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EDITORIAL: Expanding spheres of influence- the zenith, the 
nadir and everything in-between 

 
Bharath Sriraman 

The University of Montana 
 
 
The Montana Mathematics Enthusiast has now entered its fifth year in existence. The changes 
the journal has been through since its inception has been healthy, especially it’s ever increasing 
sphere of influence in the intellectual community. Being a meticulous keeper of journal records, I 
have watched with both awe and enthusiasm (no-pun intended) on the far reaches from the 
world the journal has been accessed. In terms of the number of countries the journal has been 
accessed from, we have reached a zenith at 102 give or take a few. Last week for the very first 
time the journal was accessed from Niger, Senegal, Chad and Algeria. While this was pleasing 
from a statistical (rarity) point of view, there was nevertheless a pang of regret that the journal has 
so far under-represented three regions of the world, namely Africa, South America and 
Southwest Asia – and this is our statistical nadir.   
 
Several changes are evident. The editorial board has been expanded to include mathematics 
education researchers outside the Anglo-American domain of influence. The journal now exists 
in a print form, published by Information Age Publishing, in addition to the online version 
remaining free to the community.  Presently efforts are being channeled at soliciting manuscripts 
from researchers in Southwest Asia, Africa and South America. I have received e-mails of interest 
from colleagues in Turkey and Iran interested in publishing their work in mathematics education 
in English. In addition, a focus issue on statistics education around the world has materialized as 
a result of the International Conference on Teaching Statistics (ICOTS-7) in Brazil. Vol.6 of the 
journal will include several papers from researchers in South America and Central Europe who 
participated in ICOTS-7. Another focus issue in the works is Non-European mathematics, which 
will include submissions from colleagues in the African continent.  
 
At a recent conference in Germany, I received some very flattering compliments about the 
journal. I was asked if there was any particular issue that was representative of the true aims and 
scope of the journal. This issue [vol.5, no.1] represents the true spirit of the journal both in terms 
of its content and the geographic reach. The description of the journal states that it “exists to 
create a forum for argumentative and critical positions on mathematics education, and especially 
welcomes articles which challenge commonly held assumptions about the nature and purpose of 
mathematics and mathematics education.” To this end, in this journal issue, I am proud to 
present to the readers an entire forum on the topic of Ethics and Values in Mathematics 
Teaching and Learning. The forum grew out of a provocative submission from Ted Eisenberg, 
which resulted in a critique from Renuka Vithal and insightful commentaries from Wolff-Michael 
Roth and Brian Greer. The process followed to handle the “sensitive” nature of Eisenberg’s 
manuscript is commented on by Ted himself in his paper. Essentially an open peer review 
process was structured where the author was told the identities of the reviewers and vice versa. 



Sriraman 

The product of this strategy is the stimulating forum presented in this issue. I would like to 
personally thank Ted Eisenberg, Wolff-Michael Roth, Brian Greer and Renuka Vithal for being 
willing participants in this project. In addition Alan Bishop and Kurt Stemhagen have contributed 
papers pertaining to the issue of ethics and values in mathematics education. 
 
This journal issue represents all continents except (regrettably) South America. Murad Jurdak 
(Lebanon) contributed a paper entitled “The Action Map as a Tool for Assessing Situated 
Mathematical Problem Solving Performance” which is rooted in activity theory. The other 
feature articles include a paper from M.K. Akinsola (Botswana) on a study conducted with pre-
service teachers on the psychology of problem solving. Both these papers are quantitative in 
nature and adequately portray the place of such methodologies in mathematics education. At the 
other end of the spectrum the issue has three theoretically based reflective papers. Kristin 
Umland reflects on the current state of research in the area of mathematical cognition. Yuichi 
Handa’s article reflects on teaching a poorly conceived lesson in relation to the literature on 
comparative lesson study. The featured Montana article by David Davison and Johanna Mitchell 
analyzes philosophies of mathematics emerging from the ongoing “math” wars and reform 
efforts in the U.S.A. They analyze “How is Mathematics Education Philosophy Reflected in the 
Math Wars?” 
 
Another special paper in this issue is a practical application of the thought experiment of Imre 
Lakatos to mathematics education classrooms. The paper from South Korea by Jaehoon Yim, 
Sanghun Song and Jiwon Kim on mathematically gifted elementary students' revisiting of Euler's 
polyhedron theorem explores how the constructions of mathematically gifted fifth and sixth 
grade students using Euler’s polyhedron theorem compare to those of mathematicians as 
discussed by Lakatos in Proofs and Refutations.  In their study, eleven mathematically gifted 
elementary school students were asked to justify the theorem, find counterexamples, and resolve 
conflicts between the theorem and counterexamples. This journal issue also includes two articles 
aimed at practitioners in the classroom on the geometric nature of proof by Sue Waring and 
Steve Humble (a.k.a Dr. Maths in the U.K). 
 
I hope that the 166 journal pages that comprise this issue do not represent a zenith but indicate 
to the community that interest in mathematics education is present in the far reaches of the 
globe- and that the journal’s philosophy of open access and a spirit of community has been 
instrumental in fostering interest in under-represented regions of the world in publishing their 
research. The journal will continue to work on its sense of agency in making the world of 
publishing a more equitable enterprise for under represented voices and issues in the ongoing 
mathematics education debates.  
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Flaws and Idiosyncrasies in Mathematicians: Food for the 

Classroom? 
 

Theodore Eisenberg1 
Ben-Gurion University 

Beer-Sheva, Israel 
 
 
Abstract 
This paper raises an ethical question: should aspects of a mathematician’s personality, political 
beliefs, physical handicaps, and the ironies surrounding their life be mentioned parenthetically or 
otherwise in our lessons? What about the political and social norms of the times in the countries 
in which they lived? There are no hard and fast guidelines on this other than to use good taste; 
but what is in good taste to one is often in bad taste to another. At the very least this paper 
presents tidbits of information and innuendo about mathematicians the reader might not know. 
But hopefully this paper will help the reader develop a personal stance on this issue. 
 
0. Setting the Stage: Ethical Dilemmas 
Ethical dilemmas are those gut-wrenching situations that are inescapable in life. They come in 
different degrees of magnitude and severity–but what they have in common is that they push us 
to the core of our personal moral beliefs. Each of us can easily think of such situations and 
decisions we have made in this realm. Some decisions we have made with the authority of 
certainty; others that to this day we don’t know if we acted correctly; and still others that we feel 
uncomfortable in discussing. But making ethical decisions is a part of life–and sometimes they are 
not easy to make. Within the university world the arena of problems and situations for which 
ethical decisions have to be made seems to be unlimited in scope and number. Animal research, 
stem cell research, genetic engineering, affirmative action admission policies are of one 
magnitude; accepting grants from individuals and foundations with tainted histories, grants with 
strings attached, researching sensitive topics such as terrorist profiling, ethnic profiling, etc., are 
of another magnitude. Universities often have ethics committees to oversee such dilemmas. 
Ethical dilemmas exist on large, small, and personal scales–even in the mathematics classroom. 
 
 
1. Introduction 
Following are vignettes that reveal flaws in character and idiosyncratic behavior within some of 
the best-known individuals in the annals of mathematics. They focus on the mathematician’s 
foibles, but the stories also give us a glimpse into the political atmospheres of the times in which 
they lived. On the surface, mentioning them in the classroom adds a bit of spice to our lessons, 

                                                 
1 eisenbt@013.net 
 



Eisenberg 

but in adding that spice are we not tacitly endorsing gossip and stereotypes, and taking on the 
role of being a bully by smirking at those with paranoia and differences, be them real or 
imagined? Should such peripheral material about the lives of mathematicians be included in our 
lessons? This paper discusses this question on both an individual and larger scale. 
 
2. A Sampling of Vignettes 
 
2.1 Girolamo Cardano (1501-1576) is famous for the formulas that bear his name; formulas that 
enable us to solve cubic polynomial equations (of the form ax3 +bx2 + cx +d =0 where a, b, 
c, and d are integers) in terms of their coefficients. (Just as it is possible to construct formulas to 
solve quadratic equations in terms of their coefficients, so it is possible to construct formulas for 
cubic equations. Actually, the coefficients need not be restricted to the integers; the formulas 
Cardano built also work if the coefficients are complex numbers.) Cardano is also famous for 
fundamental work in probability theory, and he is considered to be one of the first to have 
systematically studied games of chance. But Cardano and his associates stole the formulas for 
solving the cubic equations from a man called Tartaglia (the stutterer), by duping him into 
revealing them after making a solemn pledge to him that they would be shown to no others. In 
1545 Cardano published the formulas in his book the Ars magna, and as you might have guessed, 
there is no mention of Tartaglia’s name. This seems to be one of the first documented cases of 
intellectual thievery in mathematics. Cardano has been called one of the most wicked and 
eccentric men in the history of mathematics, for it is said that once in a fit rage he cut off the ears 
of his younger son; it is also said that he died by his own hand to fulfill an earlier self-calculated 
prediction of his death date, least it be said that he made mistakes in his calculations! (Ball (1960), 
Eves (1964)). 
 
The above revelations usually generate a few smiles from students, but in fairness it should also 
be mentioned that we don’t know if any of the above is true. Orestin Ore, like Ball and Eves, also 
an accomplished mathematician in his time, claims that Cardano died peacefully in his sleep, and 
that he is unfairly portrayed as a wicked man rather than as one with idiosyncratic behavior. 
Although Ore does not deny the story of Cardano stealing the formulas for solving cubic 
equations, he paints Cardano as an eccentric genius who was more like Dennis the Menace, than 
Ivan the Terrible (Ore (1953)). But with respect to numbers, more mathematical historians seem 
to line up with Ball and Eves than with Ore (see for example Burton (1991), Cajori (1980), Katz 
(1992), and Stillwell (1989))2. 
 
2.2 Isaac Newton (1656-1742) is a name that is known in most households throughout the 
educated world. Newton is famous for the development of the calculus, and for many of the laws 
and notions in school and undergraduate-level physics. Recently however, it has been 
hypothesized that Newton suffered from Asperger’s disease, which is a form of autism (Mirsky, 

                                                 
2 Here is how Ore (op. cit.) described the conflicting impressions: “Cardano’s character was an enigma to 
many of his contemporaries and it must be admitted that it has remained so to most of his biographers 
through the centuries which have passed. He is a man who has been praised and vilified; by some he has 
been called a genius, by others a poseur, some have presented him as a benefactor to mankind, others 
frankly believe him to be an evil spirit, indeed, a monster. One should expect that the analysis of his works 
would eventually bring a satisfactory clarification, but unfortunately his books can give some support to 
almost any view.” 
 



  TMME, Vol5, no.1,p.5 

(2005)). Newton was emotionally frigid, actively discouraged human contact, was known to laugh 
only once in his life (when a colleague asked what use Euclid could be), and died bragging that he 
was a virgin and thus uncontaminated (Green (2005)). Newton’s name is attached to the saying: 
If I have seen a little further than others it is because I have stood on the shoulders of giants. But 
that saying has been found in written form nearly 500 years before Newton was born–he was 
certainly not its originator, although he is probably the most famous person to have ever said it. 
The phrase can be seen, for example, etched into the widows of the Chartres Cathedral outside 
of Paris, that was erected in the year 1195 (Pappus, (1999)). 
 
Newton was secretive and his behavior irascible; he had difficulty handling criticism and he 
carried grudges to the extreme. It seems that he was a very difficult person to be around. Some 
historians attribute Newton’s peculiar and exasperating behavior to the fact that he was also an 
alchemist, and that he often handled mercury which is known to affect behavior in ways similar 
to the descriptions that we have on him; in other words, his Scrooge-type personality was 
brought on by himself and perhaps caused the nervous breakdown that he suffered at the age of 
37 (Johnson and Wolbarsht (1979)). Undoubtedly Newton was a genius; but he seems to have 
been a genius with serious social problems3. 
 
2.3. Albert Einstein (1879-1955) is also a household name; but there seems to be some question 
as to the role his first wife Mileva Maric played in his landmark papers on the theory of general 
relativity. They met in their student days and they married in 1903. In letters released in 1986 by 
Einstein’s grandson there are statements that clearly show that Einstein and Maric corresponded 
on scientific topics during their student days, and also after they were married in that they lived 
apart for a few years. In the letters are statements referring to our work, our theories, and our 
investigations. Moreover, an editorial assistant claims that the original landmark papers of 1905 
carried the names of two authors on them: Einstein and Maric (Pais, (1992)). But the original 
papers have long been lost, and in Einstein’s divorce settlement from Maric it states that if he 
was ever awarded a Nobel Prize, the prize money should be given to her; he was awarded the 
Nobel Prize in 1921, and the money went to Maric (Isaacson, (2007)). There is quite a bit of 
convincing evidence that Einstein was dyslexic. West (1991) and Whitrow (1967) document quite 
a few of the common signs and specifically discuss Einstein’s propensity toward them; he had 
poor verbal memory, he was weak with foreign languages, his early childhood shows learning 
problems in school, etc. Mirsky (2003, 2005) goes even further by strongly suggesting that 
Einstein, like Newton, suffered from Asperger’s disease. In building his case he sites the work of 
a researcher at Cambridge who claims that the common markers of Asperger were there: 
obsessive focus on a subject of interest, poor relationships, communication difficulties, etc. As in 
the case of Cardano, no one knows if any of the above is true, even though hundreds of papers 
have been written that speculate on his relationship with Maric, and his alleged dyslexia. At the 
very least, there are gray clouds over Einstein’s image, and most students, as well as the general 
public, are unaware of them4. 
                                                 
3 History has often attributed theorems, proofs, ideas and statements to individuals who had nothing to 
do with them. See Ezra Brown’s article “Whodunit?” in Math Horizons (April 2007, p. 24.) and on a 
broader landscape: The Dictionary of Mis-information by T. Burnam, (Crowell Publishing Co., NYC, 
1975) and Serendipity: Accidental Discoveries in Science by R. Roberts (Wiley Sons, NY, 1989). 
 
4 There are so many entertaining stories about Einstein that one could tell them all day. But one or them 
that I like is when Einstein, who had the popularity of a rock-star, advocated civil disobedience as a 
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2.4. Kurt Gödel (1906-1978) shook the mathematical world to its very foundations in 1930 by 
proving that in every sufficiently complex axiomatic system, it is always possible to construct a 
statement that cannot be proved true in the system, nor can it be proved to be false. In other 
words, there will always be open questions. It was once thought that Fermat’s Last Theorem, that 
an + bn = cn has no non-trivial solution for integer values n greater than two, was an example of 
this; but in 1995 Andrew Wiles showed that Fermat’s Last Theorem was indeed true. Many other 
easily stated problems and questions are now given as examples of being intractable in the spirit 
of Gödel. E.g., are there infinitely many twin primes (prime numbers that differ by 2); 
Goldbach’s conjecture that every even number can be written as the sum of two odd primes; and 
the rule of three. (If n is even, then send n to n/2; and if n is odd, then send n to (3n + 1)/2. The 
conjecture says that the above rules will eventually send every positive integer to one. E.g.,5 → 
16 → 8 → 4 → 2 → 1, but so far, no one has proved it.) Much has been written about Gödel’s 
paranoia, but one of them did him in; he thought someone was trying to poison him and so his 
way of handling this was to stop eating; he did, and about two weeks later he died from voluntary 
starvation (Krantz (1990); Goldstein (2005)). 
 
