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Graph isomorphisms and matrix similarity:  

Switching between representations 
 
 

Thierry Dana-Picard1 
Jerusalem College of Technology, Israel 

 
 

Abstract: A proof whether two graphs (possibly oriented graphs or multigraphs, etc.) 
are isomorphic or not can be derived by various methods. Some of them are reasonable 
for small numbers of vertices and/or edges, but not for larger numbers. Switching from 
iconic representation to a matrix representation transforms the problem of Graph Theory 
into a problem in Linear Algebra. The support provided by a Computer Algebra System 
is analyzed, in particular with regard to the building of new mathematical knowledge 
through a transition from graphical to algebraic representation. Moreover two important 
issues are discussed: a. the need for more than one representation; b. the direction of the 
switch between representations, which is non standard, from graphical to algebraic. 
 
Keywords: Computer Algebra systems (CAS); Collegiate mathematics; Graph theory; 
Linear Algebra; Matrices;  representations; isomorphisms;  

 
 

I. Introduction. 
Undergraduate mathematics   is often taught as   a collection of stand-alone courses, 
and students are not always aware of the bridges that exist between different areas of 
mathematics. Geometry and Linear Algebra are taught in separate courses (a nice 
exception is Dieudonné's book, 1969).  Sometimes, Linear Algebra and Ordinary 
Differential Equations are taught together in one course, but usually not. Moreover, 
numerous topics relevant to applications of Analysis to Geometry disappeared from 
syllabi a long time ago. Thom (1962) expresses strongly his opposition to this trend. 
 
In the present paper, we show and explore a bridge between two other mathematical 
fields, Graph Theory and Linear Algebra.  Graph Theory is part of Discrete 
Mathematics, a branch of Mathematics which deals with objects that can be described 
by either finite or countable sets. In regular courses, Linear Algebra is presented over 
the real and the complex fields, in which cases it is understood as belonging to the 
continuous part of Mathematics, not to the discrete part.  Linear Algebra over finite 
fields is taught in advanced courses, not aimed to every student. The discrete point of 
view provides numerous methods for proving theorems, different from the methods 
used in a continuous setting (see Grenier 2008). Switching from Graph Theory to 
Linear Algebra gives an opportunity to use other methods than the typical methods of 
Discrete Mathematics, i.e. exhaustion of cases (enumeration), induction, and so on. 
The technology is not responsible for the discovery of the bridge, but it helps to 
explore it, and then helps to study cases which would be unilluminating with only hand 
made computations.  
 

                                                 
1 Email: dana@jct.ac.il 



  Dana-Picard 

Moreover, we will show that the activities presented here lead to develop new 
mathematical knowledge simultaneously in two domains. The situation at the course 
starting point is as follows:  

1. Matrix similarity is a standard topic in any course in Linear Algebra. But, as 
this topic appears at the end of the course, applications to other fields are rarely 
shown. This was the case for the students whose work is presented in this 
paper.  

2. Algebraic graph theory is absent from numerous textbooks in Discrete 
Mathematics and from the syllabus of courses.  

 
In one class, the teacher decided to have his students learn at least a few topics of 
algebraic graph theory, outsourcing to a Computer Algebra System (CAS) part of the 
operative knowledge. Later, the author had a discussion with a colleague teaching a 
parallel course. This colleague valued the introduction of these activities which 
enhance an important mathematical knowledge, but he said that doing the same thing 
with his own class was impossible, in particular because of the lack of CAS literacy of 
his students. 
 
''Technology can be used to compute, ..., to reinforce, clarify, anticipate, or get 
acquainted with ideas, and to discover and investigate phenomena'' (Selden, 2005). As 
showed by Dana-Picard (2005), the exploration of a cognitive neighborhood2 for a 
given mathematical topic is mainly concerned by the last two components, discovery 
and investigation.  How investigation can be fostered by switching between registers 
of representations has been studied by Duval (1999), Arcavi (2003), Presmeg (2006), 
Dana-Picard and Kidron (2008), etc... We elaborate on this issue in the last section. 
Not only the mathematical fields are different, but also the ways to use a CAS are 
different.  
 
Various kinds of technological tools have been introduced into the mathematics 
classroom and into the researcher's lab, ranging from a graphical hand-held device to 
an interactive (non user-programmable) website and to a CAS.  In particular, their 
graphical features are emphasized in order to provide visualizations, either fixed or 
animated, but all the other features, algebraic, numerical,   etc.,    are   important    and   
they   are    used   in classroom.  In  some   CAS,  algorithms  specific   to  Graph  
Theory   have  been implemented, which enable  the drawing of a picture  of the graph 
from the  abstract definition  of  the  vertices and  the  edges.  For the classroom 
activities the Derive software has been used. It has no implementation of specific 
features for Graph Theory and only the  Linear Algebra  algorithms were used. Note 
that  the  Linear  Algebra  packages  of other  CAS  can  assist  this activity,  
sometimes  with specific  outputs.  We  address this  issue in Section V. 
 
