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  A LONGITUDINAL STUDY OF STUDENTS’ REPRESENTATIONS FOR 
DIVISION OF FRACTIONS 

 

Sylvia Bulgar1 
Rider University 

 

Abstract: The representations that students use as part of their mathematical problem solving 
can provide us with a window into their grasp of the concepts they are exploring and developing.  
In this paper, the author indicates how these representations can evolve over time and enrich the 
understanding of division of fractions, often thought to be the most difficult of elementary school 
mathematical topics.  The results of this research suggest that when appropriate problems are 
provided for students, in a meaningful context, they can demonstrate understanding of division of 
fractions that is durable over time, and that they are able to flexibly move back and forth 
between and among representations, choosing what they deem to be appropriate forms for a 
particular situation. 

Keywords: elementary school; division of fractions; representations; problem solving; 
longitudinal research;  

Introduction and Theoretical Framework 

This research was designed to investigate two intertwined issues: the manner in which students 
build powerful ideas about fractions, division of fractions, in particular, and the importance of 
having students build, use, and connect different types of representations for these ideas. 
Specifically, this study investigates how the same group students developed and made sense of 
several different types of representations as part of their investigation into concepts involving 
division of fractions. Also under study was how these investigations helped them to avoid some 
of the common difficulties frequently experienced by others. 

Difficulties with Fractions and Division of Fractions 

The difficulties that many students have experienced while solving problems involving fractions 
have been well documented (for example: Davis, Alston, and Maher, 1991; Davis, Hunting, and, 
Pearn, 1993; Steffe, Cobb and von Glasersfeld, 1988; Steffe, von Glasersfeld, Richards and 
Cobb, 1983; Tzur, 1999;). Therefore, it is of great importance to find ways to help students 
overcome these difficulties.  Ma (1999) states that division is the most complex of the 
mathematical operations and that fractions are the most complicated numbers to deal with in 
arithmetic.  Therefore, she considers division of fractions to be the most difficult topic in 
elementary mathematics, for both teachers and their students. As a case in point, she notes that 
only forty-three percent of the United States teachers in her study were able to perform the 
computation successfully and only one out of twenty-three teachers was able to give a correct 
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representation for a problem involving division of fractions.  Specifically, she found that it was 
common to confuse dividing by a unit fraction with dividing by the whole number in the 
denominator; that is, dividing by one-half was often confused with dividing by two.  She also 
found it common to confuse division by a fraction with multiplication by a fraction, for example, 
dividing by one-half and multiplying by one-half.  In some cases, there was also confusion about 
dividing by one-half, multiplying by one-half and dividing by two.    

In order to explore the types of errors that students make in dividing fractions, we can refer to the 
work of Tirosh (2000), who states that these errors can be classified into three categories. She 
refers to the work of other researchers (Ashlock, 1990; Barash & Klein, 1996; Fischbein, Deri, 
Nello, & Marino, 1985; Graeber, Tirosh, & Glover, 1989; Hart, 1981; Kouba,1989; Tirosh, 
Fischbein, Graeber, & Wilson, 1993) who have studied elements of each of these categories.  
These categories are: 1) algorithmically based mistakes, 2) intuitively based mistakes and 3) 
mistakes based on formal knowledge.  

Algorithmically based mistakes are errors made in the computational process  (Ashlock, 1990; 
Barash & Klein, 1996).  Tirosh indicates that this type of error is often made when students are 
taught the algorithmic procedure and confuse a step in the procedure.  An example of such an 
error might be taking the reciprocal of the dividend instead of the divisor.   

Intuitively based mistakes are errors based upon misconceptions associated with the operation of 
division.   Most children only understand the partitive model of division and therefore cannot 
understand how it would be possible for one to divide a dividend by a larger divisor. In the 
partitive model of division, one is asked to divide a quantity into equal groups and then told to 
find how many in each group.  For example, if I have twelve apples and I want to divide them 
equally among four friends, how many would each friend get?  Kouba (1989) suggests three 
intuitive models for division based upon partitive division of whole numbers in her study.  These 
are: 1) sharing by dealing, 2) sharing by repeated taking away and 3) sharing by repeated 
building up. These intuitive models are not easily extended to fractions. Since partitive division 
is commonly used to introduce the operation, it becomes a strong model for the operation. When 
models are initially constructed to serve in a specific context, remnants of those early models 
remain in generalized and transferred problems (Lesh, Lester & Hjalmarson, 2003).  Consistent 
with this notion, Tirosh continues her discussion of intuitively based mistakes by saying that 
children’s experience with the partitive model limits their ability to extend their understanding to 
division to fractions (Fischbein, Deri, Nello, & Marino, 1985; Graeber, Tirosh, & Glover, 1989; 
Tirosh, Fischbein, Graeber, & Wilson, 1993).  This is especially true of problems where the 
divisor is larger than the dividend.  Ott, Snook & Gibson (1991) note that textbooks and 
classroom examples further limit the experiences of students and their ability to extend their 
knowledge of partitive division to division of fractions.  In order for students to be successful 
with division of fractions, they must also be familiar with the quotative model of division.  This 
model originates with repeated subtraction.    In this model, one is asked to formulate groups of a 
certain amount and to find out how many groups there would be.  For example, if I have 12 
apples and I want to give groups of four apples to my friends, how many friends will receive a 
group of apples? 

The third type of error may be categorized as mistakes based on formal knowledge.  These errors 
are based on misconceptions about the nature of fractions and misconceptions about the nature of 
operations.  For example, a student might think that division is commutative and argue that 1÷1/2 
= 1/2÷1, which is equal to 1/2 (Hart, 1981).   
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In describing children’s early encounters with fractions, Burns (2000) states, “From their 
experiences, a number of ideas about fractions take shape informally in children’s minds.  
However, children’s understanding of fractions typically is incomplete and confused.” (p. 223) 
Some examples that Burns cites as adult use of the language of fractions are, “I’ll be back in 
three-quarters of an hour”,  “I need two sheets of quarter-inch plywood”, and “The dishwasher is 
less than half-full.”  Children use this language as well when they say, “You can have half of my 
cookie”, “Here, use half of my blocks” and “It’s a quarter past one.”   Young children are often 
overheard talking about “the bigger half”.  Thus children come to school with some familiarity 
with fractions, but their knowledge is often incomplete. 

Children also meet difficulty with fractions because they are unable to see a fraction as 
something to be counted as well as something that is a quantity.  Conjectures have been made 
that a similar trend occurs at some early stage in the development of ideas about whole numbers 
as young children learn that a nickel and two pennies, three coins, is called seven cents. 
Difficulties with whole numbers seem to be overcome with greater ease than those involving 
fractions.   In their study, Alston, Davis, Maher  & Martino (1994) encountered a similar 
situation when students used Cuisenaire Rods® to build representational models for fractions.  
When a five-centimeter long rod was given the number name one, children were able to call a 
one-centimeter long white rod, one-fifth, and to call the length of two white rods, each one 
centimeter in length, two-fifths.  However, when a single two-centimeter rod, replaced two one-
centimeter rods, some of the children who were videotaped did not call the single rod two-fifths, 
because they did not see two objects.   

Lamon (2001) attributes some of the difficulties students have with fractions to their limited 
ability to extend the meaning of a fraction to various interpretations.  She states that a fraction, 
such as 3/4 can be interpreted as 1) a part/whole comparison 2) an operator 3) a ratio or rate 4) a 
quotient or 5) a measure.  She suggests that students be involved in a variety of activities that 
will enable them to experience the meaning of fraction in a wide range of ways. 

Fortunately, many researchers have also documented instances in which students have 
successfully been able to build ideas relating to fractions (Bulgar, Schorr & Maher, 2002; Cobb, 
Boufi, McClain & Whitenack, 1997; Kamii & Dominick, 1997; Ma, 1999; Reynolds, 2005; 
Steencken, 2001; Steencken & Maher, 2002). In particular, in my previous work and work done 
with others (2002; 2003a; 2003b;) the conceptual development of ideas relating to division of 
fractions amongst fourth grade students participating in a teaching experiment, was reported. 
Within this teaching experiment, children experienced problem solving involving division of 
fractions prior to formal algorithmic instruction.  Further, I reported that when the task and 
methodology used in the teaching experiment were replicated as part of the regular teaching 
practice in another classroom (my own), similar outcomes were achieved.   It is this latter group 
of students, those who studied division of fractions as part of their regular classroom experience, 
with the author as their regular mathematics teacher, who are the subjects of this research. 

Both the students in the above-mentioned teaching experiment and the subsequent classroom 
replication had essentially used the same three main strategies to solve a particular series of 
problems (Bulgar, 2002; 2003a; 2003b; Bulgar, Schorr & Maher, 2002).  There were no 
strategies other than these three observed in either the classroom-based study or the teaching 
experiment.  All three of the strategies were based upon existing counting schemes.  (For a full 
description of these strategies, see Bulgar, 2002; 2003a; 2003b.) 
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These strategies consisted of the following:  

 Reasoning involving natural numbers 

 Reasoning involving measurement 

 Reasoning involving fraction knowledge   

The predominant solution method observed in the fourth grade teaching experiment, (Bulgar, 
2002, 2003a, 2003b) consisted of reasoning involving natural numbers.  Essentially, these 
students built representations that converted the meters to centimeters, thereby substituting the 
fraction division with natural number division, a topic generally prominent in fourth grade 
mathematics curricula in New Jersey (See NJ Mathematics Coalition and NJ State Department of 
Education, 2002). However this solution method was seen in the work of only one fifth grader in 
the replicated classroom study, and even when it did appear, there was a claim by the student that 
it was developed after the problem was solved using reasoning involving fraction knowledge 
(Bulgar, 2003a, 2003b).  All of those students in the fifth grade who drew representations, 
created linear models to represent the division of a piece of ribbon into various-sized bows.   

