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Abstract: Starting in a well known theorem concerning medians of triangle and using the 

‘What If Not?’ strategy, we describe an example of an activity in which some relations 

among segments and areas in triangle were revealed. Some of the relations were proved by 

means of Affine Geometry.   

Keywords: Affine geometry; Problem solving; Problem posing; Triangle theorems; 

Generalizations 

 

1. Introduction 

The 'What If Not (WIN) strategy (Brown and Walter, 1990) is based on the idea that 

modifying an attribute of a given statement could yield a new and intriguing conjecture which 

consequently may result in some interesting investigation. Using interactive geometrical 

software, let us apply the WIN strategy to the theorem: The three medians of a triangle divide 

it into 6 triangles possessing the same area. This paper presents some results obtained by 
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Figure 1: Schematic description of the problem 

modifying the premises so that each side of the triangle is devided into n equal segments 

instead of two. More precisely, given a triangle ABC, with sides a, b, c each diveded into 

n>2 equal segments. Each of the 
n

1
 dividing point is connected to the opposite vertex (Fig. 

1). Unlike the case of medians (n = 2), in this modified version, there appears to be some 

quadrangles as well. Is there anything particularly interesting about the new parts? – That is 

what we are set to examine. 
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Let us first look at the particular case n=3, and then generalize it for any value of n. 

2. The case of n = 3 

Figure 2 demonstrates the case of n=3.  

 

 

 

 

 

 

 

 

 

 

 

BE = ED=DA  ;  AI = IH = HC  ;  CG = GF = FB. 

Let S1 = area(JMK) ; S2 = area(BEJ)  ;  S3 = area(EAKJ)  ;  S4 = area(AIK)  ;   

S5 = area(KICL)  ;  S6 = area(LCG)  ;  S7 = area(BJLG)     

 

Based on measurements taken by means of dynamic geometry software, the following 

conjectures as regards to areas and segments were raised: 

 

KJ  = JB ; LK = KA ; JL = LC (1) 

S2 = S4 = S6 (2) 
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Figure 2: Schematic description of the case:  n=3 
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Figure 3: Constructed segments KD, LH and JF and related areas 
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In order to prove the above conjectures, we join KD, LH and JF (Fig. 3) to generate triangles 

BDK, AHL and CF.   

As follows we prove the claim:  FJGLHLIKDKEJ ;;  .  

 

 

 

 

 

 

 

 

 

 

Proof: 

Let  S3(1) = area(EDKJ)  ; S3(2) = area(DAK)  ;  S5(1) = area(IHLK)  ;    

S5(2) = area(HCL)  ;  S7(1) = area(GFJL) and S7(2) = area(FBJ) (Fig. 3). 

We employ Affine Geometry to prove this claim: 

Let AC be on the x-axis, and AB on the y-axis, while the unit scale on the x-axis is the length 

of AC and the unit scale on the y-axis is AB. Hence, the coordinates of the vertices are: 
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For the equation of line CE we get:   
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And for line BI: 
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Thus the coordinates of J ( )CEBI   are: 

)
7

4
,

7

1
(

7

4

7

1

3

7

3

1

31
3

2

3

2
Jyxx

xy

xy











 

 Vectors 


JF and 


AG are: 

)
3

1
,

3

2
()0

3

1
,0

3

2
(),(

;)
21

2
,

21

4
()

7

4

3

2
,

7

1

3

1
(),(









AGAG

JFJF

yyxxAG

yyxxJF
 

 Therefore: 


 AGJF
7

2
,  and hence vectors 



JF and 


AG  are parallel.  

By symmetry considerations: DKEJHLIK and . This proves  

(1) KJ  = JB ; LK = KA ; JL = LC.  

Notice that parallelism is not affected by affine transformations. 

Referring to the notations in Fig. 3 we shall now prove that: 

3
)1(

2
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(7) 

S3(1) = S5(1) = S7(1) (8) 

S3(2) = S5(2) = S7(2) (9) 

 

Since DKEJ  and HLIK  and FJGL  we get: 

CFJCGLAHLAIKBDKBEJ  ;; . The similarity ratio is 2. 

Consequently, 23 3 SS   and similarly: 6745 3)1(;3)1( SSSS  . As a result, (6) is 

proved, 

 

In addition, since  area(BDK) = 2area (DKA) we get: 

S2 + S3(1) = 2  S3(2)   S2 + 3  S2 = 2S3(2)  S3(2) = 2  S2.  

Similarly S5(2) = 2  S4 and  S7(2) = 2  S6. 

Thus  (7) is proved. 

