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Abstract: 

The level of the coherence of a concept image conveys how well the cognitive structure concerning 
the concept is organized. This study considers the relationship between deficiencies in the coherence 
of the concept image and erroneous conclusions in the case of differentiability. The study is based 
on an interview where the student made conclusions contradictory to the formal theory of 
mathematics. He used an erroneous method to study the differentiability of piecewise defined 
functions. This method became the key factor which maintained the internal coherence of the 
concept image. It made it possible to build a cognitive structure whose basis was erroneous. 

Keywords: Cognitive structure, Coherence of a concept image, Concept image,  Definition, Derivative, 
Differentiability, Erroneous conclusions, Mathematical reasoning, Representation 

 
1. Introduction 

During the academic year 2004-2005, a grand total of 146 subject-teacher students in 
mathematics from six universities in Finland participated in a written test. Typically, 150-250 subject-
teacher students in mathematics graduate in Finland annually. Most of the participants were at the 
final phase of their studies. In addition, 20 subject-teacher students from one university in Sweden 
participated in the test. The test contained a task where the students had to determine which of the 
given functions (both the graphs and the formulas were given) were continuous and/or 
differentiable. One of the functions was the function f3 in  Figure 1. 
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f3(x) =

{
x2 − 4x + 3, x �= 4,

1, x = 4. 

 

 

 

Figure 1: The graph and the formula of the function f3 used in the test. 
The starting point of the study presented in this paper was the observation that 38 Finnish  and 

four Swedish students answered that the function f3 was differentiable but not continuous. This 
outcome was very surprising and demanded an explanation. All of the students had during their 
studies encountered a theorem of calculus according to which continuity is a necessary but not 
sufficient condition for differentiability. 

This study is based on the analysis of an interview of a student who had in the test answered that 
the function f3 is not continuous but differentiable. In the interview, this student made several other 
erroneous conclusions. The goal of the study is to analyse how the conclusions in this interview 
were created and to discuss why some of them were erroneous with respect to the formal theory of 
mathematics. Several deficiencies were found in the knowledge structure concerning the concepts of 
derivative and differentiability. In the analysis, the theory about the concept image is applied. The 
term “coherence of a concept image” refers to the internal organisation of the knowledge structure 
concerning a certain concept. In order to clarify this term, a list of characteristics of a highly 
coherent concept image is presented in Section 2.2. In the analysis the coherence of the 
interviewee’s concept image is evaluated on the basis of these characteristics. 

In this paper, the term “erroneous conclusion” stands for a result of a concluding process which 
is in contradiction with the formal theory of mathematics. It does not primarily refer to the 
illogicality of the concluding process. “Resulting misconception” could be an alternative expression 
for it.  
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2. Concept image and its coherence 

2.1. Structure of the concept image 
Tall and Vinner have defined the term concept image to describe the total cognitive structure that is 

associated with a concept (Tall & Vinner, 1981). According to them, a concept image includes all the 
mental pictures and associated properties and processes relating to the concept, and it is built up 
through experience during one’s lifetime. For clarity, it is reasonable to define that every concept has 
only one concept image in an individual’s mind. Different portions of the concept image can be 
activated in different situations, but as a whole, the concept image of one concept is an entity.  

Tall and Vinner have defined the concept definition to be a form of words used to specify the 
concept (ibid). The concept definition generates its own concept image, which Tall and Vinner call 
the concept definition image. They have also separated a personal concept definition from a formal concept 
definition; the former means an individual’s personal way to define the concept in practice, whereas 
the latter is part of the formal axiomatic system of mathematics. This system consists of axioms, 
definitions, undefined elementary concepts (e.g., a point and a line in geometry), rules of logic, and 
mathematical language, and it forms an institutionalized way of understanding mathematics (Harel, in press).  

In order to understand the formal concept definition, which is presented, for instance, in a 
textbook or in a lecture, an individual has to interpret the expression in the definition: He/She has 
to create a personal interpretation of the definition. These interpretations are essential factors in the personal 
way of understanding mathematics (Harel, in press). The formal concept definition is usually 
unambiguous, but the personal interpretations of the definition may vary between individuals, and 
they may also depend on the context (Pinto, 1998; Pinto & Tall, 1999; Pinto & Tall, 2002). The 
personal interpretation of the definition does not mean the same as the personal concept definition: 
The latter is not necessarily based on the formal definition at all. It can be thought that every time 
when an individual applies a formal definition in a reasoning, he/she in fact applies his/her personal 
interpretation of the definition. According to the definition of Tall and Vinner, the concept 
definition image includes the total cognitive structure that is associated with the concept definition. 
Thus, it is very natural to think that the personal interpretation of the concept definition is part of 
the concept definition image, which, for one, is part of the whole concept image. A diagram 
describing the internal structure of the concept image is presented in Figure 2. The personal concept 
definition is not included in this diagram, because its location is not unambiguous: It may be equal 
with the personal interpretation of the formal concept definition, but it may also lie outside the 
concept definition image. In the latter case the individual’s own way to define the concept is not 
based on the formal definition. 