 

II. The mathematical situation. 
 

An  important problem in computational  complexity theory  is determining  whether,  
given  two  graphs  1G  and  2G ,  it  is  possible to re-label the vertices of  one graph so 

                                                 
2 Recall that a mathematical domain A is said to belong to a cognitive neighborhood of another 
mathematical domain B if theorems and/or methods from B can be applied to solve problems 
in A. 
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that it is identical to the  other, or not.  This re-labeling is called a graph isomorphism 
and we denote 21 GG  .In simple words, two graphs are isomorphic if they can be 
represented with identical drawings. For example, see Figure 1: the permutation of 

vertices  







42531

54321
 preserves the existence (resp. the non-existence) of an edge 

between vertices, whence ensures the fact that the two given iconic representations 
correspond to isomorphic graphs. A formal definition of a graph isomorphism can be 
found in Rosen's book (1999, p. 460). 
 

 
 

(a) First labeling                          (b) Second labeling 
 

Figure 1: One picture, two sets of labels. 
 
Adjacency matrices are used to describe graphs in a computational way. For a given 
graph, label  the  rows  and  the columns  of  a  square  matrix  ija=A  by the  vertices 

of the graph. For a non-oriented graph, ija is the number of edges between vertices i 

and j. For an oriented graph ija  is the number of arrows from vertex i to vertex j.   

Thus, the adjacency matrix of a non-oriented graph is symmetric and for an oriented 
graph the adjacency matrix can be either symmetric or non-symmetric.  Relabeling  the 
vertices of  the graph  changes the adjacency  matrix in the  same way reordering the 
vectors  of a basis of a  n-dimensional vector space changes the matrix  of a linear 
operator: the  original matrix A and the new one B are  similar, i.e. there exists an 
invertible square matrix P of order n such that B=P-1AP. 
 
Using adjacency matrices, we translate a problem in Graph Theory into a problem in 
Linear Algebra. The second one is not easier than the first one. To determine whether 
two given square matrices of the same order are similar is easy when both are 
diagonalizable.  If they have the same eigenvalues, with the same respective   
multiplicities, then   they have   the same diagonalization,    up    to    a    re-ordering   
of    the    chosen eigenvectors. The set of eigenvalues (each one is written a number of 
times equal to its multiplicity; for example we write {1,1,2} if 1 is a double eigenvalue 
and 2 a simple eigenvalue). Suppose that diagonalizations of the matrices 1A  and 

2A exist    and   are    given    by   1
1

1 PAP=D 1
 and 22

1
2 PAP=D  , for appropriate 

invertible matrices 1P  and 2P , then    21
1

21 PPAPP=A 12
  i.e. 1A  and 2A are similar.  

If the matrices are not diagonalizable, similarity is harder to check. Of course, if one 
matrix is diagonalizable and the other is not, they are non similar. Note that the 
theorem sustaining the classroom activities is a "if ... then ..." theorem, not a "if and 
only if" theorem. If the graphs 1G  and 2G are isomorphic, then their adjacency 

matrices have the same eigenvalues, but the converse is not true (see Cvetkovič et al. 
1995, pages 61 sq.). The smallest known pair of non isomorphic graphs with the same 
spectrum is given by Skiena (1990, page 85); see Figure 2. Both graphs have two 
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simple eigenvalues 0 and -2, and a triple eigenvalue equal 0, and their adjacency 
matrices are similar. The non existence of an isomorphism can be found at first glance: 
the graph in (a) is connected and the graph (b) is not.  
 
   

                  
       (a)                                                                        (b) 

 
Figure 2: Non isomorphic graphs with the same spectrum. 

 
The volume of the computations increases very fast with the number of vertices of the 
graphs. Here a Computer Algebra System reveals useful for technical assistance on 
computing. But not only for this assistance. Outsourcing of the computations to the 
CAS and careful observation of the output may yield a better understanding of the 
mathematical situation and enhance understanding of older knowledge. ''Technology 
can be used to compute, to reinforce, clarify, anticipate, or get acquainted with ideas, 
and to discover and investigate phenomena'' (Selden, 2005).  
 

