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Abstract 

Although the geometric equality of figures has already been studied thoroughly, little work has been done 
about the comparison of unequal figures. We are used to compare only similar figures but would it be 
meaningful to compare non similar ones? In this paper we attempt to build a context where it is possible to 
compare even non similar figures. Adopting Klein’s view for the Euclidean Geometry, we defined a relation 
“≤ ” as: 1 2S S≤  whenever there is a Euclidean isometry 2 2:f →  , so that ( )1 2f S S⊆ . This relation 

is not an order because there are figures (subsets of 2 ) 1 2,S S  so that 1 2S S≤ , 2 1S S≤   and 1 2,S S  not 
geometrically equal. Our goal is to avoid this paradox and to track down non-trivial classes of figures where 
the relation “≤ ” becomes, at least, a partial order. For example there is no paradox if we restrict our attention 
just to compact figures; thus, we can compare a closed disc with a closed triangular region. Further we 
present some other “good” classes of figures and we extend our study to the Hyperbolic and to the Elliptic 
geometry. Eventually, there are still some open and quite challenging issues, which we present at the last part 
of the paper. 
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1. INTRODUCTION 
 

 In Euclid, the geometric equality depends on the capability of superposition of the figures: 

 
Common notion 4 

  Things which coincide with one another are equal to one another. ([12]) 

 
The geometric equality, with respect to Klein’s view, depends on the group theory as well as on the set 

theory: 

 
Definition 

Let a set X ≠ ∅ , G a subgroup of Aut(X) and the figures 1 2,S S X⊆ . We shall say that these figures are 

G − geometrically equal if and only if there is an f G∈  so that ( )1 2f S S=  . 

  
 The equality, indirectly defines the inequality of geometric figures. Euclid considers that a figure is 

smaller than another one if with an appropriate rigid motion the first coincides with part of the second. 

Although for any two figures 1 2,S S  it is easy to decide whether they are equal or not, however it is not that 

simple to decide if one of them is “smaller” than the other. Obviously a triangular region is never equal to a 

circular disk, but can we say that a triangular region is smaller than a circular disc if the radius of the disc is 

greater than or equal to the radius of the circumscribed circle of the triangle? In Euclid, the comparison 

involves only “similar” figures. On the contrary, Klein’s view of equality, prompts us to define a geometric 

inequality using the notion of “being subset” and enables us to compare even non-similar figures: 

 
We will say that 1S  is equal to or smaller than 2S  whenever there is a euclidean rigid motion f so that ( )1 2f S S⊆ . Then 

we will write 1 2S S≤ . 

 
 This “natural” definition of inequality provides a paradox as we will immediately illustrate using the 

following example given by the professor V. Nestorides:  

Let us consider a closed half plane A and let B be the half plane A with a line segment attached vertically to 

the edge of the half plane and pointing outside A. Since A B⊆  we can say that A B≤ . Moreover, there is a 

translation of B, so that it is fully covered by A and in this case we may write B A≤ . It seems logical to 

assume that A  and B must be geometrically equal, in other words, that they can coincide if we apply a certain 

rigid motion. But this is impossible to happen, because every half plane remains half plane whenever we apply 

a rigid motion to it and obviously it can’t coincide with a geometric figure that is not a half plane. 



  TMME, vol5, nos.2&3, p.201 

 

  Since the geometric relation " "≤  is not antisymmetric it is necessary to restrict the comparison to 

certain classes of geometric figures. We already know that in the class of the line segments or in the class of 

the arcs of a circle, the relation " "≤  is a total order. Therefore the question is, if there are other classes of 

figures where the relation " "≤  is a total or a partial order.  

 We shall call good classes (of geometric figures) those that among the figures they contain we can’t find 

a paradox like the one mentioned above. A good class, but not the only one, is that of the compact figures 

(sets). In fact, compact figures have the property not to generate paradox with any other geometric figure 

whether compact or not. Those figures will be called good figures. Besides the compacts, good figures are also 

the open-and-bounded sets. On the contrary, just bounded figures may not be good as we will prove later 

using a counterexample, given again by professor V. Nestorides. 