In an effort to underscore the difficulty that young students have with fractions, DeTurck (2005) 
has suggested that because the conceptualizations necessary for truly understanding fractions are 
too difficult for elementary school children, the topic should be eliminated entirely and 
postponed until much later in the curriculum.  This is contrary to the Standards set forth by the 
National Council of Teachers of Mathematics (NCTM 2000), which suggest that basic fraction 
concepts be introduced as early as kindergarten. 

Representations 

The representations that children use when solving mathematical problems provide us with a 
gateway to understanding their thinking (NCTM, 2000).  The representations that were used by 
the subjects of this study included concrete materials, such as Cuisenaire® rods, string, ribbons; 
drawings; and language to explain their thinking in their own words. Therefore, it is essential to 
examine closely some of the existing literature surrounding the very important notion of 
representations. 

Cramer and Henry (2002) state that in studies surrounding The Rational Number Project (Bezuk 
& Cramer, 1989; Post, Ipke, Lesh & Behr, 1985), the most important pedagogical belief evoked 
is that most children need to use concrete models to represent fractions in order to build 
cognitive representations of fractions.  In addition, these representations must be used over time.  
Other major beliefs that grew from this project are that children need to be engaged in discourse 
to strengthen their ideas and that conceptual knowledge must precede the formal use of 
algorithms.  This underscores the importance of closely looking at the representations that the 
students in this study built and using the existing opportunity (described under methodology) to 
examine how their representations evolved over time. 

In an effort to better understand the cognitive role of representations, one can look at the work of 
Speiser and Walter (2000), who, in agreement with Davis (1984), base their assertion on the 
previous work of Minsky (1975) and others, when they claim that mathematical knowledge is 
cognitively represented symbolically, often in the form of representations that are referred to as 
frames.    When students think about a mathematical situation, they must first build a 
representation, which is usually done in the form of a mental representation.  The building of 



TMME, vol6, nos.1&2, p. 169 
 

these representations can be assisted by the use of pencil and paper or manipulative materials.  
The construction of these representations is often so rapid and so instinctive that students are not 
aware that they have come into existence. Then they do a memory search or construction of 
relevant knowledge in order to proceed.  The mapping that they construct between the data 
representation that was the input and the knowledge representation that was there gets checked 
and revised and ultimately is used to solve a problem (Davis & Maher, 1990; Davis, Maher & 
Martino, 1992).   The data representations are saved in frames (Davis, 1984; Minsky, 1975), 
which carry information and are arranged hierarchically according to their stability (Minsky, 
1975).  There are several subframes, which together form a counting construction frame.  The 
representations for these counting frames can easily be interchanged between integers and 
fractions, making a counting frame for fractions a natural extension of the one for integers 
(Speiser & Walter, 2000).  

Speiser and Walter (2000) further state that it is the binary partitions subframe which is used to 
assist in the development of representations involving iterated processes, including counting.  
The binary subframe is a representation for a set that is partitioned into two subsets.  For 
example, when we add or subtract we are connecting to this type of representation.  A special 
type of binary subframe is one where there is only one element in one of the subsets.    It is this 
special type of binary subframe that helps create representations for iterated processes.  
Partitioning of a unit into fractions requires that a student be able to take a unit comprised of 
subunits and operate on it while simultaneously dividing into equal partitions (Tzur, 1999).    

Maher, Davis and Alston (1993) studied one student, Brian, over a period of time. They used 
videotapes of him doing problem-solving activities involving fractions and noted that as he 
worked with a partner, he was fluent in the use of different types of representations, using 
diagrams and concrete objects to help him solve problems.  He represented his ideas in great 
detail.  For example, when solving a problem involving the sharing of pizza, Brian used pattern 
blocks to build models and assigned specific students’ names to the pattern block 
representations.  After studying Brian in fifth and sixth grade, it was concluded that he insisted 
upon making sense of the models that he constructed rather than relying upon the ideas of others.  
The researchers also note the significance of an appropriate classroom environment, one that 
enhances students’ opportunities to be engaged in thoughtful mathematics.    

In their study, Watson, Campbell and Collins (1993) examined how four fraction problems were 
solved by children from kindergarten to grade ten to analyze the work of children’s use of 
images, reality and experience.  They found a developmental progression in the iconic reasoning, 
the ability to reason involving images and drawings, was developed in building ideas about 
fractions.  They say that there is a connection between the development of iconic reasoning and 
of concrete symbolic reasoning.  As a result of their findings, they urge schools to incorporate 
more problems that would give children an opportunity to develop their iconic reasoning so that 
the development of concrete symbolic reasoning can be supported.  They also say that more 
study of this issue is needed in the form of teaching experiments.   

In her examination of the various subconstructs of fractions described above, Lamon (2001) 
noted that they lend themselves to different types of representations and that significant 
understanding of these subconstructs is related to the use of continuous, discrete and unitary, 
solitary or composite representations.  Area models or regions, sets of discrete objects, and the 
linear models such as number lines are the models most commonly used to represent fractions in 
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the elementary and junior high school (Behr & Post, 1992).  Consistently, Van de Walle (2004) 
suggests that when studying fractions students should be provided with opportunities to be 
engaged in activities that employ a variety of representations.      

The ability to use a variety of representations for the same concept, in this case, fractions, 
requires flexible thinking.  Researchers such as Warner, Alcock, Coppolo and Davis (2003) and 
Warner and Schorr (in progress) emphasize that a critical aspect of mathematical flexibility is the 
ability of students to use multiple representations for the same idea and to link, extend and 
modify those representations to a broader range of situations, involving a more extensive array of 
models.  Since the goal of instruction in this study was not merely to have students retrieve facts 
or procedures, or to display understanding only for very specific situations or for limited time 
periods, the notion of mathematical flexibility is of significant relevance.  This type of 
mathematical flexibility is particularly important if students are to use knowledge across a wide 
spectrum of ideas.  Fosnot and Dolk (2001) note, “The generalizing across problems, across 
models, and across operations is at the heart of models that are tools for thinking.” (p.81).  They 
report on a class in New York City wherein a third grade teacher provided students with three 
different contexts that lent themselves to different models while all three resulted in the same 
answer.  In each case the children produced different representations that were closely linked to 
the context.  Fosnot and Dolk go on to state that it is easy for students to notice that the answers 
are the same but that the important issue is for them to see the connections among and between 
the representations to develop a generalized framework for the operations.   

Lamon (2001) also addresses the issue of students developing their own representations as 
opposed to adapting their teacher’s representations, since the latter is not an indication of 
understanding.  She goes on to say that: 

When a student truly understands something in the sense of connecting or reconciling it with 
other information and experiences, the student may very well represent the material in some 
unique way that shows his or her comfort with the concepts and processes.  (P. 156) 

From this, one can infer that being able to move flexibly among and between representations for 
division of fractions designates a deeper understanding of the concept.  

It is important to address that representations can be both internal and external. Goldin and 
Shteingold (2001) note the importance of the distinction between internal and external 
representations as well as the significance of the connection between internal and external 
representations as a fundamental element of teaching and learning.   They add that the internal 
models or representations that one builds are not observable, but can only be inferred from 
students’ interaction with materials, discourse and /or the external representations they create.  
These researchers go on to say: 

Through interaction with structured external representations in the learning environment, 
students’ internal representational systems develop.  The students can then generate new 
external representations.  Conceptual understanding consists in the power and flexibility 
of the internal representations, including the richness of the relationships among different 
kinds of representation. (P. 8) 

Before continuing, it is important to distinguish between the conceptual models that are 
embodied in the representational media that students use, and the cognitive models that reside 
inside the minds of learners (Lesh & Doerr, 2003).  In this work, both will be addressed, with an 
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emphasis on the nature of the cognitive models that are born out in the representational media 
that the students use, especially as evidenced in their mathematical flexibility.  The nature of the 
models that the students have built in terms of their mathematical flexibility, not just during or 
shortly after the instruction took place, but rather over a more extended period of time is 
documented here.  Also addressed is flexible thought in the context that follows, because it is 
relevant to this study.    

Research Questions 

The primary question under study in this research is, given appropriate conditions, how do 
students extend, modify, revise and refine their representations involving division of fractions 
over time?  Additionally, how do they demonstrate flexibility so that they can fluidly move back 
and forth between and among representations, being selective about what models or 
representations will help them to create meaningful problem solutions without experiencing 
some of the many difficulties normally encountered by others?   

A significant goal of this study is to better understand how a group of students extended, 
modified, revised, refined and ultimately generalized their ideas relating to division of fractions 
during the school year following their initial experience with problem solving activities related to 
this topic.  This is done with a focus on mathematical flexibility, the nature of the representations 
that were used and the evolution of these representations during the following school year.  In 
particular, the focal point is on how students initially used linear models, how these models 
evolved into discrete area models and how these students moved easily to continuous linear 
models when they found them to be more appropriate.   

The research that frames this study includes investigations of fractions and more specifically 
division of fractions.  This topic traditionally has involved much complexity and difficulty for 
students.  Additionally, in order to trace the evolution of the representations of a particular 
population, it was necessary to examine studies regarding representations in general and 
specifically related to fractions. 

Methods and Procedures 

Background, Setting and Subjects 

In the fall of 1993, a teaching experiment, including the study of fractions, was conducted in a 
small suburban New Jersey public school, under the direction of Carolyn Maher of Rutgers 
University, and other researchers from the University1.  Fourth grade was selected for this 
teaching experiment because it is the year prior to the one in which students are traditionally 
taught fraction algorithms in New Jersey.   The premise of this study was that the fraction 
knowledge that these fourth grade students built could therefore be attributed to the work done 
within the project rather than to classroom instruction.  It was expected that careful monitoring of 
the children’s development of ideas would give the researchers insight into how students built 
mathematical knowledge about fractions. The instructional design of this teaching experiment 
was the model for the regular classroom instruction in the classes that are the subject of the study 
reported upon here.  (Some salient elements of the classroom instructional practices are 
described below, but for further descriptions of the instructional practices used in the teaching 
experiment see Bulgar 2002; Reynolds, 2005; Steencken 2001.) 
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In the school years 2000 – 2001 and 2001 – 2002, a unique opportunity presented itself.  While 
investigating the work of the students in the above-mentioned research study, the author had the 
opportunity to teach the same mathematical ideas to a second group of students who were in fifth 
grade, and later on, in sixth grade (also taught by the author).  Although the content explored 
during these two years cover a wide range of topics, this paper addresses only ideas related to 
division of fractions.  The particularities of this situation allowed the author to document the 
growth of these ideas over the course of two school years in the context of everyday teaching in 
the company of the students’ regular mathematics teacher (as opposed to a project led by visiting 
University researchers).  This will be more clearly described below.  