Viholainen 
 

 

Figure 2: A diagram about the relationship between the concept image and the concept definition. 
One reason for creating the terms concept image and concept definition was to separate 

reasoning based on the definition from reasoning based on other conceptions, representations and 
mental images. Thus the concept image and the concept definition were originally seen as opposite 
entities. In this way these terms are used, for example, in Tall’s and Vinner’s original paper (1981) 
and in Vinner (1991). Later Tall (2003; 2005) has reported about differences between him and 
Vinner regarding the view about the location of the concept definition: Tall considers the concept 
definition rather as a part of the concept image whereas Vinner has emphasized the distinction of 
them. In my model the formal concept definition is located outside the concept image, but through 
its personal interpretation it has a notable effect on the concept image. 

My model may seem to have a positivistic or naturalistic basis: There is a system outside the 
mind of human which one attempts to understood. However, this model does not describe  the 
whole process of learning or thinking, but only the role of the definition in the concept image and 
the process of understanding a given definition. The model in this form is not suitable for situations 
where the definition is not static but it is created or reconstructed. 

2.2. Coherence of a concept image 
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Creative mathematical thinking requires that the concept image includes a variety of multifaceted 
conceptions, representations and mental images concerning the meaning and properties of the 
concept and relationships to other concepts. Representations and mental images2 may be, for 
example, verbal, symbolic, visual, spatial or kinesthetic. It is also important for the concept image to 
be well ordered. The term coherence of a concept image is used to refer to the level of organization of 
various elements in the concept image. In practice, the concept images are hardly ever fully coherent 
or fully incoherent, but their level of coherence varies. To clarify the term, some criteria for a high 
level of coherence of a concept image are presented in the following list: 

1. An individual has a clear conception about the concept.  

2. All conceptions, cognitive representations and mental images concerning the concept are 
connected to each other. 

3. A concept image does not include internal contradictions, like contradictory conceptions 
about the concept. 

4. A concept image does not include conceptions which are in contradiction with the formal 
axiomatic system of mathematics. 

Like the structure of a concept image as a whole, the level of coherence is not static but it 
changes all the time during mental activities concerning the concept. 

The way the person views the concept (cf. criterion 1) may vary depending on the context. 
However, usually one of these conceptions is above the others, and it can thus be considered, 
according to Tall’s and Vinner’s terminology, as a personal concept definition.  If the concept image 
is highly coherent, the different conceptions are mentally connected to each other (cf. criterion 2), 
but they are not in contradiction with each other (cf. criterion 3) or with the formal theory of 
mathematics (cf. criterion 4).  

The criterion 2 means that there exist mental connections between the elements of the concept 
image. Goldin and Kaput (1996) have defined that the connection between two representations is 
weak if an individual is able to predict, identify or produce one representation from the other, and 
the connection is strong if an individual is, from a given action upon one representation, able to 
predict, identify or produce the results of the corresponding action on the other representation. 
Hähkiöniemi (2006a, 2006b) has defined that a person makes an associative connection between two 
representations if he or she changes from one representation to another and that a person makes a 
reflective connection between two representations if he or she uses one representation to explain the 
other. These are examples of potential types of the connections between the elements of the 
concept image. A highly coherent concept image makes possible both weak and strong connections 
(cf. Goldin & Kaput) and, respectively, associative as well as reflective connections (cf. 
Hähkiöniemi) between representations concerning the concept. Observed strong and reflective 
connections can be considered as stronger indications of the coherence than weak and associative 
connections.  

For example, the concept of the derivative is according to its formal definition a limit of  a 
difference quotient. On the other hand, the derivative can be visually interpreted as a slope of the 

                                           
2 These both are widely used terms in the discipline of mathematics education, but their meaning is not 

unambiguous. In this connection these (both) are considered as mental configurations which represent 
(corresponds, associates, stands for symbolizes etc.) something else. This view is in accordance with Goldin’s 
and Kaput’s (1996) traditional definitions for the concept of representation.  
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tangent line, or it can be understood as a measure of an instantaneous rate of change. These are 
three different interpretations concerning the meaning of the concept of the derivative. If an 
individual has a highly coherent concept image, he/she is able to utilize all these interpretations in a 
problem solving process regardless the original form of the problem. If needed, he/she is able to 
change interpretation (weak or associative connection), and if changes in a system based on one 
interpretation happen, he/she is able to see the corresponding changes in another system which is 
based on another interpretation (strong connection). He/she is also able to explain, for example, on 
the basis of the definition why it is justified to consider the derivative as a slope of the tangent line 
(reflective connection). 

