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Memorial University of Newfoundland, Canada 
 
 
 
 
 
Abstract: We discuss the significance of making connections between the verbal, 
algebraic, and geometric representations of basic mathematical objects for students’ 
understanding of mathematical instructions. Our survey of 499 students enrolled in a pre-
calculus university course reveals that such connections are not always present, even if 
the objects themselves are familiar to the students. We stress that the ability of making 
these connections needs to be specifically addressed in teaching mathematics at various 
levels. A proper attention to the matter contributes to the formation of students’ 
mathematical background, which makes a difference for their success in study of 
calculus, in particular. 
 
 
Keywords: line, circle, semicircle, parabola, hyperbola, ellipse, planar curve, graphical 
image, prototype, algebraic formula, algebraic transformation, mathematical definition, 
concept formation. 
 
 
Introduction. 
 

The words we use have different degrees of precision and clarity; they have 
different capacities to identify various concepts and express certain images and feelings 
we may experience. Consequently, some rare words may evoke fuzzy and uncertain 
images, if any at all. Even if a word sounds familiar it may produce nothing but a blank 
image in one’s mind. It may also produce a poor or inadequate association featuring some 
restrictive interpretation or a very specific situation. The ability to retrieve a complete, 
adequate, and flexible image associated with a given word is essential for our 
communication.  The development of this ability depends on the frequency of using the 
word in a conversation, as well as the context, personal experience and practices related 
to the word. In order to enhance this development it is important to reflect upon and 
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adjust the image through observations of how others use the word or respond to it. The 
attachment of a word to an idea or object does not appear at once. There are various 
cognitive processes leading towards the formation of a word’s meaning: 
 

o Categorization in a very rough way.  
o Recognition and assigning some meaning within a context only. 
o Evocation of a related image without a context. 
o Frequent use in speech or writing. 
o Recollection of the word, given a definition or description of it (like in a 

crossword). 
o Recognition of synonyms and antonyms. 

 
Consequently, there are various levels of familiarity with a particular word: 
 

o Never heard. 
o Heard but do not know exact meaning. 
o Can guess the most appropriate meaning from a variety of given descriptions. 
o Can give an example or counterexample. 
o Can list properties. 
o Can explain the meaning with various representations and contexts. 

 
 

Our everyday casual words and words used in a mathematical context do not 
differ much in the sense specified above: they all carry a certain meaning, which 
develops through their use in conversations and is accompanied by formation of certain 
images. A non-understanding of a sentence starts from a non-understanding or inadequate 
understanding of a word. However, in a mathematical conversation the situation becomes 
more complex due to the fact that many words have a precise formal definition, which 
can be expressed in mathematical symbols and formulas. The formulas may also have a 
geometrical or pictorial representation to accompany them and to add to the formation of 
a complete image. Thus, in a mathematical conversation one often needs a three-way 
linkage between words, formulas, and graphs. Lack or weakness of one of those 
associations leads to poor understanding and failure to grasp the meaning of a 
mathematical sentence.  

In this study we worked with 499 first year university students enrolled in a 
precalculus course. We collected data concerning students’ ability to match names, 
formulas, and graphs of basic planar curves, as the ability developed in high school 
courses. We express a concern about an unreasonable assumption, frequently occurring in 
teaching practices, about the presence of those three-way links in students’ cognitive 
schemas. In order to be effective, an instruction shall not rely on the assumption about the 
presence of those links. Instead, it shall reinforce and strengthen the links by means of 
repetitive juxtaposition of the same ideas in the three different representations. 

The paper is organized as follows. In section 1 we have a brief discussion about 
concept formation and acquisition in terms of how the concept is introduced within a 
field of professional knowledge and internalized by a particular learner, who is new to the 
field. In section 2 we describe our experimental setting, and research questions. Section 3 
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summarizes the expected mathematical background and abilities of the students of our 
sample. Section 4 contains the results of our survey. We conclude the paper with a 
discussion in section 5 about the importance of forming proper connections between 
names, images and formulas of basic plane curves, particularly for the students’ future 
success in study at the university level. 
  
 
1. Words and images in mathematics. 
 

While it is questionable whether or not many fundamental concepts are fully 
expressible in words and images, an ability to do so, or at least a desire to do so with a 
certain precision is essential for clear communication of our understanding of them. 
Words and images play a dual role in this process: we use the words to define the 
concepts formally, but we often rely heavily on the images when it comes to internalizing 
the meaning. 
 

Tall & Vinner (1981) define concept image as a “total cognitive structure that is 
associated with the concept”. In their description it is important that the image must 
include processes and properties besides all mental pictures associated with the concept. 
They contrast the notion of image with formal concept definition as “a form of words 
used to specify a concept”, and argue that in thinking the concept image will almost 
always be evoked while formal definition “will remain inactive or even forgotten”. 
 