III. The study frame. 
The Jerusalem College of Technology (JCT) is an Engineering School for High-Tech 
and Orot College is a Teacher Training College. In both institutions students learn a 
one-year course in Linear Algebra and an introduction to Graph Theory is given as part 
of a subsequent course in Discrete Mathematics. Matrix similarity belongs to the 
Linear Algebra syllabus. For various reasons, this topic has been taught at the very end 
of the course and quite no application to other fields of mathematics has been shown, 
beyond the fact that a basis change transforms the matrix of a linear transformation 
into a similar matrix.  
 
Isomorphisms of graphs are an important topic in the syllabus. Conversations with 
colleagues teaching parallel courses revealed that students learn generally existence 
theorems related to degrees of vertices. Several textbooks do not mention more than 
this and the exercises are based either on the definition only or on such theorems about 
degrees of vertices (or in-degree and out-degree for directed graphs). Students are 
often reluctant to use adjacency matrices beyond writing the adjacency matrix of a 
given graph, or conversely drawing a picture of a graph whose adjacency matrix is 
given. "The computations are heavy", they say (for example, recall that paths of a 
given length n are counted using the nth power of the adjacency matrix). Therefore a 
Computer Algebra System (namely Derive) has been used in the classroom activities, 
in particular the  Linear Algebra algorithms. Note that  the  Linear  Algebra  packages  
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of other  CAS  can  assist  this activity,  sometimes  with specific  outputs.  More than 
two thirds of the students in the class had a good CAS literacy, as a result of two 
previous courses strongly based on CAS use.  Other students had an opportunity to 
improve their knowledge and their know-how with regards to software. 
 
The central topic of the activities is new for the students. It has to be  introduced  and  
developed   explicitly  by  the  teacher,  using  strategic  scaffolding,  one  of the  
scaffolding  categories detailed  by  Hobsbaum  et   al  (1996);  Anghileri  (2006, p.  
36) elaborates on this issue. The main characteristics are: 

 A measured amount of teacher support; 
 A careful selection of the tasks and of their difficulty level; 
 Students' ability to build a mathematical meaning from the given tasks; 
 Explicit strategies. 

The extended literature about scaffolding emphasizes the fact that scaffolding is 
relevant for one student-one teacher situations. Here the teacher had to provide such a 
scaffolding separately to every student, but also a form of "global" scaffolding to the 
class as a whole.  
 
Within the global frame of the group, each student can have his/her own learning 
process. Therefore consolidation of knowledge ( Dreyfus and Tsamir, 2004) has to be 
observed on an individual basis. As the work described in this paper is based on 
classroom activities, i.e. not in an individual frame, we will elaborate only briefly on 
the consolidation issue, in the last section.    
 
For the CAS assisted part of the work, we refer to Fischer's (1991) didactical principle 
of   outsourcing operative knowledge and operative skills.   Peschek and Schneider 
(2001) regard operative knowledge as a means to generate new mathematical 
knowledge (see also Peschek 2005).   In  fact  they distinguish  three  fields  of 
competence:  basic  knowledge, operative  knowledge  and skills,  and reflection.   In 
the following activities, the needed basic knowledge is matrix similarity, acquired at 
the end of the Linear Algebra course.  Because of a lack of time in this course, the 
topic has been shown but not applied in concrete situations.   Students have now an 
opportunity to manipulate this knowledge in an applied situation. The operative skills 
are outsourced to the CAS. Most students (but not all of them) had already good 
operative skills for matrix computations using the CAS, including computation of 
eigenvalues and eigenvectors. During the sessions, they could improve these skills and 
discover new commands of the CAS. Moreover, new mathematical knowledge has 
been constructed, new CAS literacy being part of it.  
 
 
 

IV. Classroom activities with CAS. 
We present here classroom activities which took place with a group of 15 students 
(about 20 years old). Their course in Graph Theory comes one semester after the   
course in Linear Algebra. This enables them to use eigenvalues and diagonalization of 
matrices in a situation very different to what has been met either in Linear Algebra or 
in other courses with some geometric flavor. The students were already used to switch 
from iconic representation to algebraic representation and from algebraic 
representation to iconic representation. 
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1. First activity. 
Consider the graph with two different vertex labeling given in Figure 1. The respective 
adjacency matrices are 

























01110

10011

10010

11101

01010

1A  and 

























01100

10110

11011

01101

00110

2A . 

 
Operative knowledge: using   Derive's   command   eigenvalues,   the   students 
found that   both matrices have the same five distinct real eigenvalues. Thus, the 
matrices 1A  and 2A  are diagonalizable, and for suitable eigenvector orderings, both 

matrices have the same diagonalization. It follows that the matrices are similar, 
whence 21 GG  . 
 