The students being studied attended a small private parochial school in New Jersey that attracts 
children from several surrounding communities.  This academically heterogeneous class 
consisted of 13 girls.  These students had experienced a very traditional2 classroom-learning 
environment prior to the fifth grade.  They were used to being told whether or not their answers 
were correct and being shown procedures for doing mathematics.  The predominant goal of 
mathematics had been to get the right numerical answer.  In contrast, upon entering fifth grade 
and being taught mathematics by the author, the students were encouraged to take responsibility 
for convincing others that their solutions were correct and they were expected to write about 
their thinking on a regular basis.   They began doing mathematics with block scheduling, 
meeting for one 40-minute period per week and two 80-minute periods per week.  Discourse was 
of great importance.  Responsive questioning took place to encourage mathematical thinking by 
attempting to elicit verbalization of mathematical thought  (See Goldin & Shteingold, 2001 
above).  Predominantly, students worked in pairs or triads and collaboration was promoted.  The 
classroom community was one in which students’ ideas were always highly respected.  Alternate 
strategies were encouraged, shared and discussed.  The students were invited to discuss their 
thinking and to submit ideas in writing or via email.  The goal was to achieve deep understanding 
of the mathematics embedded in the problems that the students experienced.  Students were not 
taught algorithms.  When they recognized patterns and could justify that these patterns were 
valid for the examples that they observed, they created generalizations, which they would apply 
to future problems.  (See Bezuk & Cramer, 1989; Cramer and Henry,2002; Post, Ipke, Lesh & 
Behr, 1985, above.)  A fundamental characteristic of the instructional environment was the 
facilitation of mathematical problem solving.  This was based on the premise that students 
needed to be engaged in mathematical activities that promote understanding (Cobb, Wood, 
Yackel & McNeal, 1993; Davis & Maher, 1997; Klein & Tirosh, 2000; Maher, 1998; NCTM, 
2000; Schorr, 2000; Schorr & Lesh, 2003).  There was a strong effort by the teacher and 
assistants, when present, not to lower the cognitive demand of the problem solving activities so 
that the goal remained that students be “doing math” as described by Stein, Smith, Henningsen, 
and Silver, (2000).  Therefore, conditions established during the fifth grade were set up to create 
a classroom community in which student inquiry and discovery were of paramount importance.  
Once this community was established, students actively participated and remained engaged in 
the work they did, often posing extensions and hypothetical situations to the problems they were 
assigned, indicating that their thinking and their personal goals went beyond just getting a 
numerical solution. 

In the second year of this study, when the students were in the sixth grade, one of the original 
students had left the school, but another new student had joined, thus leaving the classroom 
population the same in number.  The routines and classroom community that had been instituted 
the previous year remained in place, so that the semester began with the expectation that 
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mathematics class would involve inquiry and discovery.  Students were enthusiastic and eager to 
continue with the type of work they had been engaged in during the previous year. 

 

Data Collection 

The primary data that were examined for this study consist of artifacts of actual student work, 
which were collected during two school years, when the subjects were in the fifth and sixth 
grades.  These data pertained to the study of division of fractions.  After the work was collected, 
written notes from the teacher were attached to some of the work, usually in the form of 
questions.  When work was returned, students had the opportunity to answer these questions 
before the final submission of their papers.  The written work was examined qualitatively for its 
relationship to representations used to solve a variety of problems involving division of fractions. 

In addition, during the time that these students were introduced to division of fractions in the 
fifth grade, there were two mathematics education graduate students present, serving as 
assistants.  They interacted with the students, questioning them about what they were doing and 
listening to their explanations.  They were familiarized with the type of learning environment 
that was the norm of this class and therefore knew not to interfere with children’s thinking. Their 
field notes are also included in the data collection.  One of these graduate students was with the 
class all semester, as part of a university practicum experience.  The other visited because of 
interest in the particular topic of division of fractions.  Because of the author’s association with 
the university, faculty and graduate student visitors had stopped by on various occasions.  Also, 
other teachers from the school had come in to observe the teaching of mathematics.  Therefore, 
these students were used to having other adults in the classroom as they worked.  When the class 
was in the sixth grade, the classroom was located in a somewhat isolated supplemental trailer, so 
visitors from the school faculty were very rare.  During the sixth grade activity reported here 
there was no one present other than the students and the author. 

Tasks and Tools 

During the fifth grade, students were assigned the task called Holiday Bows.3 In this task they 
were provided with a meaningful context for understanding division of a natural number by a 
fraction.  This topic is part of the fifth grade mathematics curriculum and appears in most fifth 
grade mathematics textbooks.  The task involved finding out how many bows of several 
fractional lengths could be made from various sizes of ribbon.  For example, one of the questions 
was how many bows, each one-third meter in length, could be made from a piece of ribbon that 
is six meters in length.  Students had access to actual ribbons, pre-cut to the specified sizes, 
meter sticks, string and scissors to help them form concrete representations of their thinking.  
(See Fig. 1)  This was the students’ first classroom introduction to division of fractions.   
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HOLIDAY BOWS 

(1) Red ribbon comes packaged in 6 meter lengths; 
(2) Gold ribbon comes packaged in 3 meter lengths; 
(3) Blue ribbon comes packaged in 2 meter lengths; and 
(4) White ribbon comes packaged in 1 meter lengths. 

 
Bows require pieces of ribbon that are different lengths.  Your job is to find out how many bows 
of particular lengths can be made from the packaged lengths for each color ribbon. 

 

I. White Ribbon Ribbon Length of Bow Number of Bows 

1 meter 1/2 meter  
1 meter 1/3 meter  
1 meter 1/4 meter  
1 meter 1/5 meter  

II. Blue Ribbon Ribbon Length of Bow Number of Bows 
2 meters 1/2 meter  
2 meters 1/3 meter  
2 meters 1/4 meter  
2 meters 1/5 meter  
2 meters 2/3 meter  

III. Gold Ribbon Ribbon Length of Bow Number of Bows 
3 meters 1/2 meter  
3 meters 1/3 meter  
3 meters 1/4 meter  
3 meters 1/5 meter  
3 meters  2/3 meter  
3 meters 3/4 meter  

IV. Red Ribbon Ribbon Length of Bow Number of Bows 
6 meters  1/2 meter  
6 meters 1/3 meter  
6 meters 1/4 meter  
6 meters 1/5 meter  
6 meters 2/3 meter  
6 meters  3/4 meter  

 

 

Figure 1. The Holiday Bows Task 
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During the beginning of the sixth grade, the students worked on the task called Tuna 
Sandwiches.   This task was created by the author with the intention of being similar in structure 
to Holiday Bows, which had been experienced during the previous year.  Students had access to 
various materials such as Unifix Cubes®, pattern blocks, Cuisenaire Rods®, paper, pencils, 
graph paper, meter sticks, string, scissors at all times during mathematics class and were 
encouraged to choose what they deemed appropriate and helpful as needed.  The task follows 
directly below. 

Mr. Tastee’s restaurant serves four different kinds of sandwiches.  A junior sandwich 
contains 1/4 lb of tuna; a regular sandwich contains 1/3 lb of tuna; a large sandwich 
contains 1/2 lb of tuna and a hero sandwich contains 2/3 lb of tuna.  Tuna comes in cans 
that are 1lb, 2 lb, 3lb and 5 lb.  How many of each type of sandwich can you make from 
each size can?  Find a clear way to record your information.  You will need to write a 
letter to the restaurant owner, Mr. Tastee, and give him your findings. 

One of the goals in creating the Tuna Sandwiches problem was for it to lend itself to be 
represented by an area model rather than a linear model, as was the case with Holiday Bows. 
That is, the intention was for the fractions to be based on a portion of a region, rather than a 
portion of a length as is the case in a linear model.  Fosnot and Dolk (2001) state that just 
because we create a problem with certain models in mind, we cannot be assured that these 
models will be used by students.  By creating a problem that was intended to be fundamentally 
similar in structure to the Holiday Bows yet embodied in a different type of representation, an 
area model, the notion of flexibility could be explored as well as an examination of the durability 
of the knowledge the students had demonstrated during the previous year. 

In both the fifth and the sixth grades, these tasks and the whole class sharing and discussion 
associated with them were followed by problems that required students to find the values of 
expressions involving division of fractions using only symbolic notation.  In the fifth grade, these 
problems consisted of only a natural number divided by a fraction.  The problems were assigned 
upon completion and discussion of the Holiday Bows task.  Students were asked to find the value 
of any two of the following three expressions: 

 5 ÷ 1/3   

 12 ÷ 3/4 

 7 ÷ 2/3 

In the sixth grade, two problems involving only symbolic notation were assigned to the students 
approximately six weeks after they began working on the Tuna Sandwiches task.  The problems, 
assigned one at a time, were to find the value of the expressions directly below.  

 2 ÷ 3/4  

 5/8 ÷ 2 1/2 

The second of these expressions was the students’ first exposure to finding the quotient of a 
common fraction divided by a mixed numeral.  As stated in the theoretical framework (See 
Tirosh, 2000 above), this type of division involving fractions is especially difficult for students to 
understand.  There were three significant goals of the assignment of the problems involving only 
symbolic notation during the sixth grade.  The first was to see whether or not the knowledge 
demonstrated in the past regarding division of fractions was durable. The second was to see if the 
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knowledge was flexible enough to be able to be extended and applied to a problem involving 
division of a common fraction by a mixed numeral and thirdly, to see if the students would make 
use of previously employed representations when the specific context was removed. 

