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Abstract:  
Logarithms are an integral part of many forms of technology, and their history and development 
help to see their importance and relevance. This paper surveys the origins of logarithms and their 
usefulness both in ancient and modern times. 
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1. Background 
  
 Logarithms have been a part of mathematics for several centuries, but the concept of a 
logarithm has changed notably over the years. The origins of logarithms date back to the year 1614, 
with John Napier2. Born near Edinburgh, Scotland, Napier was an avid mathematician who was 
known for his contributions to spherical geometry, and for designing a mechanical calculator (Smith, 
2000). In addition, Napier was first to make use of (and popularize) the decimal point as a means to 
separate the whole from the fractional part in a number. Napier was also very much interested in 
astronomy and made many calculations with his observations and research. The calculations he 
carried out were lengthy and many times involved trigonometric functions (RM, 2007). After many 
years of slowly building up the concept, he finally developed the invention for which he is most 
known: logarithms (Smith, 2000).  
 
 In his book (published in 1614) Mirifici Logarithmorum Canonis Descriptio (Description of the 
wonderful canon of logarithms), Napier explained why there was a need for logarithms, 

Seeing there is nothing…that is so troublesome to Mathematicall practise, nor that doth 
more modest and hinder Calculators, than the Multiplications, Divisions, square and cubical 
Extractions of great numbers, which besides the tedious expense of time, are for the most 
part subject to many errors, I began therefore to consider in my minde by what certaine and 
ready Art I might remove those hindrances. (Smith, 2000) 

During Napier’s time, many astronomical calculations required raw multiplication and division of 
very large numbers. Sixteenth-century astronomers often used prosthaphaeresis, a method of 
obtaining products by using trigonometric identities like sinα · sinβ = ½[cos(α – β) – cos(α + β)] and 
other similar ones that required simple addition and subtraction (Katz, 2004). For example, if one 
                                                 
1 rafael.villarreal-calderon@umontana.edu; rafaelvillarreal2000@hotmail.com 
2 The word “logarithm” was coined by Napier from the Greek “logos” (ratio) and “arithmos” (number) (9).   
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were to multiply 2994 by 3562, then sinα would be 0.2994 (the decimal is placed so that the value of 
α can be used later) and sinβ would be 0.3562—these would make α ≈ 17.42 and β ≈ 20.87 (values 
obtainable in a table). Next, α and β values would be inserted into the equation, again a table would 
be used, and simple subtraction and division by 2 would occur—the result would yield ~0.10665158. 
By moving the decimal the same number of times that it was moved in order to accommodate the 
trigonometric equation (eight places to the right), the answer becomes 10,665,158 (approximating 
the actual 10,664,628). Because this answer is an estimate, the desired number of accurate digits 
would be dependent on the values initially given to α and β.  
Performing such calculation tricks, astronomers could reduce errors and save time (Katz, 2004).

In addition to prosthaphaeresis, Napier also knew about other methods for simplifying 
calculations. Michael Stifel, a German mathematician, developed in 1544 a relationship between 
arithmetic sequences of integers and corresponding geometric sequences of 2 raised to those 
integers (Smith, 2000): {1, 2, 3, 4,…, n} and {21, 22, 23, 24,…, 2n}. Stifel wrote tables in which he 
showed that the multiplication of terms in one table correlated with addition in the other (Katz, 
2004). For example, to find 23 · 25, one would add 3+5 (terms in the arithmetic sequence) and the 
answer could then be inserted back into the geometric sequence to obtain 23 · 25 = 23+5 = 28 =256. 
These tables were limited, however, in their calculating ability; Napier’s approach to using 
logarithms, on the other hand, allowed the multiplication of any numbers through the use of 
addition (Katz, 2004).  

 
 To define logarithms, Napier used a concept that is rather different from today’s perception 
of a logarithm.2 Since astronomers at the time often handled calculations requiring trigonometric 
functions (particularly sines), Napier’s goal was to make a table in which the multiplication of sines 
could be done by addition instead (Katz, 2004). The process consisted of having a line segment and 
a ray, where a point was made to move on each (from one extreme end to the other). The starting 
“velocity” for both points was the same, but the difference began as one point moved uniformly 
(arithmetically on the ray) and the other moved geometrically such that its velocity would be 
proportional to the distance left to travel to the endpoint of the line segment. Using this mental 
model, Napier defined the distance traveled by the arithmetically moving point as the logarithm of 
the distance remaining to be traveled by the point moving geometrically (Cajori, 1893). In Napier’s 
words, “the logarithm of a given sine is that number which has increased arithmetically with the 
same velocity throughout as that with which radius began to decrease geometrically, and in the same 
time as radius has decreased to the given [number]” (Katz, 2004). A detailed account of the process 
can be seen below in the Calculation Techniques section. Clearly, Napier’s definition differed from the 
modern concept of just having a base raised to the corresponding exponent. 
 
