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Editorial: Globalization, History, Technology and Mathematics 
Education 

 
Bharath Sriraman 

The University of Montana 
 

Welcome to Vol.2,no.2 of The Montana Mathematics Enthusiast. The Fall 2005 
issue is being released a month earlier to coincide with the start of the school year 
in Montana. As the table of contents will indicate this is the first of (hopefully) 
many high quality international issues, featuring articles from mathematicians and 
mathematics educators worldwide. The journal is now indexed in the Zentralblatt 
für Didaktik der Mathematik (ZDM) and articles appearing in the journal are 
periodically reviewed by ZDM.  
 
The journal is mutating with the changing times, and reveals some of the benefits 
of globalization and technology. The web-site statistics provided in this issue 
indicate that TMME is accessed from 30+ countries. This has resulted in a steady 
flow of high quality manuscripts from across the globe, some which present 
innovative mathematics content, and others which tackle issues related to 
classroom pedagogy, such as the use of technology and history to enhance the 
teaching and learning of mathematics. In this issue, two of the articles provide 
research based recommendations for the use of Computer Algebra Systems (CAS) 
in the classroom, whereas one analyzes in depth the use of Dynamic Geometry 
Software (DGS) for problem solving, posing and facilitating the discovery and 
generalizations of mathematical results via the use of such software. These three 
papers also contain non-trivial mathematics relevant for the middle and high 
school classroom. The other papers of this issue present cross-national curricular 
comparisons and a glimpse into the genius of John von Neumann. 
 
The first article by Nurit Zehavi and Giora Mann (Israel) builds on a previous 
study on the use of CAS, and reports on encouraging an awareness of ways in 
which CAS manipulate symbols algebraically, their corresponding graphical 
representations and meanings, and its usefulness in fostering connections in 
analytic geometry. This article makes an interesting comparison of a traditional 
solution and CAS-based solution of a problem in analytic geometry with 
recommendations for the teaching and learning of analytic geometry. The use of 
CAS in the classrooms has engendered criticisms from opponents of the use of 
such technology in the classroom because it allows students to engage in “button 
pushing” without understanding the mathematics. Robyn Pierce (Australia) 
addresses this issue in the third article and argues that CAS can help students 
develop algebraic insights and facilitate the ability to link different 
representations. Pierce’s article also outlines a framework useable for planning 
such activities and monitoring student’s progress on CAS.  
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International studies such as TIMSS and the recently concluded PISA have shown 
that the U.S is lagging behind many countries in Europe and Asia. While a 
positive consequence is more collaboration between mathematics educators in the 
U.S with researchers in countries like Singapore, Japan and the Netherlands to 
improve school mathematics curricula and teacher education programs with the 
aim of positively impacting students in the classroom, a negative consequence of 
international studies is the general “bashing” of the U.S. educational system and 
blaming school teachers. One of the arguments commonly heard in the U.S is to 
increase the mathematics content that prospective mathematics teachers are 
exposed to in schools and universities. The article by Bettina Dahl (USA) 
compares secondary mathematics teacher programs in Denmark and Virginia and 
reports on how much mathematics students get in these countries and the different 
“values” communicated to them by their respective teacher education systems. 
The article allows readers to draw their own conclusions about the pros and cons 
of different educational systems. 
 
Steve Humble (England) contributes an historical article on the legendary human 
computer John von Neumann and touches on one of his numerous seminal 
contributions to the science of simulations. The mathematics in this paper is very 
accessible to high school students interested in probability. This article implicitly 
reveals the value of technology, in the form of freely available JAVA applets on 
the world wide web for introducing students to beautiful results in probability 
theory via the use of simulations.  
 
The final article by Constantinos Christou and colleagues (Cyprus) investigates 
ways in which students engage in problem solving and problem posing in a 
dynamic geometry environment. Many of today’s hand held technology (or 
otherwise) typically include software such as Cabri or Geometer’s Sketch Pad. 
The question is how do we use this powerful technology to our benefit in the 
classroom to enhance learning? The interesting avenues of mathematical 
exploration chosen by six pre-service teachers on two geometry problems 
provides us with research based insights on the mathematical and pedagogical 
outcomes of DGS. 
 
It is hoped that MCTM members and all our worldwide readers will enjoy this 
issue. Readers are encouraged to submit manuscripts that critique or provide 
commentary on previously published manuscripts. Offers for reviewing 
manuscripts and book reviews are also welcomed.  
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Instrumented Techniques and Reflective Thinking in Analytic 
Geometry 

Nurit Zehavi and Giora Mann 

The Weizmann Institute of Science (Israel) 

Abstract: In a previous study that explored epistemological perspectives on 
solving problems with  Computer Algebra Systems (CAS) we concluded that 
awareness of the special ways that the software utilizes symbols in algebraic 
manipulations and in implicit plotting should be encouraged (Zehavi, 2004). Such 
awareness is required for, and encouraged by treating geometry analytically with 
a symbolic-graphical system. In this paper we compare a traditional solution of a 
problem in analytic geometry with CAS-based solutions to the same problem. The 
discussion will focus on the role of reflective thinking, namely selection of 
techniques, monitoring of the solution process, insight, and conceptualization, 
play in the creation of instrumented techniques (Guin & Trouche, 1999). 
Teachers, who experienced learning activities from a resource e-book for 
teaching analytic geometry with CAS, contributed to the design of tasks and to the 
analysis of instrumented techniques.   

Introduction 

Since 1996 a team at the Weizmann Institute of Science has been preparing CAS-
based activities for junior high school, and for the senior high school. The 
activities complement the current syllabus aiming to broaden learning 
opportunities and to promote greater mathematical understanding. Research 
studies that accompany the development of the learning activities indicate that 
students' interaction with CAS and students' reflections are intertwined (Zehavi & 
Mann, 2003; Mann, Zehavi, & Halifa, 2003). We have recently developed a 
resource e-book for teaching Analytic Geometry, containing activities for 
students, and an extended teacher guide including annotated CAS files (we use 
Derive). Although symbolic-graphical technology is not allowed at this stage in 
the final exams, an increasing number of mathematics teachers incorporate this 
technology in their work. The activities were presented to in-service teachers in 
professional workshops as part of the formative development of the learning 
materials. The practicing of instrumented techniques led the teachers to extend the 
pedagogical scope of the activities. Here we discuss the epistemological value 
added to the pragmatic production of solutions by instrumented techniques, [see: 
Guin & Trouche (1999), Artigue (2002), and Lagrange (2005)]. We first analyze a 
traditional solution to the problem of finding the director circle of an ellipse. The 
analysis method we developed for this purpose links the cognitive and meta-
cognitive levels, namely the execution of the solution and the reflective thinking. 
Then we analyze by the same method CAS-based solutions. Implications of the 
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analysis to our understanding of the changes that computer algebra systems bring 
to mathematics education will appear in the concluding part.  

 

The Analysis Method 

The steps of the solution are analyzed in two levels: execution and reflective 
thinking. The basic components of the execution of problem solving in analytic 
geometry (or any other domain that requires modeling) are: constructing a 
mathematical model for the problem, manipulations within the model to obtain 
results, interpretation of the results in the contexts of the problem, and 
representations (graphical or symbolic) of the model or the manipulations or the 
interpretations. We use the term reflective thinking for the meta-cognitive level 
referring to four categories: selection of techniques, monitoring of the solution 
process, insight or ingenuity, and conceptualization (i.e. connecting concepts and 
meaning).  

The reflective thinking components are inferred from the written 'execution' of the 
solution and from explanations given in textbooks. To make the reflective 
thinking more transparent we asked teachers and students to add annotations to 
their CAS worksheets and to discuss them verbally. The classification associated 
to solution steps, however, should be regarded as subjective. 

A traditional solution 

The problem is presented as a task: "Find the locus of the points of intersection of 

perpendicular tangents to the ellipse defined by the equation 
2 2

2 2 1x y
a b

+ = ". This 

task appears in traditional textbooks and is regarded as quite sophisticated for 
high school students. Therefore, some textbooks provide a solution to the problem 
(For example, Barry, 1963). The steps of the traditional solution of this problem 
are described in the following (Chart 1). 

Step 1 

  Reflective thinking: selecting technique 

The equation of a tangent to the ellipse 
2 2

2 2 1x y
a b

+ =  

is 2 2 2 2 2 2y mx a m b or y mx a m b= + + = − + . 

A line parallel to the vertical axis is not considered in this equation. 
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Step 2 

Execution: Modeling  

A tangent to the ellipse 
2 2

2 2 1x y
a b

+ =  passes through a point (p, q) if and only if 

2 2 2 2 2 2q mp a m b or q mp a m b= + + = − +  

We look for values of m that satisfy the above condition. 

Step 3 

Reflective thinking: insight, selecting technique 

In order to utilize Viète's formula the equation 2 2 2q mp a m b= ± +  

should be "simplified" in a special way to get  

a quadratic equation in the form 2 0Am Bm C+ + = . 

Step 4 

Execution > manipulations 

……..  2 2 2 2 2( ) 2 0− − + − =p a m pqm q b  

Step 5 

  Reflective thinking: conceptualization 

The product of the slopes of two orthogonal lines is -1. 

Step 6 

Execution: manipulations 

Viète's formula states that  
2 2

1 2 2 2

q bm m
p a
−

⋅ =
−

. Thus we have
2 2

2 2 1q b
p a
−

= −
−

. 

Step 7 

Execution: interpretation, representation 

The standard form of a Cartesian equation for the locus of points whose 
coordinates (p, q) verify the equation 2 2 2 2+ = +p q a b  is 2 2 2 2+ = +x y a b . 

Chart 1: Steps of a traditional solution 

Only a few high school students can come up with such a solution that requires 
good mastering of the mathematical meaning of symbols and a global view of the 
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task. We dare to say that one should almost know the solution before actually 
working on it: the analysis indicates that conceptualization and insight are prior to 
the execution steps. 

CAS-based solution 

The task was presented to the teachers in a workshop. In order to get a visual 

product, the task involved a specific numerical example, 
2 2

1
9 4
x y

+ = . In Chart 2 

we present an example of a CAS-based solution using Derive's notation.  

Step 1 

Execution: Modeling 1 

The equation of a line (not parallel to the vertical axis) that passes 

through (p, q) is   y mx mp q= − + . By substitution we get an equation  

for the x values of  the intersection points of the ellipse and the line. 

 

Step 2 

Reflective thinking: Selecting technique 

 

Step 3 

Execution: modeling 2 

 

We look for values of m that satisfy the above condition, i.e. Discriminant = 0. 

Step 4 

Execution: manipulations 
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Step 5 

Reflective thinking: conceptualization  

         The product of the slopes of two orthogonal lines is -1, thus 

 

Step 6 

Reflective thinking: monitoring  

Plot the equation in Step 5 

Where do the "holes" come from? (see later ) 

Is this a circle? Why?  

Let' simplify the equation. 

 

                                                                       Figure1. Director circle with "holes" 

Step 7 

Execution: manipulations 

Simplify the equation in Step 5, 

and plot. 

Step 8 

Execution: interpretation, symbolic representation 

The standard form of a Cartesian equation for the locus of points whose 
coordinates (p, q) verify the equation 2 2 13p q+ =  is 2 2 13x y+ = . 

 

Chart 2: Steps of a CAS-based solution 
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In contrast to the traditional solution which began with prior reflection, the CAS 
solution started with writing a "simple" equation for finding the intersection 
points of a line with slope m that passes through a point (p, q) and the given 
ellipse. Selecting a familiar technique for simplifying the equation led to the well 
known model (∆= 0) and utilizing the symbolic mechanism of the software to 
obtain two algebraic solutions for m. Translating the necessary and sufficient 
condition (if and only if) for lines to be perpendicular into an equation (Step 5) 
gave a strange result that called for monitoring. In Step 6 the teachers used the 
software to plot the graph of this equation. Various reactions were heard: Where 
do the "holes" come from? Our error? Bug of the implicit plotting?  Is this a 

circle? Why? Let's simplify the equation: 
2

2

4
1

9

q
p
−

= −
−

. 

Standard algebraic manipulations and interpretation yield the representation in the 
form of equation of the circle 2 2 13x y+ = . The circle and the given ellipse have 
the same center. In the general case, i.e. for an ellipse given by the canonical 

equation 
2 2

2 2 1x y
a b

+ = , the radius of circle which is obtained by a working session 

as above is equal to 2 2a b+ . This circle is called the director circle (or orthoptic 

circle, or Monge circle) of the ellipse given by the equation
2 2

2 2 1x y
a b

+ = .  

