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Abstract: The use of questionnaires and interviews to compare the responses to a mathematical 
task of high achievers with low achievers has limitations. The partial information that they have 
provides a way of comparing high and low achievers. Some references are given here to relevant 
task formats and theories. An example is given of how examinees’ performance with unusual task 
formats (specifically, answer-until-correct) may be analysed to throw light on the mathematical 
description of partial information. 
 
Keywords: answer until correct tasks; research methodology; questionnaire analysis; task 
formats;  
 
 
1.  Introduction 
 
Juter (2007) compared high achieving students with low achieving students in respect of 
performance on problems concerned with limits of functions. Juter made use of questionnaires 
and interviews, and results were presented in the form of examples of responses given by high 
achievers and by low achievers. Presenting results in that way, and concluding that “high 
achievers have richer concept images” and their “abstraction abilities were more highly 
developed” (Juter, 2007, p. 64) does have some interest. But these descriptions do not say much 
more than that students who knew more about limits did, indeed, know more about limits --- the 
attempt at analysis is almost circular. Section 2 below will suggest some ways of comparing high 
achievers with low achievers that avoid this circularity. Section 3 gives an example of how 
empirical results (specifically, in an answer-until-correct task) may be compared with theories. 
 
 
2.  Discussion of Juter (2007) 
 
The concern noted above may also be expressed as follows. On any single performance measure, 
high achievers are likely to score better than low achievers. This is unlikely to be of great interest 
on its own. An interesting research question is likely to involve two measures, and to concern 
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how the between-group difference on one measure relates to the between-group difference on 
another measure. Exactly what these questions are and how they can be answered will naturally 
depend on what the different observed measures are; an example will be given in Section 3. 
 
Instead of taking a numerical difference, one might put high achievers and low achievers on an 
equal footing in one respect, and then compare something else: instead of comparing responses 
by high achievers with responses by low achievers, compare wrong responses by high achievers 
with wrong responses by low achievers, and (separately) compare correct responses by high 
achievers with correct responses by low achievers. 

 Do high achievers and low achievers differ in the wrong responses they give? In cases 
where one wrong response is considered less wrong than another, do high achievers tend 
to give the less wrong response? (Juter refers to embodied, proceptual, and formal modes 
of mathematical thinking. This might be the basis for classifying one wrong response as 
less wrong than another.) If a second attempt is permitted following a wrong response, do 
high achievers tend to do better than low achievers? 

 If an explanation of a correct response is asked for, is its quality better for high achievers 
than for low achievers? If confidence in a correct response is asked for, is it higher for 
high achievers than for lows achievers? 

 
Once like is being compared with like, then it is reasonable to ask about richness of concept or 
abstraction, provided they can be operationalized and measured. 
 
Most research into different wrong responses, performance at second attempt, and supplementary 
questioning has been based on multiple-choice items. Selection of different wrong responses by 
different ability groups in multiple-choice tests is discussed by Green et al. (1989), Price (1964), 
Wainer (1983), Wainer et al. (1984), and Hutchinson (1991, Sections 5.17, 8.6, 9.3, 9.4). When 
responses are generated (constructed) by examinees, there are often so many possible wrong 
responses that it is difficult to aggregate and classify them. However, Cairns et al. (2002) found 
evidence that some wrong responses are disproportionately generated by examinees of high 
ability and others disproportionately generated by examinees of lower ability.  
 
As well as the nature of wrong responses and performance at second attempt, other topics that 
have been studied include performance when “don’t know” is one of the available options, 
performance when “none of the above” is one of the available options, performance when none 
of the available options are correct, performance when more than one option is correct, the 
changing of responses by examinees, and the confidence that the examinee expresses. Unusual 
task formats are sometimes considered to have both practical utility and psychological interest, in 
that they reveal more about the examinee than “choose the one correct, or best, answer” does. 
But the practical utility is debatable, as administration time tends to be longer --- if extra time is 
feasible, it might be better to set more items of conventional format. (Concerning confidence, it 
may be noted that although there is some plausibility in the idea that high achievers will tend to 
know they are correct, and low achievers will not, there are great complications: people may 
differ in how they use the scale of confidence, how well they know themselves, and how honest 
they are in reporting. For example, among the four students discussed by Juter, 2005, it was the 
best student who was the only one who was unsure whether she had control over the notion of a 
limit.)  
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Two further comments are worth making. (a) Some researchers have asked examinees to 
describe their thought processes. Unfortunately, it is particularly difficult to say anything about 
low achievers. Williams and Jones (1972) reported an interview survey of 15 schoolchildren who 
had taken a mathematics test, but found that not much information could be gleaned from the 
weaker students. See also Section 5.18 of Hutchinson (1991). (b) As previously noted, 
examinees’ performance with unusual task formats holds some value for psychological theory. I 
urge those who have used such task formats to look carefully at the resulting dataset for any 
implications it may hold. Examples of comparing datasets with a theory that seeks to 
operationalize the notion of partial information are in Chapters 6 and 7 of Hutchinson (1991), 
and another is given in Section 3 below. (However, the data typically need to be aggregated --- 
e.g., over all examinees within a certain band of abilities --- and it is not certain that what is seen 
at the aggregate level is also the case for an individual examinee. For other limitations of the 
approach, see Chapter 8 of Hutchinson, 1991.)  
 
Thus it seems that methods concentrating on individual examinees (discussing responses to 
particular questions, as Juter did, or asking about thought processes), and methods that employ 
large samples and aggregated data, each have strengths and weaknesses.  
 