2.5. Andre Bloch’s (1893-1948) name is encountered in many different fields of mathematics. He 
did fundamental work in the areas of function theory, number theory, geometry, algebraic 
equations, and kinematics. But he made his discoveries working in a world far removed from 
normality. In 1917 he was having a quiet dinner with his brother, aunt and uncle in their family 
apartment; for some incomprehensible reason, he rose during the meal and murdered each of 
them! He then calmly went into the street, stopped the first police officer he saw, and confessed 
what he had done. Bloch spent the next 31 years of his life in a psychiatric hospital, pushing back 
the frontiers of mathematics (Cartan & Ferrand (1988)). 
 
2.6. Ludwig Bieberbach (1886- 1982) and Oswald Teichmüller (1913-1943). The Bieberbach 
Conjecture was concerned with certain transformations of the unit disc into other planar regions. 
Such transformations are called univalent transformations or univalent functions; they distort 
shapes but they preserve angles between curves. Univalence means that two different points are 
never transformed into the same point. A point on the unit disc can be represented by a complex 
number z, and a univalent function f transforms z into f(z).This function has a Taylor polynomial 
expansion f(z) = z + a2z2 + a3z3 + · · ·, where the coefficients a2, a3, a4, etc. are fixed 
complex numbers. 
 
Bieberbach conjectured that for all such functions f, the Taylor polynomial is such that for each 
coefficient an, |an| is not greater than n. He posed this conjecture in 1916 and it remained an 
open question until 1984 when Louis de Branges proved it to be true. It is widely acknowledged 
that Bierberbach played a major role in the development of univalent function theory. He also 
                                                                                                                                                       
legitimate form of protest. The Chicago Daily Tribune wrote: It is always astonishing to find that a man of 
great intellectual power in some directions is a simpleton or even a jackass in others (Isaacson (p 528), op. 
cit.). In this spirit, Einstein loved sailing; he had a small sailboat and he often went out alone. There are 
many stories of him getting lost while sailing, on getting caught in rough waters at the bay of a storm, etc.–
and help had to be sent to rescue him. But although Einstein was an avid sailor, he had never learned to 
swim–and he never wore a life-jacket–even when he was sailing alone. Is this rational behavior from one 
of the world’s smartest men? 
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played a major role in spreading hatred toward Jews and in helping German Universities take 
gigantic leaps into the world of bigotry and prejudice. His philosophy simply put went like this: 
individuals of different races should not mix; Jewish professors should not teach German 
students, and German professors should not teach Jewish students. Even after the war 
Bieberbach denied that the Holocaust had existed, and that Germany had committed atrocities 
against humanity during it. The scientific world went crazy over Bieberbach’s notions, but history 
shows that he succeeded in getting German academics to adopt the notion of “Aryan”5 
mathematics, a society that was void of Jews. There is a quote attributed to Einstein showing 
how deeply his mistrust and suspicion ran with respect to the Germany people at that time. If 
relativity is proved right, the Germans will call me a German, the Swiss will call me a Swiss 
citizen, and the French will call me a great scientist. If relativity is proved wrong, the French will 
call me a Swiss, the Swiss will call me a German, and the Germans will call me a Jew (Schwartz 
and McGuinness (1979); a deep analysis of Einstein’s feelings in this realm can be found in 
Isaacson (2007)). 
 
Teichmüller, on the other hand, is remembered for original contributions to the theory of 
Riemann surfaces, and there is a theory dealing with the moduli of Riemann surfaces that goes by 
his name (Boos-Bavnbek, (1995)). But Teichmüller too was unashamedly an anti-Semite. When 
Teichmüller was 20 years old he headed a mob of brown-shirts that refused to let Landau6 enter 
an auditorium at Göttingen to teach a calculus course; he told Landau that the students did not 
want to take instruction from a Jew. There are pictures showing Teichmüller lecturing his own 
students dressed in full Nazi regalia (Shields (1988), Mehrtens,(1987, 1989)). Teichmüller was 
instrumental in not only destroying the great mathematician Landau, but he also played a major 
role in destroying the great mathematical center at Göttingen (Chowdhury, (1995)). However in 
recent years, a movement seems to be cropping up to whitewash his image, and those of his kind. 
And how is this done? Simply by ignoring the Nazi aspects of their lives, by pushing their 
mathematical accomplishments, and by staying mum about their beliefs of Aryan/Germanic 
superiority and of their attitudes and behaviors towards those of other origins (Boss-Bavnbek, 
(1995)). This is all part of a dark chapter in the history of mathematics for it wasn’t just one 
person going crazy, much of Europe was going crazy at the same time. Worse, this anti-Semitism 
seems not to have been confined only to Europe. Evidence is surfacing that it ran deep in the 
United States too, but in more subtle forms. It appears that leading mathematicians in the States 
were blackballing Jewish immigrants fleeing Nazi Germany from obtaining employment in major 
universities. Specifically, George David Birkhoff at Harvard, one of most influential 

                                                 
5 Editorial Note: The word “Aryan” as appropriated and abused by the Nazi’s to distinguish/label the 
Germanic race as the “master” race and perpetuate horrific atrocities on the Jewish people has a benign 
existence in the Eastern world for over 3500 years. In the domain of philology as well as contemporary 
linguistics, Indo-Aryan is a branch of the Indo Iranian languages. In Sanskrit and Avestan (old Persian), 
the word Arya which has been in existence for over 3500 years is not a racial designation but a term of 
respect, meaning "honorable” or “noble”.  
6 Edmund Landau was a child prodigy who completed his doctorate in number theory (under the 
supervision of Georg Frobenius at the University of Berlin) at the age of 22; two years later he completed 
his “habilitation” in the area of analytic number theory; he was mostly interested in the distribution of 
prime numbers. He succeeded Hermann Minkowski at Gottingen and he was known as being both an 
outstanding teacher and an outstanding researcher. But after his confrontation with Teichmüller, he never 
again lectured in Germany. 
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mathematicians in the States at that time, led a campaign to block Jewish mathematicians from 
major universities. Names, charges, and counter-charges can be seen in MacLane (1994)), but the 
story seems not to have ended in the 1940’s. This type of blackballing seems to have continued 
into the late 1980’s and 90’s against the Jewish-Russian mathematicians fleeing the Soviet Union, 
with similar charges and countercharges being thrown by those on each side of the issue 
(Sdravksovska, (1989), Birman, (1992), Axler (1992), or simply type “anti-Semitism and 
mathematicians” into Google, or some other search engine). 
 
2.7. Alan Turing (1912- 1954). Without a doubt Alan Turing helped England and its allies win 
World War-II. Turing was the head of a team that cracked the Enigma code that led to Hitler’s 
defeat, and Turning machines are now studied as part of the mathematics curriculum in most 
universities throughout the world. Books and plays have been written about his genius, but there 
is also a dark side to his story. Turing was a homosexual and one night in 1952, he picked up a 
young man on the street and took him home to bed. Not long afterwards Turing’s house was 
burgled, and he suspected the young man. Turing went to the police with his suspicions and in 
telling the story he revealed to them that he was a homosexual. But homosexuality was against 
the law in England in those days and the police arrested him on the spot. He was sent to trial and 
he was convicted of England’s indecency act; he was forced to undergo hormone treatment that 
made him obese and impotent. He became severely depressed and on July 7, 1954 he went to his 
bedroom carrying an apple and a jar of cyanide solution. He was found dead the next day ( Davis 
(1987), Singh,(1999), Whitemore (1991)). Some say that the icon of Apple Computers is a tribute 
to Turing and his genius. Many honors carrying his name have been recently established. The 
Turing Prize is often considered the Nobel Prize of computing, and many universities around the 
world have buildings and rooms named after him. 
 
 
3. Enlarging the Lens 
The above list of vignettes could easily be expanded, but I believe that the point is clearly enough 
stated: do such stories belong in the classroom? Should students know that Euler lost the sight in 
his right eye at the age of 30; that he lost the sight in his other eye at the age of 63, and yet 
completely blind, he continued to produce an average of one mathematical paper per week 
(Dunham, (1999))? What about that Wronski ended up insane (Agnew (1960))7; that the famous 
John Horton Conway often lectures barefooted; that Einstein often wore shoes without first 
putting on socks, that Ron Graham (former president of the AMS) often does a handstand in the 
middle of a lecture–or starts juggling oranges and other objects at will during his lectures? What 
about the fact that Erdös had no home, and that he simply roamed the world looking for 
individuals with whom to do mathematics that were willing to take him in? What about the 
controversy between Erdös and Atle Selberg (a permanent member in the Institute of Advanced 
Study at Princeton) over the ownership of a theorem surrounding the Riemann Hypothesis; two 
                                                 
7 Josef Höené Wronski (1778-1853) was named Josef Höené at birth, but he took the name of Wronsk 
after is marriage in 1810, and from that point on when writing papers, he used the name of Höené 
Wronski without a first name. He is mostly known for his work in the philosophy of mathematics, 
although he also did some fundamental work in differential equations. The Wronskian of n functions u1, 
u2, · · · , un is the determinate of order n which has these functions as the elements of the first row, and 
their kth derivative as the elements of the (k + 1)st row (k = 1, 2, · · · , n − 1). The functions are linearly 
dependent on an interval, if and only if, the Wronskian is zero on that interval. 
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men in the mathematical community who are known for their modesty, who didn’t have a vain 
bone in their bodies, and who were academically generous to a fault–how could a controversy 
crop up between them; but it did (du Sautoy,(2003)). What about John Nash (a mathematician 
who won a Nobel Prize in 1994 for work he did in game theory) being schizophrenic, and that 
one of his sons, who also has a doctorate in mathematics, is schizophrenic too? Should students 
hear such things from us in our lessons? 
 
Every discipline has such tales and tidbits of gossip and intrigue. Should teachers bring up the 
physical infirmities of Stephen Hawking (of black hole fame in physics), or the irony that Beverly 
Sills, one of the foremost divas of the Metropolitan (NYC) operatic stage, has children who are 
deaf and who have never heard a single note their mother has sung; What about the fact that 
Beethoven was deaf; that it is said that Paul McCartney (the former Beatle who recently wrote an 
opera) cannot read music, or that Mozart seems to have been a musical genius through whom 
some say God spoke, but who was a scoundrel in real life. Every field, yes every field, has such 
stories. 
Here is how E.T. Bell addressed this topic in his classic book: Men of Mathematics; Another 
characteristic calls for mention here...several have asked that I address the sex lives of great 
mathematicians. In particular these inquirers wish to know how many of the great 
mathematicians have been perverts–a somewhat indelicate question, possibly, but legitimate 
enough to merit a serious answer in these times of preoccupation with such topics. His answer 
was: None. (Bell continues on saying that the majority of mathematicians were happily married 
and that they brought up their children in civilized and intelligent ways (Bell, (1965)). Bell’s 
answer seems to be flippant for the point of expediency; he simply didn’t want to address such 
questions, taking the stance that mathematicians are on average, no different than anyone else–
except of course when it comes to mathematics. But if Bell is correct, the above vignettes show 
there are more than a few anomalies around. The question is, should such aspects of their lives 
be mentioned in the classroom? Knowing that there were laws in England in the 1950’s that 
forced the police to arrest Turing is, I believe, important for it shows how English society at that 
time looked at homosexuality. Admittedly Turing brazenly flaunted his homosexuality, but still, it 
was English law that drove him over the brink; a man who assuredly helped England win the war 
and on whom the English government had showered much praise and appreciation. Does 
knowing about Turning’s homosexuality detract from our appreciation of his mathematics, or 
does it add a subtle dimension to it? 
 
Anglin (1992) claims that there are many ways to present mathematics and its history. He 
approaches this topic by asking a series of questions. Several of them are: Should a history of 
mathematics revolve around individuals and their private lives? Or should a history of 
mathematics be organized in terms of nations or races? Or should a history of mathematics be 
told in terms of chronological periods? Whichever way is chosen for presenting the history really 
isn’t of much interest to us, because we are simply asking if such things as Newton’s alleged 
virginity should be mentioned in the classroom, or Bloch’s murdering his family, or Turing’s 
homosexuality, or the fact that many mathematicians seem to have spent time in mental 
institutions? Should we only mention the positive? E.g., that Euler did wonderful mathematics 
even when he was completely blind; that Solomon Lefschetz (chairman of mathematics at 
Princeton) lost both of his hands in a chemistry experiment in his youth; that ended his hopes of 
becoming a chemist–so he became a brilliant mathematician instead; or that Norbert Wiener was 
terribly insecure in most areas of life, but that he was gigantically successful as a mathematician? I 
have posed these questions to colleagues and I have received responses covering the entire range 
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from an emphatic and emotionally delivered no, we should only address their mathematics and 
not the stories around them, to an emphatic yes, the stories make the mathematicians all the 
more human. 
 
The general consensus of opinion is that teachers should: i) know the above and other similar 
stories but ii) only present to students those with which they themselves feel comfortable in 
discussing. But it seems that even here–with this practical guide of doing that which one feels 
comfortable with–there are problems. Why? Because by ignoring the distasteful, history is going 
to be distorted, and that doesn’t seem to be right. Let me explain. 
 
4. Discussion: A Personal Bottom Line 
I have argued that each of us should be aware of the above vignettes and of the many other 
similar stories that are easily accessible to us in the literature– and that we should use our 
discretion in presenting them to students. Mentioning that Einstein often went without socks, 
and when he did wear them he sometimes put them over his shoes, that he liked to study 
barefooted with his feet in cold water because he thought it helped him concentrate, that he was 
often forgetful to the point of being comical, etc., is fine with me. It is also fine with me to 
mention his alleged dyslexia, for I believe that his accomplishments become all the more 
astonishing, and that it drives home to students the fact that dyslexia and intelligence are two 
distinct and independent phenomena; as are physical infirmities and intelligence, as well as sexual 
orientation, and political beliefs and intelligence, etc. But I admit that although there are many 
things I do not feel comfortable in discussing, they cannot be left unsaid. Let me start with the 
Nazi business of Bieberbach and Teichmüller by relating a story about the music of Richard 
Wagner in Israel. 
 
