rule as follows.                    

with (student); 

M: =; U: =; L: =; K: =;     (Input values of M, U, L, K) 

trapezoid (Mx+k, X=U..L, 1); 

evalf(%); 

                             

                 What of students that do not remember the formula for the area of a trapezoid, are they 

left in the dark unable to create an argument that can lead to the insight above? No, they can 

approach this problem by dividing the figure into two more recognizable shapes, a triangle and a 

rectangle, calculating their areas and adding the results.  Their work may look like what is found 

below. 

Area  (mx0  kT )(x1  x0)  1
2[(mx1  kT )  (mx0  kT )](x1  x0)

 (x1  x0) (mx0  kT ) 
mx1  kT

2









mx0  kT

2
















 (x1  x0)
mx0  kT

2


mx1  kT

2








x1  x0

2
[mx0  mx1  2kT ]


1
2

[mx1x0  mx1
2  2kT x1 mx0

2 mx0x1  2kT x0]


1
2

[mx1
2 mx0

2  2kT x1  2kT x0]


m

2
[x1

2  x0
2] kT [x1  x0]         (1)

 

This is the same result that was found when the direct rule for the area of a trapezoid was used. 
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It is the authors’ belief that such an exposition serves three purposes: 

First, students clearly see that in mathematics there can be different ways to view the same concept.  

It illustrates the general slope-area connection central to the calculus.   

This introduction and some new notation: 

Area under y  mx  k between x0 and x1 is equal to

m

2
[x1

2  x0
2] k[x1  x0] 

m

2
x 2 

x0

x1  k x x0

x1
 

 exposes students to an example of the Fundamental Theorem of  Calculus which they will 

encounter in the near future. 

 

 Since not all graphed function result in lines, it is not inappropriate at this time to suggest 

students explore shapes with curved tops and learn the lessons they have to teach.  A natural 

starting point for this journey is our starting point y = x2 with a vertical shift y = x2 +kp.    Since 

students probably have not learned a formula for the area under such a curve the first step in the 

discovery process is to find an approximation of the answer sought.  Examination of the graph 

found below (figure 3) suggests that a trapezoidal approximation (using a single trapezoid) is a 

better first approximation than a rectangular approximation (using a single rectangle). 
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Thus, after the equation of the line containing the points x0,x0
2  kp  and x1,x1

2  kP is found  

formula (1), derived above, can be used to find a “good” approximation of the desired area under 

the parabola.  The slope, m, of the line is: 

m 
(x1

2  kP )  (xo
2  kP )

x1  x0


x1

2  x0
2

x1  x0

 x1  x0.

 

The y-intercept, kT, of the line is found as follows:  

x0
2  kP  (x1  x0)(x0)  kT

x0
2  kP  x1x0  x0

2  kT

kP  x1x0  kT
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Thus, the equation of the non-perpendicular line connecting the two parallel sides of the trapezoid 

is y = (x1 +x0)x +(kP – x1x0) and the approximate area of this figure is: 

x1  x0

2
x1

2  x0
2  (kP  x1x0)(x1  x0) .    (2) 

From this we see that: 

Area 
x1  x0

2
x1

2  x0
2  (kP  x1x0)(x1  x0) 

(x1  x0)
(x1  x0)2

2









 (kP  x1x0)











x1  x0

2







 (x1  x0)2  2(kP  x1x0) 

x1  x0

2







 x1

2  2x1x0  x0
2  2kP  2x1x0 

x1  x0

2







 x1

2  x0
2  2kP 

x1  x0

2







(x1

2  kp )  (x0
2  kP ) 

x1  x0

2







(y1  y0)

 

which is the traditional trapezoidal rule for one subdivision.  One can now observe that 

x1  x0

2







(y1  y0) 

h(b1  b0)

2







. 

which demonstrates that the trapezoidal rule for one subdivision is simply a functional form of the 

elementary school formula for the area of a trapezoid.  Once again emphasizing to students that the 

same mathematical concept can be viewed in various ways. 

 

 Those wishing to program equation (2) into the TI 83/84 may use the following: 

Input “Constant”,K 

Input “Lower Limit”,L 
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Input “Upper Limit”,U 

((U+L)/2)*(U2-L2)*((K-U*L)*(U_L))A 

Display A 

 

 Also a student interested in programming in Maple 11 may use the following: 

                                              
);(

;:;:;:

));(*)*(())(*)2/)((: 22

Tevalf

LUK

LULUKLULUT




 

             The area may be also computed by using the traditional trapezoidal rule by using        

             following code:      

                                              

(%);

);1 ,..,(

;:;:;:

);(

2

evalf

ULxKxtrapezoid

LUK

studentwith




 

 

It quickly becomes obvious to students that breaking the region up into two trapezoids, as seen in 

figure 4 below, results in an even better approximation of the area desired. 
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Area 
x1  x0

2
x1

2  x0
2  (kp  x1x0)(x1  x0) 









x2  x1

2
x2

2  x1
2  (kp  x2x1)(x2  x1) 








 

Continuing this line of reasoning they see that three is better than two and one hundred would be 

better that three etc.  A TI 83/84 program for this alternative formula for this approximation using n 

subintervals is found below. 

Input”Constant”, K 

Input “Number of Subintervals”, N 

Input “Lower Limit”, L 

Input “Upper Limit”, U 

(U-L)/NW 

0S 

For (I,1,N,1) 
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L+WU 

((U+L)/2)*(U2-L2) + ((K-U*L)*(U-L))T 

S+TS 

UL 

END 

Disp S 

 

Again a Maple program for the above is found below: 

N: =; U: =; L(0):=; W:=
N

LU )0(
;R=0; 

For j from 0 by 1 to n-1 do 

U(j)=L(j)+W; 

    














 

 ))()((*)(*)()()(*
2

)()(
:)( 22 jLjUjLjUKjLjU

jLjU
RjA ; 

)( jAR  ; 

od; 

(Readers wishing to use MS Excel to execute the trapezoidal rule are referred to [3].) 

Mathematical Induction 

Let us look at the number of subdivisions used to approximate the area under a curve. For n=1, we 

have the area of a trapezoid. For n=2, with subdivisions, x0, x1, x2 we have the area approximated by 

the sum of two trapezoids i.e  

Area 
x2  x0

2  2
y0  y1  x2  x0

2  2
y1  y2  x2  x0

2  2
y0  2y1  y2 . 
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The authors suggest that the students be asked to verify that for n=3, you get 

Area 
x3  x0

2  3
y0  2y1  2y2  y3 . Now, for the problem with 100 sub-divisions the student has 

most likely made an educated guess and written down the formula  

Area 
x100  x0

2 100
y0  2y1  2y2  2y3  ... 2y99  y100 .  At this point one can conjecture that the 

general formula based on the number of subdivisions, say n, it will be 

Area 
xn  x0

2  n
y0  2y1  2y2  2y3  ... 2yn1  yn . 

Although it seems to be true from the pattern, it is just a guess and should not be considered a rule 

at this stage.  In order to elevate this conjecture to the status of a rule we have to provide a 

convincing argument. The convincing mathematical argument is called a proof. There should be no 

loopholes in the proof. There are different methods of proof. One of them is called the method of 

induction. The logic behind this method is follows. 

 

Suppose: P(n) represents some sort of argument involving natural numbers. Example: P(n) 

can represent the statement: The area under a curve y=f(x) using n subdivisions is approximately 

xn  x0

2  n
y0  2y1  2y2  2y3  ... 2yn1  yn .   We can use an inductive argument as follows: P(1) 

is verified to be true: i.e. the result is true for n=1. In our situation P(1) would represent the 

statement, Area ≈ 
x1  x0

2







(y1  y0)  which is true. Now, suppose the result is true for some natural 

number k i.e. P(k) is true. This statement is known as the induction hypothesis. The induction 

hypothesis in this problem is the assumption that the area under a curve y = f(x) with k subdivisions 

on the interval [a, b] is approximately  0 1 2 3 12 2 2 ... 2
2 k k

b a
y y y y y y

k 


     


. We will use this 
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to prove that the result is true for next integer n = k + 1 or P(k + 1). At that point we would have 

clearly shown that if the result is true for any given integer, then it is also true for the next integer.  

1. The result is clearly true for n=1 since it is the well-known formula for the area of a 

trapezoid.  

2. Assume the induction hypothesis: with k subdivisions, each of length ,
k

ab
l


  the 

area is approximately )2222(
2 13210 kk yyyyyy
l

  . 

3. Let us work out the last step: Show that P(k+1) is true.  We need to somehow use 

the induction hypothesis to prove P(k + 1).  This can be done easily. For k + 1 

subdivisions, each of length ,
1




k

ab
l  we can sum up the area of the trapezoids 

corresponding to the first k subdivisions and then to this add the area corresponding 

to the subdivision xk,xk1 . By the induction hypothesis, the Area corresponding to 

the first k subdivisions is approximated by 

)2222(
2 13210 kk yyyyyy
l

  .  The area corresponding to the 

subdivision xk,xk1  is  1
12

k k
k k

x x
y y




 . But lxx kk 1 . So the area with  

n =k + 1 subdivisions is approximately 

)2222(
2 13210 kk yyyyyy
l

   + )(
2 1 kk yy
l

 

= )22222(
2 113210   kkk yyyyyyy
l

  
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It should be clear to students that the formula is independent of the equation of the curve and so 

that the above discussion will work for any continuous curve. 

 

The Trapezoidal Rule 

 It can now be pointed out that the area of a trapezoid is simply the average of the areas of 

two rectangles as demonstrated on figure 5 below. 

 

Figure 5 

 

                                         (x0, f(x1))                                        (x1, f(x1)) 

                                                                                                    

                            (x0, f(x0)) 

  

 

 

 

 

                                              x0                                                  x1 

2

 )f( side and )( side with rectangle of Area + )f( side and )( side with rectangle of Area
2

)()()()(
2

))()()((
 = Trapezoid of Area

001101

001101

0101

xxxxxx

xfxxxfxx

xfxfxx








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At this point students have been led to the idea of left and right, or upper and lower, rectangular 

sums which then leads to the concept of the Riemann Sum and finally the definition of the definite 

integral.  At this time teachers can introduce any student interested in the historical development of 

mathematics to the ancient Greek method of area by exhaustion used by, among others, 

Archimedes (interested readers are referred to [6];[1];[2];[5]). 

Conclusion 

 The journey suggested above can be summarized as follows: 

 Allow students to use a triangle to approximate a desired area  

 Allow students to discover the connection among triangles, slope, and area 

 Have students use a trapezoid to approximate a desired area 

 Allow students to discover the connection among trapezoids, slope, and area 

 Suggest that more trapezoids result in a better approximation 

 Deduce the trapezoidal rule and validate using mathematical induction 

 Show that the area of a trapezoid is the mean of the areas of two rectangles 

 Draw a picture showing an approximation using left-handed rectangles 

 Draw a picture showing an approximation using right-handed rectangles 

 Suggest that more rectangles result in a better approximation 

 Introduce Riemann Sums 

 Introduce limits and define the definite integral. 

 

This discovery path is interesting in several respects.  It begins with a problem involving the use of 

low degree polynomials functions, things students are familiar with and have mastery over.  It then 

allows them the freedom to follow a path of discovery suggested by their intuition.   This path leads 
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them to some interesting discoveries: there is a connection between area and slope, for special cases 

the “slope formula” can take different and interesting forms, there is a trapezoid rectangle 

connection, examination of simple problems can lead to generalizations from which the need for 

mathematical induction arises naturally.  Simply stated this demonstration follows a natural 

progression that prepares students for both the Fundamental Theorem of calculus and future work 

in numerical analysis while introducing them to the need for proof.  
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Switching between representations 
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Abstract: A proof whether two graphs (possibly oriented graphs or multigraphs, etc.) 
are isomorphic or not can be derived by various methods. Some of them are reasonable 
for small numbers of vertices and/or edges, but not for larger numbers. Switching from 
iconic representation to a matrix representation transforms the problem of Graph Theory 
into a problem in Linear Algebra. The support provided by a Computer Algebra System 
is analyzed, in particular with regard to the building of new mathematical knowledge 
through a transition from graphical to algebraic representation. Moreover two important 
issues are discussed: a. the need for more than one representation; b. the direction of the 
switch between representations, which is non standard, from graphical to algebraic. 
 
Keywords: Computer Algebra systems (CAS); Collegiate mathematics; Graph theory; 
Linear Algebra; Matrices;  representations; isomorphisms;  

 
 

I. Introduction. 
Undergraduate mathematics   is often taught as   a collection of stand-alone courses, 
and students are not always aware of the bridges that exist between different areas of 
mathematics. Geometry and Linear Algebra are taught in separate courses (a nice 
exception is Dieudonné's book, 1969).  Sometimes, Linear Algebra and Ordinary 
Differential Equations are taught together in one course, but usually not. Moreover, 
numerous topics relevant to applications of Analysis to Geometry disappeared from 
syllabi a long time ago. Thom (1962) expresses strongly his opposition to this trend. 
 
In the present paper, we show and explore a bridge between two other mathematical 
fields, Graph Theory and Linear Algebra.  Graph Theory is part of Discrete 
Mathematics, a branch of Mathematics which deals with objects that can be described 
by either finite or countable sets. In regular courses, Linear Algebra is presented over 
the real and the complex fields, in which cases it is understood as belonging to the 
continuous part of Mathematics, not to the discrete part.  Linear Algebra over finite 
fields is taught in advanced courses, not aimed to every student. The discrete point of 
view provides numerous methods for proving theorems, different from the methods 
used in a continuous setting (see Grenier 2008). Switching from Graph Theory to 
Linear Algebra gives an opportunity to use other methods than the typical methods of 
Discrete Mathematics, i.e. exhaustion of cases (enumeration), induction, and so on. 
The technology is not responsible for the discovery of the bridge, but it helps to 
explore it, and then helps to study cases which would be unilluminating with only hand 
made computations.  
 

                                                 
1 Email: dana@jct.ac.il 
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Moreover, we will show that the activities presented here lead to develop new 
mathematical knowledge simultaneously in two domains. The situation at the course 
starting point is as follows:  

1. Matrix similarity is a standard topic in any course in Linear Algebra. But, as 
this topic appears at the end of the course, applications to other fields are rarely 
shown. This was the case for the students whose work is presented in this 
paper.  

2. Algebraic graph theory is absent from numerous textbooks in Discrete 
Mathematics and from the syllabus of courses.  

 
In one class, the teacher decided to have his students learn at least a few topics of 
algebraic graph theory, outsourcing to a Computer Algebra System (CAS) part of the 
operative knowledge. Later, the author had a discussion with a colleague teaching a 
parallel course. This colleague valued the introduction of these activities which 
enhance an important mathematical knowledge, but he said that doing the same thing 
with his own class was impossible, in particular because of the lack of CAS literacy of 
his students. 
 