 It took Napier about 20 years to actually assemble his table of logarithms (Katz, 2004), but 
shortly after publishing his book, Napier was visited by the English mathematician Henry Briggs 
(Smith, 2000). A professor of geometry in London, Briggs was impressed with Napier’s work,  

My lord, I have undertaken this long journey purposely to see your person, and to know by 
what engine of wit or ingenuity you came first to thing of this most excellent help in 
astronomy, viz. the logarithms; but, my lord, being by you found out, I wonder nobody 
found it out before, when now known it is so easy. (Cajori, 1893) 

They both discussed the convenience of setting the logarithm of 1 equal to 0 (rather than the 
original 10,000,000) and setting the logarithm of 10 at 1. In this way, the more familiar form of the 
logarithm was born, and a common property like log (xy) = log x + log y could be used to make a 
new table. Napier died in 1617, so Briggs began to do the calculations to construct the table (Katz, 
2004). Briggs did not convert Napier’s logarithms to the new common logarithms, however. Instead 



TMME, vol5, nos.2&3, p.339 

 

he set out to calculate successive square roots to obtain the logarithms of prime numbers, and used 
these to calculate the logarithms of all natural numbers from 1 to 20,000 and from 90,000 to 
100,000. Although he did use algorithms to obtain the roots, the amount of work needed to 
calculate all those logarithms is nonetheless astounding. To calculate the logarithm of 2, for instance, 
he carried out forty-seven successive square roots (Smith, 2000). In addition, all of the calculations 
for logs were carried out to 14 decimal places (Cajori, 1893). An example of the calculations needed 
for this task is shown below in the Calculation Techniques section. Finally, in 1624, Briggs published his 
tables in his Arithmetica Logarithmica. The logarithms of the numbers between 20,000 and 90,000 were 
calculated by the Dutchman Adrian Vlacq, who published the complete table from 1 to 100,000 in 
1628 (Cajori, 1893). 

Below is a page from Briggs’s Arithmetica Logarithmica (MatematikSider, 2007). 

 
 

The way logarithms were viewed changed over time, and today’s notation for a logarithm 
was developed by Leonhard Euler in the late 1700s. He related exponential and logarithmic 
functions by defining logxy = z to hold true when xz = y (Smith, 2000). This definition proved very 
useful and found multiple applications. A classic example of a practical application of logarithms is 
the slide rule. In 1622 the Englishman William Oughtred made a slide rule by placing two sliding 
logarithmic scales next to each other. The slide rule could replace the need to look up values in a 
logarithm table by instead requiring values to be aligned in order to perform the multiplication, 
division, and many other operations (depending on the model). Up until the 1970s, with the 
incoming of electronic calculators, the slide rule was widely used in the fields of science and 
engineering (Stoll, 2006). A look at how the slide rule could be used for calculations is shown below 
in the Calculation Techniques section. 
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 Although the common logarithm has many practical uses, another logarithm is widely used 
in fields ranging from calculus to biology. The natural logarithm is of the form loge a = n. The base 
of a logarithm could be any number larger than 1, but the use of e brings on various advantages 
(Lowan, 2002). The definition of e, the limit of (1+1/n)n as n approaches infinity, might seem a bit 
awkward at first, but it turns out that e not only turns up frequently in nature, but it also makes 
natural logarithms have the simplest derivatives of all logarithmic systems (Evans, 1939). Various 
solutions to applied mathematical problems can be expressed as powers of e: the flow of electricity 
through a circuit, radioactive decay, bacterial growth, etc. (Lowan, 2002). The natural logarithm 
arose from modifications of Napier’s logarithms made by John Speidell, a mathematics teacher from 
England. In 1622 he published the book New Logarith
with logarithms of tangents, sines, and secants in a format that showed natural logarithms (except 
that he had omitted decimal points). For example, he gave log 10= 2302584, which would be
written today as loge10= 2.302584 (Cajori, 1893). As an interesting note, the Napier log of x would 
be equivalent to the expression 107log1/e(x/107) in modern terms (Smith, 2000). 
 