 The study, concerns not only the Euclidean Geometry, but it is also expanded into the Hyperbolic 

and the Elliptic Geometry and some parts may be formulated in a pure algebraic language so that they cover 

uniformly all three geometries. The conclusions we have reached, are fully compatible with our previous 

knowledge about the comparison of geometric figures. In the special case of the Euclidean Geometry we 

proved that there is a good class, containing all the fundamental geometric figures, where we can compare 

even non-similar ones. Therefore a comparison between a circular disc and a triangular region is meaningful 

in the new context. 
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2.  COMPARISON OF FIGURES IN THE EUCLIDEAN GEOMETRY 

 

2.1 Basic definitions 
 

We adopt Klein’s view for the Euclidean Geometry. Our space is 2  endowed with the euclidean metric and 

the group acting on 2  is ( )2ISO , the group of euclidean isometries. The couple ( )( )2 2,ISO  

generates the euclidean geometric space where we will develop our study. 

 
Definition 2.1 

Two figures 1S  and 2S  are geometrically equal when there is a euclidean isometry2 2 2:f →  so that ( )1 2f S S= . In 

that case we will write 1 2S S≈ . 

Remarks 

I. Figure is any subset of 2 . From now on we will not distinguish the terms “subset of 2 ” and “figure” . 

II. We use the terms “rigid motion” and “isometry” synonymously.  

 

Definition 2.2 

For any two figures 1S  and 2S  we shall say that 1S  is equal to or smaller than 2S  when there is a euclidean rigid motion 

f so that ( )1 2f S S⊆ . Then we will write 1 2S S≤ . 

 
This “natural” definition does not satisfy in general the antisymmetric property, as we will prove later.  

Proposition 2.1 

The relation " "≤  is a pre-order of figures i.e. it is reflexive and transitive, and the reflex ion is meant in the sense of the 

geometric equality defined in 1.1 

Proof 

Let Α and Β two geometrically equal figures. Then, by definition, there is a euclidean isometry f so that 

( )f A B= . Then ( )f A B⊆  also holds and we conclude that the relation ≤  is reflexive with respect to the 

geometric equality.  

                                                 
2 based on the euclidean metric ρ  of  2  where ( ) ( )( ) ( ) ( )2 2, , ,x y a b x a y bρ = − + −  
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If A B≤  and B C≤  then there are isometries ,f g  so that ( )f A B⊆  and ( )g B C⊆ . Then for the 

isometry g f  holds ( )g f A C⊆  i.e. A C≤ . Therefore the relation is transitive ٱ 

 

  In the following examples we shall prove that " "≤  does not satisfy in general the antisymmetric 

property, with respect to the geometric equality of definition 1.1. 

 

Example 2.1  

Let the half lines ( ){ }2,0 : 0A x x= ∈ ≥ , ( ){ }2,0 : 0B x x= ∈ > . Since A  is a closed subset of 2  

while B  is not, there is not  an isometry f  so that ( )f A B= 3 thus A B≈/ .  

For the isometry ( ) ( ), 1,f x y x y= + , ( )f A B⊆  holds. But it is also obvious that  B A⊆ , so we have 

both A B≤  and B A≤  while A B≈/ . 

 
Example 2.2  

Let the figure ( ){ } ( ){ }2 2, : 0 , 2 : 0 1A x y x x x= ∈ ≤ ∪ ∈ ≤ ≤  and the half plane 

( ){ }2, : 2B x y x= ∈ ≤ . Obviously A B⊆  therefore A B≤  .Since every isometry maps half planes into 

half planes there is not an isometry f  such that ( )f A B= , so  A B≈/ .  

But for the isometry ( ) ( ), 3,f x y x y= − , ( )f B A⊆  holds. So we conclude that A B≤  and B A≤  

while A B≈/ . 

 

Example 2.3 

Let the figure ( ){ }2, : 0, 0x y x yΑ = ∈ ≥ ≥  which is the right angle xOy  and the figure B  produced by 

A  when we subtract the inner part of the isosceles right triangle ( ){ }2, : 0, 0, 1S x y x y x y= ∈ ≥ ≥ + < . 