In Israel, my country, the music of Richard Wager is not played in public; it is not played on the 
radio and it is not played in public concerts. As far as the older Israeli public is concerned, 
Wagner did not exist–or at least they wish he hadn’t. Why? Because Wagner was a rabid anti-
Semite; Hitler claimed that Wagner’s music inspired him, and Jews were marched to their death 
in the concentration camps during WW-II listening to Wagner’s music being blasted over 
loudspeakers. That was more than 60 years ago, and still his music is boycotted in Israel, at least 
in public. There have been many conductors who have argued that it is time to bury the past–and 
they have scheduled Wagner into their programs –but fisticuffs have often broken out within the 
audience between those in favor and those opposed to listening to Wagner, and fisticuffs have 
even broken out between the members of the orchestra during rehearsals! Even when it is well 
advertised that Wagner will be played and that some patrons might want to skip that particular 
concert, well organized demonstrations meet the concert-goers outside the concert hall, and 
perpetrators are often planted in the concert halls who are bent to do their utmost to stop the 
concert before the first note of Wagner can be heard. But within the academic musical world in 
Israel, Wagner most certainly does exist; his music is studied, and so is his goal of trying to unite 
drama, art, and music into an art form larger than its constituent components. Wagner’s political 
beliefs and the inspiration his music gave Hitler are not generally discussed in the music 
academies, although most pupils in this country are well aware of them. But should the same 
turning of a blind eye be done when speaking about Bieberbach and Teichmüller and their 
mathematics? On a general level, I don’t know the answer to this, and I feel very uncomfortable 
in discussing this nasty business. On one hand, I want to take the easy way out and simply ignore 
it all; but I know that these men hurt many individuals, and the evil they did to them should not 
be whitewashed. Smart people in one domain sometimes do stupid things in other domains. 
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Bieberbach denied that the Holocaust existed. In today’s Germany he would be brought to trial 
for speaking such beliefs (Haaretz, 2006). Birkhoff has been accused of anti-Semitism and so has 
Shafarevich. I think it is wrong to ignore their activities in this domain, and to let history portray 
them, through omission, as being more humane and understanding then they were. So in the 
classroom I have taken the stance that one’s mathematics should not be divorced from other 
aspects of their life, or from the political and social atmospheres of the times in which they lived. 
I don’t dwell on it, but if a person was a murderer, or a scoundrel, or an anti-Semite, or if he 
overcame some mental or physical malady, I believe that it should all be mentioned to our 
students. Knowing such stories will not only enrich our lessons, but they will hopefully influence 
our students to emulate the good and to despise the bad. Life means interacting with others, and 
this applies to mathematicians too; knowing the flaws in character and the strengths and 
weaknesses of the individuals whose mathematics we teach, can only help our students to think 
and reflect, and that is what our profession is all about–moreover, speaking about such things 
seems to be the right thing to do. And hard as it is to accept, there seems to be common 
denominator between the individuals mentioned above. Each of them was passionate and fiercely 
independent about what they believed in; each stubborn to a fault; each was a work-a-holic; and 
each made an impact on the lives of others in their generation, and generations to come. Do such 
elaborations belong in the classroom? You bet they do. 
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Abstract 
In this extended essay, I use cultural-historical activity theory to look at the questions Theodore 
Eisenberg raises about the inclusion of historical facts, both historical tidbits and ethically 
questionable tendencies and horrific actions (the Shoah), in the teaching of mathematics. I 
conclude by suggesting that the ultimate answer has to be one that involves a decision, which 
means that an answer cannot be provided a priori or be determined by any antecedent. Deciding to 
include this or that in a mathematical curriculum is an ethical act. 
 

Pardonner le pardonnable, le véniel, l’excusable, ce qu’on peut toujours 
pardonner, ce n’est pas pardonner. [To forgive the forgivable, the venial, the 

excusable, that which one can always forgive, is not forgiving at all.] (Derrida, 
2005, p. 32) 

 
In his article “Flaws and Idiosyncrasies in Mathematicians: Food for the Classroom,” Theodore 
Eisenberg raises an interesting issue: Should mathematics teaching merely focus on mathematical 
concepts or should mathematics students (at school and university levels) also know about the 
lives of the mathematicians who first articulated a theorem or solution, the cultural context 
within which some mathematicians have worked (Nazism, Russian dictatorship), etc.? Some of 
the examples he features are those of Einstein wearing shoes without socks—I never wear socks, 
and always sandals rather than shoes, even during visits to central Canadian cities in the winter—
and Alan Turing, often considered to be the father of computer science, being homosexual.  
 
Eisenberg raises other issues that are more serious, concerning, for example, the appropriation 
and appreciation of the products of labor by anti-Semitic scholars and artists. He has not 
addressed another situation, that of anti-Semitic philosophers or philosophers who did not 
declare opposition to the Nazi regime, such as Martin Heidegger. For me, therefore, there are 
two levels of questions. First, should we use and enjoy the productions of these people—
Heidegger’s philosophy, Wagner’s music, the findings and productions by Nazi scientists and 
mathematics? Some individuals do not appear to mind, as we can see from the fact that the novel 
Seven Years in Tibet, written by the Heinrich Harrer, a member of Hitler’s elite SS, recently was 
turned into a film for a second time. Here, producers, participants in the making of the film, and 
audiences willingly contribute to the perpetuation of a part of Harrer’s autobiography. More so, 
the author’s subsequent autobiography Beyond Seven Years in Tibet, My Life Before, During and After 
has been released in 2006. 
 
                                                 
1 mroth@uvic.ca 
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What should we do about the findings of psychological studies that clearly would no longer pass 
any human research ethics board? One such study was conducted by Stanley Milgram. In this 
study, ordinary people began to “punish” other ordinary people with electrical shocks of 
increasing intensity—and despite increasing expressions of pain—obeyed the experimentalist to 
punish their non-compliant victims even harder. Many of the participating subjects left the 
experiment traumatized because they had found themselves committing horrendous violence—
they did not know that their “victims” were actually faked—similar to the once committed by 
Nazi torturers. Nowadays, Milgram’s study probably would not pass the human research ethics 
requirements on “minimal risk,” such as those that the Canadian National Council on Ethics in 
Human Research, representing the Tricouncil (which units the three councils funding research in 
(a) social sciences and humanities [SSHRC], (b) science and engineering [NSERC], and (c) health 
research [CIHR]), adheres to. And excuses such as “I was simply following orders” no longer will 
cut muster. 
 
And what should we do about the studies Nazi doctors did on hypothermia using concentration 
camp interns from Auschwitz, Birkenau, and Dachau leading to the death of many “research 
participants” (really, subjects subjected to atrocities)? 
 
And how does the idea of forgiveness play in here? 
 
Eisenberg’s paper raises many questions and, fortunately, the author is not subject to the hubris 
of offering simple answers to these difficult questions. In science education, there is an ongoing 
debate about the usefulness of teaching not just science content but the nature of science, which 
means, providing students with opportunities to learn about how science is practiced—including 
its contingent nature that the science studies literature reported over the past three decades. 
Surely, what we do in everyday life generally, and how we understand ourselves specifically, 
mediates what we do professionally. My own activities of intensely gardening (supplying year-
round all vegetables we need), cooking (I do the cooking at home), building (I finish the 
basement, lay tiles and hardwood floors, etc.) have given me an appreciation of the role of the 
body in knowing; and I have exploited this understanding in the theories of knowing, learning, 
and meaning with respect to mathematics in the lives of professional scientists. Thus, for 
example, over 50 percent of research biologists could not interpret a graph that appeared in a 
first-year university textbook of their own field. Yet some did provide successful interpretations, 
and these drew on their everyday experiences—for example, going hiking in the local mountains 
or fertilizing plants and vegetables in their gardens—as resources in their interpretations.  
 
To get a better handle on these issues and questions, I use cultural-historical activity theory, 
because it makes me look at the systems within which such things as mathematical theorems, 
technological artifacts (atomic bomb, rockets), scientific knowledge, philosophical masterpieces, 
musical oeuvres, or paintings and sculptures are produced and reproduced. In the following, I 
outline the theory and then use it to look at the issues that Eisenberg raises in his article. 
 
A Cultural-historical Activity Theoretic Perspective 
 
The Historical Roots of Cultural-Historical Activity Theory 
 
Cultural-historical activity theory was founded by Russian psychologists (e.g., Leont’ev, 1978) 
discontent with the way in which most Western psychologist reduced human activity to the 
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intentions and actions of individuals, on the one hand (as apparent in the famous Vygotsky–
Piaget debate), or to the determination of human agency by environmental factors, on the other 
(behaviorism). They proposed, instead, to use entire activities as the unit of analyzing human 
productions; here, an activity is denoted by a verb such as farming, manufacturing tools, tailoring, 
hunting/fishing, doing university-based research, and so forth. Different activity systems together 
allow societies to survive, as the needs of individual human beings are satisfied through the 
exchange of resources to meet fundamental needs, such as food, clothing, and shelter. Thus, it 
would be unthinkable today to have a mathematician living like Diogenes in a barrel without 
doing something in exchange for which he or she would receive food, clothing to live in 
Canadian climates, and a heated home.  
 
Activity Theory in Its Present-Day Form 
 
Activity theory later was taken up in the West, where, in one of its two main versions 
(Engeström, 1987), the structural aspects are highlighted in a mediational triangle (Figure 1). 
Before explaining the figure in its details, I must highlight three important points. First, the 
triangle has to be thought as consisting of two mutually constitutive layers, one describing the 
material world, the other describing how the material world is reflected in human consciousness. 
Thus, as Alexei N. Leont’ev frequently is quoted to have said/written, the object exists twice—
once materially, once in the consciousness that reflects the material world. Second, the triangle 
only represents the structural aspects of human activities only, pushing the agency required to 
mobilize structure into the background. Thus, while looking at Figure 1, readers need to keep in 
mind that it represents the structure of activity, but that it really requires agency to mobilize the 
resources available in this structure. Third, the triangle constitutes a static representation pushing 
the historical aspect of the theory into the background. Thus, as its name suggests, cultural-
historical activity theory emphasizes the historically and culturally contingent aspects of human 
consciousness. Therefore, what is possible today in terms of mathematical proofs particularly and 
mathematical praxis more generally would not have been thinkable 50 or 100 years ago, or, to 
sharpen this issue, it would not have been possible yesterday. To understand activity systems, 
such as the one producing new mathematical knowledge, we therefore always need to study 
mathematical culture in its historical dimensions. The question Eisenberg raises about teaching 
some of the contingent elements in mathematicians’ lives can be answered in the affirmative, for 
anything that happens in an activity system leaves its mark on the activity system, including, for 
example, its outcomes (mathematical knowledge) and its subjects (mathematicians as persons). 
 

 
Figure 1. The structure of cultural-historical activity theory contains 6 main moments that cannot be 
reduced to each other. Activity as a whole, therefore, is the unit of analysis. 
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Cultural-historical activity theorists take activity as the minimal unit of analysis. Thus, the triangle 
in Figure 1 as a whole needs to be considered when we want to know how, for example, new 
mathematical theorems are produced. Because activity is the minimal unit, none of the terms in 
the figure denotes an “element” (as some researchers falsely do, even those who self-declare to 
be practicing cultural-historical activity theory). Rather, these terms denote moments, that is, parts 
that can be articulated on heuristic grounds but cannot be thought independent from other 
isolable parts because all of those aspects mutually constitute each other (Roth & Lee, 2007). 
Philosophically inclined readers may think of the term singular plural, where the whole constitutes 
the parts and the parts constitute the whole; mathematically inclined individuals know analogous 
phenomena in systems of coupled differential equations for dynamical systems that cannot be 
separated in which the current value of certain variables appear as parameters in the evolution of 
other variables. This then makes it immediately clear that from the chosen theoretical perspective, 
we cannot think of mathematical theorem production in terms of a mathematician’s mental 
structure and content.  
 
In activity, three levels of events need to be distinguished yet at the same time understood in their 
mutually constitutive nature: activity, action, and operations (Leont’ev, 1978). An activity—
consistent with its origin in the German concept Tätigkeit and the Russian concept 
deyatel’nost’—refers to a form of event at the societal level that contributes to sustaining the life 
form. Thus, farming, teaching, producing tools, fishing and the likes are activities—doing a 
mathematical problem in high school is a task. Activities are interconnected, exchange people, 
products, and money and in so doing, contribute to meet human needs. Activities therefore are 
oriented toward object-constituted motives. More so, activities contribute to the sense of actions 
(Figure 2), which concretely realize activities. Actions are oriented toward the goals individual and 
collective subjects set themselves to transform the relevant object into an outcome (product). 
These last three sentences point us to the dialectical relationship between activities and actions 
(Roth, 2007a). Actions realize activities, but activities provide the sense for an action: the same 
action is associated with a different sense in a different activity (showing the middle finger to a 
teacher who requests silence is different to showing the middle finger when a team mate requests 
receiving the ball). Actions and the goals they pursue are realized by operations, which are not 
conscious but determined by the context—we walk to the fridge to get some ice, but the walking 
itself is realized by steps that we do not think about. But operations are produced only in the 
service of realizing goal-driven actions. There therefore is another dialectical relationship between 
conscious, goal-directed actions and contextually determined operations, each presupposing the 
other. Here, goal-directed actions serve as a referent in the unconscious “selection” of operations. 
Together, the two dialectical relationships between activity and actions, on the one hand, and 
actions and operations, on the other hand, denote a process that I term meaning. As actions may 
become routinized, they turn into operations; operations also may be “copied” unconsciously 
while someone participates with others in research or daily activities (by means of a process that 
has come to be termed mimesis). In this way, operations really constitute crystallized forms of 
cultural practices (i.e., patterned actions). 
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Figure 2. An activity, although it constitutes the unit of analysis should be analyzed in terms of 
three levels that stand in dialectical (mutually constitutive) relations. 
 
Emotions, as I recently showed in an analysis of mathematics in the workplace (Roth, 2007b), are 
central to events at the conscious and unconscious levels. At the selection of goals, human beings 
will select those that have a higher valence, that is, that promise some sort of pay-off associated 
with satisfaction (higher salary, well being). Mathematicians do research and write papers because 
of the positive emotional valence that comes with innovation and achievement, because 
publication leads to pay raises, or because of some other reason associated with some pay-off. At 
the unconscious level, our current emotional states (feeling down, elated) are part of the contexts 
that shape the production of operations. We know that there are days that we do not feel like 
doing research or where we do not feel like writing, and no external force driving us will improve 
the results.  
 
In the following, I use a recently paper published in a journal of applied mathematics (Lü, 
O’Regan, & Agarwal, 2007) as an exemplary case to explain Figure 1, though not having followed 
them around with my camera, I am not in a position to write about the emotional aspects in the 
way I have done it for fish culturists (Roth, 2007b).  
 
An Exemplary Case of an Activity System in Applied Mathematics 
 
The three authors of the paper “Existence to singular boundary value problems with sign 
changing nonlinearities using an approximation method approach” set out to produce two 
theorems concerning singular boundary value problems, theorems that—in the words of the 
authors—constitute the original contribution of the work. In terms of the theory, the three 
authors constitute the subject, the singular boundary value problems the object, and the theorems 
the intended outcome of the activity. What they do is mediated by the tools they have available, 
which may have been some form of electronic means to communicate between their institutions 
located in China, Ireland, and Australia, respectively. That we cannot reduce the different 
moments also is immediately evident, as the object of activity (boundary value problems) and the 
outcomes (theorems) define the nature of the subject, applied mathematicians, but the nature of 
the subject as mathematicians defines the object. To return to the analogy with the coupled 
differential equations, the temporal evolution of the object and the temporal evolution of the 
subject cannot be thought (modeled) independently because the state of one at a point in time 
enters the evolution equation of the other. More so, in a world where difference is required for 
thinking, the object defines the very nature of the subject. Thus, we would not find everyday folk 
doing singular boundary value problems: Solving such problems makes sense within the 
community of mathematicians and within activity systems of mathematics; it does not make 
(immediate) sense in other communities, where this might be considered something outlandish 
(think about what Einstein’s coworkers in the patent office might have thought about him if they 
knew he was working on what came to be known as relativity theory). Also, we cannot 
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understand what has been produced without the means of production, which mediate between 
subject and object. Thus, mathematical activity has a mediated nature.  
 