Results and Discussion 

Prior to their work on division of fractions, the fifth grade students had done extensive problem 
solving with fractions using manipulative materials.  They were encouraged to construct models 
to support their solutions, draw their models and to justify those solutions in terms of the 
representations.  For example, on November 16, 2000, students were given the following 
problem.  

Which is greater, 2/3 or 3/4? By how much?  Build a model to solve the problem and 
explain how your model can be used to find a solution. 

 

At this early time in the semester, students were most familiar with Cuisenaire Rods® as a 
manipulative material for building models.  All of the pairs were able to solve the problem using 
this linear model.  In Figure 2, we see Samantha and Eve’s solution, which articulates a clear 
understanding of the problem.4  

Q: Which is greater 2/3 or 3/4?  

A: 3/4 is greater by 1/12.  

M [models]: 

 

P P P 

Dg Dg 

Lg Lg Lg Lg 

W W W W W W W W W W W W

 

 

Lg Lg Lg 

P P W

 

 

E [Explanation]: 2 Dg = 1.  1 Lg = 1/4.  1P = 1/3.  We took 3 Lg (3/4) and 2P (2/3) and put them one 
on top of the other and saw that 3 Lg (3/4) are bigger.  12W = 2Dg (1).  If you put 1W (1/12) next 
to the 2P (2/3) then they are the same lenghth as the 3 Lg (3/4).   So that is how we figured out our 
answer. 

 

Fig. 2.  Samantha and Eve’s solution. 
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Holiday Bows and Applications – Fifth Grade 

In late May of the same school year, the fifth graders worked on the Holiday Bows problem for 
two double (80 minute) periods on consecutive days.  They had received no prior formal 
instruction regarding division of fractions and were not told that this problem was relevant to that 
topic.  They worked collaboratively in groupings of their choice, but each submitted an 
individually completed chart (See fig. 1) and an individually written explanation of the solutions. 

Seven of the 13 students constructed representations, which they included with their solution 
explanations.   All of the students who drew representations used linear models.  The specific 
solutions of several students are worth mentioning.  Some, such as Sarah, drew discrete linear 
models for each meter of ribbon.  She used the solution method, reasoning involving fractions 
(See Bulgar 2002, 2003a, 2003b) to find out how many bows, each ½ meter in length could be 
made from six meters of ribbon (see above).  In this solution method, one recognizes that ½ 
means one out of two equal parts that comprise the whole and therefore for each whole there will 
be two parts.  The number of units (in this case meters) is therefore multiplied by two to find the 
number of halves in the entire amount.  Using this solution method, Sarah states that in each of 
the six meters there would be two bows so in six meters there would be 6 x 2 bows or 12 (See 
Figure 3).  Though the statement of the problem alludes to the ribbon being a continuous piece, 
six meters in length, her diagram indicates discrete representations for each of the six meters. 
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Fig. 3.  Sarah’s explanation for how many bows, each ½ meter in length can be made from 6 
meters of ribbon. 
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In contrast, Nicole drew a continuous linear representation for each of the ribbon lengths.  She 
also used reasoning involving fractions indicating that in each meter there would be two bows, 
each ½ meter in length.  However, unlike Sarah, who viewed the problem multiplicatively, 
Nicole imposed additive structures, adding two bows for each additional meter of ribbon.  One 
might say that Nicole’s solution makes use of reasoning involving measurement (See Bulgar, 
2002; 2003a; 2003b) as well.  In this solution method, students create a measurement tool, such 
as a piece of string, as long as the length of bow and then place it along the length of ribbon 
repeatedly, counting the number of times it fits on the ribbon.  Though Nicole did not create such 
a tool, the additive structure of her solution implies that she is cognitively placing ½ meter pieces 
along each meter and counting them.  She is thereby making use of an internal or mental model 
for the measurement tool, counting the number of times the tool could be placed along the given 
number of meters of ribbon.  As stated by Goldin and Shteingold (2001), internal models are 
borne of and developed through the use of external models.  These students previously had 
experience with the use of Cuisenaire® rods and apparently created an internal model based 
upon the external measurement models they had used in the past. 
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Figure 4.  Nicole’s solutions. 
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Both Gabriella and Stephanie did not draw representations, but each used reasoning involving 
fractions and multiplication.  They both wrote lengthy and detailed explanations for their 
solutions.  Stephanie wrote the following to explain her solution for how many bows, each 2/3 
meter in length could be made from two meters of ribbon. 

…with 2 m. each meter had 3 thirds and 2m. would be 3 x 2 = 6 [thirds], so 6 would be 
the answer [for the number of bows 1/3 meter in length that could be made from 2m of 
ribbon].  But 6 is to much even though 2m. x 2/3 [she circled the 3 in the denominator] = 
6.   I thought about that leftover 2/3 [she circled the 2 in the numerator].  Then I realized 
that if you can divide 2 ÷6 = 3!  That would be the answer because if you minus ½ from 
the 6 it equals 3.  If you have 6 and you – ½ from every 1/3 of 6, it = 3. 

Stephanie has confused the language for subtraction, which she refers to as “minus”, and 
division.  She has also reversed the dividend and the divisor when she states that 2÷6=3, which is 
a common misconception observed in students of this age.  However, she has evidently 
understood the inverse relationship created by enlarging the size of the bow and getting fewer 
bows.  Understanding that as the divisor is doubled, the quotient divided in two is a very 
complex notion.  Yet, it appears to be very clear to Stephanie from her explanation.  
Additionally, though she has confused the dividend and the divisor in her symbolic notation, her 
explanation indicates that she understands the role of each of the numbers conceptually. 

Samantha clearly and concisely explains how she used reasoning involving measurement to 
solve the problems (See Figure 5).  However, she does not make any mention of how she created 
the measurement tool.  Most students did this by cutting a one meter piece of string and then 
folding it equally into the number of parts needed for the unit fractions.  That is, to create a 
measurement tool that was 1/3 meter in length, they would fold the meter length of string into 
three equal parts and cut it on the folds.  When creating measurement tools for non-unit fractions, 
several began with the unit fraction tool.  For example, to create a measurement tool that is 2/3 
meter in length, one would cut two 1/3 pieces, place them end to end and then cut another piece 
of string the length of the combined pieces. 
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Figure 5.  Samantha’s solution 

 



TMME, vol6, nos.1&2, p. 183 
 

Several of the students indicated that they found the problems involving a non-unit divisor to be 
more difficult.  In her description of how many bows, each 2/3 meter in length could be made 
from two meters of ribbon, Brooke appears to have an internal representation of each meter 
discretely as well as each 1/3 of a meter in each bow.  She does not draw a representation, but she 
writes the following.    

you take the ribbin which is 2m. long & cut it into half each is a m. and each half cut into 
3 pieces and each 2 piece is a bow so you get 3 [bows]. 

We get a window into the internal representation that Brooke has created by examining her 
external representation (See Goldin & Shteingold, 2001 above) and the language she uses in her 
explanation.  After she deduces that there are six 1/3-meter bows in the two meters of ribbon, she 
cognitively connects two such pieces to form a bow that is made of 2/3 meter of ribbon. 

In this population, Olivia was the only one to refer to reasoning involving natural numbers (See 
Bulgar 2002, 2003a, 2003b) and she did not come up with this type of solution initially.  At the 
conclusion of her written work she says the following. 

I figured out a shorter way to explain this & it makes more sense.  It works as follows: 1 
meter = 100 centimeters.  You could change the amount of meters you have into centimeters.  
Thus, let’s say you have to make bows each 1/2 of a meter.  Figure out how many 
centimeters = 1/2 of a m.  50 centimeters = 1/2 of a m because half of 100 is 50.  Then see 
how many times 50 goes into 100.  However many times 50 goes into 100 is how many bows 
you can make with each bow 1/2 of a m. & with 1 m.  You can also do this with 1/3 of a m. 
or 1/4… as long as you change 1/3 or 1/4 of a meter into a # amount of centimeters.  You can 
also do this with 2 or 3m… of string as long as you change 2 or 3m… into centimeters.  I 
think this works because you have to figure out how many 1/3rds or 1/4th s of a m. go into 1 
m.  That is saying the same thing as a certain # of centimeters go into 100 or 200 or 300.  Or 
you could do 1 ÷ 1/4 and you would get 4.  That is the same thing as 100 ÷ 25 = 4.  They 
both = the same thing which proves they both work. 

As some of the students moved from the unit fractions to the non-unit fractions, they had to 
adjust their strategies.  Linda solved the problems that required division by a unit fraction using 
reasoning involving fractions, multiplying the number of meters by the number of bows of each 
size in a one-meter piece of ribbon.  She assumed this method was no longer valid when faced 
with a non-unit fraction divisor and therefore changed her mental representation and employed 
the strategy of reasoning involving measurement.  The following appeared in the field notes of 
one researcher who was present. 

When she got to the question of 6m ribbon and 2/3m bow, she started measuring.  I asked her 
why she didn’t just use her multiplying method, she replied, “cause there’s a 2 there not a 1 
[in the numerator], so you can’t do it, you can only do it when there’s a 1, so I have to 
measure it if there’s another number there.”  It’s ironic how she understands that the 2 in the 
numerator makes her method invalid, but she doesn’t understand why. (C. Hayworth, 
unpublished notes, May 24, 2001)  

After the students had all completed the work on Holiday Bows and submitted their individual 
papers, the problems were discussed in a whole group setting with various students sharing their 
solutions. A week later, they were asked to find the value of any two of the following 
expressions, which involve only symbolic notation. 
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(1) 5 ÷ 1/3   

(2) 12 ÷ 3/4  

(3) 7 ÷ 2/3   

Students were asked to solve the problems and explain the solutions.  Most of them chose the 
unit fraction divisor for one of the problems.  Every submitted solution was correct, though there 
were a variety of explanations.  Some students used approaches that focused on procedural 
explanations with some variety among them.  For example, Samantha offers the following for 
her incorrectly copied example 5 ÷ ¾ . 

you can get the answer by timzing (x) the number that you’re dividing by.  Like you would 
timez the 5 by the 4 and you would get 20.  And the you’de divide 20 by 3 which is 6 2/3. 