Obviously B A⊆  so B A≤  holds. 

By translating A  parallel to the axis x x′  by two units we also have that ( )f A B⊆ , where 

( ) ( ), 2,f x y x y= +  is an isometry. Thus A B≤ .  

But A  and B  are not geometrically equal, because in case there is an isometry g  such that ( )g A B=  and 

since isometries preserve the angles then B  should also be a right angle, which is absurd. 

                                                 
3 Every isometry maps closed sets into closed sets. 
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Example 2.4 

Let an angle ω  so that 
ω
π

 is irrational, for instance we can choose 2ω π= . We set ( )cos ,sinka k kω ω  

a sequence of points lying on the circumference of the unit circle. By definition k ma a≠  for k m≠  

otherwise we would have integers ,n λ  so that 
n

ω λ
π
= .  

The set { }: 0,1,2,3,...kA a k= =  is a dense and equally distributed subset of the circumference. We also 

consider the set { }1\B A a A= ⊆ , therefore B A≤ . If there is an isometry f  of the plane such that 

( )f A B=  then we will arrive at a contradiction. For every a A∈  there is at least one a A′∈  so that the 

distance ( ),d a a r′ =  where 22sin( )r ω= . Since ( )f A B=  then and for every b B∈  there is at least one 

b B′∈  so that the distance ( ),d b b r′ = . But this does not hold for oa B∈  and we arrived at a 

contradiction.  

Let T  be a rotation by 2ω  with center the origin of the axes. Then T  is an isometry and 

( ) { }: 2,3,...kT A a k B= = ⊆ . So A B≤  and B A≤  hold, while A B≈/ . 

 
 We modify the definition of the pre-order " "≤  so that we arrive at an order relation: 

 
Definition 2.3  

In the set of figures we define a relation λ such that: 

{ }A B A Bλ ⇔ ≈ or {A B≤  and not }B A≤  

 
Proposition 2.2 

λ is an order relation. 

Proof 

simple 

 
Definition 2.4  

A class E  of figures is said to be good when there are not any figures ,A B  in the class E  so that ,A B B A≤ ≤  and 

A B≈/ . 

Remark 

The relation “λ” is the relation “≤ ” without the pathological cases where the antisymmetric property does 

not hold true. But the definition of “λ” is quite barren and gives no information to the question: 
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Which figures form a good class? 

 
It seems to be wiser to concentrate our study on those sets that satisfy the antisymmetric property of  “≤ ”. 

 
Definition 2.5 

We will say that a figure A  is good when for every figure B , if A B≤  and B A≤  hold, then A B≈  also holds. 

 
 Obviously a class consisting only of good sets is a good class. The converse does not hold true. A 

trivial case is a class consisting of only one figure (and all the geometric equals) that is not good. Since there is 

no other figure in the class to provide a counterexample then the class is good. 

A non-trivial example is the class of the open or closed angles. We proved in example 1.2 that an angle is not 

a good set but it is quite easy to verify that using open or closed angles only, we can not provide a 

counterexample.  

 

2.2 Quest for good classes of figures 
 

Proposition 2.3 

If A  is a good set and A B≈  then B  is also a good set. 

Proof 

Let C B≤  and B C≤ . Since A B≈  then A C≤  and C A≤  hold. As A  is a good set then there is an 

isometry f  of the plane such that ( )f A C= . There is also an isometry g  of the plane such that 

( )g B A= . Then ( )g f B C=  i.e. B C≈  ٱ 

 
Proposition 2.4 

If A  is a good set then its complement is also a good set. 

Proof 

Let cB A≤  and cA B≤ . Then there are isometries ,f g , of the plane, so that ( ) cf B A⊆  and 

( )cg A B⊆ . But then ( )cf B A⊇  and ( )cc cg A B⊇  hold. 