Furthermore, it was observed that mental pictures associated with a concept 
contain special examples that are highly significant for the grasp of the concept. Such 
examples, often called prototypes, are used by the learner as “cognitive reference points”. 
The prototypical thinking was identified in the study of natural semantic categories 
(Rosch & Mervis, 1975), as well as in a geometrical context (Hershkowitz & Vinner, 
1983). In visual prototypical thinking “the shape of the prototype serves as a criterion for 
judgment” (ibid). Besides that, the thinking could be based on self-attributes of a 
prototype, i.e. on the features and properties this particular prototype possesses. The 
drawback of a prototypical judgment is that while some features of a prototype are not 
characteristic for the category or concept the prototype represents, they can nevertheless 
be considered as being essential. In this case, the student may “reject an instance as an 
exemplar of a concept because the instance lacks the self-attribute of the prototype” 
(Schwarz & Hershkowitz, 1999). 
 

Another serious problem with prototypical thinking is that the degree of rigor is 
insufficient to carry on a mathematical derivation. As noted by Poincaré (1996) in his 
discussion on a role of the definition in mathematics, “many learners will not have 
understood, unless they find around them the object of such and such mathematical 
nature. Under each word they want to put a sensible image; the definition must call up the 
image, and at each stage of a demonstration they must see it transformed and evolved. On 
this condition only will they understand and retain what they have understood. These 
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often deceive themselves: they do not listen to the reasoning, they look at the figures; 
they imagine that they have understood when they have only seen”. 
 

A concept image appeals to a student's intuition, “but intuition cannot give us 
exactness, not even certainty, and this has been recognized more and more”. The 
exactness cannot be introduced in arguments unless it is “first introduced in definitions”. 
These observations lead us to a conclusion that formal definitions are essential for 
mathematical culture but often become an obstacle for mathematical teaching and 
learning. Initially, students need to be given an image of a concept, a prototype, an 
example, a framework for developing their intuition. But after this stage “they should be 
made to see that they do not understand what they think they understand, and brought to 
realize the roughness of their primitive concepts, and to be anxious themselves that it 
should be purified and refined” (Poincaré, 1996). 
 

In the introduction of Polya's celebrated book How To Solve It, we find a similar 
idea: mathematics has two faces, it is presented by rigorous definitions and proofs, but it 
is discovered or invented by guessing and intuition. This fact is reflected in the existence 
of radically different approaches to its teaching and learning and in extensive discussion 
among educators taking opposite sides of the debate. 
 

An analysis of the interplay between rigor and intuition brings us to the following 
important goal of mathematical teaching. That is, helping the learners to establish and be 
in control of a strong connection between the words and formulas used in mathematical 
reasoning, and the images produced in the learners' minds. The students ought to develop 
an awareness of their mental actions and the degree of adequacy of their mathematical 
prototypes, reinforcing their reasoning.  
    
 
2. The sample, the procedure and the research questions. 
 
2.1 The sample. 
 

The sample consisted of 499 students enrolled in a precalculus undergraduate 
course at a large Atlantic Canadian University. This course is offered by the Department 
of Mathematics and Statistics for those students who, according to their Mathematical 
Placement Test scores, need to improve their mathematical skills in order to study 
calculus and other courses offered by the department. These students have previously 
studied mathematical concepts tested in our questionnaire in senior high school. The 
questionnaire was administered before these concepts were reviewed and used in the 
precalculus course.  
 

According to the provincial curriculum, the most advanced mathematical course, 
which is not required for graduation but is desirable for students planning mathematics 
related university study, is Mathematics 3207. Students in the advanced stream normally 
graduate from high school with Mathematics 3205, and students in academic stream – 
with Mathematics 3204. The same core curriculum and textbook is used for both 
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Mathematics 3204, and Mathematics 3205, but the latter course covers the material in 
more depth.   
 

Upon labelling what was the highest-level senior high school mathematics course 
and year of graduation, the students were divided into representative categories. There 
were 73 students graduated with Mathematics 3207, 52 students with Mathematics 3205, 
222 students with Mathematics 3204, and a mixed sample of 152 students who did not 
specify the highest-level mathematics course taken. 
 
2.2 The survey and the procedure. 
 

The questionnaire shown in Appendix A was administered in English to the 
subjects of the sample. The students were not asked to provide their names, but they were 
asked to state the highest mathematics course taken in high school and the year of 
completion.  
 

There was no review or any special activity aimed at refreshing students’ memory 
about the subject of the survey.  The students did not know prior to the survey what types 
of questions are going to be asked and were not specifically prepared for them. The 
students were asked to perform to the best of their ability, but they were not motivated by 
any reward for showing good results. We speculate that many of them were working at 
the level of knowledge recall and did not try to analyze in any way the information given. 
In this sense, the results of the survey reflect the true state of the concepts’ knowledge as 
they were formed and retained by the students. 
 