2. Calculation Techniques
 

 Napier’s definition of logarithms (see Cairns, 1928, and Cajori, 1893, and Katz, 2004, and 
Pierce,1977): 
 
Given a ray and a line segment, the point G moves along the ray and the point H moves 
along the line segment. 
 

G 
   
  

 
  0 b 2b 3b 4b … 
 

G moves at a constant velocity by traveling b distance in equal time intervals (along an 
increasing arithmetic sequence). 

 
  H 
  
 
 
  0         r-ar       r-a2r     r-a3r     r-a4r …             r 
 

H moves towards r in equal time intervals from 0 to r-ar, r-ar to r-a2r, r-a2r to r-a3r, etc. 
Napier made r = 10,000,000 and a be less than 1 (but very close to 1). 

He made the line segment (from 0 to r) be the “sine of 90º”, and the distance from r to H 
the sine of the arc with the distance traveled by G as its logarithm. Thus, Napier had log 107 
= 0. 

Under this system, the notion of using bases with corresponding exponents did not apply. 



TMME, vol5, nos.2&3, p.341 

 

In a calculus sense, Napier’s logarithms could be seen as measures of “instantaneous” 
velocities. For example, the velocity of H could be VH = ∆d/∆t = d(r-x)/dt, where x is the 
distance remaining to be traveled by H to reach r. Similarly, the velocity of G would be VG = 
dy/dt, where y is the distance traveled by G (this velocity is constant).    

To obtain the definition of a Napier logarithm in modern calculus terms: 
d(r-x)/dt = x, since the velocity of H is proportional to the distance remaining to be traveled 
by H to reach r. So, dr/dt – dx/dt = x, and since r is a constant (107):  
0 – dx/dt = x → 1/(-dx/dt) = 1/x → -dt/dx = 1/x → ∫-dt = ∫1/x dx → -t = ln x + c. 
Since both G and H start at the same velocity, when t = 0 then x = r, thus  
0 = ln r + c → c = -ln r, therefore, -t = ln x – ln r. 

 
Point G progresses in an arithmetical fashion, and its velocity is dy/dt. Having established 
that its velocity is constant and that it is equal with H’s velocity at t = 0, then dy/dt = r so dy 
= rdt → ∫dy = ∫r dt → y = rt. 

 
 Finally, to relate x and y: 
 -t = ln x – ln r → t = ln r – ln x → t = ln (r/x) → y = r ln (r/x) 
 
 By his definition, the Napier log x = y is Naplog x = r ln(r/x) = 107 ln(107/x) 
 

Napier did not use the notion of e in calculating his logarithms, but this perspective helps to 
see the connection between logarithms, calculus, and the usefulness of e and the natural 
logarithm. 
 

 Using Napier’s Logs in calculations (see Katz, 2004): 
 
To use his logs in calculations, Napier had to note that Naplog 107 = 0.  
If j/p = w/z, then Naplog (j) – Naplog (p) = Naplog (w) – Naplog (z).  
If f/q = q/m, then Naplog (f) – Naplog (q) = Naplog (q) – Naplog (m) and  
2Naplog (q) = Naplog (f) + Naplog (m) 
And if f/q = m/k, then Naplog (f) + Naplog (k) = Naplog (q) + Naplog (m). 
 
Using these properties he established, conforming to his logarithms, a triangle could be 
solved by reference to his tables. 
Example: using the law of sines, sinθ / t = sin δ / d for triangle  

 
So to find δ the properties are applied,  
Naplog (sinδ) = Naplog (sinθ) + Naplog (t) – Naplog (d) 
Referring back to his tables, Napier could calculate δ by simple addition and subtraction.   

  
 Briggs’s logarithms (see Cairns, 1928 and Henderson, 1930): 

 
Briggs adapted Napier’s logs to fit log 10 = 1 instead, thus giving birth to today’s common 
logarithms. By taking successive square roots, Briggs concluded, for example, that if  
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lim 
h→0 

lim 
h→0 

lim 
h→0 

lim 
h→0 

lim 
h→0 

lim 
h→0 

lim 
h→0 

lim 
h→0 

  lim 
x/h→ ∞ 

√10 ≈ 3.162277, then log 3.162277 = 0.5 
√√10 ≈ 1.77828, then log 1.77828 = 0.25 
√√√10 ≈ 1.33352, then log 1.33352 = 0.125, etc. 
 