Since ,f g  are 1-1 and onto,  ( ) ( )c cf B f B=  and ( ) ( )ccg A g A=  hold. Therefore  ( )cf B A⊇  and 

( ) cg A B⊇  which is equivalent to cA B≤  and cB A≤ .  As A  is good, there is an isometry h  of the 

plane such that ( ) ch A B= . Then ( )ch A B=  and as h  is 1-1 and onto ( )ch A B=  i.e. cA B≈  ٱ 
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Theorem 2.1 

Let ,X d  be a compact metric space. If :f X X→  is an isometry then ( )f X X= .  

Proof 

Well known 
 

Proposition 2.5 

Every compact subset of 2  is a good set. 

Proof 

Let A  compact and B  an arbitrary set so that A B≤  and B A≤ . Then there are isometries ,f g  so that 

( )f A B⊆  and ( )g B A⊆ . 

For the isometry :g f A A→  we have already seen that ( )g f A A=  because A  is compact (theorem 

1.1).  

But then ( ) ( )g B A g f A⊆ =  which implies that ( )B f A⊆ . So ( )f A B=  holds and A B≈ . 

Therefore A  is a good set ٱ 

 

We will introduce now,  a new definition that will be particularly useful. 

 
Definition 2.6 

A figure 2A⊆  will be called strongly good if for every isometry 2 2:f →  that satisfies ( )f A A⊆  , then  the 

equality ( )f A A=  holds true. 

 
Proposition 2.6 

Every compact subset of 2  is strongly good. 

Proof 

Direct from definition 1.6 and theorem 1.1 ٱ 

 
Proposition 2.7 

Every strongly good set is also a good set. 

Proof 

Let A  a strongly good set and B  an arbitrary set such that A B≤  and B A≤ . Then there are isometries 

,f g  of the plane so that ( )f A B⊆  and ( )g B A⊆ . 
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For the isometry :g f A A→ , ( )g f A A=  holds since A  is strongly good. Then  

( ) ( )g B A g f A⊆ =  and therefore ( )B f A⊆ .  

Finally we conclude that ( )f A B=  so A B≈  and A  is a good set ٱ 

 
Remark 

The definition of the good figure is difficult to handle, as it depends on the “interaction” with all the other 

figures. On the contrary the definition of the strongly good figure is intrinsic, because, in simple words, 

strongly good is any figure that does not fit (without decomposition) into part of itself. 

 
Proposition 2.8 

Every open and bounded subset of 2  is strongly good. 

Proof 

Let A  open and bounded and f  an isometry of the plane such that ( )f A A⊆ . As A  is open then  

A A∩∂ =∅  and A A A= ∪∂ .  Thus \A A A= ∂  

Also ( ) ( )diam A diam A= < ∞  so A  is closed and bounded subset of 2 , hence A  is compact. Also 

A A∂ ⊆  and ( ) ( )diam A diam A∂ ≤  so the boundary is closed and bounded hence compact subset of  

2 . 

( ) ( ) ( )f A A f A A f A A⊆ ⇒ ⊆ ⇒ ⊆  and from Theorem 3.1 ( )f A A=  holds. 

( ) ( ) ( ) ( ) ( )\ \ \ \f A f A A f A f A A f A A A A∂ = = = ⊇ = ∂  

Hence ( )1f A A− ∂ ⊆ ∂  and as 1f −  is an isometry then from Theorem 3.1 again, we conclude that 

( ) ( )1f A A A f A− ∂ = ∂ ⇔ ∂ = ∂ . Therefore 

( ) ( ) ( ) ( )\ \ \f A f A A f A f A A A A= ∂ = ∂ = ∂ = , so A  is strongly good ٱ 

 

Proposition 2.9 

In 2 , the union of a compact with an open bounded set is a strongly good set. 

Proof 

Let K  compact and A  open and bounded subsets of 2 , and the isometry f  of the plane such that 

( )f A K A K∪ ⊆ ∪ . 
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The set ( )oV A K A K= ∪ ⊆ ∪  is also open and bounded. 

\ cW K V K V= = ∩  is compact as an intersection of a compact with a closed set. 