Brooke writes the following. 

before you do 12 ÷ ¾ you have to find out how many [fractional] parts there are so you do 12 
x 4 which equals 48  then you do 48 ÷ 3 which equals 16. 

While it appears that these students are relying upon algorithmic solutions, they seem to be using 
“Procedures with Connections” (See Stein, Smith, Henningsen & Silver, 2000) in that they refer 
to dividing and breaking into fractional parts.  That is, they initially find the number of unit 
fractions in the length of ribbon and then “join” these discrete unit fractional parts to create the 
desired non-unit fractional piece. 

Sarah was the only one in the class who drew area representations for her solutions.  The 
students had worked with pattern blocks for other fraction activities in the past, but they were not 
available when the students worked on Holiday Bows.  Her explanations are noteworthy.  She 
states the following for 5 ÷ 1/3. 

You are doing 5 x 3 = 15.  You do 1 devided by 15 because it is only one third not three 
thirds. 

Even though Sarah has confused the dividend with the divisor, which is not uncommon when 
children of this age use language to express their mathematical experiences, she indicates an 
understanding of the role of the number of thirds in the divisor.  Therefore, it is expected that she 
would easily transition to dividing by a non-unit divisor.  Regarding 12 ÷ ¾, she writes the 
following. 

You do how many times can four go into every one of the 12 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12) which is doing 12 x 4 = 48.  Now you have to do 48 ÷ 3 & get 16.   

Her discrete area representation consists of twelve circles divided into fourths with a sequential 
multiple of four written above each one. 

A few of the students made some reference to ribbon or bows during their explanations.  For 
example, Gabriella drew a continuous linear model and stated the following when explaining her 
solution for 7 ÷ 2/3.  

2 goes into 3 3 time so I do 3 x 7 because I want to see how much times 3 can go into 7 
meters.  3 x 7 = 21.  Now I want to devide 21 by 2 because if you have 7m. ribbon you 
devide it into 3 parts and I can make 2.  (Her representation appears here in her explanation 
with the notation “2 parts out of 3 parts”.  She then draws a standard division problem that 
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indicates that 21 ÷ 2 = 10 ½.)  A half is because 1 part out of 2 is ½ and 2 ÷ 21 is 10 ½ . 

Gabriella has also reversed the language of the dividend and the divisor, but she unmistakably 
understands the very difficult inverse relationship in division that when you divide by a larger 
dividend, you get a smaller quotient. 

Stephanie, Olivia and Eve also make reference to understanding this inverse relationship.  Eve 
states the following, which additionally indicates that she is thinking multiplicatively about the 
problem. 

Now I will explain 12 ÷ ¾ = 16.  There are 48 one thirds in 12.  ¾ is 3 times as much as 1/3. 
The answer will be three times less than 48 which is (48 ÷ 3) 16. 

Stephanie indicates her understanding of the inverse relationship when she states the following. 

The second one was 12 ÷ ¾ so like the other problem you do 12 x 4 because you ask how 
many times does ¾ go into 12.  It is 48 so now you divide by 48 because you aren’t asking 
how many times does ¼  go into 12 but ¾ .  So ¾ is more ribbon.  Now you divide 48 ÷ 3 
which is 16. 

Stephanie has mentioned ribbon, which seems to indicate that although she did not draw any 
representation, she is referring back to an internal model that she has created, one that is a 
continuous linear model.  Here the external representation in the form of language is leading us 
to believe that she has constructed an internal model of the ribbon to help her solve the problem. 

Olivia also explained her solution in terms of the inverse relationship.  She states the following 
in her explanation of 7 ÷ 2/3 = 10 1/2.  

First you must find out how many thirds are in one.  You must find this out because you can’t 
find out how many 2/3 are in 7 if you can’t find out how many 1/3 go into 7.  1/3 goes into one, 
three times because 3/3 are 3 pieces put together to equal one.  1/3 is one of these 3 pieces.  
Once you know that you have to multiply 7 x 3.  You multiply because 1/3 goes into one three 
times, & you need to find out how many of these threes go into 7.  7 x 3 = 21.  21 would be 
how many 1/3 go into 7.  You must find out how many 2/3 go into 7.  2/3 is more than 1/3, so 
therefore you would get less ribbons… you divide 21 in half or by 2.  21 divided by 2 is 10 ½ 
& that is your answer.. 

Olivia has gone into great detail to justify her solution and has also referred to the ribbons, 
alluding to her use of a cognitive model based on her work with Holiday Bows. 

By the time the fifth graders had completed the tasks described above, they had demonstrated an 
understanding of division of fractions.  In summary, there was indication of each of the 
following: 

 Solving division of fractions problems within a concrete context. 

 Solving division of fractions problems using symbolic notation. 

 Understanding of the inverse relationship resulting in a decreased quotient when the 
dividend is increased. 

 Understanding that the quotient is a count of how many times the divisor can be 
measured along the dividend. 

 Understanding that the operation of division for fractions has the same meaning as the 
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operation of division in natural numbers so that one can fluidly move between these two 
forms to get the same solution. 

 Even when a procedure for division of fractions is described it is rooted in the 
understanding of the conceptual basis for why this works.  Not all students 
conceptualized the procedure in the same way. 

 Even when students did not draw representations, their explanations provide clues to the 
internal models they used to solve problems. 

 

Tuna Sandwiches and Applications – Grade 6 

The classroom culture that had been established in the fifth grade was part of the sixth grade 
mathematics class from the onset.  Therefore, when the students were asked to work on the task, 
Tuna Sandwiches, they knew they had to explore the problem on their own and with their peers 
without waiting for the teacher to “give” them an algorithm or procedure.  Again, they were not 
told that this was a division problem.  They were merely told to solve the problem and to use the 
letter that was required by the problem to justify their findings. 

Not one of the thirteen sixth graders used a linear model to solve the Tuna Sandwich Problem.  
Ten of the thirteen students actually drew area models to represent their solutions and three of 
the thirteen explained their thinking without referring to any representation.  It is interesting to 
note that all but one of the area models included discrete drawings for each pound of tuna.  One 
would think that the problems involving the hero sandwiches, those which each required 2/3 of a 
pound of tuna, would be more difficult to solve when using discrete representations.  There was 
no mention, either verbally or in writing, of greater difficulty with the non-unit fractions, as had 
been the case in the fifth grade.  In fact, several students stated that each one-pound of tuna 
would yield one and one-half hero sandwiches.  It appeared that the shift in unit was made 
seamlessly by the sixth graders.  One-third pound of tuna was recognized to be one half the 
quantity needed to make a hero sandwich, which required two-thirds pound of tuna.  This kind of 
understanding was not demonstrated in the fifth grade. 

Though they were not required to do so, most of the sixth graders spontaneously formed some 
kind of graphic organizer to structure their results (See Figure 6). Seven of the thirteen students 
formed a matrix indicating the amount of tuna required for each sandwich as one dimension and 
the different-sized cans of tuna as the other dimension.  Four of the students indicated their 
solutions in an organized listing.  One of these students had both an organized listing and a 
matrix. 
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Figure 6.  Michelle’s Graphic Organizer 

 

Since the students specified their solutions using reasoning involving fraction knowledge by 
looking first at how many sandwiches of each type could be made from a one pound can of tuna, 
it is interesting to note that very few used proportional reasoning approaches (ie., they did not 
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use multiplicative structures to arrive at solutions involving multiple cans of tuna).  Rather, most 
used additive structures.  Stephanie begins by alluding to proportional reasoning when she writes 
the following as she explains her solutions for finding out how many regular sandwiches, those 
requiring 1/3 pound of tuna, could be made from each of the various sized cans. 

You can only make 3 sand. With one lb of tuna because 3 thirds make 1. (3/3=1)  With one 
more lb of tuna (2lb) you can make twice as many sand. So you have 6 sand.  With 3 lb of 
tuna you can make 3 more sand. (9 altogether) because you have one more lb of tuna which 
make 3 sand. Because 3 thirds (3/3) =1.  Now with 5 lb. you add not 3 sand. But 6 because it 
is not 4 lb, but 5 lb of tuna.   

Stephanie appears to be going back and forth between multiplicative and additive approaches, 
adding on multiples of three sandwiches.  When Stephanie explains her solution to the hero 
sandwich problem, the one involving division by a non-unit fraction, she states the following. 

 So with a 1 lb can you can make 1 sand. and a 1/2 of another because it is 2/3 of a lb of tuna 
[required for each hero sandwich] so you have 2/3 left which is 1/3 left which is 1/2 of 2/3.  A 2 
lb can of tuna you can make 3 sand. easily and the excess is 1/3 from both so that makes 3… 
Now for a 5 lb. can you can make 6 1/2 sand. because you can make 5 easily and 2 1/2 more 
with the extra of each lb.  

Though Stephanie’s solution of 6 1/2 sandwiches is not consistent with her explanation, she has 
evidently demonstrated an understanding that 1/3 of a pound of tuna represents 1/2 of a hero 
sandwich, an idea that students had more difficulty understanding the previous year when they 
worked with the linear model suggested by the Holiday Bows problem.  This change in the unit 
is a very difficult one in general.  It would appear that Stephanie is first counting the complete 
sandwiches that can be made from each pound, the ones she refers to as being made “easily”, and 
then is gathering up the remaining 1/3 pounds from each can to combine them in order to make 
additional sandwiches.  While doing so, she made the error of recording 6 1/2 sandwiches as her 
final answer, though she says “…you can make 5 easily and 2 1/2 more with the extra of each lb.”  
This kind of thinking was also observed in the representations of other students, such as 
Gabriella, Lynn, Amy, Sarah and Bea, who drew connecting lines to the “leftover” one-third 
pound of tuna in each representation of a one-pound can. (See Figure 7.) 
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Figure 7.  Bea’s solution showing lines connecting fractional parts to make a complete sandwich. 