''Technology can be used to compute, ..., to reinforce, clarify, anticipate, or get 
acquainted with ideas, and to discover and investigate phenomena'' (Selden, 2005). As 
showed by Dana-Picard (2005), the exploration of a cognitive neighborhood2 for a 
given mathematical topic is mainly concerned by the last two components, discovery 
and investigation.  How investigation can be fostered by switching between registers 
of representations has been studied by Duval (1999), Arcavi (2003), Presmeg (2006), 
Dana-Picard and Kidron (2008), etc... We elaborate on this issue in the last section. 
Not only the mathematical fields are different, but also the ways to use a CAS are 
different.  
 
Various kinds of technological tools have been introduced into the mathematics 
classroom and into the researcher's lab, ranging from a graphical hand-held device to 
an interactive (non user-programmable) website and to a CAS.  In particular, their 
graphical features are emphasized in order to provide visualizations, either fixed or 
animated, but all the other features, algebraic, numerical,   etc.,    are   important    and   
they   are    used   in classroom.  In  some   CAS,  algorithms  specific   to  Graph  
Theory   have  been implemented, which enable  the drawing of a picture  of the graph 
from the  abstract definition  of  the  vertices and  the  edges.  For the classroom 
activities the Derive software has been used. It has no implementation of specific 
features for Graph Theory and only the  Linear Algebra  algorithms were used. Note 
that  the  Linear  Algebra  packages  of other  CAS  can  assist  this activity,  
sometimes  with specific  outputs.  We  address this  issue in Section V. 
 
 

II. The mathematical situation. 
 

An  important problem in computational  complexity theory  is determining  whether,  
given  two  graphs  1G  and  2G ,  it  is  possible to re-label the vertices of  one graph so 

                                                 
2 Recall that a mathematical domain A is said to belong to a cognitive neighborhood of another 
mathematical domain B if theorems and/or methods from B can be applied to solve problems 
in A. 
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that it is identical to the  other, or not.  This re-labeling is called a graph isomorphism 
and we denote 21 GG  .In simple words, two graphs are isomorphic if they can be 
represented with identical drawings. For example, see Figure 1: the permutation of 

vertices  







42531

54321
 preserves the existence (resp. the non-existence) of an edge 

between vertices, whence ensures the fact that the two given iconic representations 
correspond to isomorphic graphs. A formal definition of a graph isomorphism can be 
found in Rosen's book (1999, p. 460). 
 

 
 

(a) First labeling                          (b) Second labeling 
 

Figure 1: One picture, two sets of labels. 
 
Adjacency matrices are used to describe graphs in a computational way. For a given 
graph, label  the  rows  and  the columns  of  a  square  matrix  ija=A  by the  vertices 

of the graph. For a non-oriented graph, ija is the number of edges between vertices i 

and j. For an oriented graph ija  is the number of arrows from vertex i to vertex j.   

Thus, the adjacency matrix of a non-oriented graph is symmetric and for an oriented 
graph the adjacency matrix can be either symmetric or non-symmetric.  Relabeling  the 
vertices of  the graph  changes the adjacency  matrix in the  same way reordering the 
vectors  of a basis of a  n-dimensional vector space changes the matrix  of a linear 
operator: the  original matrix A and the new one B are  similar, i.e. there exists an 
invertible square matrix P of order n such that B=P-1AP. 
 
Using adjacency matrices, we translate a problem in Graph Theory into a problem in 
Linear Algebra. The second one is not easier than the first one. To determine whether 
two given square matrices of the same order are similar is easy when both are 
diagonalizable.  If they have the same eigenvalues, with the same respective   
multiplicities, then   they have   the same diagonalization,    up    to    a    re-ordering   
of    the    chosen eigenvectors. The set of eigenvalues (each one is written a number of 
times equal to its multiplicity; for example we write {1,1,2} if 1 is a double eigenvalue 
and 2 a simple eigenvalue). Suppose that diagonalizations of the matrices 1A  and 

2A exist    and   are    given    by   1
1

1 PAP=D 1
 and 22

1
2 PAP=D  , for appropriate 

invertible matrices 1P  and 2P , then    21
1

21 PPAPP=A 12
  i.e. 1A  and 2A are similar.  

If the matrices are not diagonalizable, similarity is harder to check. Of course, if one 
matrix is diagonalizable and the other is not, they are non similar. Note that the 
theorem sustaining the classroom activities is a "if ... then ..." theorem, not a "if and 
only if" theorem. If the graphs 1G  and 2G are isomorphic, then their adjacency 

matrices have the same eigenvalues, but the converse is not true (see Cvetkovič et al. 
1995, pages 61 sq.). The smallest known pair of non isomorphic graphs with the same 
spectrum is given by Skiena (1990, page 85); see Figure 2. Both graphs have two 
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simple eigenvalues 0 and -2, and a triple eigenvalue equal 0, and their adjacency 
matrices are similar. The non existence of an isomorphism can be found at first glance: 
the graph in (a) is connected and the graph (b) is not.  
 
   

                  
       (a)                                                                        (b) 

 
Figure 2: Non isomorphic graphs with the same spectrum. 

 
The volume of the computations increases very fast with the number of vertices of the 
graphs. Here a Computer Algebra System reveals useful for technical assistance on 
computing. But not only for this assistance. Outsourcing of the computations to the 
CAS and careful observation of the output may yield a better understanding of the 
mathematical situation and enhance understanding of older knowledge. ''Technology 
can be used to compute, to reinforce, clarify, anticipate, or get acquainted with ideas, 
and to discover and investigate phenomena'' (Selden, 2005).  
 

III. The study frame. 
The Jerusalem College of Technology (JCT) is an Engineering School for High-Tech 
and Orot College is a Teacher Training College. In both institutions students learn a 
one-year course in Linear Algebra and an introduction to Graph Theory is given as part 
of a subsequent course in Discrete Mathematics. Matrix similarity belongs to the 
Linear Algebra syllabus. For various reasons, this topic has been taught at the very end 
of the course and quite no application to other fields of mathematics has been shown, 
beyond the fact that a basis change transforms the matrix of a linear transformation 
into a similar matrix.  
 
Isomorphisms of graphs are an important topic in the syllabus. Conversations with 
colleagues teaching parallel courses revealed that students learn generally existence 
theorems related to degrees of vertices. Several textbooks do not mention more than 
this and the exercises are based either on the definition only or on such theorems about 
degrees of vertices (or in-degree and out-degree for directed graphs). Students are 
often reluctant to use adjacency matrices beyond writing the adjacency matrix of a 
given graph, or conversely drawing a picture of a graph whose adjacency matrix is 
given. "The computations are heavy", they say (for example, recall that paths of a 
given length n are counted using the nth power of the adjacency matrix). Therefore a 
Computer Algebra System (namely Derive) has been used in the classroom activities, 
in particular the  Linear Algebra algorithms. Note that  the  Linear  Algebra  packages  
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of other  CAS  can  assist  this activity,  sometimes  with specific  outputs.  More than 
two thirds of the students in the class had a good CAS literacy, as a result of two 
previous courses strongly based on CAS use.  Other students had an opportunity to 
improve their knowledge and their know-how with regards to software. 
 
The central topic of the activities is new for the students. It has to be  introduced  and  
developed   explicitly  by  the  teacher,  using  strategic  scaffolding,  one  of the  
scaffolding  categories detailed  by  Hobsbaum  et   al  (1996);  Anghileri  (2006, p.  
36) elaborates on this issue. The main characteristics are: 

 A measured amount of teacher support; 
 A careful selection of the tasks and of their difficulty level; 
 Students' ability to build a mathematical meaning from the given tasks; 
 Explicit strategies. 

The extended literature about scaffolding emphasizes the fact that scaffolding is 
relevant for one student-one teacher situations. Here the teacher had to provide such a 
scaffolding separately to every student, but also a form of "global" scaffolding to the 
class as a whole.  
 
Within the global frame of the group, each student can have his/her own learning 
process. Therefore consolidation of knowledge ( Dreyfus and Tsamir, 2004) has to be 
observed on an individual basis. As the work described in this paper is based on 
classroom activities, i.e. not in an individual frame, we will elaborate only briefly on 
the consolidation issue, in the last section.    
 
For the CAS assisted part of the work, we refer to Fischer's (1991) didactical principle 
of   outsourcing operative knowledge and operative skills.   Peschek and Schneider 
(2001) regard operative knowledge as a means to generate new mathematical 
knowledge (see also Peschek 2005).   In  fact  they distinguish  three  fields  of 
competence:  basic  knowledge, operative  knowledge  and skills,  and reflection.   In 
the following activities, the needed basic knowledge is matrix similarity, acquired at 
the end of the Linear Algebra course.  Because of a lack of time in this course, the 
topic has been shown but not applied in concrete situations.   Students have now an 
opportunity to manipulate this knowledge in an applied situation. The operative skills 
are outsourced to the CAS. Most students (but not all of them) had already good 
operative skills for matrix computations using the CAS, including computation of 
eigenvalues and eigenvectors. During the sessions, they could improve these skills and 
discover new commands of the CAS. Moreover, new mathematical knowledge has 
been constructed, new CAS literacy being part of it.  
 
 
 

IV. Classroom activities with CAS. 
We present here classroom activities which took place with a group of 15 students 
(about 20 years old). Their course in Graph Theory comes one semester after the   
course in Linear Algebra. This enables them to use eigenvalues and diagonalization of 
matrices in a situation very different to what has been met either in Linear Algebra or 
in other courses with some geometric flavor. The students were already used to switch 
from iconic representation to algebraic representation and from algebraic 
representation to iconic representation. 
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1. First activity. 
Consider the graph with two different vertex labeling given in Figure 1. The respective 
adjacency matrices are 

























01110

10011

10010

11101

01010

1A  and 

























01100

10110

11011

01101

00110

2A . 

 
Operative knowledge: using   Derive's   command   eigenvalues,   the   students 
found that   both matrices have the same five distinct real eigenvalues. Thus, the 
matrices 1A  and 2A  are diagonalizable, and for suitable eigenvector orderings, both 

matrices have the same diagonalization. It follows that the matrices are similar, 
whence 21 GG  . 
 
Reflective thinking: 
Mina: This is not new; we knew already that the graphs are isomorphic! 
Vered: So what? 
Mina: Why did we do all this work? 
Vered: We are now convinced that our way of working is right. Not? 
Silence for a while. The second student sees that something still "disturbs" the first 
student. So she adds: 
Vered: We see always a trivial example when learning something new. So we are really sure 
that the theorem is right. I will do the same thing when I"ll teach. 
 
This remark was important for the teacher. It shows that Vered is aware not only of the new 
mathematical knowledge she is currently leaning, but also of the structure of the educative 
sequence.  
 
       2. Second activity. 
We consider the two graphs shown in Rosen's book (1999, p. 461, example 10); see 
Figure 3. The vertices of the graph 1G will be denoted by ku and the vertices of 

2G by 81,...,=k,vk . 
 

 
G1                   G2  

Figure 3: Two non isomorphic graphs 
 

Reflective thinking: 
Teacher: Let us check whether these graphs are isomorphic or not. 
Vered: Easy! We check the degrees of the vertices. 
Short silence, everybody computes. 
Vered: These are the same degrees. 
Teacher: So, what is your conclusion? 
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Leah: The graphs are isomorphic. 
Short silence. 
Hadas: Maybe not. 
Vered: Why not? 
Hadas: The degrees are not at the same place in the two graphs. 
A couple of students, together: She is right! 
The teacher asks for a clearer explanation of what happens. One student explains that 
the degree 3 vertices compose a connected subgraph in 1G , but not in 2G . This 
convinces the class that the two graphs are not isomorphic, but more than 10 students 
demand what they call "a stronger algebraic proof''. 
Operative knowledge: 
Vered: Let's use matrices as we did before! 
Teacher: Good idea, do it. Please write down the adjacency matrices. 
The adjacency matrices of the two given graphs are 

 



































01011000

10100000

01010010

10100000

10000101

00001010

00100101

00001010

1A    and   



































01011000

10100000

01010000

10100001

10000100

00001010

00000101

00010010

2A  

 
With Derive's command eigenvalues, the students determine the eigenvalues of 1A . 

The output is:  0, -1, 1,
2

17

2

1
+ ,

2

17

2

1
 , 

2

17

2

1
+  and

2

17

2

1
 . 

Reflection: 
Teacher: Any comments? 
Short silence. 
Shira: There are not enough. 
Teacher: Not enough what? 
Shira: Not enough eigenvalues. There are only 7. 
Teacher: What did you expect? 
Myriam: Eight. 
Teacher: So, what happened? 
Short silence. 
Vered: There must be one double. 
Teacher: Why? 
Vered: The matrix is symmetric, it must have a diagonalization. 
Teacher: Very nice. How can we know who is the double eigenvalue? 
Short silence. 
Yael: (with a short hesitation) how can we compute the characteristic polynomial? 
Myriam: It's a determinant, there must be a command. 
Teacher: Right. Who knows? 
 
Operative knowledge: 
A couple of students answer that the command is charpoly. The teacher recalls the 
syntax. With this command, the result is  
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 162510162510 24622468  λ+λλλ=λλ+λλ=λP )(  
Vered: Here it is; it's 0. 
Teacher: Vered, what is 0? 
Vered: The double eigenvalue. 
Myriam: How nice!! 
Tehila: OK, but what do we do now? 
Vered: The same thing with the other matrix. 
 
The computation for A2 is performed the same way, using Derive. The eigenvalues are 
 






  522253

4

1
++ , 





  522253

4

1
+ , 





  522253

4

1
+ ,






  522253

4

1
, 





  522253

4

1
++ , 





  522253

4

1
+ ,






  522253

4

1
+ , 





  522253

4

1
. 

 
Reflection: 
Teacher: What do you see? 
Shira and Vered: (at the same time) they are different. 
Teacher: Different from what? 
Shira: From 1A . 

Vered: We did it! The matrices are not similar. 
 
   3. Third activity. 
After  the second  activity, students  received  homework assignments (check whether  
couple of pairs of graphs are isomorphic or not). The next  meeting  took place  one 
week  later,  with a  third  classroom activity. The  task was to  show that two  given 
graphs with  the same number   of  vertices   and  the   same  number   of  edges   are  
non isomorphic. The teacher could let  the students work on their own, and almost no 
intervention was necessary. 
 
The  next step  in the  same  meeting consisted  in turning  students' attention towards  
similar situations, either with  oriented graphs or with multigraphs.  Precise definitions 
are given by  Rosen (1999). One example  is shown by Figure  4. The class dealt with  
the  new  situation using  the  same algebraic  and technological tools, but in  a 
different algebraic situation. The same CAS commands were used as in the previous 
sessions. 
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First example. The graphs in Figure 4 are given and the students are asked to check 
whether they are isomorphic or not. 
 