Obviously V W∩ =∅   

Since A  is open subset of A K∪  then A V⊆  and  

( )\A K V K V K V V W A K∪ ⊆ ∪ = ∪ = ∪ ⊆ ∪ .  Hence V W A K∪ = ∪  

Also ( ) ( ) ( )V W f V W f V f W∩ =∅⇒ ∩ =∅⇒ ∩ =∅  

Consequently ( ) ( ) ( )f V W V W f V f W V W∪ ⊆ ∪ ⇒ ∪ ⊆ ∪  

( )f V  is an open and bounded subset of A K∪  therefore ( )f V V⊆  since ( )oV A K= ∪ . From 

proposition 1.8 we conclude that ( )f V V= . 

As ( ) ( )f V f W V W∪ ⊆ ∪  and ( ) ( ),V W f V f W∩ =∅ ∩ =∅  then ( )f W W⊆   But W  is 

compact and from Theorem 3.1 ( )f W W= .  Therefore 

( ) ( ) ( )f V f W V W f V W A K∪ = ∪ ⇒ ∪ = ∪ ⇒ ( )f A K A K∪ = ∪  ٱ 

 
Proposition 2.10 

In 2 , the intersection of a compact with an open bounded set is a strongly good set. 

Proof 

Let K  compact, A  open and bounded and f  an isometry of the plane such that ( )f A K A K∩ ⊆ ∩  

We set X A K= ∩  which is a compact subset of  K . 

Then ( ) ( ) ( )f A K A K f A K X f X X∩ ⊆ ∩ ⇒ ∩ ⊆ ⇒ ⊆ . According to Theorem 1.1 we conclude 

that ( )f X X= . 

Since A K∩  is open in K , then it is also open in every closed subset of K . Therefore A K∩  is open in 

X , so ( )\X A K∩  is compact and it is obvious that  

( )( ) ( )1 \ \f X A K X A K− ∩ ⊆ ∩ . According to Theorem 1.1 we conclude that 

 ( )( ) ( )1 \ \f X A K X A K− ∩ = ∩ . 

But then ( )( ) ( )\ \f X A K X A K∩ = ∩  and since ( )f X X=  and A K X∩ ⊆ ,  we conclude that 

( )f A K A K∩ = ∩  i.e. A K∩  is strongly good ٱ 
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Remark 

The proposition holds even if A  is not bounded. 

 
Proposition 2.11 

The classes =X { K A∪  where Κ compact and A  open bounded subsets of the plane}, =Y { K A∩  where K compact 

and A  open bounded subsets of the plane}, = ∪E X Y   and { }2 : cS S= ∪ ⊆ ∈F E E  are all good classes. 

Proof 

The classes above consist of strongly good sets. Then from definition 1.4 and the propositions 1.7, 1.8, 1.9, 

1.10 the conclusion is obvious ٱ 

 
 The class F  includes almost all the fundamental figures of Euclidean Geometry: line segments, 

triangles, polygons, circles, arcs etc but not the open or closed angles which, as we have already mentioned, 

form a good class.  

 

Proposition 2.12 

If W  is the class of open or closed angles then the class ∪F W  is good. 

Proof 

Since we already know that the classes ,F W  are good, then it is sufficient to examine whether a set from 

one class provides a counterexample to the other class.  

Let A  a set of the class F . Then A∈E  or \A∈F E . 

If A∈E  then it is bounded and it cannot provide a counter example with any angle of W . 

If \A∈F E  and provides a counterexample with an angle then its complement cA ∈E , will also provide a 

counterexample with the complement of the angle (which is also an angle). But this contradicts what we have 

already proved about the elements of E  which give no counterexamples with the elements of W . 

So the class ∪F W  is a good one and includes the closed and open angles ٱ 

 
Remarks 

1. The closed sets are neither good nor form a good class according to the examples 1.1 and 1.2 

2. The connected sets are neither good nor form a good class according to the example 1.1 

3. The bounded sets are neither good nor form a good class according to the example 1.4 

4. The connected and bounded sets are neither good nor form a good class. This can be easily 

proved if in the set A  of the example 1.4 we attach the inner points of the unit disc.  