The surprising holes around the four points (3, 2), (3, -2), (-3, -2), (-3, 2) are 
explained algebraically by the denominator in the equation; the graphical 
interpretation draws our attention to the exceptional tangents (to the ellipse) that 
are parallel to the x-y axes. The instrumented scheme that the teachers 
implemented has an epistemic value: The problem is that we work in a 
neighborhood of a singular point of the equation whose graph has been plotted 
(the singularity is caused by what we did at the beginning: we did not consider 
lines parallel to the y-axis). This is a general problem for computerized drawing 
of curves (see Dana-Picard, 2005) 

After the surprising phenomenon of the holes has been understood, another 
question appeared: how can one see from Equation (1) that it would actually 
simplify to equation (2)? In the nominators of Equation (1) we can see the pattern 
(A – B)(A +B). At this stage the teachers became interested in investigating the 
expression under the square sign. Plotting the inequality 2 24 9( 4) 0p q+ − ≥  added 
more insight to the solution process: we see the outside of the given ellipse; since 
the expression under the square sign appear in the solution for the slope m of the 
tangent, the solution of the inequality shows, in fact, that it is impossible to draw a 
real tangent to the ellipse through a point within the circle.  

The teachers suggested adding pragmatic value to the above exploration, namely, 
to produce pairs of perpendicular tangents to the ellipse given by the 
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equation
2 2

1
9 4
x y

+ =  (see Figure 2). Some of them claimed that this should be 

stated initially as the goal of the task, so that the efforts in identifying the 
geometric locus of points of intersection of such pairs of tangents would be the 
means to achieve the goal. Others argued against such a pragmatic goal and 
preferred to consider the animation of pairs of tangents as an implementation of 
the result. The instrumented technique needed for this task involves the use of a 
slider bar to view in a dynamic way pairs of tangents that intersect in a point 
T= 2( , 13 )p p−  on the director circle whose equation is 2 2 13x y+ = . We 

substitute 213 p−  for q in one of the expression for m in Step 4, and write the 
equation of two perpendicular tangents through T. 

 

 

Figure 2. 'Animation' of perpendicular tangents 

The teachers agreed that visualizing the tangents should be an integral part of the 
activity because it can provides feedback and control to student's actions. Not less 
important is the satisfaction feeling in obtaining a nice product.  

 

Changes that computer algebra systems bring to mathematics education 

Based on the example we described in this paper, and other similar examples we 
attempt to identify changes that CAS brings to the mathematical environment of 
teachers and students.  
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In a traditional solution one must have a full blown strategy from the beginning in 
order to solve the problem, and to master sophisticated methods of manipulations 
(e.g. Viète's formulas) to carry out the strategy. In a CAS solution one can start 
the solution process by using the symbolic power of the software to perform 
familiar manipulations and then obtain representations of the results. Having 
some result and being free from technical work one can gradually consolidate a 
solution strategy. 

One implication of the above is that some topics of the core traditional curriculum 
may become obsolete. Viète's formulas and other algebraic ingenuities have been 
taught to facilitate manipulations by hand, but one can do without them when 
using software that was designed to perform the manipulations. These human 
culture developments should be appreciated and recognized, but not necessarily in 
the core mathematics curriculum. Instead we should develop strategies that 
develop awareness to pragmatic and epistemic values of instrumented techniques. 

Our analysis indicates that in traditional solutions conceptualization and insight 
are prior to the execution steps, while in CAS solution the reflection steps 
(conceptualization, insight, monitoring, and selecting techniques) are inseparable 
from the execution steps.  

A consequent implication is that advanced problems that have been traditional 
reserved for those few gifted with mathematical intuition, can now be accessed 
effectively by a greater population with appropriate instruction by the teachers. 

The role of the teacher who teaches with modern technology is very complex, 
including aspects of the technology, of mathematics, and of didactics. Thus the 
structure of a computer based activity should initially be made clear to the teacher 
at a global level. To be able to guide effectively students in using the various 
instrumented techniques, teachers first need to review the relevant mathematical 
methods; they also need some experience and exposure to learning events that 
have the potential to intertwine execution and reflection. But most importantly, 
they should be partners in the task-design process. (This actually happened in one 
of our workshop that introduced the director circle of an ellipse.) 

After finding the director circle of the ellipse the teacher usually explored loci of 
points of intersection of perpendicular tangents to an hyperbola and to a parabola, 
identifying the differences between the three cases. In one workshop some 
teachers were interested in finding the locus of the intersection point of tangent to 
an ellipse having an angle of 45o between them. In the case of 90o we had the 
simple equation 1 2 1m m −⋅ = .  
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Here we have the equation 1 2

1 2

1
1

| |m m
m m
−

=
+ ⋅

.  

Plotting this implicit equation for the ellipse  

we used before gives a graphical 
representation of the locus (Figure 3).  

A more traditional symbolic representation 
can be obtained by algebraic manipulations. 

                                                                          
Figure 3.  Seeing the ellipse in 45o /135o 

Now the questions come quick and fast: what about other angles (Figures 4, 5)? 
What about hyperbola, parabola? 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  1 2

1 2

2
1

| |m m
m m
−

=
+ ⋅

                                            Figure 5.  1 2

1 2

20
1

| |m m
m m
−

=
+ ⋅

 

 

In this problem, as in the one we presented in detail, the implicit plotting plays an 
important role in making algebraic manipulation by the software and conceptual 
insight of the users inseparable. We invite the interested readers to explore the 
problem (with CAS, of course) and design a didactic sequence of tasks that suits 
their educational goals and the needs of their students. 
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A Comparison of the Danish and the Virginia Secondary teacher 
Education System: Their values and Emphasis on Mathematics 

Content Knowledge 
 
 

Bettina Dahl 
Virginia Tech University (USA) 

 
 
 
Abstract: In this paper I will first examine an example of secondary mathematics 
teacher education in the USA, namely Virginia, then compare it with the 
secondary teacher education in Denmark. The purpose is both to investigate how 
much mathematics the students get in the respective systems and secondly to see 
what this type of teacher education communicates about the values emphasized in 
the various countries’ education systems. I spent more time on explaining the 
Danish education system than that of the USA and the single states since it is 
assumed that the reader is familiar with these systems. One cannot necessarily 
deduce from number of courses how much mathematics the student actually 
“gets” since this depends on particular passing requirements as well as 
requirements of entry, the specific content of the courses both in terms of levels of 
difficulty and topics, etc. However, a comparison of course load indicates how 
much study of “mathematics” is perceived enough, or minimum, to teach 
secondary mathematics from the national or state political perspective (who 
might see a direct link between course load and knowledge).1 
 
 
1. USA 
 
The USA has on national level no direct legislation in education matters. It is up 
to each state to determine. However, there are some national legislations such as 
the No Child Left Behind Act of 2001 (NCLB)2. This federal legislation requires 
states to demonstrate progress from year to year in raising the percentage of 
students who are proficient in reading and mathematics and in narrowing the 
achievement gap. NCLB sets five performance goals for states: 
 
 
 
 
 

                                                 
1 I wish to thank Gwen Lloyd, Associate Professor, Department of Mathematics, Virginia Tech for 
valuable comments to this paper. The errors remain my own. 
2 http://www.ed.gov/nclb/landing.jhtml?src=pb  
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• All students will reach high standards, at a minimum attaining proficiency or

better in reading/language arts and mathematics by 2013-2014. 
• All limited English proficient students will become proficient in English and

reach high academic standards, at a minimum attaining proficiency or better in
reading/language arts and mathematics. 

• All students will be taught by highly qualified teachers by 2005-2006. 
• All students will learn in schools that are safe and drug free. 
• All students will graduate from high school. 
 
This legislation mainly sets goals for the teaching, it does not determine how 
teaching should take place, methods used, subjects to teach. In terms of teacher 
education there is on national level the National Council for Accreditation of 
Teacher Education (NCATE)3, which is the professional accrediting organization 
for schools, colleges, and departments of education in the United States. It is a 
coalition of over 30 organizations representing teachers, teacher       educators, 
policymakers, and the public. There is also the national Praxis I and II tests. The 
Praxis Series tests are currently required for teacher licensure in 39 states and 
U.S. jurisdictions. These tests are also used by several professional licensing 
agencies and by several hundred colleges and universities. Because The Praxis 
Series tests are used to license teachers in many states, teacher candidates can test 
in one state and submit their scores for licensure in any other Praxis user state.4 
Therefore to compare “USA’s” teacher education system one must focus on the 
level of the states. In this paper I have decided to study Virginia. 
 
 
1.1 Virginia 
 
The Virginia Licensure requirements5 for teaching mathematics grades 6-12 are 
that the student has completed a major in mathematics or 36 semester/credit hours 
of course work distributed in each of the following areas: Algebra (including 
linear and abstract algebra), Geometry (including Euclidean and non-Euclidean 
geometries), Analytic geometry, Probability and statistics, Discrete mathematics 
(including the study of mathematical properties of finite sets and systems and 
linear programming), Computer science (including computer programming), and 
Calculus (including multi-variable calculus). This should also include knowledge 
in the history of mathematics. Students should obtain passing scores of 147 on the 
Praxis II (mathematics content) test.  
 
2. Denmark 
 
The Danish school system is different from the US system. Formal schooling 
begins at the age of seven. Then follows 9 years of compulsory comprehensive 

                                                 
3 http://www.ncate.org  
4 http://www.ets.org/praxis/prxtest.html  
5 http://www.math.vt.edu/people/lloyd/math_licensure/VA_licensure.pdf  
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schooling. This is called the Folkeskole (People school). In the first grade the 
student is placed in a class according to age only. The students stay together 
through all 9 years. There is an optional one-year pre-school class from the age of 
six commonly called Grade 0. The class has it own room - the socalled 
“Classroom” and the class also has a “Class-teacher”. The teachers have one big 
common room. Teacher preparation usually takes place at the teachers’ private 
home. Hence the teachers are not at the school the whole day but often only 
around the times where they teach or if there is a meeting. There is an option of a 
grade 10 in the Folkeskole. This is usually chosen by students who are not sure 
what education they want.  
 
The teacing during the first nine year covers the following subjects: Danish (all 
grades), English (3-9), Christian studies6 (all level except the level where the 
confirmation preparation of the Evangelical Lutheran Danish National Church 
takes place), History (3-9), Social studies (8-9), PE and sports (all levels), Music 
(1-6), Art (1-5), Textile design, wood/metalwork and home economics (one or 
more levels within grades 4-7), Mathematics (all levels), Science/technology (1-
6), Geography (7-8), Biology (7-9), Physics/chemistry (7-9), German (or 
sometimes French, non-compulsory, 7-9). Bilingual children (0-10) are being 
given instruction in Danish as a second language. The Minister of Education lays 
down provisions pertaining to the instruction in Danish as a second laguage for 
biligual children and to mother-tongue teaching of children from the European 
Union, the European Economic Area, the Faroe Islands, and Greenland. There is 
also a number of optional topics in grades 8-10.  
 
The Danish Parliament makes the decisions governing the overall aims of the 
education, and the Minister of Education sets the targets for each subject. But the 
municipalities and schools decide how to reach these targets. The Ministry of 
Education publishes curriculum guidelines for the subjects, but these are seen as 
recommendations and are not mandatory for the municipalities. Schools are 
permitted to draw up their own curricula in accordance with the aims laid down 
by the Minister of Education. However, nearly all schools choose to confirm the 
centrally prepared guidelines as their binding curricula.7 The Folkeskole is not an 
examination-oriented school and school failure is almost non-existing. The 
Folkeskole builds on the principle of differentiated teaching to sustain the 

                                                 
6 The Act (1 August 1994) states: “6. (1) The central knowledge area of the subject of Christian 
studies shall be the Evangelical Lutheran Christianity of the Danish National Church. At the oldest 
form levels, the instruction shall furthermore comprise foreign religions and other philosophies of 
life. (2) If requested, a child shall be exempted from participation in the instruction in the subject 
of Christian studies, when the person who has custody of the child submits a written declaration to 
the headteacher of the school to the effect that he/she will personally assume the responsibility of 
the child’s religious instruction. ... If the child has reached the age of 15, exemption can only be 
granted with the child’s own consent.” 53(1) Upon negotiation between the municipal council and 
the ministers in the municipality, time shall be set aside for the preparation for confirmation. If 
agreement cannot be reached between the parties, the decision shall be taken by the municipal 
council upon consultation of the parish councils involved.  
7 http://www.uvm.dk  
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principle that all students should be given adequate challenges. At grades 8-10 the 
teaching may be organised in teams within the individual class and across classes 
and grades.  
 