                                 
 

The graph 1G .                                                The graph 2G . 
 

Figure  4 :  Two oriented graphs - first example . 
 
The graphs are oriented graphs, and their respective adjacency  matrices are not  
symmetric. We have:  





















0000

1011

1011

0100

1A    and 





















1101

0010

1101

0000

2A  

 
A  few students  note that  the  theorem on  the diagonalizability  of symmetric 
matrices  cannot apply,  and do not  know how to  proceed. A couple of students 
propose immediately to use the CAS. They determine the eigenvalues of 1A  and the 

eigenvalues of 2A : for matrices, the eigenvalues are  
2

51
,0


 and 
2

51
. 

 
Myriam: There are only three. 
Shira: Yes, one is double. 
Myriam:  (Asks the teacher) We look for eigenvectors? 
Vered: Yes, with the computer. 
 
Most of the students determine the eigenvectors with the CAS and conclude that both 
matrices are diagonalizable, with the same diagonalization, whence the graphs are 
isomorphic. 
 
At this point, something interesting happens. 
 
Yael: I computed the characteristic polynomial of the matrices. It is the same. So they are 
surely similar. 
 
At the same time, one student says ``yes!!'', and another one says ``No! you don't 
know!''. A discussion follows, recalling that having the same characteristic polynomial 
is a necessary condition for matrices to be similar, not a sufficient condition. The 
student who said ``no'', named Rachel, explains that they must look for eigenvectors. 
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Rachel: There exists a basis of eigenvectors for each matrix, therefore they are similar (she 
means ``the graphs are similar''). 
 
Second example. Now the students are given the graphs displayed in Figure 5. 
 

                
 

The graph 1G .                                        The graph 2G . 
 

Figure 5:  Two oriented graphs - second example . 
 
 
Their respective  adjacency matrices are 





















0010

1000

0101

1100

1A    and    





















0010

1010

0001

1100

2A . 

 
Here all the students follow Yael's way and compute the characteristic polynomials.  In 
both cases they obtain   124  P .  Using  once  again  the software,  they  
determine  the eigenvalues. Most of them appear with very complicated expressions 
(complex numbers whose real part and imaginary part are given by non rational 
expressions). 
 
Vered:  It's ugly! 
Teacher: Why? 
Vered: Impossible to understand. 
Teacher: Why? 
Rachel: Complex numbers. 
Teacher: Is this a problem, from an algebraic point of view? 
Vered: But they are four. 
Teacher: So, what is your conclusion? 
Vered: We did not learn matrices with complexes, but ... (She waits a few seconds) this means 
that the matrices are diagonalizable? 
 
Finally, the teacher has to explain that here the algebraic properties (for determinants, 
characteristic polynomial of a matrix, etc.)  are the same over the reals and over the 
complex numbers. The class concludes that the two matrices are similar, whence the 
two graphs are isomorphic. 
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Third example.  Finally, the teacher modifies slightly the graphs and gives to the 
students the graphs displayed in Figure 6 
 

 
The graph 1G .                                        The graph 2G . 

 
Figure  6:  Two oriented graphs - third example . 

 
 
 
The respective adjacency matrices are 





















0010

1000

0101

1101

1A    and   





















0010

1010

0001

1101

2A . 

 
All the students but two compute immediately the characteristic polynomials. They are 
respectively     234

1 P  and   1234
2  P . The conclusion is 

shouted by three students at the same time: ``they are not similar!'' 
 
Teacher: Who are not similar? 
Yael: The matrices. 
Teacher: Why? 
Naomi: (speaking for the first time) The polynomials are different, so the eigenvalues are 
different. 
Teacher: All of them? 
Naomi: No. At least one. And here we have 0 for 1A  and not for 2A . 
Teacher: Remind us what the question was? 
Yael:  If the graphs are isomorphic. 
Vered: OK, the graphs are not isomorphic. 
 
 
    3. Brief description of further activities. 
Further work and activities have been done with the same class. After the second 
activity, students received homework assignments. The next meeting took place one 
week later. A  central task was to  show that two  given graphs with  the same number   
of  vertices   and  the   same  number   of  edges   are  non isomorphic. For this, almost 
no teacher intervention was necessary. Another task was devoted to understanding the 
non-reversibility of the theorem described at the end of the first section (see Cvetkovič 
et al. 1995, pages 61 sq.); its description does not fit in this paper. 
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Part of the third meeting was devoted first to oriented graphs because they may 
provide non-symmetric adjacency matrices, i.e. matrices which can be non 
diagonalizable. Then the students had to study a pair of non isomorphic graphs having 
the same set of eigenvalues. The goal of this last example was to convince the students 
that the whole study relied on a one-way theorem: if two matrices are similar, then 
they have the same set of eigenvalues, but the converse is not true.  
 
After the last meeting, the teacher had an informal discussion with the students. He 
asked for remarks about the CAS assisted work. Here are a few excerpts from the 
discussion between students (the first one was not previously quoted): 
Student A: I'm sure that I would not have worked out all  these examples by hand.  
Student B: And so? You would not have learnt this? 
Student A: No, I would have waited to see the answer from somebody else. 
Student B: And so you would not have learnt the topic! 
Student A: (hesitating) Maybe you are right, …, not so well. 
 
 
V. Discussion. 
 

1. The classroom activities. 
In the first activity, the teacher chose an example where the isomorphism between the 
graphs is trivial.  The graphical display itself proposes an invertible mapping between 
the sets of vertices. This enabled the students to discover how to work, in a situation 
where they have control on the results. Vered expressed this clearly. During this first 
activity, the students gained conviction that the working pattern is suitable. Therefore 
they were more independent from the teacher during the second activity. He helped 
somehow with passing from one step of reflective thinking to the next one, or with 
providing some new operative knowledge, such as an appropriate command of the 
CAS. The teacher's support was gradually faded; it was limited to questions. Reflection 
and interpretation were made by the students. 
 
Teacher's support has been gradually removed during the third activity. At the end all 
the students but two were totally independent of teacher assistance.  This  has  been  
checked  with  an assignment  which included  the study  of  one pair  of non  oriented 
multigraphs and of one pair of oriented multigraphs.  Finally, the educative segment 
has been spread over a little more than two weeks, and gradually developed, meeting 
Anghileri's request (2006). The strategy has been made clear already from start: 

 A progressive choice of examples: non oriented graphs, in order to have benefit 
of the theorem on the diagonalizability of symmetric matrices, then non 
oriented multigraphs and oriented graphs for which the theorem does not apply. 

 Translation into notions from Linear Algebra and use of a CAS. 
 

2. Switching between representations. 
The original definition of a graph as a pair of sets  EV , , where  nvvvV ,,, 21   is 

the set of vertices and  peeeE ,,, 21   is the set of edges, contains in itself a first 

kind of representation. Let us call this an enumerative representation.  For small n and 
small p,  it is possible to prove that two given graphs are isomorphic by construction of 
a specific isomorphism. Such a proof by construction becomes quickly unilluminating 
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when the number of vertices and/or the number of edges increases. In a situation where 
the graphs are not isomorphic, besides the "boring" aspect of  enumeration, there is a 
need to prove that all the cases have been considered (proof by exhaustion of cases). 
This is a formal proof, using combinatorial formulas, i.e. the point of view has been 
partly switched towards Combinatorics. Of course switching from the enumerative 
representation  EV ,  to an iconic representation helps, but increasing n and/or p has a 
similar effect in the new setting as in the old one. 
 
Considering only iconic representations of graphs does not yield enough insight into 
the concept of an isomorphism of graphs beyond simple examples, as suggested by 
Leah's reaction, and more by Student A in the last discussion. The matrix 
representation and its companion algebraic tools provide a possibility to have a more 
profound insight. "In some cases the current representations may prove an obstacle to 
the full development of a concept" (Ferrari 2003). Out of the record, students claimed 
that iconic representation is more readable for them, but others said that they felt more 
comfortable with matrix representation, as "they can do computations".  A foreign 
colleague of the author said (free translation): "I observe everyday researchers in 
Discrete Mathematics and in its Teaching. I see that, most of the time, they work with 
iconic representations, and not with matrices. They find numerous theorems. And also 
a lot of consistent situations for the students to work (colors, Euler paths, etc.). But it's 
different from what you do, and one completes the other".   
 
Despite the fact that matrix representation is more abstract than the graphical one, it 
opened the way to new mathematical knowledge, through manipulation both of old 
knowledge coming from another field and of the usage of a CAS. A great diversity of 
situations could not have been presented using graphical representation only (see 
Lesser and Tchoshanov 2005). Actually we may view the working sequence as a two-
step activity:  

a. Switching from the iconic representation to the matrix representation, 
according to Peschek (2005), as "one abstracts relationships from the 
(reference) context and presents them with symbols, thus outsourcing the 
problem in the formal-operative system of mathematics". 

b. Outsourcing (part of the) operative knowledge to the computer. 
 
Graphs, multigraphs (whether oriented or not) are defined as abstract objects, namely a 
pair of sets with a suitable property linking them (see Rosen 1999).  We have here two 
presentations for a graph:  

 The graphical presentation is visual/iconic (Lesser and  Tchoshanov 2005) and 
acts as "stimuli on the senses" (Janvier et al. 1993). 

 The other representation is algebraic. It is a symbolic representation enabling 
manipulations. 

 
As noted by Lesser and  Tchoshanov (2005), a single type of representation does not 
insure student learning and performance. In many occurrences, a graphical 
representation is used to "encode" more abstract properties. That is the case with the 
study of a function: the first steps, namely finding the domain and the possible 
symmetries, computing limits, derivatives, checking domains where the function is 
monotonous, where there are (eventually) extremal points and/or points of inflection, 
are then encoded into a graphical representation. It happens that this representation has 
to be fractioned into pieces, because an impossibility to represent all the special 



  Dana-Picard 

features in one graph (see Dana-Picard 2005). Here the symbolic-algebraic 
representation is a useful tool for the student to understand the graphical situation and 
to gain a more profound insight.  
 

3. The switching direction. 
We wish to emphasize an interesting aspect of the work. As mentioned in first section, 
similarity of matrices is a topic which had been taught in a previous course, but a lack 
of time enabled the teacher to give only a small number of examples. Students' 
personal work suffered also of this lack of time for practice. A similar situation occurs 
generally for the study of graph isomorphisms, but for a slightly different reason. The 
amount of necessary computations increases very fast with the number of vertices in 
the graph. So the teacher may decide either to limit himself/herself to examples of 
graphs with only a few vertices, or to present larger graphs but showing only the 
results. In both cases, students do not acquire practical skills; they have no real 
opportunity to improve their operative knowledge. Activities built on the switching 
between representations, iconic and algebraic, supported by CAS, enabled to really 
build new mathematical knowledge in both domains, Graph Theory and Linear 
Algebra, simultaneously. This enhances the fact that each topic can be viewed as 
belonging to a cognitive neighborhood of the other. Generally bridges are built in one 
direction, from topic A to topic B, but here the bridge between the two topics is 
traveled in both directions when switching from iconic representation to algebraic 
representation and conversely. 
 
The CAS provided the help   ``for reasoning   by fostering   the   development of ...  
experimental reasoning style'' (Sinclair et al. 2006).  This appears through the 
intertwining of reflective thinking and application of operative knowledge during the 
sessions. A difference appears with the human support:  not only the CAS assistance 
does not fade with time, but the new computing skills become an integral part of the 
new mathematical knowledge. 
 
In the second activity, different CAS may give different outputs when displaying the 
eigenvalues. For the  given square matrices of order 8, Derive  gives seven  different  
eigenvalues, inviting  the student  to understand  that one  of  them  must be  a  double 
eigenvalue.  Note that other packages may give a more detailed output, including the 
multiplicities of the eigenvalues. We have here  an example of the  double reference 
evoked by Artigue (1997,  page  152):   on  the  one  hand,  the  computer 
``understands'' the  input in  a way which  can be different  from the students' intention, 
on the other hand the mathematical meaning of the output can be different of what  the 
student expects  when he/she writes the same thing. See also (Lagrange, 2000). 
 
Students working with a CAS become progressively acquainted with swapping 
between various representations: algebraic, numerical and graphical. For a given 
object, different representations can be provided by the CAS itself.   Functions of one 
real variable are   a well documented example,   with numerical representation (a table 
of values), graphical representation and generally algebraic representation (a "closed 
form" such as ...=xf )(  ) . The main problem is developing students' ability to link 
representations; see Pierce (2001). Prior to the activities described in this paper, the 
students had to solve a couple of exercises in reversed directions: a) write the 
adjacency matrix of a graph (resp. directed graph, given in iconic form, b) draw a 
picture of a graph whose adjacency matrix is given. 
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The activities performed here by the students have a different aspect.   The main 
originality lies in the fact that the link  is not  oriented from  an algebraic 
representation  towards  a  graphical  one  as  in  most  problems  on one-real-variable 
functions, but in the other direction. Graphs are given   by graphical representations   
and the representation used for checking the existence of an isomorphism between  
two graphs  is purely  algebraic.  This may be technically trivial, but from a conceptual 
point of view, it is not trivial for the students: the work requires reversing the direction 
of the switch between representations. The students' hesitations reveal their level of 
ability to deal with a matrix representation instead of a graphical one. Previous 
working sessions revealed the difficulty for students to link matrices to graphs and 
graphs to matrices (including oriented graphs, i.e. links towards non-symmetric 
matrices) but helped with removing the obstacles. The CAS provided assistance, and 
students showed increasing operative knowledge.   
 

4. Consolidation and routinization of previous knowledge. 
In the same fashion we had to be careful when speaking about scaffolding, we must be 
careful if we wish to deal with consolidation. Both are very personal and apply to 
individuals, one student at a time. Here our study relies on the dynamic of a group of 
students. Each student has his/her own pace of acquisition of new mathematical 
knowledge, and consolidation should be checked with each student separately. The 
above classroom activities do not provide enough individual data. 
 
Nevertheless, the observation of the group reveals various components of 
consolidation among those enumerated by Dreyfus and Tsamir (2004): immediacy, 
self-evidence, confidence, flexibility and awareness. For example, along the different 
activities, there were more and more immediate reactions to questions, either 
immediate answers (revealing also self-evidence) or immediate and correct 
outsourcing of the work to the computer. This last point is part of the ability to switch 
between different representations of the graphs (flexibility). From the beginning, 
Vered showed enough self-confidence to answer and ask, but for others like Naomi, 
the first intervention appeared during the third activity. 
 