The connections between elements of the concept image are important for preventing  internal 
contradictions (cf. criterion 3). For preventing contradiction with the formal theory (cf. criterion 4), 
it is important that the elements of the concept image have connections also to the formal axiomatic 
system. This requires that the personal interpretation of the formal definition is correct and it has a 
central role in the concept images: Other conceptions, representations and mental images 
concerning the concept should be reflectively connected (cf. terminology by Hähkiöniemi) to this 
interpretation, in other words, they should be justifiable on the basis of this interpretation. 

If the coherence of a concept image has some deficiencies with respect to criterion 3, it is  very 
probable that it has deficiencies also with respect to criterion 4, because the formal axiomatic system 
of mathematics is (at least it should be) consistent3. On the other hand, it is possible that a concept 
image includes entities which are internally coherent, but which are in contradiction with the formal 
theory. These kind of entities may be based, for instance, on one or more misconception, 
misinterpretation or erroneous conclusion. 

To some extent, the coherence of concept images and the conceptual knowledge mean the same thing. 
The term conceptual knowledge has been defined as a knowledge of relationships between pieces of 
information (Hiebert & Lefevre, 1986) or as a knowledge of particular networks and a skilful drive 
along them (Haapasalo & Kadijevich, 2000). The network consists of elements (concepts, rules, 
problems, and so on) given in various representation forms (ibid.). Thus, if a concept image of a 
certain concept includes a variety of knowledge and the structure is highly coherent, the level of the 
conceptual knowledge regarding this concept can be considered to be high. However, the high level 
of conceptual knowledge in a broader sense provides rich connections between the concept images 
of various concepts. It can be assumed that the conceptual knowledge, on one hand, provides 
networks consisting of connections between elements of knowledge inside each concept image and, 
on the other hand, a network consisting of connections between various concept images. However, 
the theories about concept image are not very usable in analyzing the whole structure of knowledge, 
but they are useful when concentrating on the knowledge concerning one concept at a time. In the 
latter case the conceptions about the relationships between a concept under analysis and other 
concepts can be considered as elements inside the concept image of the concept under analysis. For 
example, let us assume that an individual has a conception that continuity is a necessary but not 
sufficient condition for differentiability. When analyzing the knowledge structure of differentiability, 
this conception can be considered as an element of the concept image of differentiability, and, 
respectively, it can also be seen as an element of the concept image of continuity when concentrating 
on continuity. So this element, which is common for both concept images, forms a link between the 

                                           
3 According to Gödel’s incompleteness theorem, proven in 1930, an axiomatic system cannot be proven 

consistent. However, the consistency is a fundamental goal in building the theory of mathematics. 
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concept images.  

The level of coherence of a concept image can be examined by finding from an individual’s 
behavior indications referring either to coherence or incoherence of the concept image. In the 
analysis presented in this paper, we have mainly concentrated on finding indications of incoherence 
of an interviewee’s concept image of differentiability. 

2.3. Previous studies 
Several studies concerning mathematics students’ reasoning have shown significant indications 

of a low level of coherence of concept images. In the following, some studies concerning this in the 
area of calculus or basic analysis are briefly reviewed. In some cases, the results of the study are 
related to the above criteria of the coherence of a concept image. 

With respect to the limit concept, Juter (2005) has shown that students can have contradictory 
conceptions about the attainability of a limit value of a function so that conceptions which come up 
in a theoretical discussion differ from conceptions used in problem solving situations. For instance, 
some students in Juter’s study said in a theoretical discussion that a function cannot attain its limit 
values, but in a problem solving situation they considered it to be possible. This indicates 
contradictory conceptions inside the concept image (cf. criterion 3) and with respect to the formal 
theory (cf. criterion 4). One reason for the conception about the unattainability of the limit was an 
erroneous interpretation of the definition of the limit. 

Zandieh’s study (1998) considered high-achieving high school students’ abilities to relate the 
formal definition of the derivative to other aspects of their understanding. The results varied 
between students, and, according to Zandieh, the crucial factors in this were ability to understand 
mathematical objects and processes also in other contexts than in the symbolic one and, on the 
other hand, ability to use mathematical symbols as a language to express knowledge in other 
contexts. This result indicates the importance of connections inside the concept image (cf. criterion 
2). 

Aspinwall et. al. (1997) have shown how, in the case of the derivative, an uncontrollable  use of 
visual images may become a source of conflicts. In their study a student reasoned on the basis of a 
graph that a parabola presenting the function x² approaches asymptotically a vertical straight line 
when x increases or decreases enough. On the other hand, he reasoned that the graph of the 
derivative of this function is a straight line. He regarded these conclusions contradictory to each 
other. According to the interpretation of Aspinwall et. al., this conflict was caused by the inadequate 
control in using the visual image. It can also be interpreted that the connections inside the concept 
images of the function and the derivative were inadequate. A more thorough consideration of 
connections between the graph and symbolic expression of the function might have made the 
needed control possible and thus prevented the erroneous conclusion about the asymptotic 
approach. 

