SMALL CHANGE - BIG DIFFERENCE

Ilana Lavy

Atara Shriki

Follow this and additional works at: https://scholarworks.umt.edu/tme
Part of the Mathematics Commons
Let us know how access to this document benefits you.

Recommended Citation
Lavy, Ilana and Shriki, Atara (2009) "SMALL CHANGE - BIG DIFFERENCE," The Mathematics Enthusiast. Vol. 6 : No. 3 , Article 7.
Available at: https://scholarworks.umt.edu/tme/vol6/iss3/7

This Article is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in The Mathematics Enthusiast by an authorized editor of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

Small change- Big Difference

Ilana Lavy ${ }^{1}$
Emek Yezreel Academic College
Israel
\& Atara Shriki ${ }^{2}$
Oranim Academic College of Education
Israel

Abstract

Starting in a well known theorem concerning medians of triangle and using the 'What If Not?' strategy, we describe an example of an activity in which some relations among segments and areas in triangle were revealed. Some of the relations were proved by means of Affine Geometry.

Keywords: Affine geometry; Problem solving; Problem posing; Triangle theorems; Generalizations

1. Introduction

The 'What If Not (WIN) strategy (Brown and Walter, 1990) is based on the idea that modifying an attribute of a given statement could yield a new and intriguing conjecture which consequently may result in some interesting investigation. Using interactive geometrical software, let us apply the WIN strategy to the theorem: The three medians of a triangle divide it into 6 triangles possessing the same area. This paper presents some results obtained by
${ }^{1}$ ilanal@yvc.ac.il
${ }^{2}$ shriki@tx.technion.ac.il
The Montana Mathematics Enthusiast, ISSN 1551-3440, Vol. 6, no.3, pp.395-410
$2009{ }^{\circ}$ Montana Council of Teachers of Mathematics \& Information Age Publishing
modifying the premises so that each side of the triangle is devided into n equal segments instead of two. More precisely, given a triangle ABC, with sides a, b, c each diveded into $n>2$ equal segments. Each of the $\frac{1}{n}$ dividing point is connected to the opposite vertex (Fig. 1). Unlike the case of medians ($n=2$), in this modified version, there appears to be some quadrangles as well. Is there anything particularly interesting about the new parts? - That is what we are set to examine.

Figure 1: Schematic description of the problem

Let us first look at the particular case $n=3$, and then generalize it for any value of n.

2. The case of $n=3$

Figure 2 demonstrates the case of $\mathrm{n}=3$.

Figure 2: Schematic description of the case: $n=3$
$B E=E D=D A ; A I=I H=H C ; C G=G F=F B$.
Let $S_{1}=\operatorname{area}(J M K) ; S_{2}=\operatorname{area}(B E J) ; S_{3}=\operatorname{area}(E A K J) ; S_{4}=\operatorname{area}(A I K) ;$
$S_{5}=\operatorname{area}(K I C L) ; S_{6}=\operatorname{area}(L C G) ; S_{7}=\operatorname{area}(B J L G)$

Based on measurements taken by means of dynamic geometry software, the following conjectures as regards to areas and segments were raised:

$$
\begin{align*}
& K J=J B ; L K=K A ; J L=L C \tag{1}\\
& S_{2}=S_{4}=S_{6} \tag{2}
\end{align*}
$$

$$
\begin{align*}
& S_{3}=S_{5}=S_{7} \tag{3}\\
& \frac{S_{1}}{S_{2}}=3 \tag{4}\\
& \frac{B K}{K I}=\frac{A L}{L G}=\frac{C J}{J E}=6 \tag{5}
\end{align*}
$$

In order to prove the above conjectures, we join $K D, L H$ and $J F$ (Fig. 3) to generate triangles $B D K, A H L$ and $C F$.

As follows we prove the claim: $E J\|D K ; I K\| H L ; G L \| F J$.