The questionnaire was administered for 25 minutes, during regular class time. The 
first question was designed to reveal the students' concept images. Within the first 
question, six words were provided: line, circle, semicircle, ellipse, parabola, and 
hyperbola. The students were asked to draw what first comes to their mind upon reading 
the given words. The Cartesian coordinate axes with no division scale were given. The 
second question asked the students to state how many functions can be drawn through 
three given points. The Cartesian coordinate system was provided and did not contain a 
division scale. The three points were positioned in the first quadrant. This question is the 
same as in a study of Schwarz & Hershkowitz (1999). We do not provide results for this 
question, as its purpose was to act as a separator between the first and the third question. 
The third and last question was designed to test the students' understanding of 
correspondence between algebraic and graphical transformations. Within the third 
question, the provided graphs incorporated scaled axes. The students were asked to match 
the formulas and names with the provided images. The questionnaire specifically 
addressed the fact that there might be several correct formulas for one graph, e.g. 2x  

and 02 x ; 1xy and
x

y 1 ; xy   and 2xy   for line, hyperbola, and absolute 

value, respectively. Students could have matched one of two or both formulas for the 
same graph.  
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2.3 The research questions. 
 

Based on the results obtained from the survey, we aim to address the following 
questions: 
 
1. What are the students’ prototypes associated with the words: line, circle, semicircle, 
parabola, hyperbola, and ellipse? 
  
2. What is the most frequently encountered example in each case? 
   
3. How well are the students able to recognize and name the graphs of the curves listed in 
question one? 
  
4. How well are the students able to match the graphs of the curves with the associated 
algebraic equations, and to recognize the corresponding algebraic and geometric 
transformations, such as shifts and stretching, applied to the standard form of a curve? 
 
 
3. Mathematical context to be tested in the survey. 
 
3.1 General principles and approaches introduced in high school. 
 

The objects we work with have a strong visual aspect: they all are plane curves, 
which can be defined as a locus of points in the plane with certain geometric properties. 
While the curves can be introduced through those characteristic properties, or otherwise 
as conic sections, they are also graphs of algebraic equations in the Cartesian coordinate 
plane. According to the high school curriculum, the students we surveyed were supposed 
to be familiar with only the latter aspect of the curves. Needless to say, this reduces the 
richness of the concepts along with the broadness of possible applications, but we leave 
this matter for another discussion.  

The important fact that should be known to students is that behind each of the 
tested mathematical object such as line, circle, parabola, etc., there is a whole family of 
curves. Usually one can talk about the principal member of the family equipped with a 
number of parameters. Varying the parameters, one can describe all other members of the 
family, including some degenerate or untypical cases, and even bifurcations of the 
family. This fact can be viewed as an application of a more general principle: starting 
from an arbitrary curve one can transform it by stretching and shifting to another curve of 
the same algebraic kind. Alternatively one talks about rescaling and shifting the system of 
coordinates while leaving the curve unchanged. In any case the core of the general 
principle is the correspondence between the algebraic and geometric transformations: the 
horizontal/vertical translations of the curve produce the shift of the arguments in the 
algebraic equation of the curve 0),(0),(  byaxFyxF , while the horizontal/ 
vertical stretching of the curve corresponds to the rescaling 0),(0),(  byaxFyxF . 
Note that both operations are linear with respect to the arguments x and y . 
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Our first question aims to find out whether or not the name of a curve evokes any 
graphical images in the minds of the students. Considering that there is an infinite 
number of possible responses, we are also interested whether some of them are more 
popular than others, and how broad or narrow is the set of all produced examples in the 
case of each curve. 
 

On a separate page we tested the students’ ability to name an algebraic curve 
given in the Cartesian plane and to choose an appropriate formula from a pool of 
algebraic equations. Besides knowing the prototypical shape of curves, another principle 
appears to be very helpful for matching a Cartesian graph with a formula, i.e. the curve 
consists of those and only those points whose coordinates satisfy the algebraic equation 
of the curve. Consequently, it helps to look at some special points, such as the x- and y- 
intercepts and the origin, as well as to investigate the boundaries of a curve, and to 
identify special features of the domain and range.  
 

Thus, besides the basic knowledge and comprehension, this task requires analysis 
and synthesis to some degree. The latter comes into play particularly when a students is 
asked to recognize an algebraic formula for a non-traditional (for senior high school) but 
intuitively familiar curve, such as a semicircle. Acquiring the skills of analysis and 
synthesis is possible if “elements are not presented as meaningless statements to be 
learned at the level of Knowledge, but where emphasis is on “why” of each point” 
(Whilhoyte, 1965 as cited in Furst, 1981). “Thus, the student may not know what a 
principle means until understanding occurs at least at the next level (Comprehension). 
But even under knowledge of specific there is necessarily embedded a variety of 
intellectual abilities and skills” (Pring 1971, & Sockett, 1971 as cited in Furst, 1981). 
 