Aspinwall and Miller (2001) have discussed possible methods to explore and to improve the 
coherence of the concept image in the case of the derivative. They have analyzed possible conflicts 
concerning, for example, the interpretation of the derivative as the slope of the tangent and the 
relationship between the average and instantaneous rate of change. They have also studied the 
coherence of the concept image in the case the concept of definite integrals.  

 It is natural to assume that, compared to students, mathematicians have more coherent concept 
images of mathematical concepts and thus a more coherent knowledge structure with respect to 
mathematics as a whole. Some studies have considered this issue. For instance, according to Raman 
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(2002; 2003), mathematicians are able to see connections, the key idea, between heuristic ideas and 
formal proofs, but students consider these arguments separately, without seeing the connections. 
Stylianou (2002) has shown that mathematicians, during problem solving processes, very 
systematically take turns between visual and analytical steps, but many students cannot utilize visual 
representations in analytical problems at all. These findings have a significant role in explaining the 
differences in performances between mathematicians and students. 

Even though concepts are determined by definitions in the formal axiomatic system, in students’ 
concept images they tend to stay as isolated cells. It has been shown that students, in connection 
with basic analysis, have difficulties in consulting definitions and that they often avoid using them 
(Cornu, 1991; Pinto, 1998; Vinner, 1991). This may be an essential problem causing incoherence of a 
concept image. Pinto’s study (1998) revealed that students also have different modes to work with 
definitions and to deal with a formal theory: Formal thinkers attempt to base their reasoning on the 
definitions, while natural thinkers reconstruct new knowledge from their whole concept image (Pinto 
& Tall, 2001). Both modes have their own advantages and disadvantages with respect to the 
coherence of a concept image: For instance, if the meaniong to the concept is extracted from the 
formal defintion, the concept image is well tied to the formal theory, but, on the other hand, the 
informal imagery may leave poorly connected. However, both modes can lead to a success or a 
failure (ibid; Pinto, 1998; Pinto & Tall, 1999). 

 3. Methodology 

The student, whose interview is thoroughly analysed in this paper, was selected among eight 
interviewed students, who had in the written test answered that the function f3 in Figure 1 was 
differentiable but discontinuous. This particular interview seemed to offer usable data concerning 
concluding processes, erroneous conclusions, and coherence of the concept image. The interviewee, 
called Mark in this paper, was majoring in mathematics. He had studied five years at university, and, 
according to his own estimate, his success in studies had been on the average level. Mark told that in 
the future he would like to teach mathematics, by choice, at a lower secondary school. 

The main goal of the interviews was to study the students’ conceptions about the meaning of the 
derivative and differentiability and their abilities to understand relationships between the formal 
definitions and some visual interpretations of these concepts. In the interview, the interviewee was 
asked to justify the differentiability or nondifferentiability of the functions presented in Figure 3. In 
some cases continuity was also considered. The functions were given to the interviewee by showing 
both the symbolic expression of the formulas and the graphs on paper. The interview also included 
a discussion about the visual meaning of the derivative and differentiability and the relationships 
between continuity and differentiability.  

The functions f1, f2 and f3 were used also in a task of the written test. In this task, the students 
were asked to determine which of the functions were continuous and which of them were 
differentiable. 

f1(x) =

{
x + 1, x < 1,

−2x + 6, x � 1.
f3(x) =

{
x2 − 4x + 3, x �= 4,

1, x = 4.

f2(x) =

{
x + 2, x < 1,

−2x + 5, x � 1.
f4(x) =

{
x, x < 1,

x + 1, x � 1. 
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Figure 3: The formulas of the functions used in the interview. 
The interviews were semistructured: The main questions were planned in advance, and many 

additional questions emerged during the interview. The formal definitions of continuity, derivative 
and differentiability were given to the participants both in the written test and in the interview. The 
forms of the given definitions are presented in Figure 4. The only tools allowed in the interview 
were pen and paper. The interviews were videotaped so that the video camera was focused on the 
paper.  

Definitions

Continuity
A function f : � � � is continuous at a point x0 ∈ �, if and only if the
limit limx→x0 f(x) exists and

lim
x→x0

f(x) = f(x0).

A function is continuous, if and only if it is continuous at all points in the
domain of the function.

Derivative and differentiability
A function f : � � � has a derivative or it is differentiable at a point x0 ∈ �,
if and only if the limit

lim
h→0

f(x0 + h) − f(x0)

h

exists. Then the derivative of the function f at the point x0 is equal to the
value of this limit.

A function is differentiable, if and only if it is differentiable at all points
in the domain of the function.  

 
Figure 4: The definitions of continuity, derivative and differentiability given to the participants in the written test and 
in the interview (translated from Finnish). 