Figure 3: Constructed segments $K D, L H$ and $J F$ and related areas

Proof:

Let $S_{3}(1)=\operatorname{area}(E D K J) ; S_{3}(2)=\operatorname{area}(D A K) ; S_{5}(1)=\operatorname{area}(I H L K)$;
$S_{5}(2)=\operatorname{area}(H C L) ; S_{7}(1)=\operatorname{area}(G F J L)$ and $S_{7}(2)=\operatorname{area}(F B J)($ Fig. 3).
We employ Affine Geometry to prove this claim:
Let $A C$ be on the x-axis, and $A B$ on the y-axis, while the unit scale on the x-axis is the length of $A C$ and the unit scale on the y-axis is $A B$. Hence, the coordinates of the vertices are:
$A(0,0) ; B(0,1) ; C(1,0) ; E\left(0, \frac{2}{3}\right) ; I\left(\frac{1}{3}, 0\right) ; G\left(\frac{2}{3}, \frac{1}{3}\right) ; F\left(\frac{1}{3}, \frac{2}{3}\right)$
For the equation of line $C E$ we get:
$\frac{x-x_{E}}{x_{C}-x_{E}}=\frac{y-y_{E}}{y_{C}-y_{E}} \Rightarrow \frac{x-0}{1-0}=\frac{y-\frac{2}{3}}{0-\frac{2}{3}} \Rightarrow y_{C E}=\frac{2}{3}-\frac{2}{3} x$
And for line $B I$:

$$
\frac{x-x_{B}}{x_{I}-x_{B}}=\frac{y-y_{B}}{y_{I}-y_{B}} \Rightarrow \frac{x-0}{\frac{1}{3}}=\frac{y-1}{0-1} \Rightarrow y_{B I}=1-3 x
$$

Thus the coordinates of $\mathrm{J}(B I \cap C E)$ are:
$\left.\begin{array}{l}y=\frac{2}{3}-\frac{2}{3} x \\ y=1-3 x\end{array}\right\} \Rightarrow \frac{1}{3}=\frac{7}{3} x \Rightarrow x=\frac{1}{7} \Rightarrow y=\frac{4}{7} \Rightarrow J\left(\frac{1}{7}, \frac{4}{7}\right)$
Vectors $\overrightarrow{J F}$ and $\overrightarrow{A G}$ are:
$\overrightarrow{J F}=\left(x_{F}-x_{J}, y_{F}-y_{J}\right)=\left(\frac{1}{3}-\frac{1}{7}, \frac{2}{3}-\frac{4}{7}\right)=\left(\frac{4}{21}, \frac{2}{21}\right)$;
$\overrightarrow{A G}=\left(x_{G}-x_{A}, y_{G}-y_{A}\right)=\left(\frac{2}{3}-0, \frac{1}{3}-0\right)=\left(\frac{2}{3}, \frac{1}{3}\right)$
Therefore: $\overrightarrow{J F}=\frac{2}{7} \cdot \overrightarrow{A G}$, and hence vectors $\overrightarrow{J F}$ and $\overrightarrow{A G}$ are parallel.
By symmetry considerations: $I K \| H L$ and $E J \| D K$. This proves
(1) $K J=J B ; L K=K A ; J L=L C$.

Notice that parallelism is not affected by affine transformations.
Referring to the notations in Fig. 3 we shall now prove that:

$$
\begin{equation*}
\frac{S_{3}(1)}{S_{2}}=3 \tag{6}
\end{equation*}
$$

$$
\begin{align*}
& \frac{S_{3}(2)}{S_{2}}=2 \tag{7}\\
& S_{3}(1)=S_{5}(1)=S_{7}(1) \tag{8}\\
& S_{3}(2)=S_{5}(2)=S_{7}(2) \tag{9}
\end{align*}
$$

Since $E J \| D K$ and $I K \| H L$ and $G L \| F J$ we get:
$\Delta B E J \approx \triangle B D K ; \Delta A I K \approx \triangle A H L ; \Delta C G L \approx \triangle C F J$. The similarity ratio is 2.
Consequently, $S_{3}=3 \cdot S_{2}$ and similarly: $S_{5}(1)=3 \cdot S_{4} ; S_{7}(1)=3 \cdot S_{6}$. As a result, (6) is proved,

In addition, since area $(B D K)=2$ area $(D K A)$ we get:
$S_{2}+S_{3}(1)=2 \cdot S_{3}(2) \Rightarrow S_{2}+3 \cdot S_{2}=2 S_{3}(2) \Rightarrow S_{3}(2)=2 \cdot S_{2}$.
Similarly $S_{5}(2)=2 \cdot S_{4}$ and $S_{7}(2)=2 \cdot S_{6}$.
Thus (7) is proved.
The above relations are summarized in Fig. 4.