In grades 1-7, assessment is given either in writing or verbally in the form of 
meetings where student, parents, and Class-teacher take part. In grades 8-10 a 
grading system (13-point marking scale) is added and the student receives a 
written report at least twice a year for the leaving examination subjects. 
Examinations are offered at grades 9 and 10. There are national standard rules for 
all examinations. The papers for the written examinations are set and marked 
centrally. The other examination questions shall be drawn up by the teacher or by 
an external examiner according to a decision taken by the Minister. Examinations 
are not compulsory and each examination subject is assessed on its own merit; 
results cannot be summed up to give an average mark. The school shall issue a 
leaving certificate for students who leave school at the end of grade 7 or later.  
 
88% attend municipality schools and 12% that attend various forms of private or 
“free schools” that are subject to various rules. The idea with the free-schools is 
that a number of parents or firms can get together and run a school with help from 
state funding (Selander, 2000, p. 65). The private schools receive a grant (“per 
student per year”) for their operational expenditures which in principle matches 
the public expenditures in the municipal schools - less the private school fees paid 
by the parents. This is to ensure that public expenditures for the private and 
municipal schools follow the same trend. 
 
After the Folkeskole young people have five options: (1) The Almene Gymnasium 
(General Academic High Schools) is a three-year upper secondary education. (2) 
The Højere Forberedelseseksamen (HF) (Higher Preparatory Examination 
Course) is a two-year course that is meant for adults and for students who have 
completed the 10th grade of the Folkeskole. These two are preparatory for higher 
education. (3) The three-year Commercial High School 
(Handelsskole/Handelsgymnasium). (4) The three-year Technical High School 
(Teknisk skole/Teknisk Gymnasium). Both of these give access to higher education 
as well as prepare for professional activities in the private sector. (5) Vocational 
education and training courses (Erhvervsuddannelserne) with theoretical training 
(1/3) at technical schools and practical training as an apprentice (lærling) (2/3) at 
an enterprise. Teacher education for these 5 places is different. (1) and (2) are the 
same, and I will describe this more detailed below. Teacher education for the 
Folkeskole is also different. While the Folkeskole is administered on the level of 
municipality, the Almene Gymnasium and HF are administered at the level of 
county. 
 
The subjects offered in the Almene Gymnasium and HF are the following: 1. 
Astronomy, Visual arts, Biology, Danish, Computer science, Design, Drama, 
Information technology, English, Business economics, Film and TV studies, 
Philosophy, French, Physics, Geography, Greek, History with civics, Physical 
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education and sport, Italian, Japanese, Chemistry, Latin, Mathematics, Music, 
Science, Classical studies, Psychology, Religious studies, Russian, Social studies, 
Spanish, Technology, German. The students cannot choose freely, but there are 
some bindings, which I will not go into detail with here as this is not the scope of 
the paper. 
 
 
2.1 Teacher education for the Folkeskole (grades 1-9 (10)) 
 
There is a four-year unified training system for the whole compulsory nine-year 
schooling (including the optional grade 10). It takes place at one of the country’s 
18 Seminarier (College of Education). One study-year amounts to a full-time job. 
The school-year begins in the beginning of August and ends at the end of June. A 
study-year consists of teaching, lecturing, supervision, student teaching, 
independent work, and various study form such as group work, project work etc. 
Through the four years the student takes courses within the areas listed below. 
The number in brackets shows how much it weighs in relation to a one-year-study 
full time. The student is obliged to study four Liniefag “Line-subjects” which 
would be the subjects that the student will then mainly be teaching in the 
Folkeskole: 
 

• Christian studies (0.2) 
• The Liniefag Danish or Mathematics (0.7) 
• 3 other Liniefag (3 x 0.55) 
• Pedagogical subjects: 

o The school in the society (0.1) 
o Pedagogy (0.2) 
o Psychology (0.2) 
o General didactics (0.2) 

• Teaching practics (0.6) (24 weeks at a school). 
 
If a student chooses mathematics as the 0.7 Liniefag, this amounts to 1150 
workings hours. At for instance Aalborg Seminarium, this in practice means 338 
lesson-hours over a three year period. The rest of the time is spent on independent 
study and preparation for the exam.8 The four Liniefag are being chosen among 
the 18 subjects that exist in the Folkeskole. One of the Liniefag must be either 
Danish or Mathematics, but the students can choose both subjects. The four 
Liniefag shall represent at least two of the following areas: The humanistic area, 
the natural science area, and the practical-musical area. 
 
 
 
 
                                                 
8 
http://www.aalsem.dk/C1256D3B003DB5CC/0/B9FDD5096225DD02C1256EF200699407?Open
Document  
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2.2 Teacher education for the Almene Gymnasium (grades 10-12) 
 
One can usually not teach just mathematics in the Almene Gymnasium, one need 
to have Pædagogikum (pedagogical competence) and Fagkompetence (subject 
competence) in two topics. The formal route is first to study mathematics as well 
as another subject at a university. Most mathematics teachers in the Almene 
Gymnasium have either physics or chemistry as their second subject, but any 
combination is possible. One needs to study these two subjects to the level of a 
Candidata/Candidatum (female/male) degree. This degree can be translated into a 
US Master’s degree. It consists of a Hovedfag, which directly translated means 
‘major subject’, but not to be confused with what is called ‘a major’ when 
studying at a US university. In Denmark it is 3.5 years of full time study. The 
other part of the degree is a  Sidefag/Bifag, which directly translated means 
‘minor subject’, but not to be confused with what is called ‘a minor’ when 
studying at a US university. In Denmark it is 1.5 years of full time study, for 
instance the 3rd - 5th semester of the Hovedfag study. When the candidate studies 
mathematics, all courses from the first semester are mathematics courses. There 
are not any “general education courses” to give them an all-round knowledge. 
General education takes place at the Almene Gymnasium. At university one gets 
“specialized”.  
 
After the end of the 5-year Candidata/Candidatum degree, the teacher candidate 
can apply for 2-year “Education positions” advertised at the Alment Gymnasium. 
Sometimes these are also adverticed by the County Council. If accepted the 
student enters into a two-year program which includes a 6-month (one semester) 
sidefagssupplering (Minor Subject Supplementary) of 700 working hours to give 
teachers extra subject area knowledge. The two-year education is then divided 
into Subject Competence and and Pedagogical Competence. The pedagogical 
competence is divided into a Practical Pædagogikum and a Theoretical 
Pædagogikum. It is the principal who has the overall responsibility and who 
appoints a main course responsible (usually one of the teachers at the school). The 
course responsible plans and coordinates the candidate’s education. The course 
responsible supervises the candidate during the Practical Pædagogikum and 
determines in collaboaration with a person appointed by the Ministry of 
Education if the candidate has passed.  
 
2.2.1 Subject Competence 
 
The students who aspire to become teachers study mathematics alongside any 
other mathematics student. Some universities have previously had education 
classes, but these things changed alongside the recent reforms (2004) of the 
licensure. The principal assigns Faglig Kompetence on the basis of the candidate 
showing mastery of the central area of the subjects and its terminology and 
methods, have knowledge of use of ICT, is able to gain new knowledge when the 
subjects develops, and has sufficient knowledge of the Danish language.  
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2.2.2 Practical Pædagogikum 
 
During the first year of Practical Pædagogikum, the candidate teaches a ”practice 
class” under supervision by the subjects’ teachers. The planning of the teaching 
takes place in collaboration with the teachers. Parallel to this is a discussion of the 
students’ preconditions, lesson planning, questioning techniques, working 
methods as well as assessment and evaluation. The total number of teaching and 
observation lessons are 180 hours corresponding to 480 working hours which 
includes preparation and work after class. The candidate must also participate in 
general pedagogical tasks at the school. During the second year the candidate 
teaches more independently in his or her own classes while periodically receiving 
supervision. At the same time the candidate must write a final project. 
 
2.2.3 Theoretical Pædagogikum 
 
Theoretical Pædagogikum consists of general pedagoy and subject pedagogy. The 
amount of teaching and preparation for candidates with two subjects is around 
530 hours. The teaching is partly distance education and weekend courses. 
Subject pedagogy consists of three parts: one course in subject didactics in each 
of the candidate’s subjects (around 60 hours per subject), course in subject 
didactics in subjects related to the candidate’s subjects (around 60 hours), and a 
course in use of ICT in the subjects (around 50 hours). General pedagogy consists 
of three parts: One course in general pedagogy (around 170 hours) which consists 
of lesson planning, communication, evaluation, different teaching strategies, 
teacher collaboration, learning processes, theories of learning, teacher roles. 
Another course is in organisation culture and school development (around 30 
hours) and the third course is in general Gymnasium relevant topics (around 30 
hours) such as knowledge of the school’s computer system, use of ICT as 
communication between teachers and teachers and students, and it use in the 
school administration. There is also a Common Course in Subject pedagogy and 
General pedagogy (around 50 hours). The goal is to make the candidate able to 
reflect about the subjects and the relation between them in terms of the Almene 
Gymnasium in general, as well as in relation to value and ideas of education and 
the development of a general and broad competency for the students.  
 
 
2.3 Values and the principle of general education 
 
2.3.1 Denmark 
 
As stated in Dahl and Stedøy (2004), Denmark has, in line with the rest of the 
Nordic countries (Iceland, Finland, Norway, and Sweden) the same educational 
objectives which are equal access to (lifelong) learning, teaching democracy, 
independence, equality, and the development of critical awareness in students. 
The focus is broad and comprehensive as opposed to elitist (Andersen, 1999, p. 
27). A central goal in Swedish education policy is that students must learn more 
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than mere knowledge and therefore the teaching of respect for human values is 
equally important (Swedish Ministry of Education, 2000b). It is necessary to 
develop a “democratic mentality” in the students (Swedish Ministry of Education, 
2000a, pp. 6-9). The purpose of the pre-school as well as the whole compulsory 
education is to develop the child’s ability to function and act socially responsibly, 
to make sure that solidarity and tolerance are learnt at an early stage, and to 
counteract traditional sex roles (Swedish Ministry of Education, 2000a, pp. 113-
114). One can see a similar focus in Norway in the curriculum of 1997 for grades 
1-10. Here it is written in the preface that the general education shall built on 
basic Christian and humanistic values. It shall promote equality between the sexes 
and solidarity among different groups in the society (Norwegian Ministry of 
Education, 1997, pp. 17-18). Also the Danish law for the Folkeskole from 1975 
reflects this, as it is written that a task for this school is to prepare the students to 
participation and decision-making in a democratic society and to share the 
responsibility for solving common tasks (Selander, 2000, p. 70). Therefore the 
school’s education and daily life must build on freedom of spirit and democracy. 
The present Act of the Danish Folkeskole states the following:9 

(1) The Folkeskole shall – in cooperation with the parents – further the students’ 
acquisition of knowledge, skills, working methods and ways of expressing themselves and 
thus contribute to the all-round personal development of the individual student. 
(2) The Folkeskole shall endeavor to create such opportunities for experience, industry and 
absorption that the students develop awareness, imagination and an urge to learn, so that 
they acquire confidence in their own possibilities and a background for forming 
independent judgments and for taking personal action. 
(3) The Folkeskole shall familiarize the students with Danish culture and contribute to their 
understanding of other cultures and of man’s interaction with nature. The school shall 
prepare the students for active participation, joint responsibility, rights and duties in a 
society based on freedom and democracy. The teaching of the school and its daily life must 
therefore build on intellectual freedom, equality and democracy. 

 
The Swedish Education Act states that all children and youths shall have equal 
access to education, regardless of gender or social or economic factors. This right 
of education also extends to adults. The education shall “provide the students with 
knowledge and, in co-operation with the homes, promote their harmonious 
development into responsible human beings and members of the community” 
(Skolverket, 2003). 
 
The Nordic countries have therefore the same educational objectives in common, 
which are equal access to (lifelong) learning, teaching democracy, independence, 
equality, and the development of critical awareness in students. The focus is broad 
and comprehensive as opposed to elitism (Andersen, 1999, p. 27). The ‘Nordic 
dimension in education’ as discussed by Dahl (2003), is therefore that the 
teaching of democratic values is as important as the teaching of knowledge. The 
focus is on a “school for all”, adult (lifelong) education, equality, democracy, and 
a high number of people receiving further education. The systems are 
decentralised school system with possibilities for choice. The whole school 
structure is organised in a single track. 
 