Reflective thinking: 
Mina: This is not new; we knew already that the graphs are isomorphic! 
Vered: So what? 
Mina: Why did we do all this work? 
Vered: We are now convinced that our way of working is right. Not? 
Silence for a while. The second student sees that something still "disturbs" the first 
student. So she adds: 
Vered: We see always a trivial example when learning something new. So we are really sure 
that the theorem is right. I will do the same thing when I"ll teach. 
 
This remark was important for the teacher. It shows that Vered is aware not only of the new 
mathematical knowledge she is currently leaning, but also of the structure of the educative 
sequence.  
 
       2. Second activity. 
We consider the two graphs shown in Rosen's book (1999, p. 461, example 10); see 
Figure 3. The vertices of the graph 1G will be denoted by ku and the vertices of 

2G by 81,...,=k,vk . 
 

 
G1                   G2  

Figure 3: Two non isomorphic graphs 
 

Reflective thinking: 
Teacher: Let us check whether these graphs are isomorphic or not. 
Vered: Easy! We check the degrees of the vertices. 
Short silence, everybody computes. 
Vered: These are the same degrees. 
Teacher: So, what is your conclusion? 
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Leah: The graphs are isomorphic. 
Short silence. 
Hadas: Maybe not. 
Vered: Why not? 
Hadas: The degrees are not at the same place in the two graphs. 
A couple of students, together: She is right! 
The teacher asks for a clearer explanation of what happens. One student explains that 
the degree 3 vertices compose a connected subgraph in 1G , but not in 2G . This 
convinces the class that the two graphs are not isomorphic, but more than 10 students 
demand what they call "a stronger algebraic proof''. 
Operative knowledge: 
Vered: Let's use matrices as we did before! 
Teacher: Good idea, do it. Please write down the adjacency matrices. 
The adjacency matrices of the two given graphs are 

 



































01011000

10100000

01010010

10100000

10000101

00001010

00100101

00001010

1A    and   



































01011000

10100000

01010000

10100001

10000100

00001010

00000101

00010010

2A  

 
With Derive's command eigenvalues, the students determine the eigenvalues of 1A . 

The output is:  0, -1, 1,
2

17

2

1
+ ,

2

17

2

1
 , 

2

17

2

1
+  and

2

17

2

1
 . 

Reflection: 
Teacher: Any comments? 
Short silence. 
Shira: There are not enough. 
Teacher: Not enough what? 
Shira: Not enough eigenvalues. There are only 7. 
Teacher: What did you expect? 
Myriam: Eight. 
Teacher: So, what happened? 
Short silence. 
Vered: There must be one double. 
Teacher: Why? 
Vered: The matrix is symmetric, it must have a diagonalization. 
Teacher: Very nice. How can we know who is the double eigenvalue? 
Short silence. 
Yael: (with a short hesitation) how can we compute the characteristic polynomial? 
Myriam: It's a determinant, there must be a command. 
Teacher: Right. Who knows? 
 
Operative knowledge: 
A couple of students answer that the command is charpoly. The teacher recalls the 
syntax. With this command, the result is  
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 162510162510 24622468  λ+λλλ=λλ+λλ=λP )(  
Vered: Here it is; it's 0. 
Teacher: Vered, what is 0? 
Vered: The double eigenvalue. 
Myriam: How nice!! 
Tehila: OK, but what do we do now? 
Vered: The same thing with the other matrix. 
 
The computation for A2 is performed the same way, using Derive. The eigenvalues are 
 






  522253

4

1
++ , 





  522253

4

1
+ , 





  522253

4

1
+ ,






  522253

4

1
, 





  522253

4

1
++ , 





  522253

4

1
+ ,






  522253

4

1
+ , 





  522253

4

1
. 

 
Reflection: 
Teacher: What do you see? 
Shira and Vered: (at the same time) they are different. 
Teacher: Different from what? 
Shira: From 1A . 

Vered: We did it! The matrices are not similar. 
 
   3. Third activity. 
After  the second  activity, students  received  homework assignments (check whether  
couple of pairs of graphs are isomorphic or not). The next  meeting  took place  one 
week  later,  with a  third  classroom activity. The  task was to  show that two  given 
graphs with  the same number   of  vertices   and  the   same  number   of  edges   are  
non isomorphic. The teacher could let  the students work on their own, and almost no 
intervention was necessary. 
 