The activities revealed also the following fact: at the beginning, the students did not 
achieve for symmetric matrices and their diagonalization the routinization mentioned 
(and requested) by Artigue (1997). In Section II, we mentioned the lack of time at the 
end of the Linear Algebra course, which provoked a shortage in solved examples. 
Even for low dimensions, a  lot of computations are needed, looking for eigenvalues  
and  eigenvectors,  inverting  matrices, and so on.   Hand computations are very 
unilluminating and both educators and students are reluctant to do them. The students 
had here an opportunity to make full computations of eigenvalues and eigenvectors, 
and sometimes of the diagonalization of a matrix. An important progress towards the 
requested routinization has been made as a byproduct of the activities. Moreover they 
had an opportunity to deal with a concrete problem involving these tools.  The CAS 
was a facilitator, making examples of  higher dimension possible to treat, thus enabling 
students to  acquire an  extended operative knowledge, and  at the same time more 
mathematical insight..  The CAS has not been used as a black box,   but rather   as an    
assistant in   a   process of reasoned instrumentation.    We  meet  Elbaz-Vincent's 
requirements  (2005)  about  ``the  necessity of  developing  specific classroom  
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activities  and  specific  exercise  sheets,  ...,  showing clearly the value of the  CAS 
either as a platform for experimentation or as an assistant ..." 
 
CAS-assisted work had another side effect. For non isomorphic graphs, the following 
cases can appear: 
   a. The adjacency   matrices   have different characteristic polynomials.  
   b. The adjacency matrices have the same characteristic polynomial, whence the same 
eigenvalues with the same multiplicities, but one of the matrices is diagonalizable and 
the other one is not.  
At   the beginning, the command eigenvalues has been used without reference to the 
characteristic polynomial.  The necessity to obtain more information, and to know how 
to interpret the output, has revealed the necessity of another command. During the 
activities, a black box has been opened and examined. 
 

5. The role of CAS: further characteristics. 
The assistance provided by the CAS is useful only if the students are able   "to plan   
correct   operations and   to interpret   results intelligently" (Fey 1990, quoted by 
Pierce 2001).  Two remarks made by students emphasize this issue: 
    (i) In the second activity, Shira's remark on the number of eigenvalues is important. 
It has been provoked by Derive's output, where the eigenvalues are given, without 
mention of their respective multiplicities.  
    (ii) The meaning of Vered's claim "we did it" is non trivial. She noted that, despite 
the regular usage of a CAS to provide explicit numerical results, this time the actual 
eigenvalues of the matrices were quite irrelevant. The important issue was the 
comparison between the two sets of eigenvalues. Vered has understood that the fact 
that the eigenvalues are not the same is the important issue. 
 
There are not so many opportunities to convince students that either the precise or 
approximate values of results are not the only interesting output. In this study, we 
found a couple of occurrences where the precise values of the matrix eigenvalues were 
not interesting.  The point was in the comparison between the sets of eigenvalues.  The 
outsourcing of the computations has an effect beyond the computations themselves. 
The CAS assisted activities described  in section III are an example  of the  claim by 
Cuoco  and Goldenberg (1996):  "...we are talking about  using technology in  support 
of the hard  thinking, not for  performing  the  low-level   details".  More than acting as 
a calculator, the CAS worked here as an assistant to reflection. 
 
 

Acknowledgement 
The author wishes to thank Denise Grenier, from Grenoble (France) for valuable remarks, and 
for fruitful conversations at ICME 11 in Monterrey, Mexico.  

 
References 

 
Anghileri, J. (2006). Scaffolding practices that enhance mathematics learning, Journal of 
Mathematics Teacher Education 9, 33-52. 
 
Arcavi A. (2003): The role of visual representations in the learning of mathematics, 
Educational Studies in Mathematics 52, 215-241. 
 



TMME, vol6, no.3, p .493 
 

 

Artigue, M. (1997). Le logiciel Derive comme révélateur de phénomènes didactiques liés à 
l'utilisation d'environnements informatiques pour l'apprentissage,  Educational Studies in 
Mathematics 33 (2), 133-169. 
 
Cuoco, A. and Goldenberg, E.   P. (1996). A role for technology in mathematics education,   
Journal of Education 178(2), 15-32. 
 
Cvetkovič D.M., Doob M. and Sachs H. (1995).  Spectra of Graphs, Joann Ambrosius Barth 
Verlag, Heidelberg. 
 
Dana-Picard Th. (2005a).  Technology assisted discovery of conceptual connections within the 
cognitive neighborhood of a mathematical topic}, Proceedings of CERME 4, M. Bosch (ed), 
San Feliu de Guixols (Spain). 
 
Dana-Picard Th. (2005b): Enhancing conceptual insight: plane curves in a computerized 
learning environment, International Journal of Technology in Mathematics Education 12 (1), 
33-43. 
 
Dana-Picard Th. and Kidron I. (2008). Exploring the phase space of a system of differential 
equations: different mathematical registers, to appear in the International Journal of Science 
and Mathematics Education. 
 
Dreyfus T.  and Tsamir P. (2004). Ben's consolidation of knowledge structures about infinite 
sets, Journal of Mathematical Behavior 23 (3), 271-300. 
 
Duval R. (1999), Representation, vision and visualization: cognitive functions in mathematical 
thinking. Basic issues for learning. In F. Hitt & M. Santos (Eds.), Proceedings of 21st 
Conference of the North American Chapter of the International Group for the Psychology of 
Mathematics Education (Vol.1, pp. 3-26). Cuernavaca, Mexico: PME-NA.  
 
Elbaz-Vincent P. (2005).  A CAS as an assistant to reasoned  instrumentation, in   D. Guin, K. 
Ruthven & L. Trouche (Eds.),  The  Didactical Challenge of Symbolic Calculators: Turning  a  
Computational   Device  into  a  Mathematical  Instrument, Mathematics Education Library 
36. New York: Springer Verlag. 
 
Ferrari P.L. (2003) Abstraction in Mathematics, Philosophical Transactions of the Royal 
Society London B 358, 1225-1230, available: DOI 10.1098/rstb.2003.1316 
 
Fey, J.T. (1990).  Quantity, in L.A.  Steen (Ed.), On the Shoulder of   Giants:  New 
Approaches to Numeracy, 61-94, Washington: National Academy Press. 
 
Fischer     R.    (1991).    Mathematik    und gesellschaftlicher   Wandel,    Journal   für   
Mathematik Didaktik, 4, 323-345. 
 
Grenier, D. (2008). Some specific concepts and tools of Discrete Mathematics, ICME 11, TSG 
15, Monterrey (Mexico). Available: http://tsg.icme11.org/document/get/754 
 
Hobsbaum A., Peters S.  and Sylva K. (1996). Scaffolding in reading discovery,  Oxford 
Review of Education, 22 (1), 17-35. 
 
Janvier, C., Girardon, C., and Morand, J. (1993), Mathematical symbols and  
representations, in Wilson P. (Ed.), Research ideas for the classroom: High school 
mathematics, 79-102, NCTM. 
 



  Dana-Picard 

Lagrange, J.-B. (2000). L'intégration d'instruments informatiques dans l'enseignement: une 
approche par les techniques,  Educational Studies in Mathematics, 43, 1-30. 
 
Lesser L. and Tchoshanov M. (2005), The Effect of Representation and Representational 
Sequence on Students’ Understanding, Proceedings of the 27th annual meeting of the North 
American Chapter of the International Group for the Psychology of Mathematics 
Education,VA: Roanoke. 
 
Peschek, W.  and Schneider, E. (2001). How to identify basic knowledge and basic skills?   
Features of modern general education in mathematics, The International Journal of Computer 
Algebra in Mathematics Education, 8 (1), 7-22. 
 
Peschek, W.  (2005). the impact of CAS on our understanding of mathematics education. 
Retrieved on 20/11/2006 from CAME 2005 - The Fourth CAME Symposium Web site: 
http://www.lonklab.ac.uk/came/events/CAME4/CAME4-topic2-Peschek-paper.pdf 
 
Pierce, R.  (2001).  Algebraic  Insight for  an Intelligent Partnership with CAS, in:  H. Chick, 
K. Stacey, J. Vincent and  J. Vincent  (Eds.) The  Future of  the Teaching  and  Learning of 
Algebra, Proceedings of the 12th ICMI 3, 732-739, Melbourne: the University of Melbourne. 

Presmeg N. (2006), A semiotic view of the role of imagery and inscriptions in mathematics 
teaching and learning, in Novotna J., Moraova H., Stehlikova N. (Edts) Proceedings 30th 
Conference of the International Group for the Psychology of Mathematics Education, Vol.1, 
19-34, Prague: PME. 
 
Rosen, K.  (1999). Discrete Mathematics with Applications, Boston: McGraw Hill. 
 
Selden, A. (2005). New developments and trends in tertiary   mathematics    education:   Or,   
more    of   the   same? International Journal of  Mathematics Education in Science and 
Technology, 36 (203), 131-147. 
 
Sinclair, N., Liljedahl, P.  and Zazkis, R. (2006). A colored window on pre-service teachers' 
conceptions of rational numbers, International Journal of Computers for Mathematical 
Learning, 11, 177-203. 
 
Skiena, S. (1990).  Implementing Discrete Mathematics: Combinatorics and Graph Theory 
with Mathematica. Reading, MA: Addison-Wesley. 

 



  TMME, vol6, no.3, p .495 

 

The Montana Mathematics Enthusiast, ISSN 1551-3440, Vol. 6, no.3, pp.495- 496   
2009©Montana Council of Teachers of Mathematics & Information Age Publishing 

 

 
Sum of n Consecutive Numbers 

 
 

Steve Humble1 
The National Centre for Excellence in the Teaching of Mathematics, UK 

 
 
Theorem 
For all n , it is always possible to find at least one sum of n consecutive numbers with an 
equivalent sum of 1n  consecutive numbers? 
            
 ----------- 
 
Until recently I did not realise that this wonderful pattern existed. 
 
   1+2=3 
           4+5+6=7+8 
  9+10+11+12=13+14+15 
        16+17+18+19+20=21+22+23+24 
   etc 
 
My first thoughts on reading this connection in O’Shea’s[1] book about number curiosities, was 
why had I not read about it before? It is simply beautiful. O’Shea writes but a few lines on it, and 
then moves on to his next strange fact. This made me wonder if the pattern would always be true, 
and here is my proof that it is. 
 
Note that the LHS always starts with a square number. This will always be true, as square 
numbers occur in the natural number system as follows; 1, 4, 9, 16, 25, 36… with a common 
difference of 3, 5, 7, 9…..which you can see fits the pattern above. Therefore we can say that 
each line will always start with a square number. The first few lines in the pattern can be shown 
to be true, hence it can be proven that the pattern is true for all natural numbers, by considering 
that the next k th line in the pattern is true. 
 

                                                 
1 Steve Humble (aka Dr Maths) is a regular contributor to The Montana Mathematics 
Enthusiast. He works for The National Centre for Excellence in the Teaching of Mathematics in 
the North East of England (http://www.ncetm.org.uk). He believes that the fundamentals of 
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To show that LHS equal RHS, collect the k, 2k  terms on both sides 
 

)(......)2()1()(......)2()1( 323 kkkkkkkk   
 
Then collect )1()......321( 2

1  kkk on both sides, giving 

)(......)()()1()1( 2
13

2
123 kkkkkkkkkk   

)()1()1( 2
13

2
123 kkkkkkkkk   

Therefore true for k, hence true for all and proof of the above theorem. 
 
Corollary 
 
In each line in this natural number pattern, we find a triangular, square and cube number 
sequence. 
 
 
Angel Proof – “as if at a glance” 
 
Between each pair of square numbers there are n2  numbers, n  on the LHS and n on the RHS of 
the above pattern. By adding n to each of the n numbers on the LHS we obtain the RHS. 
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Abstract: The aim of this study was to investigate the role of comprehension tests while 

teaching algebra and its effects on students’ success. This study was carried out with 108 third 

year undergraduate students enrolled in math education in faculty of education. Several data 

collection instruments were used for gathering data from the participants such as; 

comprehension test, written documents, semi-structured interviews schedule, and participant 

and nonparticipant observations sheets. Collected data were subjected to content analysis and 

triangulation among the data was ensured.  Results indicated that three different major 

categories emerged from the content analysis of the data: (1) measure of comprehension 

test(s), (2) positive and (3) negative impacts of the test on learning (the development of 

cognitive and affective skills). Further recommendations and implications about the use of 

comprehension tests is given at the end of the study based on the findings.  
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Introduction  

Assessment is a complicated process which may influence the beliefs on the nature and 

knowledge of mathematics, and educational process, on instruction and the connection among 

individual, school and society. This viewpoint regarding assessment is crucially important for 

reform attempts to be realized in educational process (Ridgway&Passey, 1993). Today, the 

tests are usually used for assessing outcomes and give more emphasis to products and rote 

learning rather than students’ progress. They have only interested in the products of the 

learning. These tests do not provide adequate evidences for teacher to design their one lesson 

plans based on the needs.They seem to be limited while determining students’ thinking 

process, strategies and learning potentials (Ginsburg, Jacobs&Lopez, 1993). For this reason, 

these tests need to be supported with several other assessment methods to assess students as a 

whole and needs to be re-designed according to new educational approaches and development 

in the world (Romberg, 1993). Essentially, NCTM (1989) see that standardized achievement 

tests do not reflect and measure students’ general success, readiness or measure any program 

you want to measure. In traditional way of assessment in maths, quotations of  “… explain the 

theory and prove it” or “… prove the theory” include these kinds of questions and help try to 

understand and to assess the students’ knowledge about the theories. However, there are some 

deficiencies of these types of assessment and they are as follows; (Conradie&Frith, 2000): 

a) Whichever the students have ability, students should need to memorize some facts 

in order to respond the types of questions given above.  

b) The students can only concentrate on the concepts stressed in the lessons as a result 

of studying and memorizing the results and theorems taught by the instructor/teacher. 

c) The answers of the questions mentioned above cannot be easily assessed. 
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d) The feedback to be gathered from the students with low success will be quite 

limited when they are testes in this way and it would be hard to diagnose their deficiencies of 

understanding or learning.  

The insufficient results of the assessments activities performed by use of the traditional 

methods direct the educators to seek for alternatives. In this sense, the comprehension tests 

are proposed as alternative tests to the traditional ones. These tests were first used at the 

beginning of 1990s. It has been believed with the use of these tests that the traditional 

methods does not seem to adequately measure the students who have low math success, but 

have potential to learn maths (Frith, Frith & Conradie, 2006). The comprehension tests are 

dynamic tests that provide chances the instructors/teacher to add several things to the 

questions in order to help students find the correct answers. The test also includes instruction 

regarding the concepts to which the students are not familiar. The concept of dynamic test 

assesses the learning potential of the learners and concentrates how the students learn rather 

than what they learn (Feuerstein, 1979; cited in Frith, Frith&Conradie, 2006). For example, in 

these tests, students’ ability is directed from teaching to learning; students generalize the 

results, make interpretations and practice the definitions. In the construction of the 

comprehension tests, the basic points to be paid more attention are that the test should include 

the basic maths concepts and the language used in the test should be simple and clear (Frith, 

Frith&Conradie, 2006).  