 

After completing a lengthy explanation and justification of her solutions, Eve wrote the 
following reflection on her work. 
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P.S. When I was figuring this out for you I noticed something interesting.  I noticed That by 
the junior sandwich (1/4 lb.) you added 4 by every can of tuna.  This is because every time 
the can get bigger by 1 lb (from which you can make 4 sandwiches) so you just add another 4 
and the 5 lb., it is 2 more lbs. So you add 8 instead of 4.   

Though Eve used reasoning involving fractional knowledge, she applied additive reasoning to 
get the solutions, adding the number of sandwiches that can be made from each pound of tuna.  It 
is interesting to note that Eve and other students who did this did not recognize the repeated 
addition of the same addend as multiplication. 

Sarah used multiplicative reasoning in finding the solutions.  She wrote the following. 

Out of 3 pound you can make 12 junior. There is 4 in each [pound] and 4 x 3 = 12. 

Sarah included a diagram of 3 circles divided into four sections or fourths.  She numbered the 
sections from one to twelve.  She used this representational structure for all of her solutions. 

Gabriella also used multiplicative reasoning.  She drew five circles, divided them in half 
vertically and stated the following. 

How much large sandwiches can you make from 5 pounds.  Let’s try those imaginary pounds 
[her drawings].  Well 2 in each of the 5 pounds 5x2 = 10! 

In the summative class discussion of the Tuna Sandwiches Problem, students talked about the 
problem and how it was like the problem they had done the previous year, called Holiday Bows.  
Those who did not recognize it at first agreed when their peers noted the structural similarity in 
the problems.  They recognized that the problem required division of fractions and easily 
explained their solutions using symbolic notation.  For example, when summarizing that three 
hero sandwiches could be made from two pounds of tuna, they were able to create the number 
sentence, 2 ÷ 2/3 = 3. Some of the number sentences that the students provided were recorded on 
an overhead projector transparency.  These number sentences are seen as solutions representing 
conceptual understanding derived from the use of student-generated representations and internal 
models, rather than as algorithmic answers.  The students agreed that they had solved these 
problems using division of fractions. 

Approximately six weeks after the students began working on the Tuna Sandwiches problems, 
they were assigned division of fractions problems using only symbolic notation, one at a time.  
During those six weeks, the class went on to explore other unrelated topics in the sixth grade 
curriculum such as practice in rounding decimals and surface area.  There were a significant 
number of religious holidays (6 days plus a full week) for which the school was closed during 
this time creating both a lack of consistency and an aura of festivity.  What is interesting to note 
when examining the students’ work done with the decontextualized problems is that when 
drawing representations, students invariably went back to linear representations.  Many referred 
specifically to Cuisenaire Rods® when they discussed their linear models.  Thus components of 
the conceptual models they had built early in the fifth grade had endured, which is consistent 
with the conclusion drawn by Lesh, Lester and Hjalmarson (2003) that elements of initial models 
are retained. 

The first of the two problems involving symbolic notation was to find the value of 2 ÷ 3/4.  The 
students were told to build a model, to solve the problem and to explain how the model could be 
used to find the solution.  Some (Michelle, Amy and Rose for example) wrote the problem as 
“How many 3/4’s are in 2?”  This would indicate an understanding of the meaning of division.   
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All of the students used linear representations and these representations were all continuous.  The 
students referred to Cuisenaire Rods® in their explanations and descriptions.   Even though Amy 
used a continuous linear model, she referred to sandwiches in her explanation.  This would seem 
to indicate that she is comfortably moving back and forth between linear and area models 
cognitively to represent the fractions.  She writes the following. 

I made a train5 of 2 Brown’s wich is 1.  I wanted to make sandwiches with 3 scoops of 
margarine so I took 6 scoops then I had 2 extra wich was 2.  and I had 2 2/3. 

 

 

R R R R R R R R 

Br Br 

 

 

R R 

               

               2/
3     

Figure 8.  Amy’s representation of her solution for 2 ÷ 3/4. 

 

In order to create this representation, Amy needed to be able to select the appropriate length 
Cuisenaire Rods®, the ones that enable her to find a suitable solution.  In this case, Amy chose 
the brown rod, which is eight centimeters in length to call “one”.  She showed that each red rod, 
which is two centimeters in length, is therefore one fourth.  She clearly indicated that three red 
rods (which form the number three – fourths) is now defined as one, indicating that each time 
this length is achieved, it represents one time that 3/4 goes into 2.  Amy’s representation shows 
that she has seamlessly been able to move between the changes of unit necessary to interpret her 
representation.  She darkened the outline of each set of 3 red rods (shaded in the diagram) to 
indicate a count of 3/4 that goes into 2. 

Subsequent to providing solutions for the problem above, students worked on the problem of 
finding the value of the expression 5/8 ÷ 2 1/2.   Though this problem is considerably more 
difficult, involving a quotative division model, every student in the class found the correct 
solution.  Again, students used continuous linear models and referred to Cuisenaire Rods® in 
their explanations and their representations.  

Most of the representations and explanations involved the reasoning that if 4 x 5/8 = 2 1/2, then 5/8 
÷ 2 1/2 = 1/4. Rearranging the equation in this way is a very complex notion.   All of the 
representations that accompanied the explanations indicated the use of Cuisenaire® rods, using 
the brown rod to represent 1.   

Olivia and Eve were the only students to submit a joint solution.  They wrote the following, 
which is based upon the idea that 1/4 of 2 1/2 is 5/8. 

Brown = 1.  8 whites go into brown so, each white = 1/8.  5 whites are equal to one yellow, so 
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each yellow is 5/8.  2 purples equal 1 brown therefore each purple equals 1/2.  According to 
what we just wrote, 2 browns and one purple would be 2 1/2. Yellow goes into 2 1/2 four 
times.  Therefor, the answer is 1/4 because 1/4 of 2 1/2 is 5/8. 

Their representation also indicates the understanding that 5/8 is ¼ of 2 ½ .  They bracket each 
yellow rod and indicate that it is ¼ of 2 ½. 

 

 

½  ½  

1 
1/8 

1/8
1/8

1/8
1/8

1/8
1/8

1/8

5/8 

 

 

1 1 1/2 

 5/8 
5/8 

5/8 
5/8 

                 ¼ ( of 2 ½)               ¼ ( of 2 ½)            ¼ ( of 2 ½)              ¼ ( of 2 ½) 

 

 

Figure 9.  Olivia and Eve’s representations for 5/8 ÷ 2 ½. 

 

This solution, like the others, indicates conceptual understanding of division of fractions. 

A summary of the representations created by the students over time is shown in the chart below. 
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Tasks: 
Ordering 
Fractions  

Holiday 
Bows  

5 ÷ 1/3 

12 ÷ 3/4 

7 ÷ 2/3 

Tuna 
Sandwiches 

2 ÷ 3/4 

5/8 ÷ 2 ½ 

Grade:  5 5 5 6 6 

Lynn Linear None None 
Discrete 
Area**** 

Continuous 
Linear 

Gabriella Linear None 
Continuous 
Linear 

Discrete 
Area**** 

Absent 

Samantha Linear None None  
Continuous 
Area 

Continuous 
Linear 

Eve Linear 
Continuous 
Linear 

None***  
 Discrete 
Area**** 

Continuous 
Linear 

Sarah Linear 
Discrete 
Linear 

Discrete 
Area 

Discrete 
Area**** 

Continuous 
Linear 

Amy Linear 
Continuous 
Linear 

None Discrete Area  
Continuous 
Linear 

Stephanie Linear None None*** None 
Continuous 
Linear 

Nicole Linear 
Continuous 
Linear 

None 
Discrete 
Area**** 

Continuous 
Linear 

Linda Linear ** Absent - - 

Bea Linear 
Discrete 
Linear 

None 
Discrete 
Area**** 

Continuous 
Linear 

Brooke Linear None None  
Discrete Area  Continuous 

Linear 

Olivia Linear 
Discrete 
Linear* 

None***  None  
Continuous 
Linear 

Rose Linear 
Continuous 
Linear 

None Discrete Area  
Continuous 
Linear 

Michelle - - - 
Graphic 
Organizer 

Continuous 
Linear 

 

*After having used fractional knowledge to solve the problem, Olivia used reasoning involving 
natural numbers.  She was the only student in the 5th grade to come up with this form of solution. 
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**Linda was absent on the first day that the problem was assigned and therefore submitted only 
her completed chart.  (See Figure 1.)  Because she is a child with special needs, completion of 
the written explanations was not required. 

 

***Though these students did not draw representations, they referred to ribbons and/or bows in 
their explanations.  This would lead to the conclusion that the cognitive representations they had 
created were linear. 

 

****Also included a graphic organizer. 

Figure 10.  Summary of the representations used by students. 

 

Conclusions and Implications 

There are several main points that can be gleaned from this investigation into the nature of the 
representations that students built and used as they developed an understanding of division of 
fractions in the absence of being taught the formal algorithms or procedures.  The first, and 
perhaps the most significant, is that students can, under certain conditions, create and link 
representations that can help them to make sense of problems involving division of fractions, and 
in the process produce solutions that are mathematically correct.  Furthermore, this can be done 
within the context of regular classroom practice. This study documents that the ideas that are 
built are robust and can be spontaneously retrieved even after long periods of time have elapsed. 
The students in this study were able to competently and easily recognize, retrieve, and use ideas 
that they had formulated several months earlier, and these ideas could be used to solve a variety 
of symbolic and decontextualized problems—all in the absence of formal instruction on the use 
of algorithms.  Lesh, Lester and Hjalmarson (2003) indicate that when model eliciting problems 
are assigned, models are developed for specific purposes, just as the students in this study 
created their initial models as representations to solve particular problems.  Moreover, they 
suggest that as the models become generalizable and transferable, they retain some 
characteristics of the original situated context.  We see this in the students’ references to ribbons 
and bows and Cuisenaire® rods as they construct solutions for the decontextualized problems.  