For the purpose of illustration we present few examples of reasoning useful for 

matching the equation 21 xy  with corresponding graph (see Appendix). 

Method 1. Analyzing domain and range of function 21 xy   students notice that 

0y  and 1y  and that 12 x . Thus, the entire curve is constrained by the 
rectangle 11  x , 10  y . This makes the choice of graph obvious. 

 
Method 2. If the students start from the graph, they notice that the following integer 
points )0,1(),0,1(  , and )1,0( belong to the graph. Thus, they can choose 1x  and 

0y  and substitute these values into the provided equations, until one gives an 
identity. If more than one graph are selected this way, then other integer points will 
help to single out the answer. 

 

Method 3. Students square both sides of the equation 21 xy  and obtain the 
familiar equation of the unit circle. Then, observing that 0y , they choose the graph 
of the upper semicircle. 

 
3.2 Particular notions introduced in high school. 
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This section gives a brief overview of when and how the curves of our interest are 

introduced in the textbooks currently used in the province. In this respect, we refer to 
Mathematical Modeling, Book 1 (Barry, Small, Avard-Spinney, & Wheadon, 2000) used 
for study Mathematics 1204, which is a level-one senior high school course, normally 
taken by students in grade 10, and Mathematical Modeling, Book 3 (Barry, Besteck-
Hope, Hope, Pilmer, Small, Avard-Spinney, & Wheadon, 2002), used for both 
Mathematics 3204 and Mathematics 3205, which are graduation level courses. For the 
most advanced mathematical course Mathematics 3207, Mathematical Modeling, Book 4 
(Barry, Besteck-Shaw, Brown, & Avard-Spinney, 2002) is used. 
 
1. The line 
 
 The line is formally introduced in Mathematics 1204 in the slope y - intercept 
form bmxy  , where m represents the slope and b  is the y -intercept. In Book 1, the 
concept of line is mainly used in applications of linear behaviours, e.g. economy-cost 
issues. 
 
2. The circle 
 
 The name and the shape of the circle are introduced as early as elementary school. 
However, neither the equation nor the coordinate axes are present until Mathematics 
3204/3205. In Book 3, the circle is defined as “the set of points in a plane that are at the 
same distance (radius) from a fixed point called the centre” (Barry et al., 2002). A unit 
circle is introduced via equation 122  yx as a circle with radius 1 and centered at the 
origin. Any circle is viewed as an image of the unit circle under one of the following 
mapping rules ),(),( ryrxyx  and ),(),( kyhxyx  , or their combination. As a 

result, the general equation of a circle in standard form is 222 )()( rkyhx  . It can 

be rewritten in the transformational form as 1
22





 





 

r

ky

r

hx
. 

 
3. The absolute value function 
 
 In the high school course Mathematics 1204, the notion of absolute value |x| is 
introduced as the distance between a number x  and the origin. The algebraic description 
of this function is xy  . In Book 1, students are encouraged to “construct a table of 

values for this function using x -values between 4 and 4 ” (Barry et al., 2000), to graph 
the function and to describe the shape of the function in their own words. A variety of 
examples are listed and the theoretical results of their investigations are summarized 
succinctly as vertical and horizontal translations. For example, in Book 1 “the graph of 

xqy   is the image graph of xy   after a vertical translation of q  units; and the 

graph of pxy   is the image graph of xy   after a horizontal translation of p units” 

(Barry et al., 2000). Reviewing the absolute value in Book 4, a more elaborate image is 
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presented, i.e. “the graph is composed of two segments, each described by a different 
linear equation” (Barry et al., 2002). The notion of a piecewise-linear function and 

algebraic formula, 








0,

0,

xx

xx
x  are introduced. Therefore, a complete connection 

between name, algebraic definition and graphical image is established in Mathematics 
3207.   
 
4.  The parabola 
 
 In Book 1, the investigation technique is used in introducing the concept of a 
graph of a quadratic function. Students are being asked to “construct a table of values” 
for 2xy   “using x -values between 4  and 4 ”, and then they are asked to graph the 
function (Barry et al., 2000). Oftentimes, the emphasis is placed on the study and 
recognition of elementary functions, e.g. “if you can recognize the graphs of the basic 
functions like xxf )( or 2)( xxf  , you can often use these basic shapes to sketch the 
graphs of more complex functions” (Barry et al., 2000).  With reference to the material 
studied before, the term parabola is introduced in Book 3, as “the graph of any quadratic 
function” (Barry et al., 2002). Details pertaining to the vertex, axis of symmetry and the 
transformational form are discussed. The transformational form of a quadratic function is 
expressed as 2)()( hxkya  , where parameters hka ,,  are real numbers and 0a . 
The transformational form is used as early as Mathematics 1204, together with the 
standard form khxay  2)( , where 0a . In both Book 1 and Book 3, the first 

example introduced is 2xy  and is often used for further comparison with transformed 
shapes.  
 