Purpose of the Study 

It is known that the traditional teaching methods don’t affect the students’ maths 

learning, not develop their attitudes towards maths and also not improve the students’ 

academic success (Alanis, 2004). Moreover, traditional measurements and assessment 

instruments do not show the students’ knowledge level and also how they apply their 

knowledge (Hiebert&Carpenter, 1992). Due to the limitations of traditional assessment 
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methods, researchers have been tried to find out the alternative methods for assessing 

students’ performance. Furthermore, the researchers who are dealing with maths teaching are 

trying to design alternative methods to the traditional teaching methods. The comprehension 

tests are observed to be one of these methods. However, the learning and teaching 

environment should be re-designed in order to implement the comprehension test effectively. 

The purpose of the present action research study was to investigate the 3 year 

undergraduate math students’ perceptions of the usage of comprehension tests and their 

effectiveness in math teaching. Following research question guided the overall study.  

What are the perceptions of undergraduate math education students’ regarding 

comprehension tests and their effectiveness? 

2. METHOD 

2.1. Research Design 

This action research was carried out by making use of both qualitative and quantitative 

research techniques. The action research is a type of investigation of reel world functions and 

their effects, and is used such areas as for up-dating instructional methods and evaluation 

procedures and for increasing instructional effectiveness of teachers (Cohen, Manion & 

Morrison, 2000). According to McKernan (2000) the action research is a systematic self-

reflective scientific investigation used by either researcher or teacher for developing personal 

understanding and application regarding an emerged problem. This action research was 

realized in the fall semester of 2007-2008 academic year in the class of “Introduction to 

Algebra”.   

2.2. Participants 

This sample of the study comprised 3rd year undergraduate students who took the 

course titled as Introduction to Algebra from Department of Math Education in Faculty of 

Education. The participants will become a math teacher one year later and will be appointed 
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to second level of primary education. Until this semester, the participants have taken the 

following math related-classes; Abstract Mathematics, Calculus I, Calculus II, Geometry, 

Calculus III, Linear Algebra I, Calculus IV, Linear Algebra II. This semester, they took 

Analytic Geometry in addition to Introduction to Algebra.  

It is believed that since a comprehension test mainly includes basic mathematical 

knowledge due to its nature (Frith, Frith & Conradie, 2006), the classes that the participants 

took up to know are prerequisite for using comprehensive tests. In the research, Introduction 

to Algebra was preferred because this lesson includes basic mathematics knowledge and also 

is sufficient for the comprehension tests because the course is based on the theory. The course 

of Introduction to Algebra is offered in one semester (14 week) in 3 hours. The participants of 

the study were selected among the students taking this class. 108 volunteered to participate in 

the study.  

2.3. Data Collection Instruments   

Several data collection instrument were used for gathering data from the participants. 

These instruments are as follows; (1) the comprehension test, (2) written documents, (3) semi-

structured interviews, (4) participant and non-participant observation. 

2.3.1. Development of the Comprehension Test and its Administration  

The maths comprehension tests aim at assessing the university students’ math 

knowledge as well as revealing undergraduate students’ potential of success (Frith, Frith & 

Conradie, 2006). In other words, they entail process rather than product. Introduction to 

Algebra lesson was considered in this manner and re-designed for effective administration of 

these tests. Instead of asking “… prove the theory?” or “show…?” which are traditional 

teaching methods questions, the questions and theorems were given to the students with 

solutions and proofs and sometimes with their solutions and proofs together but without 

theory and problem explanations. In this way, the students’ ideas about the theory and 
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problems were aimed to be investigated. The theory proofs and the solutions of the problems 

and the critical points, and transition points were numbered as 1, 2,…etc, the students were 

asked to consider these numbers while answering the questions. During the implementation of 

the course, a discussion among the students was created with the questions of “where does it 

come?”, “why do we write it?” “if it was like that, what would happen?”. Students’ were 

randomly selected for the asked questions. This way enables the students to be awake all the 

time during the instruction and raise their attention to the discussion. Through the instruction, 

informal feedbacks were regularly gathered from the students. Also, the students who don’t 

answer the question correctly were protected by the researcher, (the researcher and the 

students both in the lessons and without the lesson activities, they know each other) and the 

researcher create a safe and convincing environment to have a confidence. After a 2,5 months 

teaching and learning period, a first comprehension test with four questions were given to the 

students and they were asked to answer the questions. These four questions were all regarded 

as group theory and proofs. Two of these questions’ proof were already shown in the 

instruction, the rest were given as an assignment. However, some parts of the proved theories 

were not stated in the comprehension test. Moreover, students were not informed about the 

test day, they only knew that test will be administered at any time within three weeks. This 

situation enabled the students to get high motivation toward the class..  

Comprehension Test Examples 

Two of the questions of comprehension test are given below. Whereas 3rd theorem was 

not proved in the class and given to the students as an assignment, 4th theorem proved in the 

class. Simple and clear language was used while writing test items. Below example was 

designed to reveal the strengths and weaknesses of the students while proving the theorem. 

Conradie and Frith’s (2000) study was taken as a base, 3(a), 3(d), 3(e), 4(d), 4(e), and 4(h) 

were concepts used for the proof, 3(b), 3(c), 4 (b), and 4(c) are important steps in proof, 3(f), 
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3(h), 3(i),  4(f), and 4(g) are regarded as the structure of proof, 3(g) and 4(e) are regarded as 

sensitive points, and 4(i) is for investigating students’ knowledge of proof methods.       

Item 3.Read the theorem below and prove it. 

Every group is isomorphic to a permutation group (Cayley's Theorem). 

Proof: Let g be a fixed element of G and consider the mapping g : G G defined 

by gxxg )(  for all x in G (1). yxgyggxggygxyx gg   )()()()( 11 for 

all x and y in G (2).For Gz , zzggzgg   )()( 11 (3). Let GS  be the set consisting of the 

mappings g . Now consider the mapping GSG :  defined by gg  (4).  

))(())(()()()(
212121 2121)( xxxggxggx gggggg    for all x in G, then which implies 

that )()()( 2121 2121
gggg gggg   (5). In addition, 

xgxxgKerg g 000 )()(
0

       (6) 

                  eg  0 . 

Answer the questions below. 

a) What is the aim of the function defined in (1)? 

b) What is shown in (2) ? 

c) What is shown in (3) ? 

d) Is SG   a group?  Why? 

e) Why is it needed to define of  in (4) 

f) What is it shown in (5)? Why is it needed? 

g) What is the identity element of GS  and how is it used in (6)?  

h) Is   surjective? Why? 

i) How can the proof be ended with the start of (6)?   

(4) Read the proof below and answer the following questions. 

Write  ,...,,,,..., 212 aaeaaa  . Denote this set by H. Then, for Zi , 

 aaa ii , (1). However, H  (2). Let Hyx ,  then there exist Zlk ,  such that 
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lk ayax  ,  (3). We get Haaaaaxy lklklk   11 )(  (4). Hence, we get the result 

we look for (5). 

a) What is the method of the proof here? 

b) How was it ( Zi  için  aaa ii , ) found in (1)?  

c) What was show in (1)? 

d) Why is H  in (2)?  

e) How were they (
lk ayax  , ) equated? Is Rlk ,  taken? Why? 

f) What was showed in (4)? 

g) It is given Ha lk   in (4) What is the reason of this? 

(h) How is (
ll aa  1)( ) in (4) written?  

(i) What was found in (5)? 

 

2.3.2. Written Documents 

After the comprehension test including above items was completed, the students were 

asked to write a composition including their opinions regarding the test and the instruction.  

Following questions were asked to students for guidance purpose; “What do you remember 

when you hear comprehension test?” and “What are your opinions about the instruction based 

on the comprehension test?” at the very beginning, the students were informed that their 

composition will be used for formative purpose and will shape the instruction. And further 

their writings will be evaluated and the results will be shared with them. The students wrote 

their compositions in 20-25 minutes.   

 

 

2.3.3. Semi-Structured Interviews 

The students interviewed were selected with the purposeful sampling method. Further, 

their responses in the comprehension test also play crucial role. Selection was done according 

to their answers in the test. They were grouped into three parts with regard to success in the 
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test as lower, medium and higher. This helped observe the effects of comprehension test on 

the students with different achievement level and get more sound results. For ethical concern, 

the students were left free to attend the study. At the very beginning, 22 students who were 

suitable for the study were selected, but 5 of them indicated that they didn’t want to 

participate in the interview. Thus, the interview was realized with a total number of 17 

students; 9 females and 8 males. 5 of the participants were from high level, 4 of them from 

medium level and 8 of them from lower level. Individual interview was conducted with four 

of them, and the rest was grouped into three and groups interview was performed with these 

groups separately. It took nearly 60 minutes. Students were asked not to give their name 

during the interview because of confidentiality reason. At the beginning of the interviews, the 

purposes of the interview were explained and the researcher used the questions of “why?”, 

“explain”, “how?” to get in-depth perspectives of participants. The clinical interview method 

was used (Gingsburg, 1981) and tried to obtain details of the students ideas regarding 

interview questions. All these interviews were carried out in a room of the researcher and the 

place was observed to be quite safe and comfortable. In the group interviews, the researcher 

used the tape-recorder and later transcribed verbatim and further all participants approved 

their own transcripts. On the other hand, the researcher only took notes while doing an 

individual interview since no permission was obtained from the participants.  

2.3.4. Participant Observation 

Since the researcher was the administrator of the instrument at the same time, he 

closely observed the students during the instructions and test administration. The researcher 

obtained students opinions through his informal discussions with the students and recorded 

these opinions into his note-book. He used them for up-dating the instructions.     

2.3.5. Non-participant Observation 
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Total three lessons, each of which was randomly selected from different group, were 

video-typed. Total record time was about 50 minutes for each video-record. These records 

were analyzed by three experts: the researcher himself and two other educational specialist 

experts. Also, these specialists came to one of the classes to examine the one hour lesson. One 

of the specialists (educational sciences expert) focused more on the relationship between 

students and researcher (instructor), the attitudes of the students to the instruction, the 

teaching-learning environment. Based on what the specialist indicated, the instructor started to 

observe some of the students more closely and detect their learning difficulties. The other 

specialist (science education expert) focused more on the transitions between concepts and 

operations.  

2.4. Data Analysis 

The analyses of the data collected were continued until they reached saturation. In that 

way, the data was defined, explained and classified. The constant comparative method was 

used while analyzing the written documents, the interview transcripts and observations. The 

constant comparative method consists of open, axiel and selective coding steps (Glaser & 

Strauss, 1967; Strauss & Corbin, 1998). In the open coding step, firstly, the participants 

written answers and the responses in the interviews were read more then one without 

considering any theory so as to understand the data logic, and then they were coded. 229 open 

coding were observed at the end of the coding process. Some of the open coding examples 

are, “to be directed to search” (open coding: 10), “I didn’t say that the teacher asked a hard 

question, it was hard to say that it was teacher’s fault and I thought I memorize the many 

knowledges.” (open coding: 16), “When I solved the test, I understood some of what I didn’t 

understand before.” (open coding: 173). In axial coding step, after the researcher examined 

the details of the opening codes, three categories and corresponding sub-categories were 

emerged. These categories were (1) What does the comprehension test measure?, (2) The 
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positive effects of the comprehension test?, and (3) the negative effects of the comprehension 

test? In the selective coding step, the relationship between the sub-categories and the major 

categories and other data were investigated and a central (core) category, which cover all 

major categories and would explain the phenomenon, were tried to be revealed.  

2.5. Trustworthiness of the Study 

A triangulation was ensured among the data collected through the comprehension test, 

written documents, semi-structured interviews, participant and non-participant observations. 

No changes (wording, sentences…etc) were done over the interview transcripts and later the 

participants were asked to confirm what he wrote in the written documents and what the 

talked during the interview. Also, students’ ideas and their perspectives were given in the text 

without any change. The analysis of the data were done during a process and until it reached 

the saturation, and it was observed that different participants reported similar results. These all 

showed that the study can be replicable. Moreover, the class activities and video records were 

analysed by the specialists and their ideas were considered. The content of the comprehension 

test was examined by an expert (math education expert) on algebra. The categories, their sub-

categories and their appropriateness were given two educational specialists who know the 

qualitative research and coding procedures very well. Test items and codes emerged were 

revised by considering the feedback taken from experts. One of the taken feedbacks was given 

below.   

Example (feedback):  In category 2, whereas “the communication” the sub-category 

was explained by the researcher as “to realize the deficiency of mathematical 

communication”, the maths education specialist indicated that this communication referred to 

the differentiation among the table, graphics, verbal statement and symbolic representation, 

and it should be rewritten and find out the students ideas, or needed to be determined what 
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they referred to communication. After that, this category was re-defined as “explaining the 

problems in verbal format” and “using the symbolic language of maths”.  

At the end of the examination of all categories, the concordance correlation coefficient 

between the researcher and the maths education specialist was calculated.86 between the 

researcher and the science education specialist was calculated .88.  

3. FINDINGS 

After data analyses,, three categories were emerged. These categories were explained 

below: 

Category 1. What does the comprehension test measure? 

This category consisted of three sub-categories such as, “knowledge”, “individual 

differences” and “teaching-learning process”. Furthermore, the sub-category of knowledge 

was broken down into knowledge level, use of knowledge and self-assessment; the sub-

category of individual differences included the capacity of understanding, learning 

differences, readiness and concentration; and the sub-category of the teaching-learning 

included learning in the process and the continuing the lesson. Some of the quotations about 

the descriptions of students’ written answers are as follows.   

“In our exam system, learning was until the exam. But, in comprehension test, even in the test, 

I observed that I educated myself in the way of learning and thinking in the process” (open coding: 

188; sub-category: teaching-learning process, description: learning in process).  

“It helped not to forget the previous subjects. It helped both teachers and students look ahead, 

and helped the students construct their own learning foundation” (open coding: 165; sub-category: 

individual differences, description: readiness). 

“Actually, I realized that I have not learned, but I assumed that I have learned. Although I have 

studied math, I realized that I am insufficient in the theory part of math for three years, and at the same 

time I understood that I am little clumsy in the this subject” (open coding: 159; sub-category: 

knowledge, description: knowledge level). 