There are further mediations at work to understand the actions of the mathematicians. For 
example, the division of labor that the three authors have chosen mediates the relation between the 
subject and object—the “flavor” of the solution proposed may depend on who does what and 
who takes the lead. The community of applied mathematicians also mediates the relationship 
between subject and object, as it will be the recipient and “consumer” of the outcomes of this 
activity. Therefore, what constitutes a legitimate object of mathematical activity and who 
constitutes a legitimate mathematician depends on (is mediated by) the community of 
mathematicians. This also is immediately evident when we think of the first people to read a 
manuscript: editors and reviewers. The manuscript has to address the concerns of these recipients 
(“consumers” [Figure 1]) to make it into a scientific journal in the first place. Thus, the three 
mathematicians do not just develop theorems and proofs, but they do so in a way that they 
presuppose others to recognize as legitimately mathematical. More so, much of what 
mathematicians do does not require conscious reflection: Few scholars I have met know, in terms 
of formal rules, how to write a good paper: they know to write a paper in the same way they 
know how to walk or in the way children speak grammatically correct without knowing formal 
grammar. That is, much of what mathematicians do happens at the level of operations, which 
may have been the result of explicit actions that have crystallized or that they may have 
appropriated by unconsciously emulating others within the culture. The Chinese funding agency 
NNSF, acknowledged in the first footnote, also mediated the object, as its grant enabled the 
pursuit of the solution and the production of the theorems. Finally, there are rules that mediate 
between the mathematicians and their object. Thus, for example, to solve the singular boundary 
value problem requires a particular procedure, the proposal of the theorem and its proof, 
including the production of lemmas and corollaries that are required to achieve the outcome in the 
concrete way that it present itself to readers (“consumers”) of the article. 
 
Consequences of Activity Theory for Thinking about Tidbits 
 
Two main points need to be made here. First, if human activity is mediated then all moments of 
activity make their mark on the outcome, including the means of production, the particulars of 
the (individual, collective) subject, and the community. For example, the arrival of computers on 
the scene in the 1960s allowed new forms of doing mathematics to emerge, even though 
mathematical purists do not accept the use of computers as legitimate. More so, what is 
acceptable mathematics is a function of the current state of the mathematical culture, which is a 
characteristic of the mathematical community of the day. But so was the theory of the delta 
function that the physicist Paul Dirac introduced, but which formal mathematicians did not 
initially accept as a legitimate object of inquiry until a rigorous definition of distributions as 
functionals was produced a few years later (Balakrishnan, 2003). In a strong sense, therefore, 
particulars of the individual and collective subject make their mark on the outcomes. Simple, 
mundane, and everyday experiences may therefore mediate the solution to scientific problems. 
For example, one story about the discovery of the chemical structure of benzene suggests that 
Friedrich August Kekulé had a daydream of a snake biting its tail. Other versions of the discovery 
say that he might have seen a dance with multiple couples joining up in a ring. (The 2005 Nobel 
Prize in Chemistry was given “for the development of the metathesis method in organic 
synthesis,” a process explained in terms of a “ring dance with partner exchange” between alkene 
and catalyst pairs.) Quite innocuous events, images, and observations may provide solutions to 
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important scientific and mathematical findings, for which individuals are credited, though they 
received rather then intended the insight provoked by their being part of everyday collective and 
material life. 
 
Now if we were flies on the wall watching mathematicians at work, then to understand what is 
happening, mathematicians’ actions, we would need to look at the activity system as a whole. (I 
am aware of at least two studies that looked at mathematical activity in real time: Livingston 
[1987] videotaped the reproduction of Gödel’s theorem by two mathematicians, and Mertz and 
Knorr-Cetina [1997] studied theoretical physicists working out some aspect of string theory, that 
is, the BRST cohomology of the W-algebra.) We cannot just be concerned with presupposed 
contents of the mathematicians’ minds, but we have to take into account the means they use, the 
community that they intend the products of their labor for, the (tacit/implicit and explicit) rules 
they adhere to, the division of labor they enact, and so forth.  
 
Implications of an Activity-Theoretic Perspective 
 
Cultural-historical activity theory allows us to better appreciate the relationship between 
individual and collective. The individual but realizes a possibility that exists at the collective level. 
The simultaneous emergence of the verb “to google” in the Anglo-Saxon world is but an 
example of this fact. Another example is that of language emergence: At the very instance that a 
(first) human being articulated a first word or phrase, he or she had to presuppose that the 
listener already understood, and therefore, the first speaker was not the first linguistically 
competent individual after all given that the recipient of the message (listener) had to be equally 
competent.  
 
From cultural-historical activity theory we can learn two main things pertinent to the issues that 
Eisenberg raises. First, the outcomes of activity bear the marks of every single moment that one 
can identify in the system as a whole. Second, and arising from the first, there are strongly viewed 
no individual contributions, because individual achievements are the outcomes of historical 
reconstructions where the system as a whole has been abstracted and made to disappear. Thus, 
the shoemaker or factory worker producing Einstein’s shoes, the tailor who cut and sewed his 
suit, the farmer producing the wheat for his bread, the architect and construction worker making 
his home all have been abstracted, though Einstein could not have lived his life without them. 
Third, cultural-historical activity theory teaches us that we produce and reproduce society at a 
point in time that is culturally and historically contingent. Had Einstein lived 50 years before, he 
likely would not have been in the position and would not have had the resources to produce 
general or specific relativity theory (for which he has become most well known), his paper on the 
photoelectric effect (for which he received the Nobel Prize), or any of the other contributions 
that he now is celebrated for. More so, 50 years later, he would not have been in the position to 
invent these theories, as someone else would have likely invented them because the time was ripe 
and the resources available for framing and solving these problems. This is so because at the 
collective cultural level, there are action possibilities; at the time of Einstein, a reformulation of a 
number of issues in physics could be undertaken. Sooner or later someone else would have 
realized these possibilities. 
 
Now, we cannot know whether wearing or not wearing socks has contributed in any way to the 
production of relativity theory or any other of the contribution. But it might have been the case 
that not wearing socks—like taking walks in ice-cold creek water that the Bavarian priest and 
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hydro-therapist Sebastian Kneipp recommended (Einstein went to school in Munich, the capital 
of Bavaria)—contributed to a sufficiently healthy condition that allowed him to do the work he 
did. In this case, if he had been a sickly person, the association between relativity theory or 
photoelectric effect and Albert Einstein might not have come about. In phenomenology, it is 
accepted that our bodies constitute what we can know (e.g., Merleau-Ponty, 1945; Henry, 2003). 
Knowing means knowing to act, not in a reflective way, but in the same way that we know how 
to walk upright without thinking, in the same way that we talk to our neighbors on the street 
without having to think about what to say, in the same way we teach mathematics and statistics 
lectures without having to stop and search for words. This form of knowing leads to the 
production, in real time, of behaviors that are marked by contingencies: we stumble or stutter 
during a lecture, we produce incongruencies and malapropisms, we bend the nail rather then 
getting it into the wood or wall, and so forth. And from such contingencies derive images that 
produce solutions to the hard problems that exist in the science and mathematics. Take the 
following examples. 
 
Einstein used the image of an elevator to consider issues concerning relativity. Now this required 
his knowledge of elevators, and perhaps he had ridden elevators over and over again, such as I 
had done when I was a child in the hotels near the campground where my family staid during its 
summer vacations. From a phenomenological perspective, this is entirely intelligible: his 
experience has changed his way of understanding, and this understanding, intuitive and 
inarticulate as it may have been, became a resource in his thinking about relativity theory as 
Kekulé’s image of the snake biting its tail, an age-old image existing at the cultural level for a long 
time, mediated his solution to the benzene structure. Saying that Einstein was fond of riding 
elevators might be considered a tidbit, but without this experience and the tidbit it gave rise to (if 
this were to be the case), he would not have been able to think through these issues at all. Does 
such a tidbit warrant inclusion in the teaching of physics or mathematics of general relativity: yes 
and no. On a historical level, Einstein may not have been able to produce the principles of 
general relativity, but someone else might have produced it. On an epistemological level, it would 
help us understand that experience is required for anything like conceptual knowledge—a main 
point in praxis theories and phenomenological theories of knowing. We do not need to know 
about his habit—if this were in fact the case—of riding elevators, because someone else would 
have stated the principles of relativity because they constituted a general possibility. And if 
someone else had produced them slightly before or after, its statements would be connected to 
different personal experiences.  
 
Some contingencies and quirks easily can be abstracted from the scientific and mathematical 
productions; or viewed differently, the marks these contingencies and quirks on the outcomes of 
scientific and mathematical activity can be considered minor or invisible so that we may disattend 
to them. Einstein’s quirky habit of wearing shoes without socks may be among those. But in the 
case of Sir Isaac Newton, we have some outcomes of his activities that became contributions to 
mathematics and physics, leading to celebrations of his outstanding qualities and “genius.” But 
other productions were so much marked by his twisted, tortured, and mystical nature that they 
did not make it into the annals and history of standard science (White, 1999). This biographer 
also notes Newton’s homosexual tendencies, his ability to hold grudges for decades, and his 
egomaniac and very petty nature. Thus, Newton’s contributions to alchemy and his productions 
concerning Old Testament prophecies—he thought that the design of Solomon’s temple was a 
code for the entirety of recorded human history—did not become acceptable contributions to 
any official science and therefore do not feature in today’s science (together with his laws) or 
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mathematics textbooks (together with his calculus). That is, to understand Newton’s production, 
we need to understand all these tidbits. To understand Newton as a person, we do need to know 
about his phantasms, his alchemy, and so forth. These tidbits allow us to understand that 
Newton was just another person, with all its idiosyncrasies. But to understand the law of gravity, 
we do not need to know these tidbits. And further, it is not Newton alone who is responsible for 
the law of gravity or the law relating force and acceleration now bearing his name: F = ma or the 
calculus in the form he proposed. The scientific community has taken care that the quirks are 
irrelevant and only those productions come to be recognized as contributions to science that are 
without the contingencies and particularities that characterized Newton’s other productions. 
 
Anti-Semitism 
 
The same will be the case concerning the other main issue that Eisenberg brings forth: Should we 
accept the productions of anti-Semitic scholars and artists? The answer is not easy and my 
inclination is to say that the answer and solution must be inherently contradictory to allow us 
making the choice. If the answer were inherently possible and straightforward, it would not 
require a choosing and taking a stand, and therefore could be delivered in a mechanical and 
mechanistic way. It would not take a human being to implement, but could be programmed into 
a computer, which would produce the pre-determined and pre-programmed solution. 
 
Should we accept the productions made within a society that has anti-Semitic tendencies or made 
by individuals who also make anti-Semitic statements? That is, should we reject the mathematical 
and scientific advances made during the Nazi regime, including scientists and mathematicians 
with declared or undeclared Nazi tendencies or sympathies? History shows that—for pragmatic 
reasons—such tendencies and sympathies often are neglected and even forgotten. (See also my 
introductory example of the Heinrich Harrer book and film.) Rockets were developed during the 
Third Reich, and so was the knowledge and the technology for the atomic bomb, both 
subsequently further developed in the USA and the USSR, including the collaboration of 
emigrated and captured German scientists. Is a rocket or an atomic bomb anti-Semitic? It 
probably is not. Is an atomic bomb anti-Japanese or anti-Nazi? Well, it has been used by the 
Americans who, like Canadians, interned their citizens of Japanese origins despite their allegiance 
to the new home country. And it has been used to kill “innocent” Japanese in Hiroshima and 
Nagasaki, who, as in Germany, may not have adhered to the public ideology but have remained 
silent for fear of being interned and killed in concentration camps. Are scientists responsible? 
Most scientists will respond “no,” conferring the responsibility for the bomb to politicians. 
Others will not be so sure and will want to make scientists ethically responsible for their 
production. 
 
Should we not read the work of the German philosopher Martin Heidegger because of his 
allegiances with the Nazi regime? Some readers may not want to read him for this reason. Others 
may claim that his work, such as Sein und Zeit (Being and Time) does not bear evident marks of 
these tendencies and therefore, like the atomic bomb, can be considered as a philosophical 
achievement acceptable to be discussed in scholarly circles. Do we reject Jean-Paul Sartre because 
he showed sympathies for the repressive regime of the USSR? Do we reject the productions of 
those U.S. scholars and artists that were devout Marxists and Soviet friendly (and for that 
persecuted by McCarthy)? Or should we reject those who assisted McCarthy in the persecution 
of his fellow citizens? Should we reject the productions by present day Israeli scholars because 
they live in, and perhaps support, a political system that causes havoc for Palestinian families who 
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have nothing to do with the attacks of militants and suicide bombers? Should we reject the 
scientific and mathematical findings of U.S. citizens because they live in a country that has the 
death penalty, that, in the eyes of many people around the world engages in unethical and 
inhuman interrogation, internment, and repression practices (Abu Graib; Guantanamo Bay; 
100,000 civilian “collateral damage” in Iraq as a by-product of “fighting global terrorism”)? The 
US is, after all, one of the countries that Amnesty International cites for human right violations 
of the kind that individuals from other nations are tried for in the world court at The Hague. This 
list of questions shows that there are no easy solutions; in fact, any solution may be the possible 
impossible itself. Personally, it is somewhere along these lines that I would like to place myself 
for pragmatic purposes. It would force me to make a decision in each and every case, in each and 
every course I teach, always requiring me to think about the unsolvable mystery of (collective) 
human consciousness that leads us to these aporetic situations. 
 
Coda: Should We Teach the Tidbits of History? 
 
In the manner of Jacques Derrida, one of my most favorite philosopher, who avoids giving 
simple answers to complex problems, I make another turn: Though announcing the end (Coda!), 
I make another beginning. It is a truly Nietzschean (eternal) beginning and renewal. Therefore I 
make another return concerning the question whether we should be teaching about Einstein’s 
socks: In another area of my research, gesture studies, it is well known that some hand-arm 
movements are coincidental, that is, without function in the conversation; these are referred to as 
“grooming” movements, such as scratching one’s arm during a conversation. Other hand-arm 
movements do have a function because they contribute to understanding on the part of the 
speaker or listener: for example, when the listener scratches her head, the speaker may take this 
to be an indication that the listener does not understand or has difficulties understanding. How 
are human beings capable to separate scratching one’s from signaling lack of understanding? 
Pragmatically, we do separate the two forms of hand-arm movements; and if there were a 
misinterpretation to occur, subsequent speaker- or listener-initiated transactional turns would 
seek to rectify misalignment. How do we separate the wheat from the chaff, and is the chaff of 
relevance? 
 