5. The convex sets are neither good nor form a good class according to the example 1.3 
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6. The convex and bounded sets are neither good nor form a good class.  This can be easily proved if 

in the set A  of the example 1.4 we attach the inner points of the unit disc. 

 
If two figures ,A B  are good we have proved that their complements are also good. However the union or 

intersection of (strongly) good sets is not necessarily a good set as we will illustrate in the following 

counterexamples: 

 
Example 2.5 

Let the strongly good figures ( ){ } ( ){ }2,0 : 0 0,1L x x= ∈ ≥ ∪  and 

( ){ } ( ){ }2 2,0 : 0 ,1 : 0M x x x x= ∈ ≥ ∪ ∈ < 4 then the set ( ){ }2,0 : 0L M x x∩ = ∈ ≥  is not 

good according to the example 1.1. 

 
Example 2.6 

We also use here the previously defined sets L  and M .  

If g  is a reflection with respect to the y y′  axis then ( )g M  is strongly good but the set 

( ) ( ){ } ( ){ }2 2,0 : ,1 : 0G L g M x x x x= ∪ = ∈ ∈ ∪ ∈ ≥  is not good because for the set 

( ){ } ( ){ }2 2,0 : ,1 : 0V x x x x= ∈ ∈ ∪ ∈ >  we have that V G⊆  and ( )h G V⊆ , 

where ( ) ( ), 1,h x y x y= + . Therefore V G≤  and G V≤ . But G  is a closed set and V  is not closed so 

there is no isometry f  such that ( )V f G= , hence V G≈ . 

 

It is interesting that the new context is also applied, with trivial modifications, into the Hyperbolic and into 

the Elliptic Geometry.  Fot further details see [15]. 

                                                 
4 For a detailed proof see [15] 
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3. OPEN ISSUES 

 
 

A fundamental question is whether the definitions of the good set and the strongly good set are 

equivalent or there is a counterexample of a good set that is not strongly good. In the appendix it is proved 

that in  all good sets are also strongly good. So it is our belief that the definitions are also equivalent on the 

plane.  

Another question is whether the algebra produced by 2{ :X A A= ⊆  compact or open and 

bounded} consists only of strongly good sets. 

Finally, as in   Ω = set of good classes    the assumptions of  Zorn’s5 lemma are satisfied it would be 

quite interesting to find maximal classes within the set Ω. 

 

 

                                                 
5 Every totally ordered subset of Ω  is defined to be a set of good classes Y = { iF , i I∈ } so that for every ,i j I∈  it 
is true that i jF F⊆  or j iF F⊆ . Obviously the  good class i

i I

F
∈
∪  is an upper bound of  Y . 
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Appendix 

 

In the appendix we prove that good sets coincide with strongly good sets in . We do not know whether 

the same holds or not holds  in 2 . 

Lemma 

Let a set A⊆ , a A∈  and an isometry :f →  such that ( ) { }\f A A a=  i.e. { }\A A a≈ . Then 

A  is not a good set. 

Proof 

If :f →  is an isometry then ( )f x x=  or ( )f x x= −  or ( )f x x c= − + , 0c ≠  or ( )f x x c= + , 

0c ≠ .  

• If ( )f x x=  then ( ) { } { }\ \f A A a A A a= ⇔ =  i.e. a A∉ , absurd. 

• Both ( )f x x= −  and ( )f x x c= − +  have the property 2f id= . 

From the assumption we have that ( ) { }\f A A a=  therefore 

( ) ( ){ } ( ){ }2 \ , \ ,f A A a f a A A a f a= ⇔ =  i.e. a A∉ , absurd. 

• If ( )f x x c= + , 0c ≠ .  

Then ( )f a c a− = , so a c A− ∉  

Also ( ) ( ) { }\f a a c f A A a= + ∈ = . 

Let the set { }\B A a c= + . Then a c B+ ∉  and a c B− ∉  since a c A− ∉  and B A⊆ . 