“It requires using all of your math knowledge that you earned during your life” (open coding: 

78, sub-category: knowledge, description: use of knowledge). 
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When the quotations above were examined, the comprehension tests provides the 

students with the opportunities to determine their own knowledge level, to what extend they 

use their knowledge and their readiness level. Two of the quotations showing that the 

comprehension test measure the knowledge level of students are given below.  

…          

R: …For example, there was a broken off in last two lessons (he mentioned that he didn’t 

come to the lesson. I was lost since a new lesson was based on the previous one When 

I go to home, I do the test again.  

M:  What is the relation of this with the comprehension test? 

R:    Sometimes, it is just written on a note-book. I am writing without knowing. Because 

of this test, I close up the writings and I can be able to think “That is like that, or like 

this?”, “Does it happen like that?  After that, I write. But, when I do not understand a 

note, I directly passed. Also, I could not write a reason in the comprehension test. 

However, in regular exam, I directly write from my memory because its reason is not 

asked.  

The other individual interview quotation is as below: 

İ: …Comprehension test measure the students’ knowledge cumulation more effectively. If 

you directly ask the proof, it can be half; some knowledge of the students inside can be 

measured. It can be fairer exam.  

These two interviews showed that students have done rote learning and memorization. 

It is observed that comprehension test can be assumed to provide an opportunity for the 

students to be far from the rote learning. Further, students’ partial knowledge can also be 

measured with these tests.  

Category 2.The Positive Effects of the Comprehension Test 

This category includes two sub-categories such as the effects on development of 

cognitive and affective skills. The details about these sub-categories are as below. 

Sub-category 2.1.Cognitive skills to be developed with the comprehension test 
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This sub-category further includes four themes which are problem solving, reasoning, 

communication and connections. The codes of inquiring the knowledge, step by step solution 

logic, paying attention to the smallest details, the importance of definition and theories, 

intuitive thinking, determining the critical points, using the previous knowledge are the 

descriptions of the problem solving sub-category. The codes of being away from the 

memorization, the power of interpretation, doing all steps, and mathematical thinking are the 

descriptions of reasoning sub-category. The codes of expressing the presentation of a problem 

in a verbal form and using the mathematical symbolic language are in the communication 

sub-category. Some of the quotations of these themes are given below  

“I learn why what I had done did. At least, I have started to pay attention.” (open coding: 111; 

sub-category: problem solving, description: inquiring the knowledge). 

“I have learned that it is quite hard to put forward an idea on what I do not know. You can’t 

know that I used my imagination not to submit to give empty paper. Also I noticed that I have a huge 

imagination power.” (open coding: 123; sub-category: problem solving, description: intuitive 

thinking). 

“I got confused when (you) asked “according to what did we write this?” I do not know 

according to what I wrote this, but I had a headache because of thinking of how I should express this” 

(open coding: 134; sub-category: communication, description: expressing the presentation of a 

problem in a verbal form). 

“… we need to use more scientific, more algebraic expressions. We understand how the 

transitions occur, but we had a difficulty while expressing.” (open coding: 93; sub-category: 

communication, description: use the mathematical symbolic language). 

“I never think before where an object comes from with the relation of the last step.” (open 

coding: 96; sub-category: connections, description: relations between the mathematical concepts). 

“The comprehension test is similiar to the text given and the questions asked regarding this 

text in the Turkish lesson. Some of the questions are based on the text while some others are based on 
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your interpretation.” (open coding: 196; sub-category: reasoning, description: the power of 

interpretation). 

The examples above showed that students believed that their skills on problem solving, 

communication, reasoning and connections have not been adequately developed. However, 

they reported that the comprehension test seemed to be quite useful to develop their four basic 

skills. A quotation of an individual interview showing the development of these skills is given 

below.  

M: How did you feel when you are studying for the test and teaching the lesson according 

to the test? 

M1: With a student psychology, students don’t want to be randomly selected (He refers to 

this that students are randomly selected for the asked questions). But he thinks at that 

moment. We need to make a research and connection. We suggest to make 

connections with the past. 

… 

M: What did you fell while answering the comprehension test? 

M1: I feel that I don’t have adequate knowledge on the subject. I understand that I don’t 

answer the questions by considering my whole knowledge. I understand that it is 

important to know the concepts with comprehension test. 

M: Don’t you understand it before? 

M1:No. 

M. Why? 

M1: We do not use them that much. Application was more important in other classes. We 

never looked at definitions and even theorems.  

This interview showed that a student had difficulty with making connections among 

the concepts and had no adequate knowledge for subject. Also, the more important one can be 

that the interview revealed that the student seemed to have no idea about the effects of 

definitions and theorems on the mathematical problem solving and thinking. A quotation from 
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Group interview -2 about the effects of comprehension test on development of mathematical 

communication skills is given below. 

… 

H: I believe that I can be able to show how to express mathematical terms in verbal form 

with a comprehension test. As I said before 2x2 is equal to 4, but why?   

M: Is it mathematical speaking? 

H: Yes, abstract thinking will be more concrete with written explanations 

A quotation showing students’ lack of mathematical communication skills from an 

individual interview is as below. 

M: What does the comprehension test make you feel? What kinds of things come to your 

mind? 

P: … I think these tests will be more successful when they can be started at the primary 

schools and the students will be grown up with these tests. The students who talk 

about mathematics and make interpretation on the math will be trained. 

M: What are the contributions to mathematical talking?  

P: Firstly, a student needs to understand the question in the test and make a comment. 

This situation will motivate the student among his/her friends. Maths is not a subject 

talked among the students it is frightened. Even though I’m in the maths department, I 

still don’t speak about it.  

M: Why? 

P: Especially, the classes are based on the theory. Until now, we have memorized all the 

theorems before exam, but the comprehension test is different. 

M: Do you think that it is good or bad? 

P: When I see the comprehension test, I understand that although I have been studying 

maths, I could not be able to make comments. I thought that I don’t give right of my 

department. 
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The open coding 134 given above, when the interview quotations and the observations 

during the lessons are considered, it is understood that students had difficulty with and are 

insufficient in the mathematical communication skills such as transferring their thinking to 

writing, interpreting the expressions, and symbolizing the verbal expressions. As reported by 

the students, the comprehension tests are seen as an alternative to solve the mentioned 

problems. 

Category 2.2.Affective skills to be developed by the comprehension tests  

This category is further divided into six themes such as self-confidence, interest, 

anxiety, belief, motivation, and value. The self-confidence theme mainly concentrates on 

developing self-confidence. The interest theme concentrates on showing interest and making 

the students become curious. Decreasing exam anxiety was emerged under the anxiety theme. 

Believing is under the theme of belief. Enjoying of what has been done and motivating to 

study are the main codes of the motivation. Ensuring the equity/justice and showing respect to 

the teacher are the main codes of the value. Some of the quotations taken form students’ 

writings are given below.    

“I didn’t understand what it was and why it was like that. Now, I really feel that I have 

learned. This gives me an enormous confidence.” (open coding: 126; sub-category: self-confidence, 

description: developing a self-confidence). 

“I left blank when the proof of the theorem was asked as an memorization. But, in this 

application (test), I am thinking of some parts even I do not know the theorems…In this way, my 

interest stays alive.” (open coding: 153; sub-category: interest, description:  becoming curious). 

“ … I took the exam without having any fear. I don’t have any anxiety about when I forget the 

proofs of the theorems…” (open coding: 229; sub-category: anxiety, description: decreasing the exam 

anxiety). 

“ … I really enjoyed the lesson, because I tried to make interpretation.” (open coding: 215; 

sub-category: motivation, description: enjoying). 
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“While answering the comprehension test, I believe that I can be able to solve the problems 

even if I did not see the theory before. I really believe myself.” (open coding: 194; sub-category: 

belief, description: believing to learn). 

“The differences between the students can easily be observed; the ones who don’t follow the 

lesson and find the notes of the lesson and the ones who take his/her own notes. This is a big problem 

to be overcome for ensuring and bringing the justice.” (open coding: 169; sub-category: value, 

description: ensuring the justice). 

 The examples stated above indicated that the comprehension test help the students 

increase the affective skills such as interest, self-confidence, motivation toward the algebra in 

particular and learning in general, and also decrease the exam anxiety. A quotation from 

group interview-1 pertaining to the themes of the self-confidence and motivation: 

… 

M: Will you use the comprehension test when you become a teacher?  

H: Yes. Students’ self-confidence increases. When you ask a question with a proof, he/she 

becomes depressed when he/she doesn’t solve. But, let’s say s/he solves three by 

saying a, b, and c. S/he will think her/his motivation will increase by saying that I 

know something.  

B: Especially for the questions we don’t know. Well, I don’t know, everything comes on 

your eyes in a moment. By saying” s/he may do like this form here, it can be possibly 

done like that”, everything comes true ... S/he says that I really learn”.  

M: What increase? 

F: Confidence 

M: Okay, what happen when it increases? 

F: The person’s performance increases. If it increases, a person automatically studies 

lesson, listen the lesson. 

An individual interview showing that the comprehension tests reduce the exam anxiety 

is given below: 
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… 

M: Do you have feedbacks from the other exams? 

G: We partially have, but mostly for appraising the learning. In here, comprehension test 

is so different. The students are calmer and, more relax and because of it, there is no 

exam stress. They can take the more real feedback. 

These examples and two quotations from the interviews above are so important since 

they show the positive effects of the comprehension tests on development of the students’ 

affective skills. This situation was also supported with the classroom observations. It is 

observed that the majority of the students’ interests and curiosity were increased toward the 

class and they started to frequently ask “why is it like that?”, “how does it happen?” and also 

started to discuss with their peers about the connections between mathematical concepts and 

operations. This situation makes the teacher-student and student-student interaction possible 

and active.   

Category 3.The Negative Effects of the Comprehension Tests  

This category further consists of two main themes; “negative effects on individuals” 

and “the negative effects as a result of the test construct”. The first theme is regarded as (1) 

directing the students to study on some other parts and (2) students’ describing of the 

hardness of the exam. The second theme is more regarded as the following codes; (1) the 

practical level of the test is so low, (2) it includes the basic knowledge, (3) preparation of the 

test is quite hard and (4) it is hard to use the test with the students in the second level of 

primary school (e.g. 6th, 7th, and 8th grades).Some of the quotations related to these themes 

and descriptions are given below. 

“It doesn’t give a change to make operation. The level of operation is very limited.” (open 

coding: 154; sub-category: the negative effects as a result the test itself, description: the practical level 

of the test is quite low). 
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“Even though I don’t know the topic, I could write something by using my only basic 

mathematical knowledge.” (open coding: 170; sub-category: the negative effects as a result of the test 

itself, description: it includes the basic knowledge). 

“You need to think more and complicated. Due to this, it becomes tiring.” (open coding: 207; 

sub-category: negative effects on individuals, description: the hardness of the exam). 

“The structure of the questions should be well prepared. The questions the teacher asks should 

be same with what the students understand. If a student understand in a different way, her/his answer 

can be wrong.” (open coding: 188; sub-category: the negative effects as a result of the test itself, 

description: preparation is hard). 

“…successive questions make a students tired I think I answered 30 questions in the exam.” 

(open coding: 160; sub-category: negative effects on individuals, description: the hardness of the 

exam). 

“Since (the teacher) did not require us to prove a theorem entirely, it helps us to understand the 

important parts; it protects us to waste our time for the unnecessary parts. We need to search more 

than one source for understanding the important parts.” (open coding: 161; sub-category: negative 

effects on individuals, description: directing the students to work some parts).  

When looking at the quotation above, students reported that practice level of the 

comprehension test is so low, preparation of the test is hard the answering part is hard and the 

test directs them to some basic parts. Another quotation from a group interview-3 reveals the 

hardness of the preparation part. 

… 

G: The application needs courage. That is, even if the students complain about the 

memorization, you can possibly here some voices about the opposite ideas. But this 

point of view should not be change.  

N: It is hard for the teacher. It requires to work more for making a transitions, going back 

and also preparing the questions. 
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The quotation above shows us that it is hard to prepare a comprehension test, but still it 

should be used. Most of the students believed that when they become a teacher, they would 

use the comprehension test in many places (at the end of the subject, as a preparation for the 

exams, or as an exam; open coding: 8, 217). In addition, eight of the students claimed that the 

comprehension test would bring a workload when they become a teacher and for that reason 

they do not tend to use it (open coding: 17). An individual interview excerpt that reflects the 

effects of the comprehension test on the working style is as below:  

… 

F: In here, I did not look at what we proved or what we did? I was even unaware of what 

the theorem was. I just focused on the transitions. Why did we pass from here to 

there? 

M: But, there are in questions?  

F: I was not aware of the questions.  

M: For example in the, option f of the question 2 it was asked that “what was proved?”. 

What did you do, then?  

F: I didn’t do it. 

M: Did you stop there? 

F: Yes 

M: Doesn’t it reveal something about the students for the evaluator?  

F: Yes, but if there was not that option, I would never understand.   

The interview excerpt above shows the hardness of using the comprehension test. For 

this reason, the questions should be carefully designed and the transition points should be 

very well identified. 

DISCUSSION 

The main goal of all curricula in general and of maths curriculum in particular is to 

realize meaningful learning for all levels of the students. The professional literature indicates 
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that traditional teaching methods do not increase students’ interests toward maths (Peng, 

2002), meet their needs (Saye, 1997) and improve their academics achievement (Dede, 2003). 

The first aim in traditional teaching is to develop students’ operational skills. In the standard 

test, to get a good grade, it is enough to choose the correct answer. The answer key or the 

teacher is the means which control the students’ answers. Speed in the test is more important 

than thinking of finding the correct answer(s). Several behavior (e.g. comprehending the logic 

and the process of the test, explaining the process and criticizing) that contribute to 

development of students’ mathematical thinking should not be ignored (Burns, 1985, as cited 

in Montgomery, 1987).  

In this action research, the impact of use of comprehension test in Algebra class in 

mathematic teaching department on the 3rd year prospective teachers’ opinions was 

investigated. The data was collected from the participants though the use of the 

comprehension test, written documents, individual and group interviews and classroom 

observations. All data was subjected to the content analyzed and they were grouped into three 

categories.(1) what does the comprehension tests measure?, (2) the positive effects of 

comprehension tests (thinking that they develop the cognitive and affective skills) and (3) 

negative effects of the comprehension tests.       