The  next step  in the  same  meeting consisted  in turning  students' attention towards  
similar situations, either with  oriented graphs or with multigraphs.  Precise definitions 
are given by  Rosen (1999). One example  is shown by Figure  4. The class dealt with  
the  new  situation using  the  same algebraic  and technological tools, but in  a 
different algebraic situation. The same CAS commands were used as in the previous 
sessions. 
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First example. The graphs in Figure 4 are given and the students are asked to check 
whether they are isomorphic or not. 
 

                                 
 

The graph 1G .                                                The graph 2G . 
 

Figure  4 :  Two oriented graphs - first example . 
 
The graphs are oriented graphs, and their respective adjacency  matrices are not  
symmetric. We have:  





















0000

1011

1011

0100

1A    and 





















1101

0010

1101

0000

2A  

 
A  few students  note that  the  theorem on  the diagonalizability  of symmetric 
matrices  cannot apply,  and do not  know how to  proceed. A couple of students 
propose immediately to use the CAS. They determine the eigenvalues of 1A  and the 

eigenvalues of 2A : for matrices, the eigenvalues are  
2

51
,0


 and 
2

51
. 

 
Myriam: There are only three. 
Shira: Yes, one is double. 
Myriam:  (Asks the teacher) We look for eigenvectors? 
Vered: Yes, with the computer. 
 
Most of the students determine the eigenvectors with the CAS and conclude that both 
matrices are diagonalizable, with the same diagonalization, whence the graphs are 
isomorphic. 
 
At this point, something interesting happens. 
 
Yael: I computed the characteristic polynomial of the matrices. It is the same. So they are 
surely similar. 
 
At the same time, one student says ``yes!!'', and another one says ``No! you don't 
know!''. A discussion follows, recalling that having the same characteristic polynomial 
is a necessary condition for matrices to be similar, not a sufficient condition. The 
student who said ``no'', named Rachel, explains that they must look for eigenvectors. 
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Rachel: There exists a basis of eigenvectors for each matrix, therefore they are similar (she 
means ``the graphs are similar''). 
 
Second example. Now the students are given the graphs displayed in Figure 5. 
 

                
 

The graph 1G .                                        The graph 2G . 
 

Figure 5:  Two oriented graphs - second example . 
 
 
Their respective  adjacency matrices are 





















0010

1000

0101

1100

1A    and    





















0010

1010

0001

1100

2A . 

 
Here all the students follow Yael's way and compute the characteristic polynomials.  In 
both cases they obtain   124  P .  Using  once  again  the software,  they  
determine  the eigenvalues. Most of them appear with very complicated expressions 
(complex numbers whose real part and imaginary part are given by non rational 
expressions). 
 
Vered:  It's ugly! 
Teacher: Why? 
Vered: Impossible to understand. 
Teacher: Why? 
Rachel: Complex numbers. 
Teacher: Is this a problem, from an algebraic point of view? 
Vered: But they are four. 
Teacher: So, what is your conclusion? 
Vered: We did not learn matrices with complexes, but ... (She waits a few seconds) this means 
that the matrices are diagonalizable? 
 
Finally, the teacher has to explain that here the algebraic properties (for determinants, 
characteristic polynomial of a matrix, etc.)  are the same over the reals and over the 
complex numbers. The class concludes that the two matrices are similar, whence the 
two graphs are isomorphic. 
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Third example.  Finally, the teacher modifies slightly the graphs and gives to the 
students the graphs displayed in Figure 6 
 

 
The graph 1G .                                        The graph 2G . 

 
Figure  6:  Two oriented graphs - third example . 

 
 
 
The respective adjacency matrices are 





















0010

1000

0101

1101

1A    and   





















0010

1010

0001

1101

2A . 

 
All the students but two compute immediately the characteristic polynomials. They are 
respectively     234

1 P  and   1234
2  P . The conclusion is 

shouted by three students at the same time: ``they are not similar!'' 
 
Teacher: Who are not similar? 
Yael: The matrices. 
Teacher: Why? 
Naomi: (speaking for the first time) The polynomials are different, so the eigenvalues are 
different. 
Teacher: All of them? 
Naomi: No. At least one. And here we have 0 for 1A  and not for 2A . 
Teacher: Remind us what the question was? 
Yael:  If the graphs are isomorphic. 
Vered: OK, the graphs are not isomorphic. 
 