                                                 
9 http://www.uvm.dk  
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2.3.2 Virginia 
 
Virginia implemented state-mandated Standards of Learning (SOL) and 
associated tests (Virginia, 1995). The purpose of the SOL’s is: 
 

The intent of the Virginia Board of Education and the Superintendent of Public 
Instruction to establish high academic standards for our young people and greater 
accountability for our public schools throughout the Commonwealth. The Board 
and the Superintendent concur that Virginia’s academic standards need to be 
measurable in order that parents and taxpayers may see how their students and 
schools are performing against these high academic standards. While not 
compromising the rigor which will demand higher performance, we also believe 
that Virginia’s standards must address the educational expectations for ALL 
Virginia students. 
… 
The Board and Superintendent believe that high academic standards are the 
beginning of a multi-year journey to improve educational achievement. For these 
new standards to make a real difference, we will need to develop accountability 
measures and consequences for students and teachers, invest in new teaching 
materials, provide extensive professional development, expand the use of 
technology, involve parents in the education of their children at the school level, 
and expect our students to work harder, including doing more work at home. 

 
More specifically the Board and the Superintendent have identified various areas 
that are critical to the discussion relating to academic standards and 
accountability. These areas are centrered on that accountability as best being 
addressed at the school building level. The local school boards must hold 
individual teachers accountable for their performance and the achievement of 
their students. The preferred method of school improvement is to reward schools 
for achieving the targeted improvement in student performance. It is furthermore 
the state’s responsibility is to set expectations for what students should know at 
key points but it is the responsibility of the local school boards and schools is to 
determine how the students reach these expectations. There also need to be 
consequences for students. Hence, in the Virginia Board of Directors resolution 
from 1995, there is no reference to “democratic education” or development of 
critical awarenesses of the students. In terms of the topic mathematics, The Board, 
stated that “Students today require stronger mathematical knowledge and skills to 
pursue higher education, to compete in a technologically oriented workforce, and 
to be informed citizens. Students must gain an understanding of fundamental 
ideas in arithmetic, measurement, geometry, probability, data analysis and 
statistics, and algebra and functions, and develop proficiency in mathematical 
skills.” What comes closest to the “Nordic model” here is the remark about being 
“informed citizens”. But being an “informed citizens” is not the same as preparing 
a student for active participation in the democracy nor something that contribute 
to an all-round personal development. 
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However, when one looks at the SOL10 of history and the social sciences, one 
does see more of the things mentioned in the Nordic countries. For instance the 
overgoal is stated as follows: 
 

The study of history and the social sciences is vital in a democratic society. All 
students need to know and understand our national heritage in order to become 
informed participants in shaping our nation's future. The History and Social 
Science Standards of Learning were developed with the assistance of educators, 
parents, business leaders, and others with an interest in public education.  
The History and Social Science Standards of Learning are designed to 
• develop the knowledge and skills of history, geography, civics, and 

economics that enable students to place the people, ideas, and events that 
have shaped our state and our nation in perspective;  

• enable students to understand the basic values, principles, and operation of 
American constitutional democracy;  

• prepare students for informed and responsible citizenship;  
• develop students' skills in debate, discussion, and writing; and  
• provide students with a framework for continuing education in history and the 

social sciences.  
 
Particularly point 2 and 3 shows that it seems, that the Virginia SOL does 
emphasise teaching of democratic values. However, the main difference between 
Denmark and Virginia still seems to be if this is part of the overall goal of the 
education system, or something that is “reserved” for particular topics. This is not 
to downplay the quality of the teaching in history and social science, but of the 
whole Virginia system seems different than that of the Nordic countries where the 
education in democracy is clearly stated as part of the overall goal, alongside the 
teaching of knowledge whereas the overall goal of the Virginia Board of 
Educators seems to be on accountability and tests. And as stated above, formal 
examinations do not exist in the Danish school system until grade 8.  
 
 
3. Discussion 
 
How many mathematics hours? 
 
What does “full time” means? One year of “full time study” in Denmark is 
equivalent to 60 ECTS (European Credit and Transfer System) of study. This is 
independent on whether the student is a graduate or undergraduate. In fact there is 
not this distinction in the Danish system. One is instead an x-semester student, a 
Hovedfags-student, Sidefags-student, or when one writes one’s Master’s thesis 
(Speciale = “Specialization thesis”) within one’s Hovedfag, one is a Hovedfags-
student. Depending on where one looks for a “translation” from the European 
system into the system in the USA, 1 ECTS credits represent the value of 1/2 US 
credit11 or 1 ECTS credit could be considered equivalent to 2/3 US semester 

                                                 
10 http://www.knowledge.state.va.us/main/sol/solview.cfm?curriculum_abb=HSS  
11 http://www.goglobal.ch/incoming/pages/ects.html 
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credit hours.12 “Full time” in Denmark is also defined as the student on average 
spending 37 hours per week “studying” i.e. attending lectures, preparing for 
classes etc. At Aalborg University, Department of Mathematics, 1 ECTS is 
defined as 5 “4-hour lessons”.13 “Full-time” is also what as good as all students 
would do, since this is the only way to receive the State Education Grant.14 These 
grants are giving freely to all students on state approved programs and most often 
these programs are “packages” i.e. that if one decides to study mathematics, then 
each semester has a number of predetermined courses – so a course in one sense 
is a x-semester course. At some point during the study, one can choose between a 
number of “directions” that each has its own “package” of courses that one 
follows.  
 
In Virginia, at for instance Virginia Tech15, a full-time undergraduate student 
takes 12 or more credit hours, a graduate student 9 credit hours or more. During 
the summer terms the same numbers are 5 credit hours for the undergraduates and 
3 credit hours for the graduates.  However, during Fall and Spring semester, an 
undergraduate student can take up to 19 credit hours16, a graduates 18 credit 
hours17, before it is considered “overload” and the student needs special 
permission.  
 
For the academic year 2004-2005, at Virginia Tech, the fall semester began 23 
August and ended 16 December, while the spring semester began 17 January and 
ends 11 May. The two summer terms are 23 May – 2 July and 5 July – 13 August. 
In Denmark, the fall semester begins the first week of September and ends the last 
week of January, Spring semester begins the first week of February and ends the 
last week of June. January and June are usually examination months. Holidays are 
at Christmas, Easter, Pentecost, and Assension Day as well as July and 
September. This means that the Virginia Fall semester + Spring semester + “half” 
the summer term and the Danish Fall semester + Spring semester are 
approximately of equal length.  
 
What is clear from this “comparision” is that nothing is “clear” and that a “fair 
comparison” of what is “full time” becomes very difficult. For the sake of 
convenience and as a “compromise” between the different interpretations, I will 
use 15 USA credit hours as being equivalent to the European 30 ECTS. When a 
future Virginia secondary mathematics teacher have studied mathematics 36 
credit, or semester, hours, most would have done this as part of their 
undergraduate degree. This means that the minimum state requirement for a 
secondary mathematics teacher in Virginia amounts to 36/30 = 1.2 years “full 
time” study of mathematics.  

                                                 
12 http://www.ncsu.edu/studyabroad/staff/equiv/ects.pdf  
13 http://www.math.aau.dk/index.html  
14 http://www.su.dk/  
15 http://www.registrar.vt.edu/registration/enrollstatus.html  
16 http://www.clahs.vt.edu/UAAO/pol-procedure%20page.htm  
17 http://www.registrar.vt.edu/registration/minmaxenroll.html  
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The Danish Alment Gymnasium mathematics teacher has studied mathematics full 
time at least 2 years (if they have mathematics as Sidefag and then have taken the 
half-year Sidefagssupplering), and many would have studies mathematics full 
time for 3.5 years (if they have mathematics as Hovedfag). The Danish Folkeskole 
teacher has studies mathematics either 0.55 or 0.70 years.  
 
 
Country/State Denmark Virginia 
Grade-level 1-9 (10) 10-12 6-12 
Years of mathematics 0.55 – 0.70 2 – 3.5 1.2 (1.8) 
 
This means that the Danish Gymnasium teacher has taken between 1.7 and 2.9 
times more mathematics courses than the general Virginia teacher. However, the 
Virginia teacher (grades 6-9) has between 1.4 and 1.8 times more mathematics 
courses than the Danish Folkeskole teacher. Furthermore, in terms of years of 
study, in Denmark, the Almene Gymnasium teacher with teacher qualification has 
done around 7 years of study, while a Folkeskole teacher has done 4 years of 
study. Secondary mathematics teacher in Virginia have, if they have a Master’s 
degree, have done 5 years of study. 
 
This is when one looks at the state requirements in both Virginia and Denmark. In 
practice in Virginia, the universities require more of their students. For instance at 
Virginia Tech, students in the 5-year program for secondary mathematics teachers 
must take 30 credit hours of mathematics as undergraduates, two mathematics 
electives, 3 credit hours in computer science, 3 in probability and statistics, and 10 
credit hours of mathematics courses designed for teachers. This adds up to 46 
hours of mathematics and mathematics-related coursework as undergraduates. As 
graduates, they must take 2 graduate mathematics electives and one more 
mathematics course designed for teachers. This adds up to 9 credit hours. 
Altogether a student with a graduate degree from the Virginia Tech Secondary 
Mathematics Education Teacher Licensure Program, Master of Arts in Education, 
would have taken around 55 credit hours of mathematics.18 This means that at 
Virginia Tech, the students take courses amounting to 55/30 = 1.8 years of full 
time study, hence the 1.8 in the table above. The reason for this is that the state 
requires “minimum” while the universities often require a higher standard. 
 
Regardless of this, it seems in general that the Danish Almene Gymnasium teacher 
is better prepared in terms of mathematics content knowledge (if one can deduce 
directly from number of course taken to amount of knowledge) than the Virginia 
secondary teacher, while the Virginia teacher is better prepared than the Danish 
Folkeskole teacher.  

                                                 
18 The 55 credits hours comes if one includes the computer science classes as well as the 
mathematics courses designed for teachers where in some of the courses the mathematics “level” 
is grade 6-12 but the students “relearn” it while at the same time learn how to teach this level of 
mathematics. 
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What about the content knowledge and the more “soft values”? 
 
It seems that Denmark values education in democracy as much as the teaching of 
knowledge whereas teaching a democratic awareness does not seem to be 
emphased a lot in the Virginia system - where instead content knowledge and 
tests are emphasised. It might therefore seem perculiar that student teachers in the 
US system have less mathematics than in Denmark. Another peculiarity is that the 
Danish systems emphasises the teaching of general values. This can both be seen 
in the teacher education for the Folkeskole - for instance in the mandatory 
Christian subject, as well as some of the courses in the theoretical pædagogikum.  
 
This is not to say that one system is “bad” the other one is “good”. But in seeing 
the differences - and perhaps the internal inconsistencies in them – one might 
learn more about one’s “own” system, how it can be improved, by seeing how 
other’s have chosen to do it. Perhaps the Danish Folkeskole teacher education 
system needs to require more mathematical content knowledge, perhaps the 
Virginia state requirements needs to be higher in terms of content knowledge, 
perhaps the Danish Folkeskole teachers need more than 0.2 years of Christian 
studies, since “soft values” obviously are important, perhaps the Virginia school 
system need more emphasis on bringing up good citizens, etc. etc. The reader can 
make up his or her own mind. 
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Algebraic Insight Underpins the Use of CAS for Modeling 
 

Robyn Pierce 
University of Ballarat (Australia) 

 

Abstract: Computer Algebra Systems (CAS) performs algorithmic processes 
quickly and correctly.  Concern is commonly expressed that students using CAS 
will merely be pushing buttons but this paper indicates that, while CAS may assist 
students, this facility impacts on only one section of the mathematical modeling 
process:  CAS may be used to help find mathematical solutions to mathematically 
formulated problems.  Controlling and monitoring the use of CAS to perform the 
necessary routine processes requires the mathematical thinking referred to as 
algebraic insight.  This paper sets out a framework of the aspects, and elements of 
algebraic insight and illustrates the importance of students developing each of the 
two key aspects: algebraic expectation and ability to link representations.  This 
framework may be used for both planning teaching and monitoring students’ 
progress. 

CAS Support Mathematical Analysis in the Modeling Process 
Mathematical analysis tools are now not only increasingly powerful but 
affordable and available.  In particular, Computer Algebra Systems (CAS), 
available for PC’s and hand held calculators, offer students support to allow them 
to work successfully through more complicated or time consuming mathematical 
manipulations and calculations.  Heid (2003) describes clearly three key ways in 
which CAS can function as a cognitive technology: 

• Students can use CAS for the repeated execution of routine symbolic 
procedures in rapid succession, without diminished accuracy and 
increased fatigue usually associated with the repetitive execution of by-
hand routines… 

• Students can assign rote symbolic tasks to the CAS so that they can 
concentrate on making ‘executive’ decisions… 

• Students can use the CAS to apply routine symbolic algorithms to 
complicated algebraic expressions, without the confusion students 
sometimes experience when trying to apply a routine procedure to a 
complicated expression. (pp. 34-35). 
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This capacity for CAS to be used by students to share cognitive load has obvious 
advantages for mathematical modeling.  A CAS allows the user to work in 
numeric, graphic or symbolic modes and to move between these with 
mathematical precision and relative ease.  For example, in modeling real world 
situations in order to solve estimation or optimization problems, it is common to 
begin by collecting and entering numeric data into a software package.  CAS 
allows us to use the graphic mode to examine any pattern in this data; make use of 
the CAS’s statistical capabilities to perform an appropriate regression on the data; 
and store the result in the graphic function editor ready for graphing or transfer to 
the symbolic mode.  The model which has been created can be examined and 
refined for the particular case then the impact of changing the various parameters 
may be explored until a general model is developed or that notion discarded. 