A second significant point is that like the students cited in Bulgar, 2002; 2003a; and 2003b, the 
students in this study made use of three main methods to solve the problems, even though they 
had not been taught a procedure or algorithm to solve problems involving division of fractions.  
These methods are reasoning involving natural numbers, reasoning involving measurement and 
reasoning involving fraction knowledge.  In reasoning involving natural numbers, students 
converted the units to other units, changing the division from a fraction problem to a natural 
number problem.  For example students might convert fractional parts of meters to centimeters.  
In reasoning involving measurement, students created a measurement tool the size of the divisor 
and counted how many times they could place the tool along the object that is the dividend.  In 
reasoning involving fraction knowledge, the students made use of their knowledge of the number 
of unit fractions in each “one”.  Only one of the students in this group of subjects used reasoning 
involving natural numbers.  This student claimed to have originally solved the problem 
differently, using reasoning involving fraction knowledge.  Some students began by using 
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reasoning involving fraction knowledge, but then applied reasoning involving measurement.  
This was seen when students worked with non-unit fractions or when they applied additive 
structures to their solutions.  The predominant method that students used when solving these 
problems, in this study, was reasoning involving fractions.  These solutions evolved from the 
representations that the students created.  All three of these fraction solution methods provide 
students with knowledge frames based upon counting schemes, which as stated by Speiser and 
Walter (2000) are easily interchanged between integers and fractions, making a counting frame 
for fractions a natural extension of the one for integers.  Because of the contextualized problems, 
the students were not limited in their ability to extend their knowledge of division to division of 
fractions (Tirosh, 2000) and were able to construct meaningful solution strategies. 

Finally, as the cited research suggests (Fosnot & Dolk, 2001; Warner, Alcock, Coppolo & Davis, 
2003; Warner & Schorr, in progress), the ability to move among and between different 
representations for the same concept, indicated for these students a deeper understanding of ideas 
relating to fractions.  The students in this study seamlessly moved among continuous and 
discrete linear representations and area representations when solving problems involving division 
of fractions, indicating a very meaningful grasp of division of fractions, often thought to be the 
most difficult topic in elementary school mathematics (Ma, 1999).  They were able to generalize 
their ideas and apply them to problems using symbolic notation, thereby using their conceptual 
knowledge rather than algorithmic procedures to solve problems.  The knowledge that they built 
about division of a natural number by a fraction was so robust, durable and flexible that they 
were able to extend their understanding to solve problems with fractional dividends and 
fractional quotients.  Their solutions were rooted in their interpretation, extensions and revisions 
of the representations that they had created.   

These findings have specific significance for the teaching of mathematics.  They underscore the 
need for teachers to build a deep understanding of students’ representations in order to choose 
and design appropriate tasks that become concrete contexts for the development of abstract ideas 
about division of fractions.  Contextualization has been identified as one of the complex notions 
surrounding teacher knowledge (Doerr & Lesh, 2003).  Teachers also need to understand how to 
interact with students as they encourage them to develop, use and build meaning for the ideas 
associated with division of fractions (Davis & Maher, 1997). Such interactions would include the 
creation of a classroom environment in which justification, sense making and meaningful 
discourse are encouraged.  The research reported in this paper substantiates the importance of 
encouraging discourse as an important means of strengthening students’ ideas (Bezuk & Cramer, 
1989; Post, Ipke, Lesh & Behr, 1985).  This study confirms the findings of other researchers 
(Bezuk & Cramer, 1989; Post, Ipke, Lesh & Behr, 1985), wherein discourse was also shown to 
be critical to the development of concrete models, which were then used as cognitive 
representations of fractions.  Additionally the findings presented herein substantiate the need to 
create the appropriate learning environments to provide the building blocks that will assist 
students in constructing meaningful representations (Davis & Maher, 1997).  

In conclusion, this research has important implications for both teachers and researchers. As 
indicated above, the students in this study were able to avoid, for all practical purposes, the main 
difficulties typically associated with the study of fractions and division of fractions in particular.  
By considering the classroom context, the problem situations posed, and the trajectory of ideas 
formulated by these students, teachers and researchers can gain insight into ways in which to 
help students make meaningful sense of this material.  In closing, the author wishes to 
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underscore the fact that the research contained herein was done in these students’ regular 
mathematics class, facilitated by their regular mathematics teacher, and not by a team of 
researchers under highly idealized circumstances.  The type of activities described here, and the 
culture of this classroom were typical of how these students regularly received mathematics 
instruction.  This should lend a note of encouragement to teachers who are in search of practices 
that may help their students build a deeper understanding of this very complex topic.  

Endnotes 

 1 The research cited here was supported in part by grant MDR 9053597 from the National 
Science Foundation and by grant 93-992022-8001 from The NJ Department of Higher 
Education.  The opinions expressed here are those of the author and are not necessarily the 
opinions of the National Science Foundation, The NJ Department of Higher Education, Rutgers 
University or Rider University. 
2 Traditional, in this case refers to a more didactic environment of the type described in Cuban, 
1993. 
3 This task was originally developed by Alice Alston of Rutgers University. It has been studied 
extensively reported upon by Bellisio (1999), Bulgar (2002, 2003a, 2003b) and Bulgar, Schorr & 
Maher (2002). 
4 The abbreviations used by the students in this model had been adopted by the class and 
represented the colors of the Cuisenaire Rods®.    P represents purple, which is 4 cm in length; 
Dg represents dark green, which is 6cm in length; Lg represents light green, which is 3cm in 
length and W represents white, which is 1cm in length. 
5 A train is the class-accepted term to denote two or more Cuisenaire Rods® that have been 
placed side by side along their shorter end.  The resulting combined length is now treated as if it 
were one longer Cuisenaire Rod®. 

References 

Alston, A.S., Davis, R.B., Maher, C.A., Martino, A.M. (1994).  Children’s use of alternative 
structures.  Proceedings of Psychology of Mathematics Education XVIII.  Lisbon, Portugal. 

Ashlock, R.D. (1990). Error patterns in computation.  New York: Macmillan. (as cited in 
Tirosh, 2000). 

Barash, A., & Klein, R. (1996).  Seventh grades students’algorithmic, intuitive and formal 
knowledge of multiplication and division of non negative rational numbers.  In L. Puig * A. 
Gutierrez (Eds.) Proceedings of the 20th conference of the International Group for the 
Psychology of Mathematics Education, 25, 166-208.  (as cited in Tirosh, 2000). 

Behr, M. & Post, T. (1992). Teaching rational number and decimal concepts. In T. Post (Ed.), 
Teaching mathematics in grades K-8: Research-based methods (2nd ed.) (pp. 201-248). 
Boston: Allyn and Bacon. 

Bellisio, C. (1999).  A study of elementary students’ ability to work with algebraic notation and 
variables.  Unpublished doctoral dissertation, Rutgers University, NJ. 

 

 



TMME, vol6, nos.1&2, p. 197 
 

Bezuk, N. & Cramer, K. (1989).  Teaching about fractions: What, where and how?  In P.R. 
Trafton (Ed.). New Directions for Elementary School Mathematics: 1989Yearbook.  National 
Council of Teachers of Mathematics: Reston, VA. 

Bulgar, S. (2002).  Through a teacher’s lens: Children’s constructions of division of fractions.  
(Doctoral dissertation, Rutgers, The State University of New Jersey at New Brunswick, 
2002) Dissertation Abstracts International 63/05. p.1754, AAT 3052715 

Bulgar, S. (2003a). Using research to inform practice: Children make sense of division of 
fractions. In N.A. Pateman, B.J. Dougherty & J.T. Zilliox (Eds.), Twenty –seventh 
Conference of the International Group for the Psychology of Mathematics Education held 
jointly with the Twenty-fifth Conference of the North American Chapter of the International 
Group for the Psychology of Mathematics Education: Vol. 2. Navigating Between Theory 
and Practice (157 – 164).  Honolulu, HI: CRDG, College of Education, University of 
Hawai’i. 

Bulgar, S. (2003b). Children’s sense-making of division of fractions.  The Journal of 
Mathematical Behavior: Special Issue on Fractions, Ratio and Proportional Reasoning, Part 
B. 22(3), 319 – 334. 

Bulgar, S., Schorr, R.Y. & Maher, C.A. (2002).  Teacher’s questions and their role in helping 
students build an understanding of division of fractions. In A.D. Cockburn & E. Nardi (Eds.), 
Twenty – sixth Annual Conference of the International Group for the Psychology of 
Mathematics: Vol. 2.  Learning From Learners (161 – 167).  Norwich, UK: School of 
Education and Professional Development University of East Anglia. 

Burns, M. (2000).   About teaching mathematics.  Sausalito, CA: Math Solutions Publications. 

Cobb, P., Boufi, A., McClain, K., & Whitenack, J. (1997).  Reflective discourse and collective 
reflection.  Journal for Research in Mathematics Education, 28(3), 258-277. 

Cobb, P., Wood T., Yackel, E & McNeal, E.(1993) Mathematics as procedural instructions and 
mathematics as meaningful activity: The reality of teaching for understanding.  In R.B. Davis 
& C.A. Maher (eds.) Schools, mathematics, and the world of reality. (pp.119-133). SMA: 
Allyn and Bacon. 

Cramer, K. & Henry, A. (2002).Using Manipulative models to build number sense for addition 
of fractions.  In B. Litwiller & G. Bright (Eds.).  Making Sense of Fractions, Ratios and 
Proportions: 2002 Yearbook.  National Council of Teachers of Mathematics: Reston, VA. 

Cuban, L. (1993). How teachers taught: Constancy and change in American classrooms, 1890-
1980. (2nd ed.). New York: Teachers College Press. 

Davis, G.E., Hunting, R.P., & Pearn, C. (1993).  What might a fraction mean to a child and how 
would a teacher know?  The Journal of Mathematical Behavior, 12(1), 63-76. 