Figure 4: Relations among areas

We shall now prove that: (2) $S_{2}=S_{4}=S_{6}$
Since $\operatorname{area}(B A I)=\operatorname{area}(A C G)=\operatorname{area}(C B E)=\frac{1}{3} \operatorname{area}(A B C)$ it follows that:
$6 \cdot S_{2}+S_{4}=6 \cdot S_{4}+S_{6}=6 \cdot S_{6}+S_{2} \Rightarrow 5 \cdot S_{4}=6 \cdot S_{2}-S_{6} ; 6 \cdot S_{4}=5 \cdot S_{6}+S_{2}$
Thus: $S_{4}=6 \cdot S_{6}-5 \cdot S_{2}$. Therefore:
$6 \cdot S_{4}+S_{6}=6 \cdot\left(6 \cdot S_{6}-5 \cdot S_{2}\right)+S_{6}=6 \cdot S_{6}+S_{2} \Rightarrow$
$36 \cdot S_{6}-30 \cdot S_{2}+S_{6}=6 \cdot S_{6}+S_{2} ; \quad 31 \cdot S_{6}=31 \cdot S_{2} \Rightarrow S_{2}=S_{6}$.
Now: $S_{4}=6 \cdot S_{6}-5 \cdot S_{2}=6 \cdot S_{6}-5 \cdot S_{6}=S_{6}$.
Hence (2) $S_{2}=S_{4}=S_{6}$ is proved.
Following the above we obtain: $S_{3}(1)=S_{5}(1)=S_{7}(1), \quad S_{3}(2)=S_{5}(2)=S_{7}(2)$, which imply that we also proved (3) $S_{3}=S_{5}=S_{7}$,

We shall now show that: (4) $\frac{S_{1}}{S_{2}}=3$.
Proof:
$\triangle A D K \approx \triangle A E L \Rightarrow 4 \cdot \operatorname{area}(A D K)=\operatorname{area}(A E L)$, hence if $\operatorname{area}(A D K)=2 \cdot S_{2}$ than $\operatorname{area}(A E L)$
$=8 \cdot S_{2}$. Thus: $\operatorname{area}(A E L)=2 \cdot S_{2}+3 \cdot S_{2}+S_{1}=8 \cdot S_{2} \Rightarrow S_{1}=3 \cdot S_{2}$, and (4) is proved.

The relations obtained are summarized in Fig. 5.
It is now left to prove (5) $\frac{B K}{K I}=\frac{A L}{L G}=\frac{C J}{J E}=6$. Clearly:

$$
\frac{\operatorname{area}(B K A)}{\operatorname{area}(A K I)}=\frac{\frac{B K \cdot h}{2}}{\frac{K I \cdot h}{2}}=\frac{6 \cdot S_{2}}{S_{2}}=6 \Rightarrow \frac{B K}{K I}=6 .
$$

And $\frac{A L}{L G}=\frac{C J}{J E}=6$, stems from symmetry considerations.
Thus we complete the proof for all the connections that were discovered for the case of $n=3$.

Figure 5: relations among areas of the case: $n=3$

3. The general case

We shall now examine the general case, in which $n=k$.
For the general case we will show that the following patterns hold:

$$
\begin{equation*}
\frac{J K}{B J}=k-2 \tag{10}
\end{equation*}
$$

$$
\begin{align*}
& S_{2}=S_{4}=S_{6} \tag{11}\\
& S_{3}=S_{5}=S_{7} \tag{12}\\
& \frac{S_{1}}{S_{2}}=k(k-2)^{2} \tag{13}\\
& \frac{B K}{K I}=k(k-1) \tag{14}
\end{align*}
$$

The terminology refers to Figure 6 and Figure 3.
In order to prove (10)-(14) we join $K D, L H$ and $J F$ to generate triangles $B D K, A H L$ and $C F$.
E is the $\frac{1}{k}$-point of $B D, I$ is the $\frac{1}{k}$-point of $A H$ and G is the $\frac{1}{k}$-point of $C F$ (Fig. 6).