 
    3. Brief description of further activities. 
Further work and activities have been done with the same class. After the second 
activity, students received homework assignments. The next meeting took place one 
week later. A  central task was to  show that two  given graphs with  the same number   
of  vertices   and  the   same  number   of  edges   are  non isomorphic. For this, almost 
no teacher intervention was necessary. Another task was devoted to understanding the 
non-reversibility of the theorem described at the end of the first section (see Cvetkovič 
et al. 1995, pages 61 sq.); its description does not fit in this paper. 
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Part of the third meeting was devoted first to oriented graphs because they may 
provide non-symmetric adjacency matrices, i.e. matrices which can be non 
diagonalizable. Then the students had to study a pair of non isomorphic graphs having 
the same set of eigenvalues. The goal of this last example was to convince the students 
that the whole study relied on a one-way theorem: if two matrices are similar, then 
they have the same set of eigenvalues, but the converse is not true.  
 
After the last meeting, the teacher had an informal discussion with the students. He 
asked for remarks about the CAS assisted work. Here are a few excerpts from the 
discussion between students (the first one was not previously quoted): 
Student A: I'm sure that I would not have worked out all  these examples by hand.  
Student B: And so? You would not have learnt this? 
Student A: No, I would have waited to see the answer from somebody else. 
Student B: And so you would not have learnt the topic! 
Student A: (hesitating) Maybe you are right, …, not so well. 
 
 
V. Discussion. 
 

1. The classroom activities. 
In the first activity, the teacher chose an example where the isomorphism between the 
graphs is trivial.  The graphical display itself proposes an invertible mapping between 
the sets of vertices. This enabled the students to discover how to work, in a situation 
where they have control on the results. Vered expressed this clearly. During this first 
activity, the students gained conviction that the working pattern is suitable. Therefore 
they were more independent from the teacher during the second activity. He helped 
somehow with passing from one step of reflective thinking to the next one, or with 
providing some new operative knowledge, such as an appropriate command of the 
CAS. The teacher's support was gradually faded; it was limited to questions. Reflection 
and interpretation were made by the students. 
 
Teacher's support has been gradually removed during the third activity. At the end all 
the students but two were totally independent of teacher assistance.  This  has  been  
checked  with  an assignment  which included  the study  of  one pair  of non  oriented 
multigraphs and of one pair of oriented multigraphs.  Finally, the educative segment 
has been spread over a little more than two weeks, and gradually developed, meeting 
Anghileri's request (2006). The strategy has been made clear already from start: 

 A progressive choice of examples: non oriented graphs, in order to have benefit 
of the theorem on the diagonalizability of symmetric matrices, then non 
oriented multigraphs and oriented graphs for which the theorem does not apply. 

 Translation into notions from Linear Algebra and use of a CAS. 
 

2. Switching between representations. 
The original definition of a graph as a pair of sets  EV , , where  nvvvV ,,, 21   is 

the set of vertices and  peeeE ,,, 21   is the set of edges, contains in itself a first 

kind of representation. Let us call this an enumerative representation.  For small n and 
small p,  it is possible to prove that two given graphs are isomorphic by construction of 
a specific isomorphism. Such a proof by construction becomes quickly unilluminating 
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when the number of vertices and/or the number of edges increases. In a situation where 
the graphs are not isomorphic, besides the "boring" aspect of  enumeration, there is a 
need to prove that all the cases have been considered (proof by exhaustion of cases). 
This is a formal proof, using combinatorial formulas, i.e. the point of view has been 
partly switched towards Combinatorics. Of course switching from the enumerative 
representation  EV ,  to an iconic representation helps, but increasing n and/or p has a 
similar effect in the new setting as in the old one. 
 
Considering only iconic representations of graphs does not yield enough insight into 
the concept of an isomorphism of graphs beyond simple examples, as suggested by 
Leah's reaction, and more by Student A in the last discussion. The matrix 
representation and its companion algebraic tools provide a possibility to have a more 
profound insight. "In some cases the current representations may prove an obstacle to 
the full development of a concept" (Ferrari 2003). Out of the record, students claimed 
that iconic representation is more readable for them, but others said that they felt more 
comfortable with matrix representation, as "they can do computations".  A foreign 
colleague of the author said (free translation): "I observe everyday researchers in 
Discrete Mathematics and in its Teaching. I see that, most of the time, they work with 
iconic representations, and not with matrices. They find numerous theorems. And also 
a lot of consistent situations for the students to work (colors, Euler paths, etc.). But it's 
different from what you do, and one completes the other".   
 
Despite the fact that matrix representation is more abstract than the graphical one, it 
opened the way to new mathematical knowledge, through manipulation both of old 
knowledge coming from another field and of the usage of a CAS. A great diversity of 
situations could not have been presented using graphical representation only (see 
Lesser and Tchoshanov 2005). Actually we may view the working sequence as a two-
step activity:  

a. Switching from the iconic representation to the matrix representation, 
according to Peschek (2005), as "one abstracts relationships from the 
(reference) context and presents them with symbols, thus outsourcing the 
problem in the formal-operative system of mathematics". 

b. Outsourcing (part of the) operative knowledge to the computer. 
 