The thorough analysis of Mark’s interview mainly applied the principles of the video data 
analysis procedures presented by Powell et al. (2003). The interview was first transcribed from the 
video. Then, the transcribed data was divided into episodes so that every episode included reasoning 
concerning one question, for example, the question of differentiability of one of the presented 
functions or the question concerning the relationship between differentiability and continuity. After 
that, the reasoning during the episodes was described and critical events (ibid.) with respect to the 
progress of the reasoning were identified. By comparing episodes and critical events of the interview 
and by searching common features between them, it was possible to find some features of the 
interviewee's thinking which were typical during the whole interview.   
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 4. Results concerning erroneous conclusions and the structure of the concept image  

4.1. A fundamental change of view 
Mark’s conceptions about the relationship between continuity and differentiability  changed due 

to the conclusions which he made during the interview. Unfortunately, the change happened to a 
more erroneous direction.  

At the beginning of the interview Mark believed that differentiability presumed continuity. In 
fact, continuity was the first property which Mark mentioned when the interviewer asked him about 
the meaning of differentiability (see excerpts 10-11 in Section 4.2.). However, during the interview, 
Mark reasoned that the function f4 was differentiable but not continuous. This forced him to change 
his view, although it was not too easy for him. 

(1) Interviewer: Then, how about the question whether differentiability presumes 
continuity? How do you respond to that? 

(2) Mark: If I now here claim that this function is differentiable, it means that it does 
not presume continuity. 

(3) Interviewer: You had a memory that it would presume. 

(4) Mark: Yes, I did. This appears to be contradictory… 

[...] 

(5) Mark: This time, I say that it does not presume continuity! 

Observable erroneous conclusions –as well as erroneous conceptions– with respect to the formal 
theory concerning some concept can be regarded as indicators of the incoherence of the concept 
image of that concept. Thus, the above-presented conclusion as such reveals that something was 
wrong with respect to the coherence of the concept image of differentiability. However, in the 
following analysis the viewpoint is in the opposite direction: The goal is to analyse issues relating to 
the coherence of the concept image and from this basis to discuss how the above erroneous 
conclusion was built up. The main attention is focused on Mark’s study about the differentiability of 
the functions f1–f4. This process is described in Section 4.3. In Section 4.2 some indications of 
incoherence of the concept image of differentiability, which came out before Mark started this 
process, are described. 

4.2. Indications of incoherence of the concept image before the study of differentiability of the given functions 
The discussion with Mark about the meaning of continuity and differentiability revealed some 

indications of incoherence in his concept images of these concepts. The clearest indication was his 
explicit uncertainty about whether the cornerlessness of a graph was a property of continuity or a 
property of differentiability. This came out when the interviewer asked Mark to explain what the 
continuity of a function means in practice. Mark began to think about properties of a continuous 
function:  

(6) Mark: A connected graph, a graph of a function which does not jump and... There 
are no sharp corners... Or does this belong to differentiability? 

Mark seemed to be unsure if it is possible to have corners in a graph of a continuous function. 
At first he guessed that it is not possible:  

(7) Mark: There can't be, I guess. 
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Then Mark tried to argue this by characterizing the continuity on the basis of his subjective, 
everyday life associations of the word continue:  

(8) Interviewer: Why not? 

(9) Mark: Why not? It does not continue then. If you drive a car suddenly to a sharp 
corner, then... it seems not to continue. 

Mark did not seem to have a particularly clear conception about the meaning of  differentiability, 
either. First, it was difficult for him to mention any other property of a differentiable function than 
continuity: 

(10) Interviewer: What kind of function is differentiable? What should it be like in 
order to be differentiable? 

(11) Mark: Continuous. 

(12) Interviewer: Continuous? Does it have to be something else? 

(13) Mark: Can I resort to the definition? If it helped me in some way... 

However, Mark did not say anything explicit about the definition. Finally, he mentioned 
cornerlessness: 

(14) Mark: There cannot be (in the graph of a differentiable function) these [...] corners, 
because we cannot draw a tangent to a sharp corner. Or, in fact, we can draw the 
tangent almost anyhow we like. 

After that the discussion moved to continuity of function f2. In this discussion Mark changed his 
view regarding continuity and cornerlessness. In the written test Mark had answered that the 
function f2, whose graph includes a corner, is continuous. This is against the view that he presented 
above (cf. excerpts 6-9). When the interviewer presented this answer to him, he was ready, again 
using his subjective associations of the word continue, to argue that a graph of a continuous 
function can include corners: 

(15) Mark: It does not break the function, its graph. If we look at this, we can see that it 
continues. (He traces the graph with a pen.) 

Above presented hesitances show that in the beginning of the interview Mark did not have very 
clear conception about the meaning of continuity and differentiability (cf. criteria 1).  