Figure 6: Schematic description of the case of $n=k$
We first prove that: $E J\|D K ; I K\| H L ; G L \| F J$.
Proof:
We employ Affine Geometry to prove this claim:

Let $A C$ be on the x-axis, and $A B$ on the y-axis. The unit scale on the x-axis is the length of $A C$ and the unit scale on the y-axis is $A B$. Consequently, the coordinates of the vertices are:

$$
A(0,0) ; B(0,1) ; C(1,0) ; E\left(0, \frac{k-1}{k}\right) ; I\left(\frac{1}{k}, 0\right) ; G\left(\frac{k-1}{k}, \frac{1}{k}\right) ; F\left(\frac{1}{k}, \frac{k-1}{k}\right)
$$

For the equation of $C E$ we get:

$$
\frac{x-x_{E}}{x_{C}-x_{E}}=\frac{y-y_{E}}{y_{C}-y_{E}} \Rightarrow \frac{x-0}{1-0}=\frac{y-\frac{k-1}{k}}{0-\frac{k-1}{k}} \Rightarrow y_{C E}=\frac{k-1}{k}-\frac{k-1}{k} x
$$

And for $B I$:

$$
\frac{x-x_{B}}{x_{I}-x_{B}}=\frac{y-y_{B}}{y_{I}-y_{B}} \Rightarrow \frac{x-0}{\frac{1}{k}}=\frac{y-1}{0-1} \Rightarrow y_{B I}=1-k x
$$

Therefore, for the coordinates of $J(B I \cap C E)$ we get:

$$
\left.\begin{array}{l}
y=\frac{k-1}{k}-\frac{k-1}{k} x \\
y=1-k x
\end{array}\right\} \Rightarrow x=\frac{1}{k^{2}-k+1} \Rightarrow y=\frac{(k-1)^{2}}{k^{2}-k+1} \Rightarrow J\left(\frac{1}{k^{2}-k+1}, \frac{(k-1)^{2}}{k^{2}-k+1}\right)
$$

Vectors $\overrightarrow{J F}$ and $\overrightarrow{A G}$ are:

$$
\begin{aligned}
& \overrightarrow{J F}=\left(x_{F}-x_{J}, y_{F}-y_{J}\right)=\left(\frac{1}{k}-\frac{1}{k^{2}-k+1}, \frac{k-1}{k}-\frac{(k-1)^{2}}{k^{2}-k+1}\right)=\left(\frac{(k-1)^{2}}{k\left(k^{2}-k+1\right)}, \frac{k-1}{k\left(k^{2}-k+1\right)}\right) ; \\
& \overrightarrow{A G}=\left(x_{G}-x_{A}, y_{G}-y_{A}\right)=\left(\frac{k-1}{k}-0, \frac{1}{k}-0\right)=\left(\frac{k-1}{k}, \frac{1}{k}\right)
\end{aligned}
$$

Thus we get: $\overrightarrow{J F}=\frac{k-1}{k^{2}-k+1} \cdot \overrightarrow{A G}$, and hence vectors $\overrightarrow{J F}$ and $\overrightarrow{A G}$ are parallel.
By symmetry considerations $I K \| H L$ and $D K \| E J$. Thus we have proved that:
(10) $J K=(k-2) \cdot B J$. Similarly $K L=(k-2) \cdot A K ; L J=(k-2) \cdot C L$.

We will now prove (11) $S_{2}=S_{4}=S_{6}$.