 
3.  Example of quantitative study of partial information 
 
Suppose there is data on examinees’ performance with an unusual task format. Sometimes a 
simple feature of the data is directly of interest. For example, is second-choice performance only 
at the chance level? Or, do the proportions with which different incorrect options are selected 
differ when examinees are grouped according to ability? On other occasions, a quantitative 
prediction is the centre of attention, as in the following example. 
 
In answer-until-correct (AUC) tests, the examinee is given immediate feedback as to whether the 
response is correct; if it is wrong, then the examinee chooses another option, and again is given 
immediate feedback; the examinee continues until the correct option is chosen, then moves on to 
the next item. The dataset to be discussed is from Abplanalp (1995). That paper had much about 
the practicalities of AUC testing, and some interesting data, but lacked any theory to give context 
to the data. Consider the relationship between the number of errors when the test is scored 
conventionally and when using the AUC method. Figure 1 shows Abplanalp’s data, which was 
from a test of 22 items having 5 options each, taken by 74 examinees. The horizontal axis shows 
the average number of wrong options chosen per item when using the AUC format, and the 
vertical axis shows the proportion of items answered correctly at first attempt.  
 
Let y be the probability of answering correctly at first attempt, and x be the average number of 
wrong options chosen per item. Further, let m be the number of options per item. The limits on 
the relationship between x and y are as follows. 

 If, whenever a second attempt is needed, the examinee is always correct at second 
attempt, x = 1 - y. 

 If the examinee always chooses the correct option last whenever it is not chosen first, x = 
(m-1)(1-y). 
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The two extremes are shown as dashed lines in Figure 1, as in Abplanalp’s Figure 3. 
 
The simplest theory for the relationship between x and y is based on assuming that the 
examinee’s subsequent attempts are equivalent to random guesses whenever the first choice is 
wrong. Then x = m(1-y)/2. When m is 5 (as in Abplanalp’s test), this leads to y = (5 - 2x)/5, and 
this is the straight line in Figure 1. It can be seen that most of the data points lie below this. That 
is, the examinees, if they are wrong at first attempt, take fewer attempts to find the correct 
response than they would if they had no knowledge. (At any given y, we can look across and see 
that the data points have a smaller x than would be expected if the examinees had no 
knowledge.) We might say the examinees have some degree of partial information about the 
item. 
 
Alternative predictions arise from the following approach. (For more details, see Hutchinson, 
1982, 1991, 1997.) Suppose that the examinee considers each option within each item, and that 
each option within each item gives rise to some feeling as to the degree to which it fails to match 
the question posed. At first attempt, the examinee will choose the option generating the lowest 
feeling of mismatch. If the first choice turns out to be wrong, so that a second attempt is 
necessary, the option generating the second-lowest feeling of mismatch is chosen. And so on. 
Now suppose that the mismatch for the correct options is taken from some probability 
distribution, and that the mismatches for the wrong options are taken independently from some 
other probability distribution. The distribution for the wrong options will have a higher mean 
than that for the correct options. Indeed, the difference between the means is a measure of the 
examinee’s ability. Let the probability of the mismatch exceeding z be F(z) for correct options 
and G(z) for wrong options. Further, let f be the probability density of mismatch for correct 
options, f = -dF/dz. 

 The probability of being correct at first attempt is the probability that the mismatch from 
the correct option is some value z, multiplied by the probability of all of the mismatches 
from the wrong options (there are m - 1 of them) being greater than z, integrated over all 
z.  

 If the mismatch from the correct option is z, the proportion of mismatches from wrong 
options that are less than z is 1 - G(z), and the expected number of them is (1 - G(z)) (m-
1). Averaging over different values of z is achieved via another integration. 

Let  be some measure of how different G is from F, that is, a measure of the examinee’s ability 
--- it might, for instance, be the difference between the means of the distributions. Once an 
assumption has been made about what F and G are, the integrations referred to above lead to an 
equation for y in terms of  and an equation for x in terms of . Then the equation for y in terms 
of x is obtained by elimination of .  
 
To get a definite prediction, it is necessary to make some specific assumption about what F and 
G are. Three examples that are easy algebraically are as follows. 

 Exponential distributions. Here, mismatch is taken to have an exponential distribution 
with mean 1 in the case of a correct option, and an exponential distribution with mean  
(this being greater than 1) in the case of wrong options. In the case of m = 5, this leads to 
y = (4 - x)/(4 + 3x). 
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 All-or-none knowledge. Mismatch is taken to have uniform distributions, with the upper 
end of the range being the same for the wrong options as for the correct option. For m = 
5, y = (5 - 2x)/5, as given earlier. 

 Recognisable distractors. Mismatch is taken to have uniform distributions, with the lower 
end of the range being the same for the wrong options as for the correct option. For m = 
5, y = [1 - (1 - x/2)5]/(5x/2). This is quite the opposite to the previous model, in the sense 
that now a wrong option is sometimes recognised as being wrong, but the correct option 
is never positively identified as such. This assumption has found occasional application 
in the psychological literature (Murdock, 1963; see also Section 4.6 of Hutchinson, 
1991). 

It may be asked how different are the three models, and whether Abplanalp’s data favour one in 
preference to the others. The relationships between y and x are plotted in Figure 1. It appears that 
examinees have some degree of information when they give a wrong answer initially, but that it 
is rather less useful than is implied by the “recognisable distractors” and “exponential” theories.  
 
 
 
 
 

 
 
 
Figure 1. Data from Abplanalp (1995) compared with the predictions of three theories; y is the 
probability of answering correctly at first attempt, and x is the average number of wrong options 
chosen per item 
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