To find the logarithms of prime numbers Briggs used the following method: 
To find log 2, he noticed that if he raised 2 to a certain power, the number of digits in the 
result gave an approximation for log 2 (because of the properties of using logarithms with 
base 10); the log of a number with x number of digits is between x – 1 and x. For example, 
28 = 256 → 2 < log 256 < 3. 
He then noted that x and x – 1 could be divided by the exponent to which 2 was raised to 
get an approximation of the log of 2: 

210 = 1024 → 3 < log 1024 < 4 so 0.3 < log 2 < 0.4 
220 = 1048576 → 6 < log 1048576 < 7 so 0.3 < log 2 < 0.35 
240 ≈ 1.1 x 1012 → 12 < log 240 < 13 so 0.3 < log 2 < 0.325 
260 ≈ 1.2 x 1018 → 18 < log 260 < 19 so 0.3 < log 2 < 0.3167 
280 ≈ 1.2 x 1024 → 24 < log 280 < 25 so 0.3 < log 2 < 0.3125 
2100 ≈ 1.3 x 1030 → 30 < log 2100 < 31 so 0.3 < log 2 < 0.31 

…and so forth until Briggs obtained log 2 to 14 decimal places. Once he calculated the logs 
for other prime numbers, he followed the rules of logarithms: for example, log 10 = log (2·5) 
= log 2 + log 5. Until his tables covered the logarithms of 1-20,000 and 90,000-100,000.  
 

 Slide rule calculations (see Stoll, 2006): 
 
The slide rule works by simplifying multiplications and divisions into logarithmic scale 
additions or subtractions. Slide rules basically print fit scales into a ruler-type setup and by 
just sliding a cursor against another scale, long operations can be done quickly. One could 
get away with using a slide rule without really understanding logarithms, but to make one, 
the following rules are essential: 

log xy = log x + log y   log (x/y) = log x – log y 
log xy = ylog x    etc.… 

  
Briggs’s logarithms allowed long operations like 10478 · 97503 to become 
log 10478 + log 97503 = 4.020278 + 4.989018 = 9.009296, then  
antilog 9.009296 = 10478(97503) ≈ 1,021,636,000. 
 

 Natural logarithms: 
 
Logarithms with base e unavoidably spring up in calculus (which was developed a little after 
Napier’s death). To see how these logs are essential to obtain certain integrals: let f(x) = loge 
x = ln x 
 
f’(x) =       [f(x+h) – f(x)] / h =        [ln(x+h) – ln(x)] / h =        [ln((x+h)/x)] / h   
 
=         [ln(1+ h/x) / h ] [(1/x)/(1/x)] =          [1/x][ln(1+ h/x)] / [h/x]  
 
=         [1/x][x/h][ln(1+ h/x)] =         [1/x][ln(1+ h/x)x/h] = [1/x]         ln (1+ h/x)x/h 
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lim 
n→ ∞ 

= [1/x]         ln(1+ h/x)x/h = [1/x] ln e = 1/x 
 
Thus, d(lnx)/dx = 1/x, and ∫1/x dx = ln x + c.  
 
The definition of e,        (1+ 1/n)n = e, allows the above demonstration to hold. 
  
   

3. Conclusions & Implications 
 
 Today’s concept of logarithms might make it seem strange that logarithms really developed 
out of comparing velocities of arithmetically and geometrically moving points. Napier’s idea took 
him decades to fully develop and conclude, and the work of Briggs helped simplify and enhance a 
useful mathematical invention. What today seems like a simple base to exponent relationship really 
has a long history of work and improvements. The natural logarithm further helps us see the 
connection between the labors of a Scottish mathematician (and many others) with calculus and all 
its modern applications in math, science, and technology.     
 
 Napier’s invention of the logarithm has surely left an important mark in the history of 
mathematics. The applications derived from the calculations he and others developed, still have 
relevance today. Although slide rules are now obsolete, the principles that allow them to work are 
not. The story of the development of logarithms is a good example of the effects that mathematical 
discoveries and inventions can have on society and the technological world.  
 
 In writing this paper I have learned a great deal about these calculation aids. But perhaps 
more importantly, I have realized that figuring out mathematical operations and tricks certainly takes 
significant amounts of effort, time, and devotion. Today, we often take for granted those symbols 
and explanations that are neatly compiled into math and science textbooks. It is easy to forget that 
every equation encases a story: frustration, fascination, arduous work, friendly collaborations, 
disappointment, and the occasional serendipity. Mathematics is not just about numbers, but it is also 
about the people whose work gives us the luxury and pleasure of understanding. 
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