Davis, R.B. (1984). Learning Mathematics: The cognitive science approach to mathematics 
education.  Norwood, NJ: Ablex (as cited in Speiser & Walter, 2000). 

Davis, R.B., Alston, A, & Maher, C. A. (1991).  Brian’s number line representation of fractions.  
Proceedings of Psychology of Mathematics Education XV. Assisi, Italy. 

Davis, R.B., & Maher, C.A., (1990). The nature of mathematics:  What do we do when we do 
mathematics.  In R.B. Davis, C.A, Maher & N. Noddings (Eds.) Constructivist views on the 



Bulgar 

teaching and learning of mathematics. (pp.65-78). Reston, Va.: National Council of Teachers 
of Mathematics 

Davis, R.B., Maher, C.A. (1997). How students think:  the role of representations.  In L. D. 
English (ed.) Mathematical reasoning: analogies, metaphors, and images.  (pp. 93-115). NJ: 
Lawrence Erlbaum. 

Davis, R.B., Maher, C.A. & Martino, A.M. (1992). Using videotapes to study the construction of 
mathematical knowledge by individual children working in groups.  Journal of Science 
Education and Technology, 1(3), 177-189. 

DeTurck, D. (2005).  Down with fractions.  Penn Arts & Sciences Magazine.   University of 
Pennsylvania School of Arts and Sciences. (Pp.12-14).  Spring, 2005. 

Doerr, H. M. & Lesh, R. (2003).  A modeling perspective on teacher development. In R. Lesh & 
H. Doerr (Eds.) Beyond constructivism: a models and modeling perspective on teaching, 
learning, and problem solving in mathematics education. Lawrence Erlbaum, Hillsdale, NJ. 

Fischbein, E., Deri, M., Nello, M. & Marino, M.  (1985).  The role of implicit models in solving 
verbal problems in multiplication and division.  Journal for Research in Mathematics 
Education, 16, 3-17.  (as cited in Tirosh, 2000). 

Fosnot, C.T. & Dolk, M. (2001). Young mathematicians at work: Constructing multiplication 
and division. Portsmouth, NH: Heinemann. 

Goldin, G. & Shteingold, N. (2001). Systems of representation and the development of 
mathematical concepts. In A.A. Cuoco & F. R. Curcio (Eds.). The Roles of Representation in 
School Mathematics: 2001 Yearbook.  National Council of Teachers of Mathematics: Reston, 
VA. 

Graeber, A.O., Tirosh, D., & Glover, R. (1989). Preservice teachers’ misconceptions in solving 
verbal problems in multiplication and division.  Journal for Research in Mathematics 
Education, 20, 95-102.  (as cited in Tirosh, 2000). 

Hart, K. M. (Ed.) Children’s understanding of mathematics: 11-16. London: John Murray. (as 
cited in Tirosh, 2000) 

Kamii, C., & Dominick, A. (1997). To teach or not to teach algorithms.  The Journal of 
Mathematical Behavior, 16(1), 51-61. 

Klein, R. & Tirosh, D. (2000). Does a research based teacher development program affect 
teachers’ lesson plans? In T. Nakahara & M. Koyama (Eds.) Proceedings of the 24th 
Conference of the International Group for the Psychology of Mathematics Education. 
Hiroshima, Japan. 

Kouba, V.L. (1989).  Children’s solution strategies for equivalent set multiplication and division 
word problems.  Journal for Research in Mathematics Education, 20, 147-158. 

Lamon, S.J. (2001).  Presenting and representing: From fractions to rational numbers.  In A.A. 
Cuoco & F. R. Curcio (Eds.). The Roles of Representation in School Mathematics: 2001 
Yearbook.  National Council of Teachers of Mathematics: Reston, VA. 

 



TMME, vol6, nos.1&2, p. 199 
 

Lesh, R., & Doerr, H. (2003).  In what ways does a models and modeling perspective move 
beyond constructivism? In R. Lesh & H. Doerr (Eds.) Beyond constructivism: a models and 
modeling perspective on teaching, learning, and problem solving in mathematics education. 
Lawrence Erlbaum, Hillsdale, NJ. 

Lesh, R., Lester, F. K., Jr. & Hjalmarson, M. (2003).  A models and modeling perspective on 
metacognitive functioning in everyday situations where problem solvers develop 
mathematical constructs. In R. Lesh & H. Doerr (Eds.) Beyond constructivism: a models and 
modeling perspective on teaching, learning, and problem solving in mathematics education. 
Lawrence Erlbaum, Hillsdale, NJ. 

Ma, L. (1999). Knowing and teaching elementary mathematics. Mahwah, NJ: Lawrence Erlbaum 
Associates. 

Maher, C.A., Davis, R.B., Alston, A.S. (1993).  Brian’s representation and development of 
mathematical knowledge;  The first two years.  In R.B. Davis, C.A. Maher, (Eds.).  Schools, 
mathematics, and the world of reality,   Boston: Allyn and Bacon. 

Minsky, M. (1975). A framework for representing knowledge.  In P.H. Winston (Ed.), The 
psychology of computer vision (pp. 211-277), New York: McGraw-Hill (as cited in Speiser & 
Walter, 2000). 

National Council of Teachers of Mathematics.  Curriculum and Evaluation Standards for School 
Mathematics.  Reston, Va.:  The Council, 2000. 

New Jersey Mathematics Coalition and New Jersey State Department of Education. New Jersey 
Mathematics Curriculum Framework, 2002. 

Ott, J., Snook, S.L. & Gibson, D. L. (1991).  Understanding partitive division of fractions.  
Arithmetic Teacher, 39(2), 7-11. 

Post T., Wachsmuth I., Lesh R., & Behr M. (1985). Order and Equivalence of Rational Number: 
A Cognitive Analysis. Journal for Research in Mathematics Education, 16(1), 18-36. 

Reynolds, S. (2005).A study of fourth-grade students’ explorations into comparing fractions. 
(Doctoral dissertation, Rutgers, The State University of New Jersey at New Brunswick, 
2005)  Dissertation Abstracts International 66/04. p. 1305. AAT 3171003. 

Schorr, R.Y. (2000). Impact at the student level.  Journal of Mathematical Behavior 19, 209-231. 

Schorr, R.Y., Lesh, R. (2003) A models and modeling perspective on classroom-based Teacher 
Development. In R. Lesh & H. Doerr (Eds.) Beyond constructivism: a models and modeling 
perspective on teaching, learning, and problem solving in mathematics education. Lawrence 
Erlbaum, Hillsdale, NJ. 

Speiser, R. & Walter, C. (2000).  Five women build a number system. Stamford, CT: Ablex 
Publishing Corporation. 

Steencken, E.P. (2001).  Studying Fourth Graders’ Representations of Fraction Ideas.  (Doctoral 
dissertation, Rutgers, The State University of New Jersey, New Brunswick, 2001) 
Dissertation Abstracts International 62/03. p.953, AAT 3009381. 

 



Bulgar 

Steencken, E. P. & Maher C. A. (2002). Young children’s growing understanding of fraction 
ideas. In B. H. Littwiller & G. Bright (Eds.), 2002 NCTM Yearbook: Making Sense of 
Fractions, Ratios, and Proportions, pp. 49-60. Reston, VA: National Council of Teachers of 
Mathematics. 

Steffe, L. P., Cobb, P, & von Glasersfeld, E (1988) Young children’s construction of arithmetical 
meanings and strategies.  New York: Springer Verlag (as cited in Davis, Hunting & Pearn, 
1993). 

Steffe, L. P., von Glasersfeld, E. Richards, & Cobb (1983).  Children’s counting types: 
Philosophy, theory and applications.  New York: Praeger Scientific (as cited in Davis, 
Hunting & Pearn, 1993). 

Stein, K.S., Smith, M.S., Henningsen, M.A. & Silver, E.A. (2000). Implementing standards-base 
mathematics instruction: A casebook for professional development. New York: Teachers 
College Press 

Tirosh, D. (2000).  Enhancing prospective teachers’ knowledge of children’s conceptions: The 
case of division of fractions.  Journal for Research in Mathematics Education, 31(1), 5-25. 

Tirosh, D., Fischbein, E. Graeber, A. & Wilson, J. (1993).  Conceptual adjustments in 
progressing from whole to rational numbers.  Final report of the United States – Israel 
Binational Science Grant, Tel Aviv, Israel: Tel-Aviv University.  (as cited in Tirosh, 2000). 

Tzur, R. (1999).  An integrated study of children’s construction of improper fractions and the 
teacher’s role in promoting that learning.  Journal for Research in Mathematics Education, 
30(4), 390-416. 

Van de Walle, J.A. (2004). Elementary and middle school mathematics: Teaching 
developmentally (5th ed.).  Boston, MA: Pearson Education Incorporated. 

Warner, L.B., Alcock, L. J., Coppolo Jr., J. & Davis, G. E. (2003).  "How does Flexible 
Mathematical  Thinking Contribute to the Growth of Understanding?" In N.A. Pateman, B.J. 
Dougherty & J. Zillox (eds.),  Proceedings of the 27th Conference of the International Group 
for the Psychology of Mathematics Education held jointly with the 25th Conference of PME-
NA , July 13 – 18, 2003, Honolulu, Hawaii (Vol. 4, pp.371-378). 

Warner, L.B. & Schorr, R.Y. (in progress). Flexible Mathematical Thought:  Watching an Idea 
Grow. 

Watson, J.M., Campbell, K.J., Collis, K.F. (1993).  Multimodal functioning in understanding 
fractions. The Journal of Mathematical Behavior, 12(1), 45-62.  

 

 

 

 


	A LONGITUDINAL STUDY OF STUDENT’S REPRESENTATIONS FOR DIVISION OF FRACTIONS
	Let us know how access to this document benefits you.
	Recommended Citation

	Microsoft Word - TMME_vol6nos1and2_article14_pp.165_200