At the end, it was found as a results of students’ reports that comprehension tests 

measure knowledge, individual differences and also some components regarding teaching-

learning process. To be able to use the knowledge and to make a self-assessment are more 

observable than the others. Also, in Turkey, the application of knowledge has been 

emphasized in new primary and high school maths curriculum. Moreover this point has taken 

place under the general goals of maths education as understanding the mathematical concepts, 

systems, and establishing a the relationship between concepts and systems, and integrating 

them into the daily life and other learning environments (The Ministry of National Education 
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(MoNE), 2005a, 2005b). Similarly, self-assessment method has taken place in new maths 

curriculum under the title of self-management proficiency “as questioning his or her works 

related with maths.” (p. 13). Self-assessment is a process including an individual aims, 

performance, and self -judgement, and also self-reactions to these judgement which are 

unacceptable and significant (Schunk, 1995).One of the examples showing this situation is as 

follow, “I understand that I memorize the subjects. I understand that I could not pass the 

lesson with memorization.” (open coding: 90). Positive self-assessment which helps the 

student to see their own capacities will motive them and feel themselves capable (Schunk, 

1995).   

Another result drawn from the research is that the comprehension tests have a positive 

effect on development of students’ cognitive skills. Under the category of cognitive skills, 

problem solving, making connections, communication and reasoning skills were observed and 

it was appearent that the test had an impact of development of these skills. Also National 

Council of Teachers of Mathematics (NCTM) (1989) always stresses the importance of 

improving these four skills. In Turkey, the new primary and high school maths curricula 

developed by considering the principles of NCTM put serious emphases on improving these 

four skills (MoNE, 2005a, 2005b). In that way, it has been aimed to develop and/or improve 

these skills of students. To this point, this action research points that the comprehension test is 

an effective mean.   

Another important result of this research is regarded as the positive effects of the 

comprehension test on developments of affective skills of students. One of the important aims 

of the math education is to keep the affective skills of the students at the high level. Affective 

skills and features includes several components such as motivation, interest, attitude, self-

efficacy, anxiety, belief and value. In the literature several research studies pointed out that 

affective factors have positive impact on learning and academic success of students (Bloom, 
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1979, Cates&Rhymer, 2003; Clute 1984; Dede, 2006, Hackett &Betz, 1989; Jingsong, 2003; 

Lumsden, 1999). In this regard this study is quite significant because it shows the valuable 

contributions of the comprehension test to development of affective skills. 

 Another result of the research showed the negative effects of the comprehension tests. 

They are related to individual and due to the test construct. Negative impact of the test on the 

individual is more regarded as directing the students to the special points (especially to 

transitions). A good example of this situation was reported in open coding: 161.This result 

and the hardness of the preparing the test was also observed in the study of Conradie and 

Frith’s (2000). Another factor is related to the impractical level of the test. However, this can 

be easily overcome. Since the comprehension tests are dynamic in nature, the students can be 

required to indicate the next step while proving and/or solving any question and to complete 

the blanks. Further, in the test, the teacher can even ask students to produce new ideas about 

the new conditions. With this way, students’ habits of working only some parts can be dealt 

with. Although there are practical items in the test, the students didn’t pay adequate attention 

to these questions. For example, the questions given in the option d of the 3rd question, “Is GS  

a group? Why?” and in option h, “Is   surjective? Why?” are the practical questions, because 

these weren’t given in the text and wanted students to find by their own. With the question in 

the option e of the question 4, “How do they (
lk ayax  , ) take? Are Rlk ,  taken? Why? 

”, a condition of the theorem was changed and the students were asked to take students’ ideas 

about the new situation. 

When the categories, the sub-categories, and themes emerged in the research are 

assessed, descriptions regarding memorization and reasoning skill can be found under each 

category. For this reason, the central phenomenon (or core category) of the research was 

named as “development of mathematical reasoning skill” 

CONCLUSIONS and IMPLICATIONS 
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The most significant point of the results is that the students reported their 

memorization of the mathematical proofs and concepts. At the same time, the students 

reported that their mathematical reasoning and interpretation skills were not developed. This 

situation is, of course, so bad, but the good point is that they would like to deal with this 

deficiency and try to find alternatived for developing their own skills. In the research, the 

class observations, written documents of the students and also the interviews with the students 

showed that even though the comprehension test has some negative points, it can be proposed 

an alternative to overcome these problems. The most important advantage of the 

comprehension test is that this test helps reveals which point is very well understood by a 

student and which point isn’t. For example, at a result of this research, students understood 

the injective function (option b of the question 3, the question was correctly answered by 90 

% of the student), but did not understand surjective function (option c of the question 3; the 

question was correctly answered by only 10% of the students, and there was no correct 

answer for the option h of the question 3). Another advantage of the test is that it helps 

teachers obtain feedback from the students with low success (look at the interview coded with 

I. This student’s mathematics achievement was so low). It was observed by the researcher and 

the experts (observers) that majority of the students participated in all sessions of the classes 

since the instructions were designed in line with the items of the comprehension test and they 

were active during the lessons. Further, it was observed that students’ interest to the class 

become higher day by day. As a result of this, the students started to solve the questions 

regarding as the theorems which were proved in the lessons (question 2, 4). On the other 

hand, similar success was not observed for the questions regarding the theorems which were 

not proved in the lessons. Of course, it is hard to change the habits. In the light o f the 

feedbacks gathered from the students and the experiences of the researcher during the 

research, despite the hardness of the preparation and assessment of the comprehension test, it 
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is believed that this test should patiently be used and it is suggested to the math instructors 

and teachers use their own instruction and assessment process. In addition, since the 

comprehension tests include basic mathematical concepts, these tests should be started to be 

used at the first class of the university in order to use them more effectively and efficiently.             
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When one looks into the subject of geometries that attempt to explain fourth-
dimensional space, it is inevitable that one encounters references to Cubism.  The 
purpose of this paper is to find what the similarities between this mathematical 
concept and cubism are.  There are many historical arguments as to how the 
cubists encountered literature about the fourth-dimension, and whether they were 
exposed to it at all, which I will for the most part omit and instead let the art speak 
for itself.  It is important to see how two fields are interrelated in order to gain a 
better understanding of both fields, in this case art and geometry.  In addition, 
visualizing things that the human eye cannot immediately perceive, that must be 
left up to the mind is important to people who want to gain a better understanding 
of their reality. 
 
Leone Batista Alberti, in 1435, wrote the first book that discussed central 
projection and section, the process in which an artist would transfer an object onto 
a canvas by imagining that the image is traced onto a window, parallel to the 
artist’s eye, which is looking out onto the subject. 

 
“Tracing on Glass, After Nature”, from Frederic Goupil, La perspective 
experimentale, artistique, methodique et attruyante ou l'orthographie des formes 
(1860) (Henderson, plate 41). 
 
When one considers the space around oneself, as only perceived visually, all lines 
appear to converge away from the observer.  This notion is adapted into the 
technique of perspective drawing, an attempt to render an image that visually 
makes sense on a canvas but spatially is inaccurate in its representation.  In a one-
point perspective drawing, there is a horizontal horizon line, which lies at infinity.  
On the horizon line there is a vanishing point in which all lines parallel to the z-
axis intersect. 
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        (I)             (II) 

 
 
When a cube is projected onto a two-dimensional surface using a perspective 
technique (I) there is much less confusion as what the image is representing in 
space.  However, if the cube is drawn on a two-dimensional surface and is not 
distorted in any way (II), all vertices are of equal length and no lines intersect at 
the horizon, in this case it is much more difficult to determine what the image 
represents in space. 
 
In Plato’s “Allegory of the Cave”, he discusses with Socrates a hypothetical world 
where people are born chained in a cave where they would only see the shadows 
of reality.  Then at a certain time, they would be unchained and upon leaving the 
dark cave and approaching the light, the former prisoners would initially be blind 
to reality.  Now imagine that humans have been similarly “chained” in the fourth-
dimension so that they can only see the shadows cast into a third dimension and 
are blind to the fourth-dimension.  This hypothetical idea is part of what created 
theories and geometries concerning the fourth-dimension, and is part of what 
made it popular since a better understanding of extra dimensions would bring a 
more enlightened understanding of reality. 
 
The fourth-dimension is built from the similarities found in the geometry we are 
accustomed to visualizing.  Beginning with a zero-dimensional point, and then by 
moving that point in any direction for any length creates a line (and an x-axis).  
Moving the line perpendicular to the x-axis creates a plane (and an x and y-axis).  
Then moving the plane perpendicular to both the x and y-axis creates a space (and 
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an x, y, and z-axis).  This is the space we are accustomed to with a left-right, 
forward back, and up-down, it is easy to grasp what images of objects, in three-
dimensional space, represent, regardless of how distorted they are because it is 
intuitive to us.  By analogy of the previous transformations, moving a space 
perpendicular to the x, y, and z-axis creates a fourth dimension.  However, due to 
our being stuck in three-dimensional space, we cannot visualize a fourth-
dimensional coordinate system, or what an object in the fourth-dimension would 
look like.  Two main methods of representing four dimensional objects, the 
slicing method and the projection method, have developed in an attempt to make 
the unseen seen. 
 
The slicing technique may go as far back as 1846, when Gustav Theodor Fechner, 
in his book Vier Paradoxa, “may have published the first discussion of two-
dimensional beings being unaware of the third dimension that surrounds them” 
(Henderson 18).  The technique was popularized mainly by Edwin Abbots book 
Flatland, which “E Jouffret discusses…in his 1903 Traite elementaire de 
Geometry a quatre dimensions, a book known to Duchamp and certain to his 
cubist friends” (Henderson 25).  In Flatland, a two-dimensional being known as 
A. Square is visited by a sphere from three-dimensional spaceland.  A. Square 
then proposes to the sphere that maybe spacelanders could be unaware of a 
surrounding fourth dimension.  The sphere is infuriated by the idea of higher 
dimensions, but Abbot gets across the message that the ideas he proposes are not 
impossible to grasp.   
 
When A. Square first encounters the sphere, from A. Square’s perspective it is a 
series of circles, starting with a point, increasing in size, then reducing in size 
back to a point, and finally disappearing, in the same fashion it appeared.   

 
A. Square is observing the sphere passing through flatland.  (Abbott 143). 
The slicing model of visualizing the fourth dimension stems from these notions in 
that a fourth dimensional being passing through spaceland would appear to be a 
three-dimensional object gradually increasing and then decreasing in size.  If a 
four-dimensional sphere were to enter spaceland, then it would look like a regular 
sphere of three-dimensions that appears from seemingly nowhere, increases and 
decreases in volume, and then disappears.  Due to the regularity of a sphere, this 
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is not a very compelling example, since it doesn’t provide much information as to 
how the sphere would look in the fourth dimension.  A more interesting example 
is the hypercube (a fourth-dimensional cube) passing through the third dimension 
at right angles to the main diagonal of the hypercube.  According to Ian Stewart 
this is Charles Hinton’s, a late nineteenth century British physicist and 
mathematician, favored method of viewing a hypercube (Abbot 175). 
 
 

 
Slices of a hypercube perpendicular to its main diagonal (Abbot 175) 

 
Slices of a cube perpendicular to its main diagonal (Abbot 166) 

 
 
In order to get a better understanding of the fourth dimension, these slices of our 
perception of the object must be viewed separately but considered as a whole. 
 
The projection method of visualizing the fourth-dimension utilizes projective 
geometry, a product of perspective drawing.  A cube can be drawn on a two-
dimensional surface using projection techniques to appear as a square within a 
square, in which the cubes vertices are distorted in their actual length and the 
location of the smaller square on the z-axis is not readily discernible unless it is 
known that the object is a cube. 
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A projection of a cube onto a plane 
 
 
Analogously, a hypercube can be projected into three-dimensional space as an 
object containing eight cubes, including a surrounding cube.  However, similar to 
the projected image of the cube the projection of the hypercube distorts the lengths 
of the vertices and the location of the eight cubes, in the fourth dimension, in 
respect to each other. 

 
 

A drawing of a projection of a hypercube into space  
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Cubism was born out of the paintings made by two friends, Georges Braque and 
Pablo Picasso, in France during the early twentieth century.  They were both 
attempting to move in a direction that opposed traditional perspective drawings of 
the world around them.  Guillaume Apollinaire, an art critic and poet, wrote that 
Braque and Picasso were “moving toward an entirely new art which will stand, 
with respect to painting as envisaged theretofore as music stands to literature.  It 
will be pure painting as music is pure literature” (Stokstad 1077).  Picasso 
suggested, “the viewer should approach the painting the way one would a musical 
composition…by analyzing it but not asking what it represents” (Stokstad 1077).  
“Pure Painting” may be a representation of the fourth dimension, a more complete 
way of looking at space, but also a way of seeing it that cannot be understood 
completely until each part of it is analyzed one by one.  This method of viewing 
cubist paintings is similar to the method employed when one considers the slicing 
model of the fourth dimension. 

 
Georges Braque.  “Man with a Guitar.”  Oil and sawdust, 1914.  (Cabanne 50). 
 
Despite the obvious similarity between Picasso and Appolinaire's statements about 
cubism’s relations to music and the subject matter of Braque's painting being a 
guitar, this piece also provides evidence for the cubist’s influence by the ideas of 
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fourth dimensional geometry.  The painting is made up of various slices of space 
reduced to a two-dimensional image, and then represented together to imply their 
relation to one another.  The head at the top of the painting is shaped like a cube 
and floats separately from the rest of the figure, adding another element to the 
fragmentation of the painting.  Braque’s painting could be seen as a time lapse of a 
higher dimensional figure passing through a lower dimension. 
 
 
 
 
Marcel Duchamp, an important member of two early nineteenth century art 
movements Dada and Cubism, seems to have the most technical knowledge of 
fourth dimensional geometry compared to the rest of the artists involved in the 
cubist movement.  Using his painting from 1912, “The Bride,” as a staring point 
Duchamp set out to create a pictorial representation of the fourth dimension that 
surpassed all his earlier attempts.  From 1915 to 1923, Duchamp worked on this 
piece, which ended up being titled “The Bride Stripped Bare by Her Bachelors, 
Even (The Large Glass).”   
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Marcel Duchamp.  “The Bride Stripped Bare by Her Bachelors, Even (The Large 
Glass).”  Oil, varnish, lead foil, lead wire, and dust on glass panels encased in 
glass, 1915-1923.  (Stokstad 1103). 
 