5. The ellipse 
 
 We notice that the shape of the ellipse appears as early as Mathematics 1204 
(Barry et al., 2000), but no proper identification is attached to the shape. During 
Mathematics 3204/3205, the name oval is used for the first time in conjunction with the 
shape of an ellipse (Barry et al., 2002). Further along Book 3, the ellipse is explored as 
being a stretching transformation of the unit circle with possible translation. The 

transformational form of the equation of the ellipse is given as 1
22





 





 

b

ky

a

hx
.  

 
 
6. The hyperbola 
 
            As early as Mathematics 1204, students have the opportunity to see hyperbolas, 
although the actual name of the curve is not revealed in Book 1. The shape of a hyperbola 
occasionally appears, e.g. in the “equipping your function toolkit” section (Barry et al., 
2000). In Mathematics 3207, the simple rational functions are formally introduced. The 
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first example of such function appears in Book 4 and has the form 
x

c
xf )(  (Barry et al., 

2002). In the same book, the hyperbola is defined as follows. “These functions (i.e. 

x

c
y  ) are examples of rational functions and their graphs can form a conic section 

called a hyperbola” (Barry et al., 2002). The notions of horizontal and vertical 
asymptotes are also introduced and discussed at this level.   
 
 
4. Results. 
 
4.1 Evoking images. 
 

The first question of our survey stated: “Draw what comes to mind when you read 
the following words: line, circle, semicircle, ellipse, parabola, and hyperbola”.  The data 
collected address our first two research questions: what are the students’ prototypes and 
what is their frequency? The results obtained for the first question are presented in the 
following charts. 

 

35%

25%

5%

23%

5%
7%

Line with positive slope through the origin 
in the 1st and 3rd quadrants (36%)

Line with positive slope through the origin 
in the 1st quadrant (25%)

Line with negative slope (5%)

Horizontal line (23%)

Vertical line (4%)

Other lines (7%)

 
 

Figure 1. The variety and frequency of images of line evoked by the entire sample of the 
precalculus students. 

 
 

With respect to drawing lines, 61% of the students draw lines with positive slope; 
while only 5% draw lines with negative slope. We infer that the apparent prototype is the 
line with positive slope, passing thought the origin. The lines with positive slopes drawn 
followed the pattern of xy  , or small variations of it, e.g. cxy   and 0c . We believe 
that the observed apparent prototype is influenced by both the frequency of similar 
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examples and the nature of the very first example students encountered while the concept 
was introduced. 
 

87%

10%

3%

Circle centered at the origin 
(87%)

Circle with center in the 1st 
quadra nt (10%)

Other c ircles (3%)

 
 

Figure 2. The variety and frequency of images of circle evoked by the entire sample of 
the precalculus students. 

 
 

With respect to drawing the circle, 87% of the entire sample did draw a circle 
centered at the origin. We infer that the obvious prototype is the circle centered at origin. 
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53%

23%

18%

6%

Semicircle centered at the origin 
and above the x -axis (53%)

Semicircle centered at the origin 
to the left or to the right of the y 
-axis (23%)

Other semicircles (18%)

Wrong (6%)

 
 
Figure 3. The variety and frequency of images of semicircle evoked by the entire sample 

of the precalculus students. 
 
In terms of the semicircle concept, 76% of the entire sample decided to split in 

half the prototype circle either above the x -axis or to the left or right of the y -axis. 
Therefore, we infer that the semicircle prototype is directly connected to and derived 
from the circle prototype. Only 18% of the entire sample decided to draw other types of 
semicircles.  
 

34%

30%

12%

17%

7%

Ellipse centered at the origin 
with the major axis the y-axis 
(34%)

Ellipse centered at the origin 
with the major axis the x-axis 
(30%)

Other ellipses (12%)

Wrong (17%)

Blank (7%)

 
 
Figure 4. The variety and frequency of images of ellipse evoked by the entire sample of  

the precalculus students. 
 



                                                TMME, vol6, nos.1&2, p. 225 

                                                            
 

  
 

With regards to the ellipse, there is no clear winner in terms of the prototype used; 
since 34% draw an ellipse stretched along the y -axis, while 30% draw an ellipse 
stretched along the x -axis. 

39%

28%

6%

16%

7%
4%

Open up parabola with vertex at the origin and 
symmetric with respect to the y-axis (39%)

Open up parabola and symmetric with respect to 
the y-axis (28%)

Parabola symmetric with respect to the x-axis 
(6%)

Parabola open downward (16%)

Wrong (7%)

Blank (4%)

 
 

Figure 5. The variety and frequency of images of parabola evoked by the entire sample 
of the precalculus students. 