Monitoring CAS Work Requires Algebraic Insight 
It must be clear though that CAS does not reduce the need for students to develop 
their skills in mathematical thinking.  Figure 1, below, illustrates the typical 
process for mathematical modeling.  Starting with a real world situation (top left) 
which must be formulated as a mathematical problem, the mathematician 
typically collects numeric data or moves immediately to a symbolic representation 
of the situation ( top right).  Using symbolic, graphic, numeric or geometric 
methods the mathematician works on the abstract version of the problem in order 
to progress towards some particular or general solution.  Once a mathematical 
solution has been developed (bottom right) this abstract solution must be 
interpreted in terms of the real world (bottom left) and checked for applicability in 
the situation where this process began.  If the solution is not adequate then the 
process must be repeated.  This diagram highlights the fact that, currently, 
technologies like CAS only impact on one section of the modeling cycle, that is, 
the process of moving from the mathematically formulated problem to a 
symbolically formulated particular or general solution. 
CAS assists with routines but does not take over the role of mathematical 
thinking.  This is illustrated by Pierce and Stacey, (2001a) who report the 
following extract from a group interview conducted with first year undergraduate 
mathematics students working with CAS available for all aspects of learning and 
assessment: 

Interviewer: One of the other things that people argue about is 
whether or not people are really doing mathematics when working 
with a computer-algebra system.  Are you doing it or is the machine 
doing it?  Who’s doing the maths? 

Student A: I reckon that we are actually doing it. The computer only 
spits out an answer to what you type into it  

Student B: It’s just like with a calculator…it’s just going a bit further, 
we’re not just doing multiplication and division quickly, we’re doing 
simple differentiations and stuff quickly. 

Student C: Also, you still have to interpret the answer or for that 
matter interpret the question so you can convert it into what the 
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computer wants …you’re still doing a lot of mathematics. (pp. 153-
154). 

 

 

Figure 1.  A model of problem solving showing the places of symbol sense and 
algebraic insight (Pierce & Stacey, 2002) 

 
The processes of formulating and solving the mathematical problem then 
interpreting the solution all require what Fey (1990) and Arcavi (1994) call 
symbol sense.  As Fey (1990) pointed out:  

Even if machines take over the bulk of computation, it remains 
important for users of those machines to plan correct operations and to 
interpret results intelligently.  Planning calculations requires sound 
understanding of the meaning of operations – of the characteristics of 
actions that corresponds to various arithmetic operations.  
Interpretation of results requires judgement about the likelihood that 
the machine output is correct or that an error may have been made in 
data entry, choice of operations, or machine performance. (p.79)  

 
 
Symbol sense is a broad concept encompassing a feel for the power of symbols; 
an ability to use symbols to express relationships; a sense of when to use symbols 
and when to use another approach; a sense for which symbolic manipulations will 
aid progress towards solution of a problem; an ability to recognise equivalent 
symbolic expressions; an ability to interpret the meaning of symbols in a given 
context and much more. In this paper we concentrate on the part of symbol sense 
required to monitor progress towards the solution of a mathematically formulated 
problem.  This is the phase of the modelling process where a CAS may be able to 
perform the algorithmic tasks involved accurately and quickly.  However, in order 
to direct and monitor this work the user needs the part of symbol sense we call 
algebraic insight. 
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Technology to date does not impact on the processes of formulation and 
interpretation; it does however offer alternative methods to progress between the 
mathematically formulated problem and a mathematical solution. Methods which 
were, in the past, considered too time consuming or tedious are now accessible. 
For mathematics teachers and students, limited by the constraints of class 
timetables and a crowded curriculum, CAS can offer the possibility of tackling 
interesting real problems which could not previously have been tackled in the 
time available. The support of CAS to correctly execute the algorithmic routines 
and manipulation required in a solution process may allow students to test their 
conjectures and develop their higher level mathematical thinking instead of 
setting their focus at the micro level of the steps involved in these routines. 
However, studying the value of the output from such a process of shared 
cognition will be dependent on correct input and the execution of appropriate 
commands. 
 
Checking that mathematical expressions have been correctly entered in to CAS 
and that the output at each stage makes sense certainly requires symbol sense.  As 
stated above, to draw specific attention to this part of symbol sense we refer to it 
as algebraic insight.  Its place in the broader scheme of thinking required to work 
within and between the three mathematical representations typically afforded by 
CAS is illustrated in Figure 2 and the key aspects, elements and some common 
instances of this concept are outlined in Figure 3. 
 
Figure 2 indicates that algebraic insight has two key aspects: first the thinking 
which allows us to monitor working within the symbolic mode of operating, that 
is  algebraic expectation; and second the  ability to link representations, in this 
case to link the symbolic with graphical or numeric representations. These two 
elements of algebraic insight will be discussed and illustrated in the following 
section. 
 

 

Figure 2.  The place of algebraic insight and its components within the senses 
needed when working with CAS. (Pierce and Stacey, 2004) 
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Algebraic Insight 
The framework set out in Figure 3, is designed to encourage reflection on the 
skills of algebraic insight and to serve as a basis for teachers in planning and 
assessing.  The framework divides the first aspect of algebraic insight, algebraic 
expectation, into three elements relating to conventions and basic properties, 
structure and key features.  The second aspect, ability to link representations, has 
elements which link the symbolic to graphic and numeric representations.  The 
framework is not proposed as a catalogue of specific, itemized skills: the common 
instances chosen are merely illustrative and will, in practice, be age and stage 
appropriate. 
The divisions within the framework are neither mutually exclusive nor 
exhaustive.  Whilst these features would be desirable, the author does not believe 
they are fully attainable.  The framework was developed in response to the 
literature and the author’s experience of teaching with CAS.  It is an attempt to 
analyze what it is that ‘expert’ mathematicians do when they look at a result to an 
algebraic problem and say ‘there is a mistake here’ or ‘that looks all right’. 
This is the thinking used in, what the problem solving literature, for example 
Schoenfeld (1985), calls ‘monitoring’ or ‘control’.  Examples of the application of 
the thinking summarized in the framework are described below. 
 
 
 

Aspects Elements Common Instances 

1. Algebraic 
Expectation 

1.1 Recognition of 
conventions and 
basic properties 

1.1.1 Know meaning of symbols 

1.1.2 Know order of operations 

1.1.3 Know properties of 
operations 

 1.2 Identification of 
structure 

1.2.1 Identify objects 

1.2.2 Identify strategic groups of 
components  

1.2.3 Recognise simple factors 

 1.3 Identification of key 
features 

1.3.1 Identify form 

1.3.2 Identify dominant term 

1.3.3 Link form with solution 
type 

2. Ability to Link 
representations 

2.1 Linking of symbolic 
and graphic 
representations 

2.1.1 Link form with shape 

2.1.2 Link key features with 
likely  position 

2.1.3 Link key features with 
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intercepts  and asymptotes 

 2.2 Linking of symbolic 
and numeric 
representations 

2.2.1 Link number patterns or 
type with form 

2.2.2 Link key features with 
suitable  increment for table 

2.2.3 Link key features with 
critical  intervals of table 

Figure 3 A.  Framework for algebraic insight (Pierce and Stacey, 2001b) 

 

Algebraic Expectation 
The term Algebraic Expectation is used to name the thinking process which takes 
place when an experienced mathematician considers the nature of the result they 
expect to obtain as the outcome of some algebraic process. First, recognition of 
conventions and basic properties of mathematics is a skill based on both 
knowledge and understanding of the meaning of symbols. At a basic level much 
of this knowledge will transfer from experience with numbers and arithmetic 
processes.  In addition, to make mathematical meaning explicit our symbols must 
be arranged in a conventional manner, for example the meaning of , 
‘ ∫sin2 xdx ’ is quite unclear.  In this case several alternatives such as ∫ xdxsin2 , 

or ∫ dxx)2sin( are possible and the correct sequence of symbols will rely on the user 
understanding both the context of the problem and role of each symbol, especially 
‘2’ in each of these expressions.  Recognition of conventions and basic properties 
is demonstrated, for example, in three common instances: when students know the 
meaning of symbols; the appropriate order of operations; and the basic properties 
of operations. 
The second element of algebraic expectation involves identifying structure. 

Consider, for example, 
)1(

)1()1( 25

+
+++

x
xbxa .  The vinculum indicates the first 

level of structure in this expression.  The numerator can be seen as a strategic 
group of components consisting of two terms, while the denominator may be 
viewed as a single object. Considered at another level, (x +1) can be identified as 
an object which is common to each of three terms which make up this expression.  
Common instances of identification of structure occur when students identify 
objects, strategic groups of components or simple factors. 
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Finally identifying key features forms the third element of algebraic expectation. 
Mathematical expressions can be scanned for key features: features that identify 
the form of the expression indicating whether it is, for example, trigonometric, 
exponential, or polynomial. Key features also provide information by which 
expectations may be formed. For functions, for example, these features may lead 
to expected number of solutions, solution type, number of maxima and minima, 
and domain and range. 

 
 Algebraic expectation may be thought of as a parallel to the arithmetic skill of 
estimation.  One of the most common examples of the need for algebraic 
expectation is seen when a mathematician looks at two expressions and decides, 
without doing any explicit calculations or manipulations, whether they are likely 
to be equivalent. This skill is particularly important for those working with CAS: 
checking the correct entry of mathematical expressions and matching CAS 
outputs with conventional by-hand presentation of various mathematical 
expressions. 

 
The three elements of algebraic expectation may be thought of as three different 
lights illuminating the attributes of a mathematical expression and hence 
providing possible clues to inform our algebraic expectation.  Students should be 
encouraged to consider any mathematical expression in the light of each of these 
three elements as part of their routine in making judgments about how best to 
progress the solution of a problem or in monitoring their working by-hand or by 
CAS. 
Consider a rule to describe the surface area of a cylinder of given volume V: 

r
vrA 22 2 += π . 

 Encouraging algebraic expectation means asking questions related to each of the 
elements outlined above. Initially we as teachers need to guide this process until it 
becomes a habit in our students’ mathematical thinking. A ‘checklist’ of 
fundamental questions would include “What do each of the letters in this 
expression represent?” “What is the structure of this expression?  Are there any 
simple factors? What are the key features that you notice and what do they tell us 
about the function and its possible solutions? 
In the example given above: 
Recognition of conventions and basic properties could involve: identifying r, A 
and v as variables; knowing the convention that the Greek letter π is used to 
represent a special irrational number; knowing the conventions of implicit 
multiplication and index notation so that evaluation of  22 rπ  requires rr ×××π2 ; 
knowing the convention for order of operations so that the multiplication and 
division precede the addition of the two terms. 
Identification of structure means recognising that the two terms on the right hand 
side may be seen as two processes which could be treated as objects; there is a 
simple common factor of 2 on the right hand side; and the value of A depends on 
the value of r. 
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Identification of key features means recognising that the expression in r consists 
of the sum of a quadratic and a reciprocal function; the dominant term will be the 
term with r2; key features such as the squared term mean that the equation may 
have none, one or two solutions; division by r means that there will be a 
restriction on the domain since r ≠ 0. 

 
In this section we have briefly outlined the elements of algebraic expectation and 
considered an illustration applying this thinking to a practical example.  This 
analysis of the symbolic expression does not provide a solution for a problem but 
alerts the student to the attributes of the expression which may provide important 
insights for the process of monitoring the solution for a particular problem.  
Further algebraic insight may be gained by linking the symbolic representation 
with graphic or numeric representation. In the example above, linking the 
symbolic form of the quadratic and reciprocal function to a parabola and 
hyperbola then visually adding the ordinates to gain an approximate image of the 
sum of these terms will give a visual impression of possible values for A.  CAS 
can assist a student in examining how A varies with r and explore the effect of 
setting different values of the parameter V. 
Next we will focus on the second aspect of algebraic insight: ability to link 
representations. 