The above relations are summarized in Fig. 4. 
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We shall now prove that: (2)   S2 = S4 = S6    

Since )(area
3

1
)(area)(area)(area ABCCBEACGBAI   it follows that:  

6S2 + S4 = 6S4 + S6 = 6S6 + S2   5S4 = 6S2 – S6  ;  6S4 = 5S6 +S2   

Thus: S4 = 6S6 - 5S2 . Therefore:  

6S4 + S6 =  6(6S6 - 5S2) + S6 = 6S6 + S2      

36 S6 - 30 S2 + S6 = 6S6 + S2;    31 S6 = 31 S2  S2 =  S6. 

Now: S4 = 6S6 - 5S2 = 6S6 - 5S6 = S6 .  

Hence (2) S2 =  S4 = S6 is proved.  

Following the above we obtain:  S3(1) = S5(1) = S7(1),    S3(2) = S5(2) = S7(2),   which imply 

that we also proved (3) S3 = S5 = S7,  

 We shall now show that:  (4) 3
2

1 
S

S
. 

Proof: 

)(area)(area4 AELADKAELADK  , hence if area(ADK) = 2S2 than    area(AEL) 

= 8S2 . Thus: 212122 3832)(area SSSSSSAEL  , and (4) is proved. 

Figure 4: Relations among areas 
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The relations obtained are summarized in Fig. 5. 
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, stems from symmetry considerations.  

Thus we complete the proof for all the connections that were discovered for the case of n = 3. 

 

 

 

 

 

 

 

 

 

 

3. The general case  

We shall now examine the general case, in which n = k.  

For the general case we will show that the following patterns hold:   
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Figure 5: relations among areas of the case:  n=3 
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S2 = S4 = S6 (11) 

S3 = S5 = S7 (12) 
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The terminology refers to Figure 6 and Figure 3. 

In order to prove (10)-(14) we join KD, LH and JF to generate triangles BDK, AHL and CF.  

E is the 
k

1
point of BD, I is the  

k

1
point of AH and G is the  

k

1
point of CF (Fig. 6). 

 

 
 

 

 

 

 

 

 

 

 

We first prove that:   FJGLHLIKDKEJ ;; .  

Proof: 

We employ Affine Geometry to prove this claim: 

Figure 6: Schematic description of the case of n=k 
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Let AC be on the x-axis, and AB on the y-axis. The unit scale on the x-axis is the length of AC 

and the unit scale on the y-axis is AB. Consequently, the coordinates of the vertices are: 
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For the equation of CE we get: 
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Thus we get: 
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, and hence vectors 


JF and 


AG  are parallel.  

By symmetry considerations EJDKHLIK and . Thus we have proved that: 

BJkJK  )2()10( . Similarly .)2(;)2( CLkLJAKkKL   

We will now prove (11) S2 = S4 = S6.  
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By symmetry considerations  S2 =S4.  Hence (11) S2 =  S4 = S6. 

Therefore (12) S3 = S5 = S7 is also proved. 
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From symmetry considerations we get:    )1(  kk
JE

CJ

LG

AL
. 

The findings can be summarized as follows:    

The three k-ians of a triangle divide the it into seven sections. The relations between the 

measures of the areas are described in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

n

c
n )1(  

n

a
 

n

a
n )1(  

n

b
 

n

b
n )1(  

k(k-2)2S 

S 

(k2-k-1)S 

S 

(k2-k-1)S 

S 

(k2-k-1)S 

n

c 

Figure 7: relations among areas of the case n=k 
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5. Theorem concerning k-ians of triangle 

Employing the WIN strategy once again, each side of the triangle can be divided into any 

number, p, q and r, of equal segments. Vertex A is connected to the 
1

p
-point, vertex B is 

connected to the 
1

q
-point, and vertex C is connected to the 

1

p
-point, as shown in Fig. 8.   

 

 

 

 

 

 

 

 

 

 

 

 

 

In this case we get: ( 1) ; ( 1) ; ( 1)
BY AU CT

p q r p q r
YL US TG

         . 

Proof: 

Employ again Affine Geometry to prove this claim: 

Let AC be on the x-axis, and AB on the y-axis. The unit scale on the x-axis is the length of AC 

and the unit sale on the y-axis is AB. Consequently, the coordinates are: 

Figure 8: schematic description of the k-ians 
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BL y qx AS y
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The vectors YB
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1 ( 1) 1 1
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1 1 1 1 1
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q q p q p q q p q p

   
  

       
  

The last two results imply that ( 1)BY q p YL
 

   . We leave to the reader to verify 

that ( 1) ; ( 1)AU r p US CT q r TG
 

      . 

In Addition, we urge the reader to look for relations among areas that are formed as a 

consequence of the new division.    

Implication for class activities 

In this paper we describe a process which can be implemented on various well known 

mathematical theorems. Utilizing the WIN strategy, which is a useful tool which can easily 

be applied, combined with the working in an interactive computerized environment, enables 

the formulation of various inquiry activities such as the example given in this paper. Such an 

activity could be given as a long term project for developing inquiry skills and mathematical 

knowledge.  
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