Graphs, multigraphs (whether oriented or not) are defined as abstract objects, namely a 
pair of sets with a suitable property linking them (see Rosen 1999).  We have here two 
presentations for a graph:  

 The graphical presentation is visual/iconic (Lesser and  Tchoshanov 2005) and 
acts as "stimuli on the senses" (Janvier et al. 1993). 

 The other representation is algebraic. It is a symbolic representation enabling 
manipulations. 

 
As noted by Lesser and  Tchoshanov (2005), a single type of representation does not 
insure student learning and performance. In many occurrences, a graphical 
representation is used to "encode" more abstract properties. That is the case with the 
study of a function: the first steps, namely finding the domain and the possible 
symmetries, computing limits, derivatives, checking domains where the function is 
monotonous, where there are (eventually) extremal points and/or points of inflection, 
are then encoded into a graphical representation. It happens that this representation has 
to be fractioned into pieces, because an impossibility to represent all the special 
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features in one graph (see Dana-Picard 2005). Here the symbolic-algebraic 
representation is a useful tool for the student to understand the graphical situation and 
to gain a more profound insight.  
 

3. The switching direction. 
We wish to emphasize an interesting aspect of the work. As mentioned in first section, 
similarity of matrices is a topic which had been taught in a previous course, but a lack 
of time enabled the teacher to give only a small number of examples. Students' 
personal work suffered also of this lack of time for practice. A similar situation occurs 
generally for the study of graph isomorphisms, but for a slightly different reason. The 
amount of necessary computations increases very fast with the number of vertices in 
the graph. So the teacher may decide either to limit himself/herself to examples of 
graphs with only a few vertices, or to present larger graphs but showing only the 
results. In both cases, students do not acquire practical skills; they have no real 
opportunity to improve their operative knowledge. Activities built on the switching 
between representations, iconic and algebraic, supported by CAS, enabled to really 
build new mathematical knowledge in both domains, Graph Theory and Linear 
Algebra, simultaneously. This enhances the fact that each topic can be viewed as 
belonging to a cognitive neighborhood of the other. Generally bridges are built in one 
direction, from topic A to topic B, but here the bridge between the two topics is 
traveled in both directions when switching from iconic representation to algebraic 
representation and conversely. 
 
The CAS provided the help   ``for reasoning   by fostering   the   development of ...  
experimental reasoning style'' (Sinclair et al. 2006).  This appears through the 
intertwining of reflective thinking and application of operative knowledge during the 
sessions. A difference appears with the human support:  not only the CAS assistance 
does not fade with time, but the new computing skills become an integral part of the 
new mathematical knowledge. 
 
In the second activity, different CAS may give different outputs when displaying the 
eigenvalues. For the  given square matrices of order 8, Derive  gives seven  different  
eigenvalues, inviting  the student  to understand  that one  of  them  must be  a  double 
eigenvalue.  Note that other packages may give a more detailed output, including the 
multiplicities of the eigenvalues. We have here  an example of the  double reference 
evoked by Artigue (1997,  page  152):   on  the  one  hand,  the  computer 
``understands'' the  input in  a way which  can be different  from the students' intention, 
on the other hand the mathematical meaning of the output can be different of what  the 
student expects  when he/she writes the same thing. See also (Lagrange, 2000). 
 
Students working with a CAS become progressively acquainted with swapping 
between various representations: algebraic, numerical and graphical. For a given 
object, different representations can be provided by the CAS itself.   Functions of one 
real variable are   a well documented example,   with numerical representation (a table 
of values), graphical representation and generally algebraic representation (a "closed 
form" such as ...=xf )(  ) . The main problem is developing students' ability to link 
representations; see Pierce (2001). Prior to the activities described in this paper, the 
students had to solve a couple of exercises in reversed directions: a) write the 
adjacency matrix of a graph (resp. directed graph, given in iconic form, b) draw a 
picture of a graph whose adjacency matrix is given. 
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The activities performed here by the students have a different aspect.   The main 
originality lies in the fact that the link  is not  oriented from  an algebraic 
representation  towards  a  graphical  one  as  in  most  problems  on one-real-variable 
functions, but in the other direction. Graphs are given   by graphical representations   
and the representation used for checking the existence of an isomorphism between  
two graphs  is purely  algebraic.  This may be technically trivial, but from a conceptual 
point of view, it is not trivial for the students: the work requires reversing the direction 
of the switch between representations. The students' hesitations reveal their level of 
ability to deal with a matrix representation instead of a graphical one. Previous 
working sessions revealed the difficulty for students to link matrices to graphs and 
graphs to matrices (including oriented graphs, i.e. links towards non-symmetric 
matrices) but helped with removing the obstacles. The CAS provided assistance, and 
students showed increasing operative knowledge.   
 