Obviously B A⊆  and ( ) { }2 \ ,f A A a a c B= + ⊆  

Let us assume that there is an isometry :g →  so that ( )g A B=  

For every x A∈  we have that ( ) { }\f x x c A a= + ∈  therefore there is at least one ( )x x x A′ ′= ∈  so 

that ( ),d x x c′ =  (for instance x x c′ = + ). 

But then we will also have that ( ) ( )( ),d g x g x c′ = . 

Since ( )g A B=  there is some ox A∈  such that ( )og x a B= ∈ . 

Then there is also some ( )ox x x A′′ ′′= ∈  so that ( ) ( )( ), ,o o od x x d x x x c′′ ′= =  

It follows that ( ) ( ) ( )( ) ( )( ), , ,o oc d x x d g x g x d a g x′′ ′′ ′′= = = . 
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We may say that there is some ( )b B g A∈ = , where ( )b g x′′=  so that ( ),d a b c= .  

But then b a c= −  or b a c= + , which in either case are not points of  ( )B g A= . 

This is a contradiction and we conclude that A  is not a good set. 

 

Proposition 

Let A⊆  be a good set, then A  is strongly good. 

Proof 

We assume that A  is not strongly good.  

Then there will be an isometry :T →  so that ( )T A A . 

Therefore there is  ( )\a A T A∈  and ( ) { }\T A A a A⊆ ⊆  i.e. ( )T A A≤  

Since ( ) ( )( )( )1 1 1A T A A T T T A− − −⊆ ⇔ ⊆  then ( )A T A≤  and as A  is a good set then ( )A T A≈ . 

We can also prove that { }\A A a≈  because: 

{ }\A a A≤  and ( ) { }\A T A A a≈ ≤  since A  is a good set we conclude that { }\A a A≈ . 

But from the previous lemma such a set A  is never a good set , absurd! ٱ  



Glenis 
   

 

REFERENCES 
 
In Greek 

1. D. Anapolitanos: Introduction in the Philosophy of Mathematics 4th edition, Nefeli publications. 

2. I. Argyropoulos, P. Vlamos, G. Katsoulis, S. Markatis, P. Sideris: Euclidean Geometry, school 

textbooks publications 2003. 

3. D. Lappas: History of Modern Mathematics, spring semester 2005.  

4. V. Nestorides: About the inequality of geometric figures, lecture at 10/11/2004 in the Department of 

Mathematics Athens University. 

5. Ε. Stamatis: Euclid’s Geometry, vol. Ι school textbooks publications 1975. 

6. H. Strantzalos: The Evolution of Euclidean and non-Euclidean Geometries (part I), Kardamitsas publications. 

7. H. Strantzalos: Introduction of geometric transformations in the secondary education, Notes for the participants of 

the seminar on History and Mathematics Education held in Dep. of Mathematics Athens University, 

spring 2005. 

8. C. Boyer – U. Merzbach: History of Mathematics, 2nd edition, G. Α. Pneumatikos publications. 

 

In English 

9. C. Caratheodory: Theory of Functions of a complex variable, Chelsea Publishing Company New York. 

10. L. Carothers: Real Analysis, Cambridge University Press. 

11. J. Dugunji: Topology, Allyn and Bacon Inc. Boston. 

12. Sir Thomas L. Heath: Euclid the thirteen books of the elements,  vol.1 2nd edition unabridged, Dover. 

13. D. Hilbert: Foundations of  Geometry,  

14. E. Hlawka, J. Schoibengeier, R. Taschner: Geometric and Analytic Number Theory, Springer – Verlag. 

15. S. Glenis: Comparison of Geometric Figures, http://arXiv.org/abs/math/0611062 

16. L. Kuipers, H. Niederreiter: Uniform distribution of sequences, Wiley N.Y. 

17. E. Moise: Elementary Geometry from an advanced standpoint, Addison – Wesley. 

18. E. G. Rees: Notes on Geometry, Springer – Verlag. 


	Comparison of Geometric Figures
	Let us know how access to this document benefits you.
	Recommended Citation

	Microsoft Word - TMME_vol5nos2and3_a3_pp.199_214.doc