 

Ability to Link Representations 
The process of progressing from working with a single data set to developing a 
general model will commonly start with collection of data and examination of this 
data set.  A student with algebraic insight will be looking for patterns in the data 
which will be indicative of the form of a suitable symbolic model.  For example, 
if for equally spaced values of the independent variable there is a very rapid 
increase in the size of the dependent variable this is likely to indicate exponential 
growth while a recurring pattern of values will indicate that a trigonometric 
function may provide the basic form of a suitable model.  If the raw data has no 
obvious pattern then examination of first or second difference or ratios may 
quickly demonstrate whether the data is best modeled by a linear, quadratic or 
cubic polynomial or if an exponential function is the more appropriate choice.  
However, students commonly find using tables of values to identify patterns, and 
therefore algebraic form, quite difficult. 

 
They commonly find the visual representation provided by a graph of the data 
more helpful.  Ability to link symbolic and graphic representations and ability to 
link symbolic and numeric representation form the two elements of the second 
aspect of algebraic insight.  We will now consider an example showing some 
ways in which algebraic insight may support the modeling process. Links to the 
algebraic insight framework, Figure 3, are included in parentheses. 
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Figure 4.  Garden Hose Spray and Graphic Representation 
 

Algebraic Insight Supporting the Modeling Process 
 
Consider the task of creating a mathematical model for the curve formed by a 
spray of a garden hose.  First, working from a photo of a garden spray the student 
could aim to find a rule for a function whose graph would match this particular 
spray.  In this case algebraic insight will be shown by the student who looks at the 
image formed by the spray from a garden hose, as shown in Figure 4, and 
recognizes that this is likely to be best modeled by a quadratic function (2.1).  
Further, key features such a the critical values of maximum, minimum or 
intercepts may be identified from a graph and  in turn  linked to values of various 
parameters of a function (2.1).  A student who knew that a quadratic may be 
described by several equivalent expressions and that in this case the form 

( ) khxaxf +−= 2)(  would prove easiest for finding a symbolic expression to 
describe the path of the water demonstrates a deeper level of algebraic insight 
(1.2, 1.3, 2.1).  Algebraic insight allows the student to make such links between 
the numeric or graphic representation and their symbolic equivalent. 
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Recognising that the function rule which describes this graph,  
( ) 2.65.21.0)( 2 +−−= xxf , will be equivalent to an algebraic expression which will 

also be a polynomial of  degree 2, with a co-efficient of -0.l, a term in x, and a 
constant term with a value between 5 and 6 requires algebraic insight (2.1).  Once 
a symbolic representation of the particular set of data has been achieved then the 
consequences of changing various parameters may be explored in a systematic 
manner (1.1, 1.3).  Students may be encouraged to make conjectures and discover 
“what happens if….”.  This may be done as an abstract exercise without regard to 
the initial context but equally results obtained this way may also be interpreted in 
terms of the real life scenario and checked for reasonableness.  In this way a 
student may move from the particular rule which matched this hose spray to a 
general rule which may be adapted, according to guidelines, to fit other sprays. 

CAS Support Learning Algebra through Strategic Exploration  
Developing students’ algebraic expectation is important if they are to harness the 
power of CAS to support their working for iterative, complex or other time 
consuming manipulations where working by hand would take much longer or be 
open to simple errors.  Students require a basic level of such understanding in 
order to even enter expressions correctly into a CAS (1.1), in particular to identify 
structure (1.2) and hence make appropriate use of parentheses.  Once some very 
basic facility with the CAS is established it is also possible to use CAS to assist in 
the further development of students’ algebraic expectation.  For example, 
recognition of familiar patterns and relationships is the key to progressing work 
with symbols.  This includes such strategies as identifying common factors, 
difference of two squares, perfect squares; coming to understand = as indicating 
the equality of  the expressions linked by this symbol ; and later  rules for 
derivatives  and anti-derivatives.  CAS may be used to explore strategic sets of 
examples which will give the student exposure to many correct simplifications, 
for example.  Our experience is that as students start to see a pattern they may 
make conjectures which they test with CAS then progress to finding that working 
in their own head can be more efficient than using the CAS.  At the same time, 
knowing that the support of CAS is available increases students’ confidence to 
progress in mathematics. 
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Conclusions 
CAS may be used to support and extend students’ work in mathematics and it 
may also be used as a pedagogical tool.  CAS may be used effectively to support 
students’ work in mathematical modeling.  The use of CAS does not preclude the 
need for mathematical thinking, it in fact highlights the need for symbol sense and 
in particular the two aspects of algebraic insight, namely algebraic expectation 
and ability to link representations.  Mathematics teaching has, out of necessity, 
focused a great deal of time and attention on algorithmic routines.  Since CAS 
does these effectively, attention may now be directed towards deliberately 
teaching these skills of algebraic insight. 
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Von Neumann and Computers 
Steve Humble 

New Castle College (England) 
 
 
The title of this paper should not be Von Neumann and computers, but Von 
Neumann and the Von Neumann machine. Von Neumann may be famous for 
many things but humility was not one of them. Yet no one had anything bad to 
say about 'good time' Johnny Von Neumann; he just was too likeable. He gave 
massive parties and loved women, fast cars, jokes, noise, Mexican food, fine 
wine, and, most of all, mathematics. 'Unbelievable', said one of Von Neumann's 
old friends, 'He knew how to have a good time. His parties were once if not twice 
a week at 26 Wetcott Road. Waiters came around with drinks all night long. 
Dancing and loud laughter. With Von Neumann at the centre of it all he was a 
fantastically witty man.'  
 

    Johnny von Neumann (1903 – 1957) 
 
 
In a way Von Neumann could afford to party, since he had been born lucky - lucky 
enough to have a great mind, that did not forget. He had a true photographic 
memory and never forgot a thing. The story goes that you could ask him to quote 
from anything he had ever read, and the only question he would ask you was, 
'When do you want me to stop?' In addition to having a great memory, he was 
also very fast. Start asking him a question and, before you finished, he would be 
answering, and suggesting interesting follow-ups that you should consider. It's no 
wonder, with a super mind like his, that he is credited with inventing the present-
day computer. 
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When one of the first computers was to be tested, Von Neumann was on hand to 
help. The test for the computer was to work out powers of 2, and to find the first 
number to have 7 as its fourth digit from the right. The computer and Von 
Neumann started at the same time, and you guessed it, Johnny finished first! 
As well as working on the development of the computer, Von Neumann also 
worked on the atom bomb and created a branch of mathematics called game 
theory. His work in these areas argued strategies for the Cold War and inspired 
the movies Or Strangelove and War Games. 
 
When Von Neumann finished building his computer he had to find a use for it. In 
his eyes the only useful thing to do was mathematics so he and fellow 
mathematicans Fermi and Ulam invented a simulation method that they called the 
Monte Carlo method. This method simulates random events using the computer. 
In Buffon's needle problem the JAVA applet uses Von Neumann's simulation 
method to validate the correct value of pi. To simulate the unpredictable event of 
throwing a needle, the computer has to use something called a pseudo-random 
number generator. The pattern of numbers generated are deterministic, yet of 
sufficient complexity to cause the outcome to appear unpredictable (random). In 
the following experiments we will look in more detail at random number 
generators. 
 
Experiment Time 
 
There is a problem in mathematics called the random walk. You start with a 
player at some point. He tosses a coin, and how it falls decides his direction of 
motion. This randomly makes the choice of which way to go. 
To set the scene for students, imagine that you are on a narrow mountain ridge. It 
is windy and the rain is battering down on you. This makes it difficult to see 
where you are going. Every time you move forward you get blown randomly to 
the left or right. What are your chances of making it across the ridge? 
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Start at the base camp dot, and throw a coin. If it is heads move to the right and if 
it is tails move to the left. For example, if you throw HHTHTTH then it would 
look like this: 
 
 

 
 
 
Keep throwing the coin until you make it to the other side or fall off the edge. 
 
What is the chance that you will: 

• fall off the cliff 
• make it to the other side 
• fall off before the tenth move 
• fall off before the fifteenth move 
• fall off the right or left side of the ridge? 

 
Before you start this experiment using paper, it is a good idea to let the students 
try to walk the ridge for 'real' in the classroom. With a pre-defined ridge marked 
on the floor, you can flip the coin to say move left or right. This works well as a 
starter to get them thinking about how wide the ridge needs to be if they are to 
make it to the other side. After this introduction get students to perform this 
experiment on paper at least five times, then collect the data on the board. Be as 
detailed in this collection phase as the class's ability allows. For example, you 
may ask if anyone went over the edge in the first 5 moves, or between 6 and 10 
moves, or 11 and 15 moves, and so on. Once you have collected the results the 
class can then talk about the probability of crossing the ridge. 
Here are some extension ideas for this task:  
  
 
Instead of using a coin use the random number button (RAN#) on your calculator, 
moving to the right if the number generated is in the range 0-0.5, and to the left 
for higher numbers. What happens if the wind blows harder from one side? Does 
this make it more difficult to cross the ridge? Simulate this by moving to the right 
for random numbers 0-0.3, and to the left otherwise, or something similar. 
Include the chance that you will be blown two dots to the right or left. 
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Using mathematics to predict this random event 

 

One question you can ask is how far on average the 
ridge walker will move away from the centre line 
after the start. Let the centre line be the x-axis. If 
you move to the left this is +1, and if you move to 
the right this is -1. Let On be the distance from the 
centre line after n steps. This can be found from 
On-I' and since to get to the next step you would 
have to add or subtract one to the previous step, 

1DorD1DD 1nn1nn −++= −−  If you then square 
these equations you obtain 
 

=2
nD {

11nD22
1nD

11nD22
1nD

+−+−
+−−−

 

 
 
Adding these two equations together, 
 

1DD 2
1n

2
n += −   [1] 

 
After one step, 1D2

1 = . Using this, and equation 1 repeatedly, we can obtain 

nD2
n = . Therefore nDn =  . This tells us that, on average, after n steps you 

would have moved n  away from the centre line. 
 
 
Calculating the Probabilities 
 
To calculate the probabilities involved in the random walk, you can use Pascal's 
triangle to get the chances of following different routes in a random path, for at 
each step you are making a decision to go left or right. The numbers in the 
triangle indicate the number of routes from the start position to that point. To find 
the next line in Pascal's triangle add together the two roots to that point. 
 

+1 

-1 x-axis  
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Extension Ideas 
 
The 147 random number generator works in the following way. First it selects a 
decimal between 0 and 1, which it then multiples by 147. Then it takes the 
fractional part of this result and multiplies it by 10. The integer it produces is the 
random number. 
For example, if the decimal between 0 and 1 that is selected is 0.1357, we have 
 
 
0.1357 x 147 = 19.9479 
The fractional part is 0.9479 
 10 x 0.9497 = 9.479 
So the random number is 9. 
 
If you want a larger random number using this method, just multiply by 100 or 
1000 in the final stage. Try finding some random numbers using the program 
RAN147. 
 
A good challenge for the students is to discover when the random generator is not 
working efficiently. In other words, when you can spot a pattern in the numbers. 
To make it easier for the students, tell them to use a single-digit decimal, such as 
0.7, at first, and build up to two digits and more. Be warned, the time for the 
pattern to repeat will grow very quickly as you increase the digits. 
 
This type of generator is the simplest. After a number of random numbers you 
will see a pattern as the sequence of decimals is calculated. In the example above, 
starting with a four-digit number such as 0.1357, after 10000 numbers or fewer 
we will get a repeat. 
 
Add the random numbers generated from your calculator's random button until 
their total exceeds 1. Note how many numbers are required. You will find that the 
average number of random numbers required is e = 2.7182818 . . . Changing the 
total to 3, so that the average becomes 8, makes a good challenge for students. 
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A similar idea is to find the average random number between 0 and 1. This is a 
problem that the students can work on using their calculators by finding the 
average of blocks of ten numbers. The answer comes to 
 

∫ =
1

0 2
1

xdx  

 
In other words, this is the area under the curve y=x from x = 0 to 1.  What about 
the average of random numbers squared, or cubed. . .? 
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Abstract: In this study, we considered dynamic geometry software (DGS) as the 
tool that mediates students’ strategies in solving and posing problems. The 
purpose of the present study was twofold. First, to understand the way in which 
students can solve problems in the setting of a dynamic geometry environment, 
and second, to investigate how DGS provides opportunities for posing new 
problems. Two mathematical problems were presented to six pre-service teachers 
with prior experience in dynamic geometry. Each student participated in two 
interview sessions which were video recorded. The results of the study showed 
that DGS, as a mediation tool, encouraged students to use in problem solving and 
posing the processes of modeling, conjecturing, experimenting and generalizing. 
Furthermore, we found that DGS can play a significant role in engendering 
problem solving and posing by bringing about surprise and cognitive conflict as 
students use the dragging and measuring facilities of the software. 
 