In mathematics (science) education, does it matter for a student to know whether Einstein wore 
socks or not? On the one hand, it does not matter teaching about it: wearing socks and the 
outcome of Einstein’s thinking processes, e.g., general relativity theory, appear to be unrelated. 
On the other hand, it does matter: we are less prone to deify, as this often happens, a human 
being who, after all, is subject to birth, death, and (eating, drinking, defecation, clothing) needs as 
all other human beings. The emperor has no clothes; and Einstein had no socks when he slipped 
into his shoes without them. Einstein was special, as we all are; and he was not so special, as we 
all are. He realized cultural possibilities; as we all do. And he realized some in a way that he 
became celebrated for; as some of us are when we receive awards for work attributed to us (I 
have a few of those). But these rewards are from communities that have enabled and accepted 
the very innovations that we produce—in giving me an award a society actually rewards itself, for 
I would not have published if the community had not been ready for it. Einstein built on the 
knowledge produced by others before him, including Albert Michelson and Edward Morley’s 
experiments on the constancy of the speed of light; he knew of the Fitzgerald-Lorentz 
contraction, and he knew of the transformations that convert the observation of measurements 
in different systems of reference, which were named by the French mathematician Henri 
Poincaré after the Dutch physicist and mathematician Hendrik Lorentz (the Lorentz 
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transformations). Knowing about Einstein’s habit to wear shoes without socks is but one piece of 
evidence to recognize that the emperor does not wear clothes.  
 
My answer to the question whether we should teach historical and biographical tidbits has to 
remain contradictory: I personally like to live in a world where we the emperor has no clothes if 
this is the case. In my work with graduate students and colleagues, I always make this point clear 
whenever someone asks me about my scholarly productivity or produces some other laudatory 
comment, for example, about the number of prizes and awards I have received. I always 
comment that all these accomplishments would have been impossible without the community 
that was the very source of the possibilities that I concretely realized, but which someone else 
could have realized as well. So sometimes I point out that I, too, do not wear clothes, experience 
pain, suffer, am elated, and so forth. 
 
The question whether we should teach the tidbits of mathematics and science history depends on 
how we see ourselves. The answer therefore has to remain aporetic, forcing us to make choices 
rather than accepting present conditions that dictate to us whether to include tidbits and the 
Shoah in mathematics (science) teaching. Are we like dog trainers, getting the best to perform 
whatever we teach? Or are we educators interested in more than the mechanical transmission of 
knowledge and skills? Should high school students know about the context within which 
mathematical knowledge was produced? Definitely so! Does this mean knowing about the 
presence or absence of socks on Einstein’s feet? Perhaps. Should university mathematics students 
know about Einstein’s socks? Perhaps, especially if they do not continue to pursue graduate 
studies in mathematics and become professional mathematicians. Education means that we know 
how the world works; training means that we acquire some routine skills without worrying about 
their epistemological and ontological nature. (As a graduate student in physics, I complained to 
my professors that they were teaching us mere skills, and therefore that university was little 
different from vocational school. I said that physics had so many epistemological and ontological 
consequences that we should be discussing. But they responded that training us in certain skills 
was the purpose of university education.) It therefore also means that we live in a world without 
gods. Einstein’s mannerisms concerning his socks is a good way to push a god off the pedestal 
and to recognize him as but another human being who has done his part to reproduce and 
produce everyday, mundane, immortal society. Einstein wears no socks in the same way that the 
emperor does not wear clothes. 
 
Aporia 
 
At the end of his article, Theodore Eisenberg asks the really hard question about what to do with 
“the Nazi business of Bieberbach and Teichmüller” and other issues surrounding Nazism, anti-
Semitism, and the Shoah. Eisenberg states that he “feel[s] uncomfortable in discussing this nasty 
business.” It is not my place to lecture him or anyone else how to deal with this problem, which 
really is an aporia, a problem without solution, or rather, a problem with contradictory solutions. 
(This, especially and because of my German origins, and especially and because my parents were 
only children at the time. These contingencies cannot be excuses, which is a very biblical theme, 
as we know from the concept of “original sin.”) The solution has to be as aporetic as the 
problem. Let me explain. 
 
In making a decision about whether to include historical facts in the teaching of mathematics, as 
well as in decisions about whether to include the work of anti-Semitic (pro-Nazi, pro-Serbian 
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nationalist, anti-American) scholars within the community of mathematicians (scientists, artists, 
culture generally), we must not forget the concept of forgiveness. Here I do not mean the simple 
concept of forgiveness—can I forgive this person, can I not forgive that person—but rather the 
advanced concept of forgiveness in all its complexity (Derrida, 2005). Derrida points out that we 
can only and truly forgive the unforgivable, because if we forgive the forgivable, we have not 
really done anything particular. A computer can forgive the forgivable using an algorithm. And, 
as the title Pardonner: L’Impardonnable et L’Inprescriptible (To Pardon: On the Unpardonable and 
Imprescriptable) suggests, pardon generally and pardoning the unpardonable specifically cannot be 
prescribed (which is why it is not my place to lecture anyone on how to deal with the issue). If we 
can forgive Bieberbach, Teichmüller and the likes, forgiveness becomes mechanical or a matter 
of exchange. If we do not forgive the unforgivable, then we do not make a decision and simply 
submit to the condition. Forgiving the unforgivable, however, is the most difficult task we face. 
To make his point, Derrida discusses the case of the Russian-born philosopher Vladimir 
Jankélévitch (his family emigrated because of the pogroms against Jews), who, in a little book 
entitled Le Pardon (The Pardon), had suggested that pardoning a sin is the greatest challenge to 
judicial logic. Jankélévitch took a hard-line stance and suggested, in L’Imprescriptible, that the 
Shoah (Holocaust) attained such inexpiable singularity that renders impossible any form of 
pardon. Derrida also analyzes poem “Todtnauberg,” written by the German- and French-
speaking poet Paul Celan (born into a Jewish family in Romania) after his visit of Heidegger at his 
home in Todtnauberg, a poem in which he points to (in his usual oblique style) what he had 
hoped to hear so much:  
 
. . . 
die in dies Buch  
geschriebe Zeile von 
einer Hoffnung, heute, 
auf eines Denkenden 
kommendes 
Wort 
im Herzen, 
. . . 

. . . 
the in this book  
written line of 
a hope, today, 
for a thinker’s 
coming 
word 
in the hear 
. . .  

 
But his host (Heidegger) did not pronounce it: the request to be pardoned for his allegiance to 
the Nazi regime. Derrida takes up the complete opposition Jankélévitch showed with respect to 
any forgiveness of the Nazi crimes and shows that a solution to this problem dignified to be 
named such has to remain aporetic and contradictory. Derrida suggests that the pardon has to be 
asked for, to be just, for the fact to be just, and because the one asking is just, and, because to be 
just one has to be unjust (i.e., asking for forgiveness of the unforgivable). But Oswald 
Teichmüller and Ludwig Bieberbach are no more; they cannot in any way ask for forgiveness. Yet 
we must be in a position to forgive the unforgivable that they enacted. The upshot is that we may 
pardon the unpardonable, forgive the unforgivable; and this, too, can become part of our 
teaching (mathematics, science, philosophy, music, art).  
 
Epilogue 
 
I am glad Theodore Eisenberg took up the challenge to address not only the small problems like 
Einstein’s socks but also the real hard and unsolvable problem of the Shoah (and similar 
atrocities, the genocides in Rwanda and Serbia, etc.). If there were a simple solution, it would not 
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be a real problem. I like the internal contradiction the author leaves at the end—feeling 
uncomfortable with the “nasty business,” but at the same time, as a step toward forgiving what 
remains unforgivable, “teaching the strengths and weaknesses of the individuals whose 
mathematics we teach.” I see it as a move toward a better world, hopefully one without atrocities, 
one in which people of all races and believes resort to mechanisms other than violence to resolve 
their unavoidable differences—whether they are Catholics and Protestants in Ireland, East and 
West Germans, North and South Koreans, or the within-Semite differences between Israelis and 
Palestinians, now living divided on the two sides of an emerging concrete wall. 
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Comments provoked by "Flaws and idiosyncrasies in 

mathematicians: Food for the classroom?" by Theodore Eisenberg 
 

Brian Greer 
Portland State University 

 
Abstract 
In mathematics classes, it is appropriate for many reasons to discuss mathematicians as people 
with lives, personal problems, both influenced by and influencing cultural movements and 
societal issues. Mathematics is a human activity, and mathematicians are human. Eisenberg's 
paper raises important and fascinating issues, such as the extent to which intellectual 
achievements can be kept separate from the personality and actions of their creator (such as 
Wagner). However, in my reactions, I suggest ways in which I believe the discussion needs to be 
broadened and refocused.  
 
Nature of the sample of vignettes 
The set of vignettes presented in Section 2 could serve to reinforce inaccurate and harmful beliefs 
about the nature of mathematics: 
 
• Academic mathematics is solely a European intellectual achievement 
Until comparatively recently, histories of mathematics were extremely Eurocentric. Such bias has 
been substantially corrected by scholars such as Swetz (1994), Joseph (1992), and Powell and 
Frankenstein (1997). There is no lack of examples of eminent non-European mathematicians – 
Ramanujan (Rao, 1998) immediately comes to mind (and in personal and social terms, his 
relationship with Hardy is of particular interest (Kanigel, 1991)). The representation of 
mathematics as the creation of solely dead, white males can be considered as a form of symbolic 
violence against non-European and female students. 
 
On a specific point, the claim that "Isaac Newton … is a name that is known in most households 
throughout the educated world" is doubly disturbing. In any Western society, such as the United 
States, I find it hard to believe that the claim is accurate, unless there is an implicit qualification 
by social class. The claim also suggests that people living in, say, China or Peru are not educated. 

 
• The history of mathematics is a history of great individual achievements rather than of 
collective and cumulative intellectual effort (see below). An example that also has a bearing on 
the previous point is the argument by Almeida and Joseph (2007) that elements of calculus had 
been developed in Kerala at least 200 years before Newton and Leibniz and that lines of 
communication between Kerala and Europe mean that it was likely that this work was known in 
Europe.  
 
• Mathematics was all done in the past 
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The paper contains few references to recent and contemporary mathematicians, for which 
excellent sources, which also portray the individuals as fully-rounded human beings are the sets 
of interviews by Albers and Alexanderson (1985), and Albers, Alexanderson, and Reid (1990).  
 
• Women do not do significant mathematics 
Anglin (1992), begins a section headed "How should the historian tackle the scarcity of women 
mathematicians?" with the forthright declaration that: 
 

Men and women are equal intellectually. Apparent differences between male and female 
mathematical ability are due to social factors such as cultural systems in which men take 
all the educational opportunities for themselves (p. 8). 
 

This statement could be nuanced by reference to particular factors that relate to mathematics as 
opposed to, say, literature. Moreover, as Martin Gardner points out, in his introduction to Albers 
et al. (1990): "Although social forces inhibiting the entrance of women into mathematics may be 
abating, they are still very much with us". In terms of teaching, some suggestions may be made. 
First, there is no excuse these days for referring to the generic mathematician as "he". Second, 
reference should be made to female mathematicians who have made significant contributions 
(which avoiding the temptation, as Anglin (1992, p. 8) recommends, to exaggerate the role of 
women in mathematics). Most importantly, the social and cultural conditions should be carefully 
considered (several instructive examples can be found among the delightful collection of 
anecdotes assembled by Wells (1997)). It should also be considered whether there are aspects of 
academic mathematics as human practice that are differentially alienating to females, such as its 
(perceived or real) tendency to emotional detachment and its long and inglorious involvement in 
the making of war.  
 
What kind of history of mathematics? 
The mere fact that Eisenberg feels it necessary to inform students about the human weaknesses 
of mathematicians is itself a comment on the inadequacy of history teaching in general, whereby 
history is presented to the young as nationalistic propaganda in terms of flawless heroes – military 
leaders, political leaders, intellectuals, industrialists, and so on. 
 
What form should a history of mathematics take? Several possible organizing frameworks listed 
by Anglin (1992) are cited by Eisenberg: individuals and their personal lives, nations or races, 
chronological periods. However, Anglin (p. 7) also comments that "There is no reason why one 
could not write a history of mathematics entirely from a communitarian point of view" and, later 
(p. 8) that "it may be more illuminating to relate a piece of mathematics to its social environment 
than to a fictitious anecdote about the private life of the author of that piece of mathematics". I 
like the suggestion made by Davis (1985) of a balanced approach that he calls "Jamesian" by 
reference to a quotation by Henry James (1917): "The community stagnates without the impulse 
of the individual; the impulse dies away without the sympathy of the community". Such an 
approach rightly rejects the "great men" (literally, in the case of Bell (1965)) style of history. 
Moreover, Davis also raises a number of deep questions about the role of mathematics in society, 
such as: "Why do we, today, allow our military strategies to be so mathematized and 
computerized when the difference of one bit in a program may send all down the road to 
oblivion?". 
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In the examples discussed by Eisenberg, it may be useful to distinguish three levels of increasing 
relevance and importance: 
 

 
1. Details of the personal life and character of the individual.  
There is a certain justification for introducing such details, in the service of enlivening a lesson, 
and stressing the humanity of the individuals whose work is being discussed. Anglin (1992, p. 11) 
also suggests making reference to blunders by mathematicians, which entertainly underlines their 
humanity and undermines the view of mathematics as immaculately conceived. I would suggest 
minimizing the use of personal references in a disconnected way and with an emphasis on 
"spice". Rather, it is appropriate to choose anecdotes in order to make important points. For 
example, consider the letter that Charles Babbage wrote to Tennyson about one of his poems, as 
cited in Wells (1997, p. 51). In this letter, Babbage suggested replacing the lines "Every moment 
dies a man/ Every moment one is born" with "Every moment dies a man/ Every moment 11/6 is 
born", with the comment that, while this is not strictly correct, it is sufficiently accurate for 
poetry. This anecdote, while amusing, also could be the starting point for a discussion of 
alternative ways of seeing the world. 
 
I find it strange that Eisenberg at one point states that "we are simply asking if such things as 
Newton's alleged virginity should be mentioned in the classroom", since elsewhere he does go 
beyond such a narrow focus. It would be of great interest to know whether the incidences of 
various forms of behavior are higher among top-flight mathematicians than among comparable 
groups (e.g. great scientists or artists – or, indeed, people in general), and to investigate whether 
some causal relationship could be established. A subtle methodology is necessary for such 
comparisons, otherwise many well-known subjective mechanisms come into play... 

 
2. Aspects of the mathematician's life in relation to the social and political milieux of his/her 
time.  
A good example, to which Eisenberg refers, is the persecution of Turing in England after the 
Second World War on account of his homosexuality, despite his crucial contribution to that war 
in leading to effort to break the German codes (the play about Turing has the double-meaning 
title "Breaking the Code").  
 
3. Cases wherein the mathematical practices were directly influenced by, or influenced political/ 
social events. 
In my opinion, university curricula for mathematicians and future mathematics teachers ought to 
include at least one course on the social history of mathematics. This should deal with in-depth 
analyses of such issues as the anti-Semitic activities within their academic practices of 
mathematicians in Germany (Segal, 2003) and elsewhere. It should also address more general 
sociocultural topics such as the interplay between probability and statistics, social science, and 
world-views (Hacking, 1975, 1990). Moreover, forms of mathematical practice other than 
academic mathematics (in other word, ethnomathematics (D'Ambrosio, 2006)) should be 
considered in such a course. 
 