From the parallelism it follows that $\triangle B E J \approx \triangle B D K ; \triangle A I K \approx \triangle A H L ; \Delta C G L \approx \triangle C F J$ with a similarity ratio $\frac{1}{(k-1)}$

In addition, since area $(B A I)=\operatorname{area}(A C G)=\operatorname{area}(C B E)=\frac{1}{k} \operatorname{area}(A B C)$
we get: $\frac{S_{3}(1)+S_{2}}{S_{2}}=\frac{S_{5}(1)+S_{4}}{S_{4}}=\frac{S_{7}(1)+S_{6}}{S_{6}}=(k-1)^{2} \Rightarrow S_{3}(1)=\left(k^{2}-2 k\right) \cdot S_{2}$.
Similarly, $S_{5}(1)=\left(k^{2}-2 k\right) \cdot S_{4} ; S_{7}(1)=\left(k^{2}-2 k\right) \cdot S_{6}$
Furthermore, $(k-1) \cdot S_{3}(2)=S_{2}+S_{3}(1) \Rightarrow S_{3}(2)=(k-1) \cdot S_{2}$.
Since area $(B K D)=(k-1) \cdot \operatorname{area}(D K L)$ then $\frac{\frac{B D \cdot h}{2}}{\frac{A D \cdot h}{2}}=k-1 .(k \geq 2)$

As a result: $(k-1) \cdot S_{5}(2)=S_{4}+S_{5}(1) \Rightarrow S_{5}(2)=(k-1) \cdot S_{4}$ and
$(k-1) \cdot S_{7}(2)=S_{6}+S_{7}(1) \Rightarrow S_{7}(2)=(k-1) \cdot S_{6}$
From the above relations we get: $\left(k^{2}-k\right) S_{2}+S_{4}=\left(k^{2}-k\right) \cdot S_{4}+S_{6}=\left(k^{2}-k\right) \cdot S_{6}+S_{2}$.
Thus: $S_{4}=\frac{\left(k^{2}-k\right) \cdot S_{2}-S_{6}}{k^{2}-k-1} \Rightarrow \frac{\left.\left(k^{2}-k\right)\left\{k^{2}-k\right) \cdot S_{2}-S_{6}\right\}}{k^{2}-k-1}+S_{6}=\left(k^{2}-k\right) \cdot S_{6}+S_{2}$
$\left(k^{4}-2 k^{3}+k+1\right) \cdot S_{2}=\left(k^{4}-2 k^{3}+k+1\right) \cdot S_{6} \Rightarrow S_{2}=S_{6}$
By symmetry considerations $S_{2}=S_{4}$. Hence (11) $S_{2}=S_{4}=S_{6}$.
Therefore (12) $S_{3}=S_{5}=S_{7}$ is also proved.
Consequently $S_{3}(1)=S_{5}(1)=S_{3}(1) ; S_{3}(2)=S_{5}(2)=S_{3}(2)$
We shall now prove that: (13) $S_{1}=k(k-2)^{2} \cdot S_{2}$
Proof:

$$
\frac{\operatorname{area}(A E L)}{\operatorname{area}(A D K)}=(k-1)^{2} \Rightarrow \frac{S_{3}(1)+S_{3}(2)+S_{1}}{S_{3}(2)}=\frac{(k-1) \cdot S_{2}+\left(k^{2}-2 k\right) \cdot S_{2}+S_{1}}{(k-1) \cdot S_{2}}
$$

$S_{1}=(k-1)^{3} \cdot S_{2}-(k-1) \cdot S_{2}-\left(k^{2}-2 k\right) \cdot S_{2} \Rightarrow S_{1}=\left(k^{3}-4 k^{2}+4 k\right) \cdot S_{2}=k(k-2)^{2} \cdot S_{2}$
Finally we prove that: (14) $\frac{B K}{K I}=\frac{A L}{L G}=\frac{C J}{J E}=k(k-1)$.
Proof:
We will use the connection:
$\operatorname{Area}(A B K)=S_{2}+S_{3}(1)+S_{3}(2)=S_{2}+\left(k^{2}-2 k\right) \cdot S_{2}+(k-1) \cdot S_{2}=\left(k^{2}-k\right) \cdot S_{2}$
area $(A K I)=\mathrm{S}_{2}$
Hence: $\frac{\operatorname{area}(A B K)}{\operatorname{area}(A K I)}=\frac{\frac{B K \cdot h}{2}}{\frac{K I \cdot h}{2}}=\frac{\left(k^{2}-k\right) \cdot S_{2}}{S_{2}}=k(k-1) \Rightarrow \frac{B K}{K I}=k(k-1)$.
From symmetry considerations we get: $\quad \frac{A L}{L G}=\frac{C J}{J E}=k(k-1)$.