 
With respect to drawing parabolas, 67% of the entire sample's preference was 

related to drawing an open upward parabola, while 16% of the students draw open 
downward parabolas. We infer that the evident prototype is an open upward parabola, 
passing thought the origin. The drawn open upward parabolas followed the pattern 
of 2axy  , 0a ; while the open downward parabolas followed the pattern of 2axy  , 

0a .  In other words both types of parabolas had vertex at the origin. We believe that 
the observed prototype coincides with the first example of the graph of a quadratic 
parabola presented in Mathematics 1204. 
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13%

12%

51%

24%
Hyperbola in the 1st  and 3rd 
quadrants (13%)

Hyperbola in the 2n d and 4th 
quadrants (12%)

Wrong (51%)

Blank (24%)

 
 

Figure 6. The variety and frequency of images of hyperbola evoked by the entire sample 
of the precalculus students. 

 
          The diagram on Figure 6 clearly reflects the absence of the hyperbola from the high 
school curriculum. As we pointed out earlier, only students completed Mathematics 3207 
receive proper knowledge in relation to this curve. Such students constitute about 15% of 
our sample, so the fact that 25% of the sample nevertheless is familiar with the curve, is 
an evidence of random occurrence of this object in earlier mathematical courses. 
          

It is noticeable that the majority of the graphs produced by the students are either 
centered around the origin (circle, semicircle, ellipse and hyperbola) or pass through the 
origin (line and parabola). It is hard to say whether this is an evidence of the rigidity of 
students’ prototypes having an irrelevant feature such as reference to the origin of the 
Cartesian plane. Probably, this is just a natural result of frequent exposition of the 
students to the origin-centered graphs, so that images having this attribute are indeed 
“what comes to mind first” but this does not exclude the familiarly of the students with 
other less typical examples. Having said that, we still see a potential danger of the 
frequent use of the origin centered examples, as this may cause the formation of a 
distorted view and restricted prototypes, and is particularly undesirable for students 
planning to study future mathematical courses that require more flexibility and 
adaptability of the images. The students' ability to juggle with the visual and graphical 
aspects of basic curves will be essential in grasping more elaborate mathematical objects.  
 

But what makes understanding of the curves flexible? The whole idea that a 
parabola remains a parabola even if it is translated and rotated in a plane is not difficult. 
Far less obvious is the connection of a curve transformation with corresponding algebraic 
manipulations, and we claim that this very connection is often not well established as it 
will follow from the results of the second page of our questionnaire.  

 
 



                                                TMME, vol6, nos.1&2, p. 227 

                                                            
 

  
 

4.2 Matching graphs and formulas with names. 
 

In this section we report the results obtained from the responses occurred on the 
second page of our questionnaire where students were provided with twelve graphs and 
were asked to match them with equations and names from a given list (see Appendix). 
The following table contains information on each curve for entire sample as well as for 
each category of students who identified their highest mathematical course as 
Mathematics 3207, Mathematics 3205, or Mathematics 3204. In the last column, for a 
purpose of comparison, we also give data collected for a group of randomly selected 
students who had completed six or more undergraduate mathematical courses including 
calculus stream at least two years prior to the survey date. We call them the senior math 
group. This group of 27 students also was not specifically prepared or informed about the 
types of questions prior to the survey, so their performance is, in the same way as with 
the precalculus students, a true measurement of the students current state of knowledge. 
 
 

 
 
Some of the observations from the table are: 
 

o Students recognize the names of curves much better than their formulas. 
 

 Entire Sample 3207 Sample 3205 Sample 3204 Sample Mixed Sample Senior Sample
Number of  
Students 499 73 52 222 152 27

 Name Formula Name Formula Name Formula Name Formula Name Formula Name Formula

Vertical line 80% 27% 86% 44% 88% 27% 77% 17% 77% 32% 100% 85% 

Horizontal line 86% 46% 94% 66% 84% 42% 88% 40% 80% 45% 100% 92% 
Line with 

 positive slope 82% 17% 94% 33% 81% 17% 83% 10% 75% 20% 100% 96% 
Line with  

negative slope 84% 7% 94% 12% 86% 13% 85% 3% 77% 7% 100% 89% 
Parabola  
opened 
upward 80% 27% 86% 44% 88% 27% 77% 17% 77% 32% 100% 85% 