 
1. Introduction   
 
In an attempt to inform the development of better pedagogical models, this paper 
reports some of the findings from a study of the integration of dynamic geometry 
software (DGS) in mathematics classrooms. One of the distinguishing features of 
DGS is the facility to construct geometrical objects and specify relationships 
between them. Within the computer environment the geometrical objects created 
on the screen can be manipulated, moved and reshaped interactively with the use 
of the mouse. The tools, definitions, exploration techniques, and visual 
representations associated with dynamic geometry contribute to a learning 
environment fundamentally removed from its straightedge-and-compass 
counterpart (Laborde, 1998). 
 
The focus of this paper is on students’ problem solving and posing processes in 
the learning environment of dynamic geometry when they work on problem 
solving and posing. The paper also examines how the increasing use of DGS may 
give rise to new problems and new ways of introducing problem solving in a 
variety of contexts. 
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The study is based on the theoretical premise that computers are being introduced 
in education not only because they do a better job but because but they do the job 
differently (Aviram, 1999; 2001). There are good reasons to support that DGS has 
the potential to help students improve their abilities to solve a variety of 
mathematical problems in novel ways and provide a powerful means of posing 
new problems by applying different heuristic approaches (Gomes & Vergnaud, 
2004).  
 
The first part of the paper presents the theoretical background of the study with 
special reference to computers as mediation tools, and to the learning mediated 
through employing DGS. The second part of the study provides support to the 
theoretical part by indicating that students in the era of computers can do 
mathematics differently (Aviram, 2001) by solving and extending problems in 
ways they could not do with paper and pencil, and by exploring and investigating 
different possible answers to a problem.     

 
 
 

2. Theoretical Background  
2.1 DGS as a mediation tool 
 
In this study, we investigated pre-service teachers’ abilities to construct 
geometrical objects and solve and pose problems in a computer-based 
environment, which served as a mediation tool (artifact). The types of artifacts are 
closely related to the knowledge that students construct (Artique, 2002), and are 
central to the processes by which students mathematize their activities. In 
addition, artifacts support students’ mathematical development by anticipating 
how students might act with particular tools, and what they might learn as they do 
so (Cobb, 1997). Jones (1997) asserted that artifacts stand between the learners 
and the knowledge that students are intended to learn. This assumes that learning 
within a DGS environment involves the interaction between students and the 
software, as they submit their previous knowledge to revision, modification, 
completion or rejection in the process of acquiring new knowledge (Jones, 2000). 
This interaction is more clearly explained as the interaction between two systems  
(Brousseau, 1997; Jones, 1997). The first system refers to students who attempt to 
solve or pose a problem, and the second system refers to the environment, which 
offers opportunities to students to act and react. The environment also includes 
the tools that mediate students’ actions and exists between the students and the 
world of mathematics (Artigue, 2002), and, most importantly, transforms the 
students’ activities upon the world.  
 
Gomes and Vergnaud (2004) considered DGS as an integral part of the didactical 
environment, performing a specific mediation of knowledge. In problem solving 
and posing, DGS makes possible for students to generate and use specific 
strategies (Hölzl, 1996). Hölzl, for example, identified two components of the 
epistemology of DGS: first the nature of the interface, and second the 
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consequences on students’ conceptualizations. Specifically, the structure of a 
particular interface is a key determinant of the characteristics of the knowledge 
evolved using it. Problem solving and posing, using DGS, involves the direct and 
indirect effects of the software’s interface on students’ procedures and 
understandings. In addition, DGS’s interface provides students with the 
opportunity to use visual reasoning in mathematics and helps them, through the 
dragging facilities, to generalize problems and relationships (Sinclair, 2004).  
 
The main issue, however, is whether the involvement of students in such learning 
settings may result in understandings that could not be achieved through 
traditional instruction (Artique, 2002), and whether DGS is actually used and 
transformed by students in visually confirming and negating conjectures and in 
developing a new perspective on solving and posing original problems (Meira, 
1998; Sinclair, 2004).  

 
2.2 Problem solving and posing 
 
Problem posing, problem solving, and conjecturing are three important 
mathematical activities (National Council of Teachers of Mathematics (NCTM), 
2000). In geometry, these activities involve some tasks that technology performs 
efficiently and  well, such as computing and graphing. In this study, two problems 
were assigned to students, which show how the computing and graphing 
capabilities of DGS can be used in making conjectures, in problem solving and 
problem posing within geometry tasks. The importance and relevance of these 
mathematical activities is supported by “The Principles and Standards for School 
Mathematics Document” (NCTM, 2000). For example, this document states that 
instructional programs should provide opportunities for all students to “use 
visualization, spatial reasoning, and geometric modeling to solve problems” (p. 
308). The document also calls for students to “formulate interesting problems 
based on a wide variety of situations, both within and outside mathematics” (p. 
258). In addition, the document recommends that students should make and 
investigate mathematical conjectures and learn how to generalize and extend 
problems by posing follow-up questions. Moreover, Silver and Cai (1996) refer 
explicitly to problem posing by arguing that students should have some 
experience in recognizing and formulating their own problems. Most authors 
agree that problem posing is a term used to mean both the generation of new 
problems and the reformulation of given problems (Cai & Hwang, 2002; English, 
2003; Silver & Cai, 1996).  

 
3. The Present Study 
 
In this study, based on the theoretical dimensions discussed in the previous 
section, we considered DGS as the tool that mediates students’ strategies in 
solving and posing problems. We perceived the construct of mediation in two 
different ways. First, in a cognitive framework, we addressed the students’ 
attempts that arose from the exploration of the possible extensions and solutions 
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in the assigned problems, and second, in a social framework, we discussed the 
results or the solutions through the evidence provided by the software.  
 
3.1 The Purpose of the Study 
 
The purpose of the present study was twofold. First, to understand the way in 
which students can solve non-routine problems in the setting of DGS, and second, 
to investigate how DGS provides opportunities to students for posing new 
problems. Both purposes are explored under the assumption that DGS constitutes 
the artifact that helps us understand how computers can be used in education in 
doing mathematics in a different way. Thus, the research questions concern firstly 
the exploration of DGS as a tool that fosters the development of problem solving 
processes, and secondly the investigation of how DGS mediates the generation of 
new problems.  More specifically, the questions of the present study are: 

(a) In what ways does the DGS mediates students’ problem solving 
processes in geometry problems? 

(b) In what way the DGS environment provides opportunities for students to 
pose and solve their own geometry problems? 

In order to meet the purposes of the study, two mathematical problems or 
situations were presented to students. These problems illustrate how students may 
be engaged in conjecturing, problem solving, and problem posing with the aid of 
DGS. The problems also illustrate the power of such environments to engage 
students at various levels of mathematical sophistication.  
 
4. Method 
4.1 The Problems of the Study  
 
In order to answer the research questions formulated above, the following two 
problems, as were slightly adapted from Contreras (2003), were assigned to the 
students: 
 
Problem 1. The authorities of four towns are planning to build an airport that will 
serve the needs of their citizens. Identify the optimal place for the location of the 
airport so that the needs of the four towns are served in a fair way.  
 
Problem 2. What is the figure formed by the angle bisectors of the interior angles 
of a parallelogram? 
 
The first problem is open-ended and purposefully not well defined. Thus, students 
had to provide a context for the problem in order to clarify the situation in which 
they would work. The second problem is a pure geometrical situation, which 
allows students to explore a seemingly standard problem, but in the solving 
process they may encounter surprising results. Both problems provided the 
opportunity to students to generate new problems by altering the situations or 
extending and reformulating the given problems in different ways (English, 1997, 
2003; Silver & Cai, 1996).  
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4.2 The Participants 
 
The participants of the study were six pre-service teachers with prior experience 
in dynamic geometry. All students attended a course on the integration of 
computers in elementary education. The course focused on mathematical 
applications in the teaching and learning of mathematics in grades 1-6, with 
special emphasis on the integration of dynamic geometry. Therefore, students had 
a basic understanding of Geometer’s Sketchpad’s drawings, menus, and 
construction features.  
 
4.3 Data Collection and Procedures 
The interviewees participated on a voluntary basis. Six students were interviewed 
while they were working on two non-routine problems. Three of the students 
worked on the airport problem and three on the bisectors problem. Each student 
participated in two interview sessions, which corresponded to the two aspects of 
the mediation construct, namely, the cognitive and social aspects. During the first 
session, students were asked to solve the problems. During the second session, we 
worked with the students and discussed not only their solutions but also possible 
ways of extending, posing and solving new problems.  
 
The interviews were conducted in the mathematics laboratory, which was 
equipped with computers loaded with the Greek version of the Geometer’s 
Sketchpad. A video recording of the sessions (as opposed to audio) was decided 
as the means of recording the interviews since we wished to capture not only the 
discussions but also the actions occurring on the computer screen as interviewees 
talked about the ir work. The setting was informal with students being able to 
analyze and build geometric constructions that they thought would help them 
solve the problems without any time constraints being set. The data was collected 
during unstructured interviews. One of the most important benefits of the 
unstructured interview approach has been described by Cobb (1986) as the 
process of “negotiating meaning”. It gives the opportunity to the researchers to 
ask the subjects to clarify or explain their activities or comments. 
 
Analysis of the data followed interpretative techniques (Miles & Huberman, 
1994). Video records helped us identify the unique ways the software facilitated 
the students to solve the problems as well as the sequence of the cognitive 
processes and strategies used during the solution of the problems. The interviews 
helped to identify the ways in which students used the software in order to pose 
new problems and how these new problems were related to the original problems. 
Detailed analysis of all the data was then used to develop categories of problem 
posing and solving processes that could be checked against participants’ own 
accounts of their work. 
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4. Results  
4.1 The Airport Problem 
The airport problem created a lot of discussion between the researchers and the 
individual students. The discussion revolved around (a) the meaning of the needs 
of the four towns and how one could interpret them, and (b) the meaning of the 
word “fair”, which produced some disagreements concerning the population of 
each town. Following the discussions about the context and the meaning of the 
words involved in the problem, some of the students decided to consider the 
concept of  “fairness” as “equidistance”.  
 
When the researcher asked students to solve the problem using the Sketchpad 
software, the three students who worked on that problem, modelled it, assuming 
that they should take into consideration the distance of the four towns from the 
airport. The students were not used to working with such investigations, since 
geometry textbooks dissuade students from making conjectures based on the 
limited evidence provided by a single shape. As a result, the students, trying out 
to find a solution to the airport problem, built “prototype conjectures” (see Hanna, 
2000), which were based on common geometrical shapes such as rectangles, 
parallelograms or squares. Specifically, two of the students investigated the 
problem by assuming that the four towns were the vertices of a rectangle or a 
square. The following extract shows their attempts in finding a reasonable 
solution to the problem:  
 
Student A: I assumed that the four towns are on the vertices of rectangle. Then I 
hypothesized that the best location for the airport should be in the centre of the 
rectangle. 
Researchers: What do you mean by the “centre” of the rectangle?  
Student A: Probably, this is the intersection of diagonals. 
Researcher: Ok. How can you check your hypothesis? 
Student A:  (He points to the diagram on the computer screen). I defined a point 
inside the rectangle and constructed the segments from the vertices to this point. I 
moved the point inside the rectangle (See Figure 1). In the meantime, I measured 
the length of each segment.  
 
In this case, student A found that the optimal location of the airport was the 
intersection of the diagonals of the shape, by dragging a point into the shape. He 
actually based his conjectures on measurements showing that each town is 
equidistant from the point of the intersection of the diagonals (see Figure 1).  
 
At this point, when students were asked to generalize their findings to include all 
quadrilaterals, two of them intuitively answered that the point of the intersection 
of the diagonals should be the best location for the airport. However, they could 
not provide a reasonable justification, although they empirically tried other points 
inside an arbitrary quadrilateral. The dragging facilities of the software helped 
them to work inductively, i.e., from two or three examples they generalized to all 
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quadrilaterals. Of course, they recognized the need for a formal proof in order to 
convince themselves and others about the truth of their generalization.    
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m FC = 5,23 cm

m FB = 6,26 cm

m FA = 5,54 cm

m ED = 5,21 cm

m EC = 5,21 cm

m EB = 5,21 cm

m AE = 5,21 cm

E

B

D C

F

A

 
Fig. 1. Students’ answers based on “prototype conjectures”. 