 
In his notes for the painting, Duchamp stressed the, “distinction between the 
‘fluidity’ of the bride’s domain (top panel), and the strictly measured three-
dimensional perspective of the bachelor apparatus (bottom panel)” (Henderson 
134).  Part of Duchamp's understanding of the fourth dimension is related to the 
idea that fourth-dimensional objects, due to their fluidity, are immeasurable, which 
is illustrated by the cloudy abstraction that makes up part of the bride.  Duchamp 



Bodish 

seemed to relate to the notion of fourth-dimensional objects being the more 
complete image of the object, and that the part of the object we are accustomed to 
seeing is only a small piece in a larger body.  Similar to the projection technique of 
viewing fourth-dimensional objects, Duchamp wrote in his notes on the painting 
that in order to grasp the fourth dimension one must “construct all the three-
dimensional states of the four –dimensional figure the same way one determines 
all the planes or sides of a three dimensional figure” (Henderson 140).  “A Large 
Glass” was painted on a glass pane because Duchamp believed that in order to 
“permit an imaginative reconstruction of the numerous four-dimensional bodies” 
(Henderson 141), the viewer must be able to see the images from multiple 
perspectives.  By painting on glass, it allows the viewer to wander around the piece 
and get a better understanding of a higher dimensional object.  Similar to how a 
sphere appears as a circle from only one perspective and it is not apparent that the 
object is a sphere until it is observed as a circle from all perspectives by wandering 
around it.  Another interesting reason why Duchamp may have used glass as a 
canvas is its similarity to the sphere looking into flatland.  The observer sees on the 
bottom panel a three-dimensional image made into a two-dimensional slice of the 
observer’s space. 
 
Fourth-dimensions of space are often misinterpreted as time being the fourth 
dimension.  Although both theories are represented in cubism, they are distinctly 
separate.  Time has been described as a fourth dimension since Joseph Lagrange’s 
Theories des function analytiques, from 1797.  However, Charles Hinton 
“repeatedly turned to the notion that time could be defined as a fourth spatial 
dimension of geometry, not simply another number necessary to describe a place at 
a certain time” (Robbin 25).  Hinton often used the example of a spiral being 
pulled through a plane, which from the point of view of a Flatlander appears to be 
a point moving around in a circle.  “According to Hinton the spiral is the complete 
static model of the events…it has a greater philosophical reality than the moving 
point, and thus it should be the object of our consideration” (Robbin 25).  The 
event is as dependant upon space as it is upon time, and could therefore be said to 
be an invariant model of reality.  This notion of time as an extra dimension came 
before the current status-quo understanding of space-time dictated by Einstein’s 
theory of special relativity and Minkowski’s geometry that goes along with it. 
 
Special Relativity is derived from two principles.  Both are experimental facts 
boldly assumed to hold universally.  The first says that physical laws are the same 
for all observers.  The second states that it is a law that light travels at 300,000 
km/sec [c] (Kennedy 17). 
 
 
From these assumed principles, one can infer that the time and space of an object 
vary depending upon the velocity of that object.  This occurs in Einstein’s mind 
because  if a ship is traveling at 200,000 km/sec, 100,000km/sec slower than (c) 
and another ship is traveling in the same direction at 100,000 km/sec, 200,000 
km/sec slower than (c), and light as observed from both ships travels at a constant 
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speed of (c) then both ships must be measuring the speed of light with different 
perceptions of time and space (in this case each ship would have a different set 
interval for what a second and a kilometer looked like). 
 
It would be less surprising to the astronauts in both ships if ship (I) measured (c) 
to be 100,000 km/sec and ship (II) measured (c) to be 200,000 km/sec since the 
velocity of an object moving alongside another object would logically be 
observed to change, depending upon the velocity of the measuring object.  
However, since both ships actually measure (c) to be the same, then it can be 
assumed that on ship (I) time passes slower and distances are smaller than ship 
(II) which has longer time intervals and shorter special measurements than a ship 
at rest.  For clarification, the shortening in space of lengths “contracts only in the 
direction of travel, and its diameter remains the same” (Kennedy 19). 
 
Minkowski referred to his four-dimensional space-time formulation of the special 
theory of relativity as entailing that “space by itself and time by itself are doomed 
to fade away into mere shadows, and only a kind of unity of the two will preserve 
an independent reality” (Joseph 426). 
 
Since three-dimensional geometry only deals with space, it is not able to explain 
the implications of special relativity.  In order to graph four dimensions, which is 
what Minkowski and Einstein believed our universe was, on a Cartesian plane the 
z and y-axis must be removed, it is much easier to look at the two variables that 
are subject to change, x and t.  Since time is always flowing through our universe, 
and length contractions only affect the x-axis, the z and y-axis can be taken out of 
immediate consideration.  Using Minkowski’s geometry a graph of something at 
rest would look like a vertical line, since time continues to pass and the objects 
length is constant at a single speed.  The faster something moves through space 
the steeper the slope of the graph becomes.  In Minkowski’s mind, since time and 
space are both subject to change in the form of either dilations or contractions 
respectively, the only way to understand the true nature of an event is to combine 
the two variable things into an invariable space-time interval.  The space-time 
interval is constant because according to the Lorentz transformation length and 
time are inversely related.  The smaller the length of something is the larger the 
time is.  As a time interval increases the length decreases, and as a length 
increases the time interval decreases, but the space-time interval stays the same, 
since the ratio between the two is an inverse relation. 
 
Although it is likely that the ambiguity of both topics of the fourth dimension 
caused them to be interrelated and subsequently used synonymously with each 
other by many people, including some Cubist painters.  The idea of a more 
complete understanding of the surrounding world still is prevalent in both space-
time geometry, and the geometry of four spatial dimensions.  Many cubist 
paintings contain more resemblances to the slice and projection models of the 
fourth-dimension.  However, one major piece, Marcel Duchamp’s “Nude 
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Descending the Staircase,” displays his views of the importance of time in its 
relation to space. 
 
Partially inspired by early photographs of objects in motion, Duchamp, instead of 
producing a rendering of a static image captures, the motion of the object, and 
paints an event instead.  Regardless of the distortions of the subject, since the 
painting takes the fourth-dimension of time into account it is in a way a more true 
to life rendering of reality than a static image, which is known to be distorted on a 
canvas as well even if the artist tries to paint the subject as it is seen. 

 
Marcel Duchamp.  “Nude Descending a Staircase #2.”  Oil on canvas, 1912.  
(Cabanne 85).   
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The search for what is really real and how it can be represented honestly by an 
artist seems to be a major driving force for the cubist’s interest in the fourth-
dimension.  Whether it is the invariance of space-time or the complete 
representation of an object in a fourth spatial dimension as opposed to the three-
dimensional slice of reality we see from day to day.  Many people tend to interpret 
cubism as the artists fragmented interpretation of the world, a representation of the 
fragmentation of Europe after WWI.  However, it may actually be a much more 
optimistic art movement than people realize, while it is a rejection of the past, it 
also may show hope for humans’ ability to find the true nature of the surrounding 
world.  In 1908 Henry Poincare wrote, in his book Science et Methode, “One who 
devoted his life to it could perhaps eventually be able to picture the fourth 
dimension” (Krauss 85).  Similar to the optimism of Einstein and other scientists 
during the early nineteenth century, cubism also put a great amount of faith into 
there being an order to the universe that humans can understand.  It is also 
important that people don’t view mathematics as a dull unchanging subject that is 
only of help to engineers and scientists.  When someone brings up art and 
mathematics in the same sentence usually it leads to a detracting statement towards 
one of the topics, or M.C. Escher enters the conversation.  Cubism cannot be 
understood completely unless it is looked at through an artist's, mathematician’s, 
and historian's perspective.  Combining these different slices of the whole 
interpretation is the best way to look at not just the nature of space but also the 
nature of people and the surrounding world.      
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What’s all the commotion over Commognition? 
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If straight edge and compass constructions are the so-called “atoms” of Euclidean geometry, if 
sequences are the “atoms” of Analysis, then what are the “atoms” (if any) of mathematics 
education? Arguably mathematics education is a much wider field than Euclidean Geometry or 
Elementary Analysis, however there are several fundamental things that the field purports to 
study, chief among which is mathematical thinking or more generally “thinking”. The book 
under review, though it appears in a Cambridge University Press series entitled Learning in 
Doing: Social, Cognitive, and Computational Perspectives, is in my view situated at the 
intersection of Consciousness Studies, Linguistics, Philosophy and Mathematics Education.  One 
does not come across books within the mathematics education genre that take on the tasks of 
operationalizing thinking and defining consciousness. This review began a year ago when an 
excerpt from the book was included in vol5, nos2&3 [July 2008] of the journal. My personal 
interest in the contents of the book lay in the promise that the book would tackle existing 
dichotomies in the current discourses on thinking with the aim of showing they are resolvable or 
even transcend-able?  

 

To do so, the author Anna Sfard coins the concept of commognition- a dissected juxtaposition of 
cognition and communication in order to remove the duality between thinking and 
communicating, and to resolve the four quandaries that have plagued existent discourses on 
thinking, namely-the quandary of number, the quandary of abstraction (and transfer), the 
quandary of misconceptions, the quandary of learning disability. Each quandary is illustrated and 
explained to the naïve reader in the form of discourse transcripts in chapter 1. The transcripts are 
presented as episodes from a larger data set. Chapter 1 sets the tone for the rest of the book. Even 
though there are many new terms that constitute the concept of “commognition”, these terms are 
explained in the glossary towards the end of the book.  
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Chapter 2 entitled Objectification problematizes the ineffectiveness of (existing) research which 
does not recognize that Research (capital R) ultimately is a form of communication defined by 
cogent narratives, with different disciplines according different rules of endorsement and 
engagement. Sfard warns of the dangers of unifying labels used in dominant research discourses 
that stand for many different phenomena and thus impede any form of clear communication to 
occur as well as impede the formulation of common definitions necessary to operationalize 
mathematical thinking without creating irresolvable dichotomies. Dichotomies invariably arise 
when attempting to objectify human activities (involving thinking and learning) and when 
attempting to communicate it. Chapter 3, Commognition: Thinking as Communication begins 
with the famous words of Richard Rorty “The world does not speak, we do” and goes on to give 
a short history of Disobjectification of Discourses on Thinking [pp. 68- 76]. The crux of this 
chapter is to reveal to the reader linguistic traps inherent in the way language in structured, 
especially when we accept that language is culturally oriented and dependent. 

 

The most compelling chapter of the book in my opinion is chapter 4: Thinking in Language, in 
which an interesting definition of “consciousness” is found. Sfard explains the dilemmas arising 
when we try to separate thinking from speaking, awareness from consciousness, and often 
invokes Vygotsky and Wittgenstein to drive home the point that paradoxes are bound to occur in 
any attempt to carve thinking into micro-components. As a reader one actually finds oneself 
within the stream of thought that Sfard carefully wades into, to arrive at her eureka(!) discovery 
of recursivity (of reflexivity at ever deepening levels) to be the elementary particle of 
commognition. At least to me, this was a new presentation of something well known within the 
canon of consciousness studies that occurs at the intersection of theology, science, psychology 
and linguistics. For instance in an article I wrote together with the philosopher Walter Benesch 
on the topic of consciousness and science (see Sriraman & Benesch, 2005), we analyzed non-
dual traditions, particularly the Advaita tradition of Shankara from the 9th century (AD) in India. 
In this paper we defined human consciousness as the possibility of attending/intending, and 
described specific experiences and their interpretations as possibilities for consciousness as 
attentions and intentions. Experiencing is a synthesis of of and for. Alternatively, from the 
position of Shankara and Advaita-Vedanta: the possibility of superimposing and the possibilities 
for superimposition. We gave an example of this synthesis by trying to explain and/or define 
‘self’ or ‘world’. 

 

Any explanation, interpretation, definition, etc. is an attending/intending flow with at least five 
aspects. 
1. The ‘observer, interpreter, explainer’; 
2. The ‘interpreted, observed, explained’ or experienced object which is the 
context to which the interpreter refers; 
3. The process of ‘interpreting, observing, explaining’; 
4. The ‘interpretation, observation, explanation’ that emerges from 1 – 3; and 
5. The ‘awareness’ of and ability to distinguish the preceding four aspects of this continuum and 
to focus upon them individually and collectively, assigning each significance and value. 
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It is within this fifth aspect that perspectives occur on the other four and upon number five itself. 
Every aspect of this continuum provides a vast number of possibilities for consciousness, while 
consciousness as the possibility of the totality is not reducible to any particular aspect, and is the 
source most clearly reflected in the fifth aspect. This five-aspect continuum seems to us implicit 
in all subject-object-process language- understanding relationships. The challenge is to preserve 
the totality of ‘‘consciousness as possibility’’ while utilizing and/or emphasizing particular 
aspects within it as possibilities for consciousness. Otherwise, we confuse the aspect with the 
whole.It is the processing of ‘‘consciousness as possibility’’ that is the source of exploring, 
explaining, defining—the possibility for theorizing, theologizing, biologizing, cosmologizing, 
psychologizing. It is the processing of ‘‘consciousness as possibility’’ that discusses the 
‘‘possibilities for consciousness’’ in the contexts of the sciences, arts, and humanities (Sriraman 
& Benesch, 2005). 
 
 
At the end of chapter 4, and the culmination of part I of the book, Sfard takes an evolutionary 
view of the human linguistic communication and claims that it is characterized by “unbounded 
recursivity”, a claim that I agree with. In her words: “Our unbounded ability to communicate 
about communication was also said to play a crucial role in the phenomenon of consciousness” 
(p. 124). 
 
 
 
Part II of the book consists of 5 chapters (chps 5-9) which focus specifically on mathematics as 
discourse. Sfard puts forth her thesis that mathematics is a form of communication and presents 
copious examples from the historical development of mathematical objects to substantiate the 
argument that discursive objects are a natural outcome of mathematical communication (viewed 
from a lengthy time span). These chapters cohesively use commognitive grammar (pun intended) 
to put forth the claim that mathematics is an autopoietic system. Episodes continually 
interspersed in the second part of the book lend credence to the claims. Ultimately the book 
clearly identifies mechanisms that underlie the historical development of the subject and how 
commognition becomes central to how thinking and learning progress within shared 
communities of learning. It would be particularly interesting for the radical constructivist camp 
within mathematics education to read this book and analyze whether their position can be 
subsumed as an extreme case within the commognitive framework- after all we do talk to 
ourselves! This could well be the goal of a graduate course.  
 
 
The reader is bound to ask whether the four quandaries are resolved in the book? My slant on 
this, one way or another would take away the intellectual tension that arises when reading this 
book. So I urge the interested reader to answer this for themselves by reading the book. Given 
the generality and universality of the part I of the book, Sfard carefully annotates the book with 
footnotes that explain her rationale, motivation and warrants for statements made, in addition to 
listing instances/disclaimers in which certain claims are not applicable. This is very masterfully 
done and allows one to enter her stream of “commognition”.  
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Caveat emptor: The book is not an easy read by any means, but well worth one’s time and efforts 
if one is active as a researcher in mathematics education, and constantly stumped by the inability 
to clearly communicate about the same research problems, or the same research concepts, or the 
same “things” that are being operationalized differently. Thinking as Communicating provides 
the grammar by which communication can be better fostered between researchers analyzing the 
same discursive “mathematical” objects in teaching and learning situations. I highly recommend 
the book.  
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