A final point regarding the writing of history is the question of accuracy, the problem of knowing 
whether a story is true (a problem which, ironically, has become magnified in the "Information 
Age"). Accordingly, care should be taken in characterizing the provenance of anecdotes (see 
comment by Anglin (1992) cited above). As with all history, that of mathematics is subject to the 
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proliferation of myth through failure to consult primary sources. Moreover, as pointed out by 
Anglin (1992) historians of mathematics are particularly susceptible to subjective biases related to 
their own perspectives about the nature of mathematics. The whole question of the reliability of 
documentary evidence, and of information gleaned from the Internet, is appropriate for 
discussion with students. 
 
Ethical responsibilities of mathematicians and mathematics educators 
Details of the personal ethics of mathematicians (on which Eisenberg tends to concentrate) are 
much less important, in my view, than their larger ethical responsibilities to society. This view has 
been most eloquently expressed by Ubi D'Amrosio (2003): 
 

It is clear that Mathematics is well integrated into the technological, industrial, military, 
economic and political systems and that Mathematics has been relying on these systems 
for the material bases of its continuing progress. It is important to look into the role of 
mathematicians and mathematics educators in the evolution of mankind. … It is 
appropriate to ask what the most universal mode of thought – Mathematics – has to do with 
the most universal problem – survival with dignity. 
I believe that to find the relation between these two universals is an inescapable result of 
the claim of the universality of Mathematics. Consequently, as mathematicians and 
mathematics educators, we have to reflect upon our personal role in reversing the 
situation. (Emphasis in original). 

 
In this respect, discussion by Eisenberg of anti-Semitism in the academy is very appropriate. I 
would have liked to have seen a least a sketch of other possible topics. In particular, the history 
of the involvement of mathematicians in the development of nuclear weapons comes to mind. 
Accounts of the Manhattan Project (e.g. Rhodes, 1986) paint a picture of a group of mainly men 
motivated by patriotism, camaraderie, competition, and intellectual challenge, with little thought 
given to the deeper consequences of their work – at least until after the Hiroshima and Nagasaki 
attacks, and with honorable exceptions. The fact that this analysis is not just a matter of past 
history is made clear by an article under the title "Rival US labs in arms race to build safer nuclear 
bomb" (Vartabedian, 2006): 
 

"I have had people working nights and weekends," said the head of the Los Alamos 
design team. "This is a chance to exercise skills that we have not had a chance to use for 20 years." 
At Livermore Labs, a similar picture: The lab is running supercomputer simulations 
around the clock, and teams of scientific experts working on all phases of the project "are 
extremely excited." (Emphasis added). 
 

Final comment 
The paper is appropriately provocative (in the best sense of the word) and correct in its central 
point that mathematics education should reflect the nature of mathematics as human activity. 
The comments above reflect the various directions in which I think that central message should 
be extended and strengthened and the ways in which the paper provoked me personally. 
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Critique on Eisenberg’s article Flaws and idiosyncrasies in 
mathematicians... 

 
Renuka Vithal 

University of KwaZulu Natal, South Africa 
  
 
 
I enjoyed reading the article and learned some interesting (and disturbing) information about well 
known mathematicians that is not so well known. However in its current form it is more 
appropriate for the popular media rather than as an academic or scholarly article.  
  
 
Having said that it does raise some serious questions of ethics and values that all mathematics 
educators should be engaging. The increasingly popular view that mathematics teaching be 
socially contextualised means that this kind of historical information may be communicated in 
lecture rooms and classroom with little understanding or awareness of the "hidden curriculum" 
being enacted.     
  
 
The questions are posed but left "in the air" as it were. It is largely a descriptive account. The 
article could be theoretically strengthened and give a more grounded set of perspectives from 
which to consider the problem if for example a section were to be included on how such 
questions may be addressed from different ethical theoretical points. The discussion section 
could also draw on some of the debates and literature that advocates (and is against) greater use 
of history to teach and learn mathematics.  The ethics of teaching any history of mathematics 
which includes biographies of mathematicians is the specific and rather novel issue being raised. 
But one is left disappointed that a deeper engagement is absent. A serious mathematics 
curriculum issue is put on the table but not explored from the vantage of different curriculum 
standpoints. For instance how would ethnomathematics, critical, feminist or socio-contructivists 
respond to this challenge?  There is also some repetition in the sections and appears as more of 
the same. I hope these comments will be helpful to the author in improving the article 
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Reaction to the Reactors 
 

Ted Eisenberg 
Ben-Gurion University 

Beer-Sheva, Israel 
 

 
1. A comment. I discussed the contents of my paper with colleagues on many different 
occasions. By their reactions they seem to divide themselves into two camps. One camp takes the 
stance of: Are you crazy to mention such things in the classroom? We are charged to teach 
mathematics, and that’s it. Who cares if Einstein never learned to swim? The other camp 
however takes an opposite stance: Such items are really important for students to know because 
they help students to think about the lives and times of the men who created the material they are 
studying; our lessons are richer because of such stories, and are our students are richer too. 
Obviously I have taken the latter viewpoint, but I am well aware that by simply presenting the 
topics and tidbits that I do, I am publicly displaying areas and concerns in my own personal belief 
system. I like to think that I am helping students decide their own stances on such issues, but I 
am well aware that some tidbits and stories are chosen at the expense of others. When I first 
heard that Beverly Sills had deaf children who never heard a note their mother had sung, I said to 
myself, that is an example of tragic irony–and I have used this as my exemplar of tragic irony ever 
since. And when I first heard that Einstein (and subsequently others) called George David 
Birkhoff “the biggest anti-Semite in America” I was speechless; but it is a fact that G.D. Birkhoff 
did his utmost to keep Jews from major universities in America. Saunders Mac Lane, another 
giant of 20th century mathematics (and a contemporary of Garrett Birkhoff, G.D.’s son who, like 
his father was also the chairman of the mathematics department at Harvard, but who most 
definitely held opposite views on this issue than his father) came to G.D.’s defense, but his 
defense was limp. MacLane said: Look, those were the times; George David simply wanted to 
give American jobs to Americans. It’s as simple as that. Such a defense is easy to understand, but 
hard to swallow. Jobs, particularly in the academic world, should go to the most qualified 
candidate–handing out academic positions on other criteria is a recipe for mediocrity– such is the 
case today, and such was the case in the 1940’s. There is more to teaching mathematics than the 
mathematics itself–I am well aware that it is not politically correct these days to point out flaws, 
foibles, infirmities and ironies in the lives of others–but on the other hand, in some cases it seems 
wrong to ignore them. 
 
2. The Editor’s Modus Operandi. Before submitting this paper to Bharath Sriraman, editor of 
this Journal, I sent him a note stating that I had written what I consider to be a controversial 
paper, and asked him if I had the right to request that it not sent to certain individuals on his 
Editorial Board for review. I went on to say that I personally know several members on the 
Board–and some of them sit in the UK; the University and College Lecturers Union in the UK 
had recently voted to boycott Israeli academics (because of Israel’s treatment of the Palestinians), 
and this boycott was turning into an international incident (a situation Bharath completely knew 
about). So as to not put my UK colleagues into an awkward situation, I requested that the paper 
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not be sent to them. And not wanting to put my Israeli colleagues on the board into the awkward 
situation of judging a fellow countryman, I also requested that he not to send it to them. Bharath 
immediately agreed to both requests and so I sent him the paper, which he read within a day or 
so. He then surprised me by giving ME a list of potential referees and asking ME if I had any 
objections to them! This had never before happened to me, and I must admit that I felt good 
about this modus operandi. As it turned out, I received three reviews of the paper. As you can 
see from the above, two wrote very extensive and penetrating position papers; while the third 
Prof. Renuka Vithal, Dean of Education at the University of KwaZulu-Natal in South Africa, 
made specific recommendations for improving the article. So, let me begin with some of her 
suggestions. 
 
3. Professor Vithal felt that the style of writing was not appropriate for a scholarly journal. She 
specifically stated that the paper lacks a theoretical framework to present the issues that have 
been raised. She wrote in her review: “The questions are posed but left “in the air” as it were. It is 
largely a descriptive account. The article could be theoretically strengthened and give a more 
grounded set of perspectives from which to consider the problem if for example a section were 
to be included on how such questions may be addressed from different ethical theoretical 
points.” She went on to say: “A serious mathematics curriculum issue is put on the table but not 
explored from the vantage of different curriculum standpoints. For instance how would 
ethnomathematics, critical, feminist or socio-constructivsts respond to this challenge?” Upon 
reading her comments I said to myself: I am out of my depth. Theoretical frameworks to discuss 
why some brilliant men (Bieberbach and Teichmüller and their ilk) bullied their Jewish colleagues 
to the point of driving them to the brink of sanity and beyond? (Beyond? Yes, beyond. Felix 
Hausdorff, e.g., (of topologlical space fame; a name known to just about everyone in the 
mathematics community) and his wife couldn’t get out of Germany in the mid-1940’s; jointly they 
committed suicide rather than submit to the end Hitler had planned or them.) What kind of 
theoretical framework is there for presenting a curriculum to describe the world as it was? The 
world had run amuck; are there theoretical frameworks to explain genocide, for turning human 
beings into animals, for understanding man’s inhumanity to man?  
 
Much to my surprise, there are such theoretical frameworks with theological, philosophical and 
humanitarian viewpoints–but I am hardly qualified to discuss them in anything but a superficial 
way. One would think that the Golden Rule: Do unto others as....says it all, but it doesn’t. Let me 
just mention one experiment that stands as one of the central pillars in the theoretical foundation 
of social psychology, and that is very close recent events of our generation. The experiment is 
mentioned by columnist Michael Shermer in his article in Scientific American (August, 2007, p. 
22-23), which tries to understand the Abu Ghraib prison scandal. Suspected terrorists were kept 
by USA forces at the Abu Ghraib prison in Iraq, and pictures and video-tapes were leaked to 
various presses around the world showing USA Military Police guards committing psychological 
and physical atrocities on the prisoners. The world was shocked, and statements of shame and 
disbelief filled the news; how could such a thing happen? 
 
Shermer, mentions the research of 40 years ago by Prof. Philip Zimardo, a social psychologist at 
Stanford University. Zimardo randomly assigned students to being guards or prisoners in a mock 
prison environment. Psychological tests given prior to the experiment showed the students to be 
“normal” on personality and morality scales, but by the sixth day into the experiment, the guards 
had changed into cruel sadists, and the prisoners had turned into emotionally shattered tragedies. 
Out of fear of the direction the experiment was heading, Zimardo stopped it before its 
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completion date. Then the analyses and different explanations as what had happened began, but 
the bottom line was crystal clear: the capacity to do good and evil is in every one of us–and each 
can be brought to the surface without much effort. (See Zimbardo’s recent text: The Lucifer 
Effect: Understanding How Good People Turn Evil, (2007, Random House), or a Robert 
Levine’s reivew of it in American Scientist, 95(3),Sept/Oct. 2007, pp. 440-442.) 
 
This is all getting rather far from the theme of my paper, but apparently theories do exist to 
explain both good and bad, rational and irrational, moral and immoral behavior. It boils down to 
understanding the environment–the environment shapes the moment, and the moment shapes 
the man. I think that Professor Vithal is absolutely correct–if we are going to enter this arena of 
talking about the lives of the individuals whose mathematics we study, we must also speak about 
the times in which they lived. I will expand on this notion when I address several of the concerns 
of Professors Roth and Greer. But putting many of the stories into larger landscapes to 
understand some of the absurdities in behavior as mentioned in the vignettes, seems to denigrate 
a fundamental goal of most educational systems in the world, and that is the goal of trying to 
teach one to think for themselves. Perhaps we can justify the behavior of some of the individuals 
mentioned above, but is it wrong to expect one to go against the tide when the tide is going 
against one’s ethical beliefs? The students in Zimardo’s experiment were normal before the 
experiment started–and yet they easily slipped into sadistic and unconscionable roles. Yes, the 
moment makes the man–and many in the annals of our discipline seems to have failed to rise to 
the moment. 
 
4. Professor Wolff-Michael Roth raised several extremely important issues. The first is that 
there are tidbits, and then again, there are tidbits–and they are of completely different orders of 
magnitude. How right he is, but often they differentiate themselves as they are presented–
Einstein not wearing socks is a tidbit of knowledge; but the chapter in the annals of “Deutsche 
Mathematik” with all of the inhumanity that it brought with it, and which still lingers today, is 
much more than a tidbit of history. I think that Professor Roth’s reaction paper is brilliant, well-
reasoned, well-written, pertinent to the issues raised, and more importantly, it gives the paper a 
theoretical framework that I could never have constructed by myself. For that, for demonstrating 
a deep understanding of the issues, and for looking at them from a different perspective, I thank 
him. His “cultural-historical activity theoretic perspective” with its accompanying examples and 
elaborations make a lot of sense to me–and I agree with his comment that “...if human activity is 
mediated then all moments of activity make their mark on the outcome....” To me, this justifies 
presenting many of the stories and comments in the manner that I have in the paper. I 
understand how he takes this further concluding e.g., that if Einstein had not discovered 
relativity, “..sooner or later someone else would have...” but this gets us into the polemic of: Is 
science created by man or is science uncovered by man?–and I do not want to enter that arena 
because I haven’t the academic skills to defend my opinions which, by the way, support both 
stances on the issue. (I am a bit like Prof. Roth when he asked if it is important that students 
know about Einstein’s socks–and then he stated: “on the one hand, it does not matter..... and on 
the other hand, it does matter....”). Convincing arguments for each side of the polemic can be 
presented –and there seems to be no correct answer.) But let’s move to the “social-historical 
problem” presented in the paper which Professor Roth addresses. In the paper it is argued that if 
we ignore the anti-Semitic behavior of Bieberbach, Teichmüller and others, then by omission, we 
are whitewashing history–and that seems to be ethically wrong. The magnitude of the Shoah is 
hard to comprehend–six million Jews were sent to their death; Israel was born because of this 
genocide, but that is an embarrassing reason for the world to sanction the birth of a country. 
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Singling out Bieberbach and Teichmüller is not a condemnation of all Germans, although the 
world certainly has proof enough as to the harm that often results from extreme nationalism. I do 
not believe in collective punishment; one should not be held responsible for the actions of their 
fathers or forefathers. One should be judged only by their own actions. But of course, that hardly 
ever happens, particularly in Israel. I can give many examples of wonderful young Germans who 
come to Israel to voluntarily work with retarded adults, to work on kibbuzim, and in health and 
social agencies. I don’t know what motivates them to come, but they come–and I am very proud 
and appreciative that they are here–yet others say: they are here because of guilt. I don’t know if 
this is true, but they are voluntarily here doing important work–and I appreciate them. And 
maybe someday the music of Richard Wagner will be heard in Israeli concert halls, but I doubt if 
that will happen in the near future. Admittedly there are hundreds of similar situations from 
around the world that have also produced victims and villains–and I think it is morally correct to 
tailor-make our lessons to discuss them, particularly if our students have in some way been 
affected by them. The world will not improve unless we make peace with these situations–and 
that means understanding them. There is much to the notion of ethnomathematics, and I think 
that Professor Roth has given us a wonderful theoretical justification for building lessons within 
this framework. But one thing we should remember, and that is that every issue has more than 
one side to it–and that as teachers, our job is try to accurately present all sides of the issue, and to 
give to our students the tools and the knowledge to judge things for themselves. 
 