4. Consolidation and routinization of previous knowledge. 
In the same fashion we had to be careful when speaking about scaffolding, we must be 
careful if we wish to deal with consolidation. Both are very personal and apply to 
individuals, one student at a time. Here our study relies on the dynamic of a group of 
students. Each student has his/her own pace of acquisition of new mathematical 
knowledge, and consolidation should be checked with each student separately. The 
above classroom activities do not provide enough individual data. 
 
Nevertheless, the observation of the group reveals various components of 
consolidation among those enumerated by Dreyfus and Tsamir (2004): immediacy, 
self-evidence, confidence, flexibility and awareness. For example, along the different 
activities, there were more and more immediate reactions to questions, either 
immediate answers (revealing also self-evidence) or immediate and correct 
outsourcing of the work to the computer. This last point is part of the ability to switch 
between different representations of the graphs (flexibility). From the beginning, 
Vered showed enough self-confidence to answer and ask, but for others like Naomi, 
the first intervention appeared during the third activity. 
 
The activities revealed also the following fact: at the beginning, the students did not 
achieve for symmetric matrices and their diagonalization the routinization mentioned 
(and requested) by Artigue (1997). In Section II, we mentioned the lack of time at the 
end of the Linear Algebra course, which provoked a shortage in solved examples. 
Even for low dimensions, a  lot of computations are needed, looking for eigenvalues  
and  eigenvectors,  inverting  matrices, and so on.   Hand computations are very 
unilluminating and both educators and students are reluctant to do them. The students 
had here an opportunity to make full computations of eigenvalues and eigenvectors, 
and sometimes of the diagonalization of a matrix. An important progress towards the 
requested routinization has been made as a byproduct of the activities. Moreover they 
had an opportunity to deal with a concrete problem involving these tools.  The CAS 
was a facilitator, making examples of  higher dimension possible to treat, thus enabling 
students to  acquire an  extended operative knowledge, and  at the same time more 
mathematical insight..  The CAS has not been used as a black box,   but rather   as an    
assistant in   a   process of reasoned instrumentation.    We  meet  Elbaz-Vincent's 
requirements  (2005)  about  ``the  necessity of  developing  specific classroom  
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activities  and  specific  exercise  sheets,  ...,  showing clearly the value of the  CAS 
either as a platform for experimentation or as an assistant ..." 
 
CAS-assisted work had another side effect. For non isomorphic graphs, the following 
cases can appear: 
   a. The adjacency   matrices   have different characteristic polynomials.  
   b. The adjacency matrices have the same characteristic polynomial, whence the same 
eigenvalues with the same multiplicities, but one of the matrices is diagonalizable and 
the other one is not.  
At   the beginning, the command eigenvalues has been used without reference to the 
characteristic polynomial.  The necessity to obtain more information, and to know how 
to interpret the output, has revealed the necessity of another command. During the 
activities, a black box has been opened and examined. 
 

5. The role of CAS: further characteristics. 
The assistance provided by the CAS is useful only if the students are able   "to plan   
correct   operations and   to interpret   results intelligently" (Fey 1990, quoted by 
Pierce 2001).  Two remarks made by students emphasize this issue: 
    (i) In the second activity, Shira's remark on the number of eigenvalues is important. 
It has been provoked by Derive's output, where the eigenvalues are given, without 
mention of their respective multiplicities.  
    (ii) The meaning of Vered's claim "we did it" is non trivial. She noted that, despite 
the regular usage of a CAS to provide explicit numerical results, this time the actual 
eigenvalues of the matrices were quite irrelevant. The important issue was the 
comparison between the two sets of eigenvalues. Vered has understood that the fact 
that the eigenvalues are not the same is the important issue. 
 
There are not so many opportunities to convince students that either the precise or 
approximate values of results are not the only interesting output. In this study, we 
found a couple of occurrences where the precise values of the matrix eigenvalues were 
not interesting.  The point was in the comparison between the sets of eigenvalues.  The 
outsourcing of the computations has an effect beyond the computations themselves. 
The CAS assisted activities described  in section III are an example  of the  claim by 
Cuoco  and Goldenberg (1996):  "...we are talking about  using technology in  support 
of the hard  thinking, not for  performing  the  low-level   details".  More than acting as 
a calculator, the CAS worked here as an assistant to reflection. 
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