Another contradiction between test answers and the conceptions which came out in the 
interview was following: In the test Mark had answered that function f3 was discontinuous but 
differentiable, whereas in the interview Mark considered continuity as a prerequisite of 
differentiability (cf. excerpts 10-11). The interviewer asked Mark to explain why he had thought 
function f3 to be differentiable: 

(16) Mark: At the point four the derivative is zero. 

(17) Interviewer: Why? 

(18) Mark: Because it (value of the function) is a constant! 

This excerpt shows that Mark was aware that the derivative of a constant function is zero and 
that differentiability means the existence of the derivative. However, he applied these facts in an 
erroneous way for the function f3, assuming that the above-presented reasoning was really his 
argument for differentiability during the test. It can be interpreted so that, in the test situation, these 
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pieces of knowledge had erroneous connections between them in the concept image (cf. criterion 2), 
and due to this Mark considered the rule concerning the derivative of a constant function to be 
applicable. Of course, it cannot be claimed that Mark did not know the prerequisites of this rule, but 
at least in this situation he did not take them into account correctly.  

As a whole, the above-presented observations reveal that significant deficiencies with respect to 
coherence appeared in Mark’s concept image of differentiability at the beginning of the interview, 
before he began to study the differentiability of the functions f1–f4. The observed deficiencies mainly 
concerned the meaning of the concept and the connections between elements of knowledge inside 
the concept image. However, it has to be noticed that the deficiencies might not have been 
permanent: The structure of the concept image may have changed already in the situations where 
the deficiencies appeared. 

4.3. Vitality of a method based on the differentiation rules 
When solving problems concerning differentiability of piecewise defined functions, Mark in 

several cases first differentiated both expressions used in the definition of the function by using 
differentiation rules, and then checked if both expressions obtained an equal value at the point 
where the expression is changed. 

Mark was told to begin by considering the differentiability of the function f2. First, Mark 
explained visually, by using tangents, why this function was not differentiable at the point x=1. He 
explained that it was not possible to draw an unambiguous tangent line at the corner. Then the 
interviewer asked Mark to calculate the right-hand and left-hand limits for the difference quotient of 
the function f2 at the point x=1, when h in the definition of the derivative approaches 0. Mark 
differentiated the expressions x+2 and -2x+5 and gave the answers 1 and -2. He said: 

(19) Mark: The use of the difference quotient would lead to the same result.  

Furthermore, the interviewer asked him to calculate this by using the definition. Mark calculated 
the limit of the difference quotient for the function x+2 and came up with 1:  

(20) Mark: h is negative. [...] It becomes h/h, and it is one. And if h approaches zero... 

In this calculation Mark did not specify the point x=1 but performed the calculation generally 
for the function x+2 at a point x=x0. (See Figure 5.) In fact, this is not a correct way to calculate the 
left-hand limit at the point x=1, because according to the definition of the function f2 the expression 
x+2 is not in force at this point. 

 

Figure 5: Mark’s way to use the definition of the derivative in calculating the left-hand limit of the difference quotient 
of the function f2 at the point x=1. 

After that he said that the right-hand limit of the difference quotient could be found similarly. 

In this way Mark introduced his differentiation method to study differentiability. Excerpt 19 
reveals that already before the use of the definition Mark had a clear view that his method was 
compatible with the definition. It does not explicitly come out from the data why he believed so, but 
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a possible explanation could be that very often in practice, especially at high school, the use of the 
definition of the derivative is replaced by the differentiation rules. This perhaps was the origin of 
Mark’s differentiating method. The calculation with the definition offered Mark an additional 
confirmation for the correctness of his method. 

For the function f1, Mark applied the same method, and it seemed to work very well: 

(21) Mark: This is a similar situation... at x=1... Let’s consider the lower part (refers to the 
expression) first. The derivative is minus two for the lower part, and then, if we try 
when x<1, the derivative approaches one, or it equals one. 

Because the derivatives of the expressions x+1 and -2x+6 were not equal, Mark’s conclusion was 
that the function f1 was not differentiable. 

As mentioned above, in the written test Mark had answered that the function f3 was differentiable 
(cf. excerpts 16-18). However, in the interview he wanted to apply his differentiation method also to 
this function. Thus he differentiated the expressions x²-4x+3 and 1 and came up with the 
expressions 2x-4 and 0. Because these did not take the equal value at the point x=4, Mark concluded 
that the function f3 was not differentiable. He rejected his previous conclusion and believed that the 
conclusion obtained by applying the differentiation method was the right one. He commented:  

(22) Mark: My view changes when I think over these things more and more. 

In this situation Mark met an obvious conflict. He had used two different methods for 
examining the differentiability of the function f3, and these methods led to opposite conclusions. In 
fact, according to the formal theory, both methods were erroneous. Mark, however, believed that 
the result obtained by the differentiation method was the right one, and he was ready to reject the 
result obtained by the other method. This can be interpreted as a sign of confidence in the 
differentiation method: At least, it shows that in this situation his confidence in it was stronger than 
in the other method. However, Mark did not consider what was wrong in the other method, and 
thus, this part of the conflict was left unsolved.  