5. Professor Brian Greer. I have known Brian for many years and he has always impressed me 
as being sensitive to and caring about the feelings of others; but my paper certainly touched some 
nerves with him in unintentional ways–and I am sincerely sorry if I have offended him or other 
readers. I had no idea that when I wrote that Newton’s name is known in most households 
throughout the educated world, that it would be interpreted in ways other than I had intended, 
that his name is known to the hoi-polloi. Anyway, Brian has a point; I did not intend to insult or 
slur anyone–and if I have, please accept my apologies. OK, now let me try to address some of 
Brian’s concerns. 
 
Brian claims that the choice of the vignettes “... reinforce inaccurate and harmful beliefs about 
the nature of mathematics as being solely a European intellectual achievement....and that 
mathematics is a discipline that has been pushed forward by white male individual achievements.” 
Well, I believe in mentioning to students where and how notions originate– but sometimes we 
simply don’t know their origins: E.g., “It has long been believed that India first introduced the 
number 0. Now, however, it’s known that the Maya of southern Mexico and Guatemala (ca 300 
B.C.–A.D. 900) discovered and used zero independently of, and possibly before the 
mathematicians of India” ( Smith (1996), Agnesi to Zeno (Key Curriculum Press), p. 47). OK, so 
this is a claim for India and the Mayans. But then in another text we read: “About A.D. 150, the 
Alexandrian astronomer Ptolemy began using the omicron (o, the first letter of the Greek o____ 
“nothing”), in the manner of our zero, not only in a medial but also in a terminal position” 
(Burton, D., op.cit. p. 23). So who should be credited with introducing the notion of a zero? (See 
End note 2_ above.) 
 
Many individuals have raised another of Brian’s concerns, that the development of mathematics 
is presented as having been done exclusively by white, male, Europeans. Although I can 
understand this concern, let’s face it, the mathematics that is studied and known in the Western 
world emanates from the Greeks and it is based on Aristotelean logic. Historians will admit that 
various non-European and non-Western groups and individuals had independently discovered 
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various notions and theorems–but the notions and theorems that were discovered, e.g., the 
Pythagorean Theorem, Frieze Designs (which are so prevalent in the art and embroidery work of 
ancient peoples), arithmetical patterns, etc. were not developed into a body of work as they were 
in Ancient Greece (and in the European/Western world)-nor were they abstracted (as they were 
in the E/W world) during the centuries that followed their discovery. Yes, the mathematics of 
many non-Western civilizations was very advanced–but mathematics as a body of knowledge has 
taken on a particular characterization. Unlike in the field of medicine, there aren’t two different 
and competing mathematical worlds. In medicine we can compare methods from the West 
against alternative methods of treatment–with the bottom line being: has the patient’s health 
improved or not? In mathematics this privilege doesn’t exist. So I think what Brian is really saying 
is that we should let students know that non-white/ non-Europeans have also made major 
contributions to mathematics–and of course, he is correct. But Brian raised the name of 
Ramanujan as an example, and on this one I think that Brian is wrong. 
 
Srinivasa Iyengar Ramanujan was a self-schooled genius who died at the age of 33; he is included 
in Ioan James’ highly acclaimed text Remarkable Mathematicians ( MAA publication,2002), and 
he seems to be the only non-Westerner included in James’ text. He is considered to be the 
greatest mathematician in India’s history, but he was already in the E/W mold of doing 
mathematics when Hardy and Littlewood took him under their tutelage, and this brings us back 
to the point made above. The rules and standards for judging the worth of a piece of 
mathematics are set– and I sincerely believe that they are applied without prejudice to one and all; 
and as I see it, the E/W rules are not going to change. Although Brian and others have voiced 
concern about “other” cultures not being represented even in the history of mathematics 
classrooms, I am not convinced of the validity of this concern. I don’t think that Brian means 
that we should talk about individual men and women who are of non-E/W backgrounds, but 
rather of the mathematics developed in non-E/W cultures. It is true, that non-E/W cultures were 
mathematically advanced, but to recognize for example that other cultures used Frieze diagrams 
is not the same as them having had an understanding as to why there are only a finite number of 
them. Brian’s concern then comes down to talking about individuals from all walks of life as 
having developed mathematics–and of course, this can and should be done. 
 
Along this line, Brian raises the lack of women in the history of mathematics in general, and in 
the vignettes in particular. As mentioned earlier, one is free to choose the vignettes they wish to 
mention–for they are chosen with an agenda in mind; and if one wants to emphasize women in 
mathematics, great, so be it. There are some wonderful stories about women in the annals of 
mathematics but as Brian is well aware, there aren’t many of them (see: NCTM’s Women in 
Mathematics and Science, 1996). Worse, women are not well represented on the lists of the 
“great ones” in mathematics. Type “great names in mathematics” into Google (or some other 
search engine) and various surveys will appear; Archimedes, Newton and Gauss, in some order, 
are almost always listed in the top 5 names– and Einstein’s name often appears in the top 15. 
Interestingly, and appropriate to Brian’s comment, there are lists with specialized concerns; e.g., 
there are lists of great mathematicians of African origins, lists of great women in mathematics, 
and also lists of mathematicians from specific countries. The material is available, one simply has 
to use it. 
 
Brian takes issue with some of my comments on Turing and I admit to feeling very 
uncomfortable in class when I speak about his life and his death. But I try to convince students 
that there seems to be a common denominator connecting many of the personalities discussed in 



Eisenberg 

the vignettes, and that includes Turing too. The common denominator is that the individuals 
were driven to success; they thought about their mathematical problems day and night; they had 
strong personalities and a strong code of ethics; they thought for themselves; they were tenacious 
and obstinate, confident, and competitive. (Many educators have questioned how we can instill 
these characteristics in students–for these elements seem to be the key to success in mathematics 
and in most other fields too. Einstein said that creativity is fostered in democratic societies; and 
R.L. Moore (of U. of Texas fame) proved that mathematicians are developed in competitive 
atmospheres (type R.L. Moore into Google). Turning shared these characteristics too–he flaunted 
his homosexuality to the presiding judge at his trial, knowing full well that he was backing the 
judge into a corner. The judge actually gave Turing a choice, hormone treatment or a year in jail; 
Turing chose the former. One has to respect Turing because he stood up for what he believed 
in–and unfortunately the world lost one of the greatest geniuses of our time because of it. I didn’t 
mean to single out Turing’s homosexuality, but rather his tenacity and his genius. Brian makes a 
call that “university curricula for mathematicians and future mathematics teachers ought to 
include at least one course on the social history of mathematics.” And he goes on to say that this 
course should include some of the topics I have raised in the paper. I fully agree with him.  
 
My paper turned out to be provocative with the referees–and if it gets a few other individuals to 
think about the issues raised, I will be thrilled. The concerns raised by Brian and Wolf-Michael 
have helped place the paper into a larger landscape than in it was originally set. I thank them for 
their responses– they have given each of us even more to think about–and more food for the 
classroom. 
 
6. A final comment. The problem raised in the paper is an old one. Michael Fried, a colleague of 
mine at BGU and who has published in this journal, recently sent me a quote alerting me to a 
discussion that took place more than two and a quarter centuries ago. 
 
———————————— 
Dear Ted, I was reading James Boswell’s Life of Johnson this morning–don’t ask me why!–and 
came across a passage that I thought would make a good opening quote, albeit a long one, for 
your paper on telling the truth in history. It really gives both sides of the coin, which does, 
indeed, have two sides:  
 
Talking of biography, I said, in writing a life, a man’s peculiarities should be mentioned, because 
they mark his character. JOHNSON. ‘Sir, there is no doubt as to peculiarities: the question is, 
whether a man’s vices should be mentioned; for instance, whether it should be mentioned that 
Addison and Parnell drank too freely: for people will probably more easily indulge in drinking 
from knowing this; so that more ill may be done by the example, than good by telling the whole 
truth.’ Here was an instance of his varying from himself in talk; for when Lord Hailes and he sat 
one morning calmly conversing in my house at Edinburgh, I well remember that Dr. Johnson 
maintained, that ‘If a man is to write A Panegyrick, he may keep vices out of sight; but if he 
professes to write A Life, he must represent it really as it was:’ and when I objected to the danger 
of telling that Parnell drank to excess, he said, that ‘it would produce an instructive caution to 
avoid drinking, when it was seen, that even the learning and genius of Parnell could be debased 
by it.’ And in the Hebrides he maintained, as appears from my Journal, that a man’s intimate 
friend should mention his faults, if he writes his life. (My edition is an abridged version in the 
Portable Johnson and Boswell (Louis Kronenberger, ed.). There, the quotation is on pp.254-5.) 
M 
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————————————– 
 
I don’t think a collective decision on this polemic is possible; so again I ask, where do you 
personally stand on it? Will you mention some of the tidbits concerning the lives of some of the 
individuals listed above the next time you speak about them in class? It certainly seems to be 
something to think about. 
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Final comments on Eisenberg's paper 
 

Brian Greer 
Portland State University 

 
 
I must begin by expressing appreciation for the spirit in which Ted accepted my comments as 
intended to be intellectually and not personally provocative. Let me also assure him that I was 
not at all offended by the paper – it would be more accurate to say that I was stimulated by it to 
voice some strong disagreements. Beyond the particular aspects on which we have different 
perspectives, I applaud his decision to raise ethical issues, too often ignored in writing about 
mathematics education. 
 
I have little to add to my original response. 
  
In relation to the accreditation of mathematical discoveries, there are two points. One is that, 
even if the historical record is unclear, it is still possible to acknowledge what is partially known, 
or even speculation. For example, Hacking (1975, p. 8) commented that "it is reasonable to guess 
… that a good deal of Indian probability lore is at present unknown to us". The second is to ask 
the question – to what extent is the information unavailable, or not widely known, because it has 
been suppressed? I referred, in my initial response, to a paper by Almeida and Joseph on the 
development of calculus in Kerala. In this paper they argue that: 
 

This inclination for ignoring advances in and priority of discovery by non-European 
mathematicians persisted until even very recent times. … A possible reason for such 
puzzling standards in scholarship may have been the rising Eurocentrism that 
accompanied European colonization. 

 
In relation to Ramanujan, I find odd the statement that he was "already in the 
[European/Western] mold of doing mathematics when Hardy and Littlewood took him under 
their tutelage" in the light, for example, of Hardy's statement that his gifts were "so unlike those 
of a European mathematician trained in the orthodox school". 
 
The paucity of women achieving eminence in mathematics is not disputed; rather, the question of 
interest is why that is so. 
 
Finally, I would like to re-emphasize that history has not stopped. As Ted comments at the 
beginning of his paper, people in universities are increasingly steeped in ethical issues that need to 
be faced as humankind strives to achieve, as Ubi D'Ambrosio puts it, "survival with dignity". I 
was fascinated to learn recently that in the draft of his famous (and prescient) speech on the 
dangers of the military-industrial complex, Eisenhower originally included "academic" (Giroux, 
2007). 
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Primo Levi (1989, p. 175) wrote: 
 

It would please me (and it seems to me neither impossible nor absurd) if in all scientific 
departments one point were insisted on uncompromisingly: what you will do when you 
exercise your profession can be useful, neutral, or harmful to mankind. 
… Within the limits that you will be granted, try to know the end to which your work is 
directed. We know the world is not black and white and your decision may be 
probabilistic and difficult: but you will agree to study a new medicament, you will refuse 
to formulate a nerve gas. 
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Introduction 
In the modern knowledge economy, societies are demanding greater mathematical and scientific 
literacy and expertise from their citizens than ever before. At the heart of such demands is the 
need for greater engagement by students with school mathematics and science. As the 
OECD/PISA definition of numeracy puts it:  
 

“Mathematical literacy is an individual’s capacity to identify and understand the 
role that mathematics plays in the world, to make well-founded judgements and to 
use and engage with mathematics in ways that meet the needs of that individual’s 
life as a constructive, concerned and reflective citizen”(OECD, 2003) 

 
Values are an inherent part of the educational process at all levels, from the systemic, institutional 
macro-level, through the meso-level of curriculum development and management, to the micro-
level of classroom interactions (Le Métais, 1997) where they play a major role in establishing a 
sense of personal and social identity for the student. However the notion of studying values in 
mathematics education is a relatively recent phenomenon (Bishop, 1999). According to Chin, 
Leu, and Lin (2001), the values portrayed by teachers in mathematics classrooms are linked to 
their pedagogical identities. Seah and Bishop (2001) describe the values held by teachers as 
representing their 'cognisation' of affective variables such as beliefs and attitudes, and the 
subsequent internalisation of these values into their respective affective-cognitive personal 
system.  

 
Even in science education the study of values in classrooms is not a major focus of research. 
Nevertheless, in mathematics and science education values are crucial components of classrooms’ 
affective environments, and thus have a crucial influence on the ways students choose to engage 
(or not engage) with mathematics and science. Clearly the extent and direction of this influence 
will depend on the teachers’ awareness of, respectively, values ascribed to the particular 
discipline, the values carried by their selection from the available pedagogical repertoire, and their 
consciousness or otherwise of imposing their own personal values (Pritchard & Buckland, 1986).  
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Data from a previous research project, Values and Mathematics Project (VAMP) has shown that 
teachers of mathematics are rarely aware of the values associated with teaching mathematics 
(FitzSimons, Seah, Bishop & Clarkson, 2000). Furthermore, any values ‘teaching’ which does 
occur during mathematics classes happens implicitly rather than explicitly (Bishop, 2002).  
 (Various relevant papers from that study, and from other authors, are available from this 
website: http://www.education.monash.edu.au/centres/scienceMTE/vamppublications.html) 

 
This paper will report on ideas developed from a more recent research project concerned with 
values in both mathematics and science education.  
 
Theoretical framework 
 
Comparing values teaching in different subject areas is a relatively novel research approach and 
some parallel research on teachers of mathematics and history by Bills and Husbands (2004), 
which builds on the ideas of Gudminsdottir (1991) from English and history teachers, also shows 
what can be learnt from this approach.  

 
It was decided that for this study, in order to have some basis for the mathematics and science 
comparisons it would be necessary to use an established theoretical framework for the values 
studied. We used the six values cluster model developed by the author (Bishop, 1988), based on 
his analysis of the writings concerning the activities of mathematicians throughout Western 
history and culture. It is important to stress that the emphasis in that analysis was not primarily 
on which values might be, are, or should be, emphasised in mathematics education, but rather on 
the development of mathematics as a subject throughout Western history. 