Parabola  
opened 

downward 66% 17% 76% 22% 77% 15% 69% 12% 54% 20% 96% 74% 
Hyperbola 
 Quadrants 

 1 & 3 42% 6% 50% 7% 48% 8% 45% 4% 31% 9% 93% 71% 
Hyperbola 
 Quadrants 

 2 & 4 66% 17% 76% 22% 77% 15% 69% 12% 54% 20% 96% 74% 

Circle 85% 31% 92% 37% 88% 50% 88% 26% 78% 29% 100% 93% 

Semicircle 72% 2% 81% 5% 82% 2% 74% 2% 61% 2% 81% 67% 

Ellipse 61% 24% 70% 31% 77% 38% 65% 21% 47% 21% 96% 89% 
Absolute 

Value 63% 51% 78% 65% 69% 57% 64% 47% 52% 47% 89% 89% 
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o Students more correctly recognize formulas for lines with positive slope than for 
lines with negative slope, and parabolas opened upward than parabolas opened 
downward. 

 
o There is a noticeable increase in percentage 10-17-33% for students enrolled in 

Mathematics 3204-3205-3207 in recognizing the formulas for the lines with 
positive slope. However, we would expect a much better match for a line with 
equation xy  . The best match was done for the formula corresponding to a 
horizontal line, i.e. 40-42-66% for Mathematics 3204-3205-3207. 

 
o The order of preference in recognizing the line formulas is: horizontal, vertical, 

line with positive slope and line with negative slope. 
 

o Some matching assignments were less straightforward than others because they 
require a few algebraic manipulations in order to be compared to standard forms. 
Consequently, the performance in such cases was less successful. Particularly, 
recognition of the line with negative slope and the semicircle presented difficulty 
for many students. 

 
o The parabola with positive leading coefficient is a preferred example over the 

parabola with negative leading coefficient for both formulas and names. This is in 
accordance with the way parabola was introduced in high school. We conclude 
that the prototype is the parabola with positive leading coefficient. 

 
o Although hyperbola does not belong to the Mathematics 3204 or Mathematics 

3205 curriculum, we found out that a significant percentage of students 45%, 
respectively 48% know the name of the hyperbola in quadrants 1 and 3, and that 
69%, respectively 77% know the name of the hyperbola in quadrants 2 and 4.  
 

o Mastering the formula for ellipse shows less successful performance than 
mastering the formula for the circle. 

 
o The absolute value function proved to have relatively good results in terms of 

terminology, matching formula and graphs. 
 
 

In order to characterize the level of students’ knowledge about each particular 
mathematical object we use a graphical bar-diagram representation of the results 
collected. For this purpose we used the following marking schema: if both equation and 
name were written correctly under a graph on page 2, the student was given 2 points; if 
only name or only formula were identified correctly, the student was given 1 point; zero 
points were given for either incorrect or no answer; an additional point was given for a 
correct image of the same object drawn on the first page. This way for each of circle, 
ellipse and hyperbola a student could collect at most three points (two on the second page 
and one on the first), and for parabola – at most five points (four on the second page and 
one on the first). We separated lines in two subcategories: vertical or horizontal, and lines 
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with positive or negative slope. In this way at most five points were collected for each 
subcategory of lines (four on the second page and one point on the first page; any image 
of line drawn on the first page contributed one point into each subcategory of lines).   

 
For each object we created a bar-diagram which shows the percentage of the total 

number of students who collected zero points, one point, two points, or three points 
(extended to four points and five points in case of parabola and the two subcategories of 
lines). Obviously, there are two extreme profiles with 100% of a sample at zero points, 
and 100% of a sample at the maximum possible points, which correspond to complete 
non-familiarity and perfect performance, respectively. In reality, the profile of the bar-
diagram is somewhat in-between the extreme shapes, but closeness to one extreme or 
another characterizes the degree of success in performance with respect to a particular 
object (curve). The profile also shows the degree of homogeneity of a particular group of 
students in terms of their familiarity with a particular object of study. For example, it 
turned out that the sample in our study was more homogeneous in performance with 
circle, and lines with positive or negative slope, compared to their performance with the 
ellipse, the horizontal or the vertical lines.  

 
For a comparison purpose, we give bar-diagrams created for the senior math 

group described above. We observe that, while for this latter group of students with 
stronger mathematical background the bar-diagrams are closer to the perfect shape, the 
profiles for different notions (curves) still show a difference. They signal a possibility of 
improvement in performance with the same notions (curves) that present a challenge for 
the group of freshmen. Thus, despite the performance of students, taking calculus 
courses, improves the statistical difference between the levels of knowledge in each 
category remains. 
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The goal of our discussion was not to provoke a search for a reason or examine 
how good or poor the freshmen’s performance is, but rather to attract the instructors’ 
attention to the following observation. If, during a lecture for this group of students an 
equation 2 yx  was given as a simple example, then 93% of the audience would not 
evoke an image of line with negative slope, although at least 84% of the group know 
what the line with negative slope is! Even if the line is drawn on the board, many 
mathematically inexperienced students will not make a connection between the equation 
and the graph unless it is explicitly explained. The explanation may only take minutes, 
but could make a big difference in the clarity of the example. Systematicity in such 
explanations leads to students’ development of the ability of making necessary 
connections themselves.  
 