The question about the differentiability of the function f4 was hard for Mark. As before, he 
started by calculating the derivatives of the expressions used in the definition of the function (the 
expressions x and x+1) and noticed that these were equal at the point x=1. It is notable that when 
calculating these, he spoke about the difference quotients: 

(23) Mark: The difference quotients are equal in both domains.  

This again suggests that Mark believed that the use of his differentiation method could be 
substituted for the explicit use of the definition of the derivative. According to Mark, the result 
forced the function f4 to be differentiable. However, Mark immediately saw from the graph that the 
function f4 was not continuous and he remembered very clearly that continuity is a necessary 
condition for differentiability. This caused a serious conflict for Mark, but in spite of that, his 
confidence in his method was strong: 

(24) Mark: Yes, both derivatives are equal if we come either from left or from right. [...] 
If we think only that they are equal... then it has to be differentiable... But it is not 
continuous at that point!  

In this excerpt, Mark spoke about the equality of “both derivatives”, even though, according to 
the formal theory, differentiability requires the equality of the both-hand limits of the difference 
quotient. This indicates a confusion between concepts: Perhaps Mark was not able to recognize the 
difference between the limit of the derivative and the limit of the difference quotient in this 
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situation. 

Then Mark began to doubt his memory. He tried to find another differentiable but 
discontinuous function. He wondered if the tangent-function (the function f(x) = tan x) could be 
one example. Finally, he decided to explore the differentiability of the function f4 by using the 
definition of the derivative explicitly. However, he made a mistake in this: He calculated the  
difference quotients generally at the point x=x0 and separately for the expressions x and x+1 (see 
Figure 6). This is not the correct method to study differentiability at a point where the defining 
expression of the function changes. Using the terminology presented in Section 2.1, it can be said 
that Mark’s personal interpretation of the formal concept definition was not consistent with the 
formal theory in this situation. 

 
Figure 6: Mark’s way to calculate the left-hand and right-hand derivatives of the function f4 at the point x=1. 

Because Mark got equal results from both of these calculations, he concluded that the function f4 
was differentiable: 

(25) Mark: One comes from both. It could be reasoned from this that it is 
differentiable. 

(26) Interviewer: Is this your answer? 

(27) Mark: Ok, let it be my answer, this time! 

Finally, he was ready to break his strong conception that continuity is a necessary condition for 
differentiability (cf. excerpts 1-5). 

Like with the function f3, Mark again met an obvious conflict with function f4. Now there were, 
against each other, his very strong memory that differentiability presumes continuity and the result 
based on the differentiation method, on which he had relied in the three previous cases. In the case 
of the function f3, it was not difficult for Mark to reject the other conclusion, but in the case of 
function f4 he felt he could not reject either of the results, even if they were contradictory. In the 
latter case he was convinced of both results. It seems that the explicit -indeed, erroneous (cf. Figure 
6)- use of the definition had a crucial role in the solution of this conflict, but, furthermore, after 
using the definition, it was not easy for Mark to reject his memory concerning the continuity of a 
differentiable function (cf. excerpts 25-27 and 1-5).  

After the interview, the interviewer gave a brief feedback for Mark about his performance. He, 
among others, revealed that continuity is a necessary condition for differentiability. In this situation 
there was not time for an extensive discussion, and Mark’s reactions for the feedback were not 
taped. 
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 5. Discussion 

Above we have presented how Mark’s interview revealed several indications of the incoherence 
of his concept image of differentiability, and described his process to study the differentiability of 
the given four functions. During this process, Mark made many erroneous conclusions. In the 
following we will discuss which matters can be learnt about mathematical thinking and learning 
through this analysis which could help us to improve teaching practises. 

The above analysis reveals several cases in which an erroneous conclusion was a 
consequence of an erroneous way to connect the pieces of knowledge. In these situations 
single pieces of knowledge, as such, were correct, but they were connected in an erroneous way. 
This suggests that the knowledge about relationships is deficient. The explanation of the test answer 
regarding differentiability of function f3 (cf. excerpts 16-18) is an illustrating single example of 
erroneous connections. Mark’s differentiation method, also, can be seen to be based on erroneous 
connections between pieces of knowledge concerning existence of the derivative and differentiation 
rules. 