 
 
Student C perceived the problem in a quite different way. She conjectured that the 
four points representing the towns should be points on a circle. The following 
extract shows how DGS helped her to understand that her reasoning was true only 
under very specific circumstances.  
Student C: The best location for the airport should be the centre of the circle, 
since the centre is equidistant from any point on the circumference of the circle. 
(She showed her work by drawing a circle and constructing four points on it, as 
shown in Figure 2a).  
Researcher: Drag one of the vertices of your figure. 
Student C: Oh! The centre of the circle (see Figure 2b) is not always the best 
solution. In this case (she points to Figure 2b) there should be another point. 
Researcher: Where should that be? 
Student C: Probably it is inside the quadrilateral. … A point inside the 
quadrilateral could serve the towns in a more appropriate or economically better 
way.  
 
By constructing an arbitrary point inside the polygon (see point K in Figure 2c) 
and measuring the distances of that point from the four towns, she identified that 
her initial rule, i.e., the best location is the centre of the circle did not work. She 
then constructed a quadrilateral hypothesizing that the towns should be the 
vertices of that quadrilateral and with trial and error she tried to find the solution 
to the problem.  
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(a) 

     (b) 

 
     (c) 
 
Fig. 2. Student’s C conjectures and processes for finding the solution of problem1  
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The students who individually worked on the airport problem could not consider 
all the possibilities and were not able to generalize their solutions. The day 
following the experiment, a meeting took place with the researchers and the 
students in order to present their solutions and find ways to extend the problem. 
This meeting lasted for an hour, and we realized that students, with the help of the 
software, had the enthusiasm to work further on the problem. We started the 
discussion with the work of student C. We prompted them to find the sum of the 
distances (a) from the centre (see Figure 2b), and (b) from a point inside the 
polygon (see Figure 2c). They realized that a point inside the quadrilateral would 
be a better location than the centre of the circle. This gave the opportunity to 
students construct the two diagonals of the quadrilateral and their point of 
intersection and label it P. In an attempt to add experimental evidence to support 
the conjecture, they moved point Q around other possible locations and observed 
that the point P seemed to be the optimal point (See Figure 3). They realized that 
the point of diagonals intersection P is the point for which the sum of its distances 
from each of the four points (i.e. the cities) is the smallest possible. The next step 
was to provide a mathematical proof of the conjecture so that it could become a 
mathematical theorem for the students (proofs are beyond the scope of the current 
paper).  
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m PA+m PB+m PC+m PD = 24,11 cm

P

A

B

C

D

Q

 
 

Fig. 3. P is the point where the sum of its distances to each of the four cities is the 
smallest possible sum.  

 
 
 

The discussion up to this point seemed to satisfy the students who concluded that 
the intersection of the diagonals would be the optimal point and the optimal 
solution of the problem. However, the prompt of the researcher led to further 
investigations of the problem by considering general or special cases and posing 
other follow-up problems as shown in the following extracts.  
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Researcher: Draw a quadrilateral and drag it in such a way as to transform it to 
a non –convex quadrilateral (see Figure 4a, which illustrates the drawing of a 
non-convex quadrilateral ABCD as constructed by student C). What do you 
observe? 
Student C: The diagonals AC and BD do not intersect “insight” the figure. 
Researcher: Does it mean that your previous conclusion is not correct? 
Student C: I don’t know.  
Student A: We can find their point of intersection by extending AC. This may be 
the optimal point (point E in Figure 4b).  
(At this point of the discussion students used the dragging and measure facilities 
of DGS to examine their hypothesis). 
Student B: No, the point of diagonals’ intersection is not the correct answer. 
(Student B points to her diagram). I constructed a point into the figure and I 
measured the distances from it.  
Researcher: What are you looking for?  
Student B: The best location. I mean, I am trying to find the point from which the 
sum of the distances is the smallest one.  
Researcher: How can you find it?  
Student B: (She explains her reasoning using the diagram on the screen). I moved 
this point and I found that the total distance from any point inside the figure is 
always smaller than the distance from any point outside the figure. (The student 
showed her work to the group). 
Researchers: Ok. What is your answer to the problem? 
Student A: We have to try by dragging the point. (All students worked by 
dragging a point inside the figure). 
Student B: It seems that as the point reaches C, the total distance gets smaller.  
Student A: Yes, it should be vertex C. Is it correct? 
 
The environment of DGS provided students the opportunity to investigate the 
location of the new optimal point. Again, by moving point Q, they obtained the 
tentative location of the new optimal point as shown in Figure 4b. The above 
extract also addressed the conflicts that usually arise from the exploration of the 
possible extensions in the assigned problems. Surprisingly, students discovered 
that the optimal point coincided with point C. In other words, the optimal point 
seems to be the vertex of the reflex interior angle. Students concluded that the 
location of the optimal point depends on the type of quadrilateral (convex or non-
convex). It should be noted that the dragging capabilities of DGS allowed them to 
discover that the optimal point of a quadrilateral is not always the point of 
intersection of the diagonals because such point does not always exist. Finally, 
students extended the previous conjecture or problem not only to non-convex 
quadrilaterals but also to the case where three or more points are collinear or to 
the cases where there are fewer or more points.  
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Fig. 4. The extension of problem 1 to a non-convex quadrilateral. 

 
 
To answer the first question of the study, i.e., to find out the solution strategies 
employed by students in the DGS environment, we need first to summarize and 
interpret the students’ work during the solution of the airport problem. In fact, all 
students used the strategies of modeling, conjecturing, experimenting, and 
generalizing. Specifically, all students first modelled the problem by representing 
it in different ways (the cities as points on the circumference of a circle, as 
vertices of quadrilaterals, etc). Second, they hypothesized the solution of the 
problem based on how they perceived and modelled the problem and tried to 
verify their conjectures by dragging and measuring. Finally, they tried to 
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generalize their solutions in their attempts to provide a solution to the problem at 
hand. However, students seemed to over-generalize their solutions based on 
certain cases and failed to extend the problem to all possible situations. The latter 
was achieved during the discussion among the students and the researcher, where 
the emphasis was to extend the problem and help students to pose new problems.      
 
4.2 The Problem with the Bisectors of the interior angles of a parallelogram 

 
To answer the second question of the study (i.e., to find ways in which DGS 
provides opportunities for students to pose and solve their own geometry 
problems), students were asked to solve the bisectors problem, which is a 
common geometrical problem found in most geometry textbooks. The software 
helped students to construct the parallelogram as well as the bisectors of the 
interior angles. Figure 5a shows students’ construction of the angle bisectors of 
the interior angles of a parallelogram, and the following extracts show the way in 
which the DGS helped them to pose and solve new problems.  
 
 
Student D: The figure formed by the bisectors of the interior angles seems to be a 
rectangle. (He dragged one of its vertices, and verified his answer).  
Researcher: Is that always true? (Students tried to transform the parallelogram to 
other shapes such as rectangles, squares and rhombuses).  
Student E: This is not always true. If you drag the parallelogram until it becomes 
a rhombus, the interior figure disappears. (See Figure 5b) 
Student D: It didn’t disappear. It became a point. 
Student F: … If the original parallelogram becomes a rectangle, the figure is a 
square. (She verified it by dragging one of the vertices of the original rectangle). 
(See Figure 6). 
Researcher: Try to extend the problem to other quadrilaterals. 
Student D: This is an isosceles trapezium.  
Student F: The angle bisectors of the interior angles of an isosceles trapezoid 
form a kite with two right angles. (See Figure 7). 
Researcher: What about the figure formed in a non-isosceles trapezium? 
Student D: It may be a kite. (Student D constructed the appropriate shape). Yes, 
it’s a kite without two right angles. 
 
The above constructions could certainly be reached without the computer, and the 
students could also prove  the conjecture. However, without the use of the 
dynamic software students would not be able to add experimental evidence to 
their conjectures as they did by dragging any of the flexible points of the 
parallelogram and notice, as previously conjectured, that the figure might be a 
rectangle. An important finding lies on the fact that by dragging one of the 
flexible points of the parallelogram until it becomes a rhombus, the students 
observed that the figure no longer formed a rectangle but a point (See Figure 5b). 
This revealed to them that their first conjecture does not always hold and led them 
to consider a point as a degenerated rectangle! Again, it was evident that the 
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dragging capabilities of DGS allowed individuals to consider extreme cases of a 
geometric configuration, cases that textbook authors fail to consider.   
 
 

 
     (a) 
 
 
 
 
 
 
 
 
 
 
 
     (b) 
 
 
Fig. 5. The figure formed by the bisectors of a parallelogram and a rhombus. 
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Fig. 6. The figure formed by the bisectors of a rectangle. 
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 Fig. 7. The figure formed by the bisectors of an isosceles trapezium. 

 
These activities led students to engage in problem posing by experimenting, 
generalizing, specializing, and extending the problem through the modification of 
the conditions of the given problem. A special case of the problem was to start 
with a rectangle instead of a parallelogram as done by student F. Figure 6 
suggests that the figure formed by the angle bisectors of the interior angles of a 
rectangle is possibly a square. Students also considered general cases. They 
conjectured from Figure 7 and by dragging one of the flexible points that the 
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figure formed by the angle bisectors of the interior angles of an isosceles 
trapezoid is a kite with two right angles.  
 
Another interesting extension to this problem was posed during the discussion, 
when one of the students suggested that it would be interesting to find out the 
figure, which can be formed by joining the mid-points of the figures constructed 
by the bisectors (Figure 8). This, of course, led to different conjectures based on 
the solution of the original bisectors problem. For example, one student 
conjectured that the new shape would be similar to the shape formed by the 
bisectors, while others generalized the theorem of the mid-points of a 
quadrilateral, predicting that in all cases, with the exception of squares and 
rhombuses, the shape would be a parallelogram. Figure 9 shows most of the 
constructions proposed by students in extending the original problem. 
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Fig. 8. The figure formed by the mid points of the segments defined by the 
bisectors of the parallelogram. 
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Fig. 9. The figure formed by the mid points of the segments defined by the 
bisectors of the quadrilateral.  
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5. Conclusions  
The growing and nearly universal availability of technological tools facilitates 
teachers in teaching and improving the mathematical experiences of students. 
This paper focused on the use of a DGS in problem solving, inquiry, and 
exploration in mathematics. We provided some ideas on how students can use the 
tools of DGS to solve and pose mathematical problems. The paper also addressed 
the ways in which DGS may be associated with new problems that do not usually 
appear in the traditional geometry textbooks, and new ways of introducing 
problem solving and posing in a variety of contexts. Two examples were provided 
to show how the computing, graphing, and dragging capabilities of dynamic 
geometry software can enable students to explore and make mathematical 
conjectures, solve problems, and pose related problems.  
 
In the two examples, DGS acted as a mediation tool (Artigue, 2000; Jones, 2000) 
in the implementation of an inquiry approach to teaching and learning 
mathematics as recommended in current mathematics education documents 
(NCTM, 2000). Specifically, this study showed that DGS can play a significant 
role in engendering problem solving and posing. First, the new information 
students obtained through dragging and measuring helped them understand the 
problems, and added challenge to the exploration of the possible answers to a 
problem. It was shown that dragging is an important tool for problem solving and 
posing, and measuring is an important tool for checking the correctness of 
students’ conjectures. 
 
Second, DGS as a mediation tool, encouraged students to use in problem solving 
and posing the processes of modeling, conjecturing, experimenting and 
generalizing. Through modeling, students constructed accurate images of the 
problems, which helped them to visually explore the problems and reflect on 
them. The meaning students extracted from the constructed images enabled them 
to explore at a perceptual level and to make conjectures about the possible 
solutions to the problems. Through experimentation, students also visually 
confirmed or negated their conjectures, and thus proceeded to suggest possible 
solutions or extensions to the assigned problems. The results of this study also 
show that in the DGS environment the problem solving processes involve the 
generation of new problems, supporting the relationship between problem solving 
strategy use and the tendency to pose extension problems (Cai & Hwang, 2002).  
 
Third, DGS provided a context in which we can do mathematics in a different 
way (Aviram, 2001). The data of the study showed that DGS environment can 
bring about cognitive conflict and/or surprise, as it appeared mainly in the airport 
problem with the vertex quadrilateral. Since a particular paper and pencil figure 
usually displays a general case, it is difficult for students to appreciate the 
significance of special cases. However, students using the DGS are very likely to 
drag a figure past a special case, and thus more likely to stop on a special case and 
be faced with the consequences.   
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Finally, on a practical level, the present study of DGS learning can benefit 
teachers, and curriculum developers. Teachers faced with limited time and 
crowded computer labs may use research results to identify fruitful ideas in the 
language and construction actions of their students. In addition, curriculum 
developers may find inspiration for new activities aimed at the needs of dynamic 
geometry learners.  
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