The findings can be summarized as follows:

The three k-ians of a triangle divide the it into seven sections. The relations between the measures of the areas are described in Figure 7.

Figure 7: relations among areas of the case $\mathrm{n}=\mathrm{k}$

5. Theorem concerning \boldsymbol{k}-ians of triangle

Employing the WIN strategy once again, each side of the triangle can be divided into any number, p, q and r, of equal segments. Vertex A is connected to the $\frac{1}{p}$-point, vertex B is connected to the $\frac{1}{q}$-point, and vertex C is connected to the $\frac{1}{p}$-point, as shown in Fig. 8 .

Figure 8: schematic description of the k-ians
In this case we get: $\frac{B Y}{Y L}=(p-1) \cdot q ; \frac{A U}{U S}=(r-1) \cdot p ; \frac{C T}{T G}=(q-1) \cdot r$.
Proof:
Employ again Affine Geometry to prove this claim:
Let $A C$ be on the x-axis, and $A B$ on the y-axis. The unit scale on the x-axis is the length of $A C$ and the unit sale on the y-axis is $A B$. Consequently, the coordinates are:
$A(0,0) ; L\left(\frac{1}{q}, 0\right) ; B(0,1) ; C(1,0)$
The vectors: $\overrightarrow{A C}=\{1,0\}, \overrightarrow{C B}=\{-1,1\} ; \overrightarrow{C S}=\left\{-\frac{1}{p}, \frac{1}{p}\right\} ; \overrightarrow{A S}=\overrightarrow{A C}+\overrightarrow{C S}=\left\{1-\frac{1}{p}, \frac{1}{p}\right\}$
The equations of lines $B L$ and $A S: B L: y-1=-q x ; A S: y=\frac{x}{p-1}$.
The coordinates of $Y: Y=B L \cap A S=\left(\frac{p-1}{1+q(p-1)}, \frac{1}{1+q(p-1)}\right)$
The vectors $\vec{B} Y$ and $\vec{Y} L$ are:
$\overrightarrow{B Y}=\left\{\frac{p-1}{1+q(p-1)}, \frac{-q(p-1)}{1+q(p-1)}\right\}=q(p-1) \cdot\left\{\frac{1}{q(1+q(p-1))}, \frac{-1}{1+q(p-1)}\right\}$
$\overrightarrow{Y L}=\left\{\frac{1}{q}-\frac{k-1}{1+q(p-1)}, \frac{-1}{1+q(p-1)}\right\}=\left\{\frac{1}{q(1+q(p-1))}, \frac{-1}{1+q(p-1)}\right\}$
The last two results imply that $\overrightarrow{B Y}=q(p-1) \cdot \overrightarrow{Y L}$. We leave to the reader to verify that $A U=(r-1) p \cdot \overrightarrow{U S} ; C T=(q-1) r \cdot \overrightarrow{T G}$.

In Addition, we urge the reader to look for relations among areas that are formed as a consequence of the new division.

Implication for class activities

In this paper we describe a process which can be implemented on various well known mathematical theorems. Utilizing the WIN strategy, which is a useful tool which can easily be applied, combined with the working in an interactive computerized environment, enables the formulation of various inquiry activities such as the example given in this paper. Such an activity could be given as a long term project for developing inquiry skills and mathematical knowledge.

$$
\text { TMME, vol6, no.3, p. } 409
$$

References

Brown, S. I. \& Walter, M. I. (1990). The art of problem posing, Lawrence Erlbaum Associates. ISBN 0-8058-0257-6

Klamkin, M.S. and Liu, A. (1981). Three more proofs of Routh's Theorem, Crux Mathematicorum 7, 199-203.

Kline, J. F. and Velleman, D. J. (1995). Yet another proof of Routh's Theorem, Crux Mathematicorum 21, 37-40.

Niven, I. (1976). A new proof of Routh's Theorem, Mathematics Magazine 49, 25-27.

Acknowledgment

The authors wish to thank Dr. Alla Shmukler for her help in proving some of the findings, and prof. Nitza Movshovitz-Hadar for her help in organizing this paper and her helpful comments.