 
5. Demands of the undergraduate mathematics curriculum: calculus.  
 

Calculus is a major and important component of the introductory undergraduate 
university level mathematics. More senior courses such as real, complex and functional 
analysis, differential geometry, integral and partial differential equations, and many 
applications in physics, biology, economics and business build up their content on the 
solid ground of differential, integral and vector calculus. In the calculus sequence, the 
courses focus on general notions such as limit, as well as on the differentiation and 
integration techniques for finding such quantities as rates of change, areas, volumes etc. 
Students often find themselves being able to follow the explanations of general ideas but 
experience difficulties when the ideas are applied to concrete examples. This is indeed a 
paradoxical situation: the examples which ought to be illustrative are instead confusing. 
One of the major reasons is a non-flexibility of students' knowledge concerning some 
basic mathematical examples, e.g. fundamental curves such as parabola, ellipse and 
hyperbola, but often times even lines and circles, and their algebraic equations. 
 

Criticizing Bloom's taxonomy of educational objectives, where Knowledge and 
Comprehension are regarded as two distinct levels, Pring (1971) remarks that “it does not 
make sense to talk about knowledge of terms or symbols in isolation from the working 
knowledge of this terms and symbols, that is, from the comprehension of them and thus 
the ability to apply them”. The familiarity with terminology, without working knowledge 
and comprehension, is certainly not the final pedagogical objective. But in the reality of 
the learning processes this is a clearly observable stage of cognitive development, when 
some images start to be attached to the terms (words), but they are so fragile and rough, 
they are so “not a precise idea such as reasoning can take hold of ” (Poincare, 1996). 
 

Ironically, many students taking calculus courses have this precise kind of 
knowledge of the basic algebraic curves. This is a deceiving situation for students 
themselves as well as for their instructors relying on students' ability to comprehend 
while they often have just an illusion of knowing.  
 

For instance, when it comes to visualizing 3D surfaces, such as an elliptic or 
hyperbolic paraboloid given by an algebraic formula, the students know that the task can 
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be approached by the slicing method, i.e. by identifying the curves occurring as the 
vertical and horizontal slices of the surface and then mental gluing the curves together. 
Note that the first task is to recognize the curves algebraically and then imagine their 
graphs, including the shifting and stretching aspects. If the students are not flexible in 
doing this part, the rest of the exercise is meaningless for them regardless of how 
extensive was the explanation. This is where the notion of the family of parabolas, 
ellipses or hyperbolas becomes essential, and the whole idea of correspondence between 
the algebraic and geometric transformations. Specifically, let the students analyze the 
equation 22 )()( dycbxaz  , where dcba ,,,  are the parameters of the surface in 
the ),,( zyx -coordinate space. Students are instructed to fix the value of sy   in order to 
get a vertical slice of the surface in a plane parallel to the ),( zx coordinate plane. While 
keeping in mind that for different values of s  there will be a different curve, they ought 
to see algebraically that the curve is always a parabola 2)( bxaz  shifted at a different 

height 2)( dsc  . 
 
Similarly, the students shall identify the other family of vertical slides, tx  , as 

being a family of parabolas 2)( dycz  shifted vertically by 2)( bta  . The horizontal 
slides of the surface appear to be either a family of ellipses (case 0ac ) or a family of 
hyperbolas (case 0ac ), which gives either an elliptic or a hyperbolic paraboloid. 

A special remark concerns two different forms of equation of a hyperbola. For 
example, a hyperbola in the form kvu  22  (where 0k ) never appears in the senior 
high school books. Therefore, a special effort is required to make a connection with the 

standard form
x

y
1

 , using a 45º rotation of the coordinate system ),( vu such that 

2

vu
x


  and

2

vu
y


 . Then we have 

22

))((
1

22 vuvuvu
xy





 .  

 
The task of visualization in 3D space is by itself a difficult one, especially if the 

solid has a composite description that is typically bounded by several standard surfaces of 
the second order: cone, sphere, paraboloid etc. When students are instructed how to find a 
volume of a solid by evaluating a multiple integral, the most difficult part for them is to 
set up the limits of integration based on the algebraic description of the surface. 
Oftentimes, the problem is that they cannot visualize the boundaries of the solid and 
translate this image into the proper algebraic inequalities. Once again, the root of such 
difficulty lies in non-flexibility of their knowledge of elementary curves and surfaces. 

 
An instructor who systematically fosters and reinforces the connection between 

algebraic and geometric manipulations, using elementary but fundamental mathematical 
examples, will see a remarkable difference in the students' performance at all complexity 
levels encountered in calculus problems. 
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Appendix. The questionnaire. 
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