This analysis shows also that misconceptions and erroneous conclusions may lead to  
cognitive structures, which are, at least in some extent, internally coherent, but whose basis 
is erroneous. In this study, Mark constructed a structure which was based on the conception that 
differentiability of a piecewise defined function can be studied by checking if derivatives of the 
expressions used in the definition of the function obtain an equal value at the point where the 
expression is changed. This method seemed to work very well in the cases of the functions f1 and f2, 
and in the cases of the functions f3 and f4 he rejected results which were in contradiction with it. 
Mark also became convinced that this method was compatible with the formal definition. With a 
strong confidence on this method, Mark changed his previous conception about the continuity of a 
differentiable function. In this way the differentiation method became a key factor for the internal 
coherence of the concept image of differentiability. Mark reconciled the other conceptions and 
results with the differentiation method, and the confidence in it maintained the internal coherence of 
the concept image. In fact, it would have been interesting to continue discussion by revealing for 
Mark that differentiability really presumes continuity but not giving any other feedback in this phase. 
This would have broken the internal coherence, and an extensive reconstruction would have been 
needed to repair it. Therefore, this study also illustrates that sometimes the fundamental reason 
for erroneous conceptions can lie deep in the knowledge structure: The conception that a 
differentiable function can be discontinuous was a result of a quite extensive reasoning process 
which was based on an erroneous method to study differentiability of piecewise defined functions. 
In practice, discussion with other people, the use of literature or another kind of social interaction 
often influences the process of constructing the knowledge structure and prevents the development 
of very wide-ranging erroneous structures. This is one reason why the social interaction in its 
different forms is important in the learning of mathematics. It contribute to recognizing 
misconceptions even by judging some conceptions directly erroneous or by bringing out situations 
where conflicts might be created. In this way the misconceptions are probably recognized earlier 
than it may be happened in an individual study. 

This study also brings out some issues about the role of the definition in constructing the 
concept image. First, it is important that the personal interpretation of the formal concept 
definition is correct. If Mark had used the definition of the derivative in a correct way when he 
studied differentiability of the function f4 (cf. Figure 6; excerpts 25-27), he would have met a conflict 
which could have forced him to re-examine his differentiation method. Already when calculating the 
left-hand-limit for the difference quotient in the case of the function f2 (cf. Figure 5; excerpts 19-20), 
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a more careful examination of the definition might have had a similar effect. Another conclusion 
which comes out from this study is that the definition −or, in fact, its personal interpretation− 
should have a central role in the reasoning concerning the concept in question. Reasoning 
concerning the concept should be based on the definition, or, at least, an individual should be aware 
why the reasoning is in accordance with the definition. In Mark’s reasoning the definition appeared 
to have only a minor role. The only situation where Mark without the interviewer’s intervention used 
the definition was the conflict in the case of the function f4, but even then the definition was not the 
primary method to resolve the conflict. Thus, it seems that Mark had a tendency to avoid using the 
definition. Instead the definition, the differentiation method became a crucial criterion for the 
differentiability in his reasoning. When derivative is considered for the first time in mathematics 
education, for example, in upper secondary school, the definition is usually left to the background, 
and the use of the differentiation rules are emphasized. This may be one reason why Mark avoided 
the use of the definition. However, as discussed above, Mark probably believed that his method was 
compatible with the definition. This maybe the reason why he did not feel a need to use the 
definition. On the other hand, the data does not explicitly show whether Mark had understood the 
crucial role of the definition: Did he understand that the definition determines the final truth 
regarding the concept, or did he consider the definition only as one description of the meaning of 
the concept among others? The observation that the definition-based argument seemed to resolve 
the conflict in the case of the function f4 (cf. Figure 6; excerpts 25-27) defends the former view. 

The observations concerning students’ study of differentiability made by Tsamir et. al. (2006) are 
quite similar to the results of this study. In their study, three prospective teachers were able to give a 
correct definition for the derivative, but, in spite of that, they did not use it in the problem solving, 
and they reached erroneous conclusions. When studying the differentiability of the absolute value 
function (f(x)=|x|), one of these students used the same kind of a method as Mark. 

This study shows that there exists a notable interaction between the structure of the concept 
image and conclusions which are attained by reasoning. Single conclusions may have a wide-ranging 
influence on the structure of the concept image, and on the other hand, conclusions depend on the 
existing structure of the concept image. The list of criteria for coherence of a concept image offers a 
framework for analysing mathematical reasoning, especially reasoning concerning one concept. It 
could also be interesting to analyse a longer-term learning process by using this framework and in 
this way study how the coherence of a concept image is developed. 

Almost every day mathematics teachers meet in their work erroneous conclusions made by 
students. Many of these are random careless mistakes, but others are based on a deliberate 
reasoning. In the latter case a careful personal discussion with a student may be needed in order to 
find out how deep in the knowledge structure the problems lie. In the learning process it is 
important that the pieces of knowledge which an individual learns and which he/she already knows 
form coherent entities. How could teachers and designers of textbooks and curricula take this goal 
into account? This study highlights two factors: First, the fundamental role of definition should be 
emphasized. Therefore, in teaching tasks in which the definition is really needed as a central part of 
reasoning should be used. Second, there should be tasks which lead students to critically reflect 
qualities of mathematical concepts and relationships between concepts. Especially, controlled 
conflict situations may offer fruitful starting points for this kind of reflection.  
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