 
In this model, six value clusters are structured as three complementary pairs, related to the three 
dimensions of ideological values, sentimental values, and sociological values. These three 
dimensions are based on the original work of White (1959), a renowned culturologist, who 
proposed four components to explain cultural growth. White nominated these as technological, 
ideological, sentimental (or attitudinal), and sociological, with the first being the driver of the 
others. Bishop (1988) argued that mathematics could be considered as a symbolic technology, 
representing White’s technological component of culture, with the other three being considered 
as the values dimensions driven by, and also in their turn driving, that technology. The six sets of 
value clusters are structured as shown in Figure 1.  
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1. Epistemology of the Knowledge (Ideological values) 
1a Rationalism 
Reason  Explanations Hypothetical Reasoning Abstractions Logical thinking Theories 
1b Objectivism 
Atomism Objectivising Materialism Concretising Determinism Symbolising Analogical thinking 
 
2. How individuals relate to the knowledge (Sentimental or attitudinal values)  
2a Control 
Prediction Mastery over environment Knowing Rules Security Power 
2b Progress 
Growth Questioning Alternativism Cumulative development of knowledge Generalisation 
 
3. Knowledge and Society (Sociological values) 
 
3a Openness 
Facts Universality Articulation Individual liberty Demonstration Sharing Verification 
3b Mystery 
Abstractness Wonder Unclear origins Mystique Dehumanised knowledge 

Figure 1. Values of Western Mathematical Knowledge (Bishop, 1988) 
 
The six value clusters that Bishop (1988) originally identified are described as follows: 
 

The particular societal developments which have given rise to Mathematics 
have also ensured that it is a product of various values: values which have 
been recognised to be of significance in those societies. Mathematics, as a 
cultural phenomenon, only makes sense if those values are also made 
explicit. I have described them as complementary pairs, where rationalism 
and objectism are the twin ideologies of Mathematics, those of control and 
progress are the attitudinal values which drive Mathematical development, 
and, sociologically, the values of openness and mystery are those related to 
potential ownershiop of, or distance from Mathematical knowledge and 
the relationship between the people who generate that knowledge and 
others. (Bishop, 1988, p.82)  

 
Values in Mathematics and Science 
 
Regarding their similarities, both mathematics and science are taken as ways of   understanding 
that are embedded in rational logic - focusing on universal knowledge statements. Both are seen 
by society in general as essential components of schooling, rivalled only by literacy. Hence, 
teachers of each face substantial political and social pressures from outside the school (e.g., 
system-wide assessments of student performance, purposes for teaching seen as being directly 
related to technological development, etc.). In their teaching, both involve following routines, 
although not exclusively. Both involve modelling, albeit with different emphases. Similarly each is 
incorporated into the other’s applications but in an asymmetrical relationship. 

 
On the other hand, science curricula/texts commonly contain a section on “The Nature of 
Science” while mathematics rarely contains the equivalent. While the values embedded in 
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mathematics teaching are almost always implicit, in science teaching some are quite explicit. For 
example, curriculum movements such as Science-Technology-Society make some values explicit and 
central to the intended learning outcomes; laboratory work seeks to make explicit such values as 
‘open mindedness,’ ‘objectivity,’ etc.; and content described as The Nature of Science, for example, 
also makes some values explicit (see also UNESCO, 1991). 

 
Among the general public, although the concept of ‘a science industry’ or ‘scientific industries’ is 
widely recognised, this is not the case for mathematics. In the popular media (e.g., magazines, 
newspapers, books, radio, television), science receives much more attention than mathematics, 
despite there having been a few recent movies featuring mathematical prodigies. Even when it is 
present, mathematics is generally subsumed under science. In the case of the popular pursuit of 
gambling, where mathematical thinking might be considered to play an important role, this is 
generally not the case as ‘luck’ seems to be considered a critical factor for many people.  

 
Yet mathematics plays a much more prominent role as a gatekeeper in society than does science. 
For example, it is often used as a selection device for entry to higher education or employment, 
even when the skills being tested are unrelated to the ultimate purpose. In broad terms (e.g. 
modelling or simulations which reduce costs and/or danger), mathematics is considered to be 
publicly important; at the very same time as it is considered to be personally irrelevant (Niss, 
1994), apart from the obvious examples of cooking, shopping and home maintenance. Politically, 
mathematics has been ascribed a formatting role in society (Skovsmose, 1994). 
 
 
Differences in values between Mathematics and Science, as perceived by the educators in 
the project. 

 
The project involved two mathematics educators and two science educators, and in the first part 
of the project there was considerable discussion and analysis of this initial framework, particularly 
in relation to whether the same structure could hold for science (see Corrigan, Gunstone, Bishop 
& Clarke, 2004). As a result of this analysis, a comparison of values between the mathematics and 
science educators was achieved, as shown in Figure 2.  
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Mathematics Science 
 
Rationalism 
Reason  Explanations Hypothetical 
reasoning 
Abstractions  Logical thinking Theories 

 
Rationalism 
Reason  Explanations  Hypothetical 
reasoning 
Abstractions  Logical thinking  Theories 

 
Empiricism  
Atomism Objectivising Materialism 
Concretising Determinism Symbolising 
Analogical thinking 

 
Empiricism  
Atomism Objective Materialisation 
Symbolising 
Analogical thinking Precise Measurable 
Accuracy Coherence Fruitfulness 
Parsimony Identifying problems 

 
Control 
Prediction Mastery over environment 
Knowing 
Rules Security Power 

 
Control 
Prediction Mastery over problems Knowing 
Rules Paradigms Circumstance of activity 

 
Progress 
Growth Questioning Cumulative 
Development of knowledge 
Generalisation 
Alternativism 

 
Progress 
Growth Cumulative development of 
knowledge 
Generalisation Deepened understanding 
Plausible alternatives 

 
Openness 
Facts Universality Articulation Individual 
liberty 
Demonstration Sharing Verification 

 
Openness 
Articulation Sharing Credibility Individual 
liberty 
Human construction 

 
Mystery 
Abstractness Wonder Unclear origins 
Mystique Dehumanised knowledge 
Intuition 

 
Mystery 
Intuition Guesses Daydreams  
Curiosity Fascination 

Figure 2: Comparison between values associated with mathematics and science. 
 

As can be seen there is a considerable amount of agreement, but there are some important 
differences. As far as the Ideological dimension is concerned there are both similarities and 
differences. In the cluster of Rationalism there is much agreement, as both subjects require the 
use of all the logic skills available and thus emphasise the range of values associated with those 
skills. With the value cluster of Objectism, which became recast as ‘Empiricism’ in order to 
accommodate the scientists’ approach, there is also some agreement, but the highly empirical 
nature of science means that it has many more value aspects there than does mathematics. The 
experimental and observational activities of science bring other values into play than we can find 
in doing mathematics. 
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For the Sociological dimension, with the complementary pairing of Control and Progress, there 
was once again some agreement between the mathematics and science educators about the 
Control value cluster, with its emphasis on prediction, mastery, and procedural rules. However 
the circumstances of the activity and different paradigms are significant in science but have little 
meaning in mathematics. Likewise with Progress, the idea of the cumulative development of 
knowledge is clearly similar, but the role of science in continuing to deepen understanding of a 
phenomenon again has no parallel in mathematics development.   

 
Some other differences appear with the Sentimental dimension, that is the way individuals relate 
to the knowledge of the subject. In relation to the Openness value cluster, the emphasis of 
science on credibility and human construction are significant, compared with the idea of ‘facts’ in 
mathematics and the value of verification, sometimes via proof. With Mystery, which itself is a 
rather mysterious category, the dehumanised nature of mathematics with its abstractness and 
unclear notions of the origins of ideas contrasts strongly with the intuition, daydreaming, and 
empirically-based guesses of the scientists.  

 
When considering these contrasts it is important to remember that this framework involves pairs 
of clustered values along the three dimensions. So the two clusters should not be considered as 
dichotomous, but rather as complements of each other. For example, Openness is the 
complement of Mystery, and therefore both clusters are present to some extent in that value 
dimension. Furthermore, what the model suggests is not that science and mathematics are 
markedly different but that there are strong similarities in their values, as befits their common 
heritage. There are however some interesting and, in terms of education, revealing different 
values represented also.   
 
Mathematics and science teachers’ values and practices 
 
We now turn to some of the data collected from the primary and secondary teachers by means of 
specially constructed questionnaires. They were based on the three complementary pairs, 
Rationalism and Empiricism, Control and Progress, Openness and Mystery, discussed above. The 
same structure was used for the mathematics and the science questionnaires and for the primary 
and secondary teachers, although there were some minor adjustments in the descriptions of 
teaching situations. 13 primary teachers of years 5/6 and 17 secondary teachers of years 7/8 
volunteered to answer these questionnaires. Primary teachers in the state system in Australia 
teach both subjects to their classes, and we also chose secondary teachers who taught both 
subjects to the same classes. 
Questions 1 and 2 of the questionnaires ask for the extent to which particular activities are 
emphasised in practice in the teacher’s mathematics (and science) classes.  The items in these 
questions are designed to explore, in sequence, aspects of Rationalism and Empiricism, Control 
and Progress, Openness and Mystery.  So, the first three statements in Qu.1 all relate to the value 
of Rationalism, and so on through the 18 items in Question 1.   
 
Question 2 uses the same structure (a group of 3 items relating to each of the 6 values in the 
three pairs) to ask about the frequency of use of specific classroom activities. For all the 
statements in Questions 1 and 2, we scored the responses as 4 (for “Always”), 3 (“Often”), 2 
(“Sometimes”), 1 (“Rarely”), and also calculated means. We recognise that in doing this we have 
taken an ordinal scale and treated it as if it was a ratio scale. 
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To facilitate comprehension of the results, we have combined the data for Questions 1 and 2, 
and in the data reported below, for example, a teacher’s view of the frequency of emphasis on 
Rationalism in his/her class’ activities is represented by the mean score for the six items relating 
to that value cluster in the two questions.  
 
Questions 3 and 4 are the questions which concern the teachers’ preferences for the six value 
clusters described above. The structure of these questions is that each question contains 6 
statements to be ranked by the teachers. Each statement relates to one of the values clusters, for 
example, the statement “It develops creativity, basing alternative and new ideas on established 
ones” relates to the value of Progress. The other statements follow closely the other value 
descriptors although their order is different in the two questions. Note also that although the 
teachers knew we were studying values, they were not made aware of the value structure 
underlying the questions and the various statements.  

 
Tables 1-4 show the results from the two groups of teachers in terms of their rankings of the six 
values clusters. In brackets are the means of (a) the frequencies in Questions 1 and 2, and (b) the 
rank orders in Questions 3 and 4.  

  
Table 1 Teachers’ preferred values and their preferred teaching practices: rank orders: 
Primary Mathematics 
 
 Rationalis

m 
Empiricis
m 

Control Progres
s 

Openne
ss 

Mystery 

Qus. 1/2 4 (2.64) 2 (2.80) 1 (2.95) 5 (2.44) 3 (2.65) 6 (2.25) 
Qu. 3 2 (2.30) 1 (1.46) 6 (5.23) 4 (3.15) 3 (3.53) 5 (3.61) 
Qu. 4 3 (3.66) 1 (1.33) 5 (3.75) 2 (3.00) 3 (3.66) 6 (3.83) 
 
We can see that from Table 1 that there is a close similarity between the primary teachers’ views 
on questions 3 and 4, and some close correlation between them and questions 1/2 particularly 
regarding Empiricism, Openness and Mystery. However, the ranks for Control stand out as being 
markedly different. 
 
 
 
Table 2 Teachers’ preferred values and their preferred teaching practices: rank orders: 
Primary Science 
 
 Rationalis

m 
Empiricis
m 

Control Progres
s 

Openne
ss 

Mystery 

Qus. 1/2 2 (3.05) 3 (2.90) 1 (3.07) 4 (2.57) 5 (2.47) 6 (1.91) 
Qu. 3 2 (2.75) 1 (1.41) 6 (4.91) 4 (3.41) 5 (3.66) 3 (3.00) 
Qu. 4 4 (3.41) 1 (1.41) 6 (4.75) 3 (3.33) 5 (3.83) 2 (2.58) 
 
 
For Science the primary teachers again express similar views for Questions 3 and 4, and once 
again the ranks for Control are markedly different from that in Questions 1/2. Mystery is also 
ranked differently in practice from the teachers’ preferred views. 
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Table 3 Teachers’ preferred values and their preferred teaching practices: rank orders: 
Secondary Mathematics 
 
 Rationalis

m 
Empiricis
m 

Control Progres
s 

Openne
ss 

Mystery 

Qus. 1/2 2 (2.15) 3 (2.05) 1 (2.75) 5 (1.93) 4 (1.99) 6 (1.79) 
Qu. 3 1 (1.94) 2 (2.05) 6 (4.52) 4 (3.88) 3 (3.35) 5 (4.29) 
Qu. 4 1 (1.70) 2 (1.82) 3 (3.44) 4 (4.00) 4 (4.00) 6 (4.47) 
 
The secondary teachers rank Rationalism highest for mathematics in terms of their preferred 
values (Questions 3 and 4) but, like their Primary colleagues, they place Control in the highest 
rank in practice.   
 
Table 4 Teachers’ preferred values and their preferred teaching practices: rank orders: 
Secondary Science 
 
 Rationalis

m 
Empiricis
m 

Control Progres
s 

Openne
ss 

Mystery 

Qus.1/2 1 (2.86) 3 (2.61) 2 (2.84) 5 (2.30) 4 (2.33) 6 (2.03) 
Qu. 3 4 (3.18) 1 (1.25) 6 (5.87) 4 (3.18) 3 (3.06) 2 (2.81) 
Qu. 4 3 (3.12) 1 (1.25) 6 (4.12) 2 (3.00) 5 (4.06) 4 (3.33) 

 
For the secondary teachers and science, Questions 3 and 4 show us that the teachers’ main value 
preference is for Empiricism, but in practice they favour Rationalism with Control coming a 
close second. Once again we can see differences with respect to Control, but this time also with 
Mystery. 

 
The comparisons between the values in mathematics and science for the two groups of teachers 
show interesting differences, reflecting their concerns with the curriculum and teaching at their 
respective levels. For the primary teachers, concerning Ideology, they prefer Empiricism over 
Rationalism for both science and mathematics, though both are important, rankings which are 
also reflected in the findings for their preferred practices. At the primary level of course much 
mathematical work is empirical in nature. For the Sentimental dimension, Control is much less 
favoured than Progress also for both, but the practices are very different. Another main 
difference between the subjects appears in the Sociological dimension where Openness and 
Mystery reverse their positions with the two subjects, the first being more favoured than the 
second in mathematics and the reverse in science. This difference does not translate to the 
practices however, with the science practices being ranked much more like the mathematics 
practices.  

 
For the secondary teachers, concerning the Ideological dimension, they favour Rationalism for 
mathematics and Empiricism for science, disagreeing with the primary teachers. For the 
Sentimental dimension, the secondary teachers largely agree with their primary colleagues and for 
the Sociological dimension, they again agree with their primary colleagues favouring Openness 
for mathematics compared with Mystery, and reversing these for science. Indeed Mystery for 
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science is ranked 2 and 4 by the secondary teachers and ranked 2 and 3 by the primary teachers, 
showing how significant they consider that aspect to be.  
 
Conclusions and implications 
 
The comparison of the values between the science and mathematics educators in the project has 
revealed perceptions of some important differences between the two subjects. It has also helped 
to clarify the values structure underlying the current project. In particular, regarding the 
Ideological dimension, there was evidence that mathematics educators favour the cluster of 
Rationalism while science educators emphasises Empiricism. 
 
With the Sociological dimension, while both subjects favour Control, the values of Progress 
differ, with science seeking to deepen understanding of relationships rather than constructing 
new knowledge as in mathematics. Concerning the Sentimental dimension, there are important 
differences in both the Openness and Mystery clusters with science seeming to relate more to the 
humanising aspects of knowledge compared with mathematics.         
 
The comparisons between the values in mathematics and science for the teachers also show 
interesting differences, reflecting their concerns with the curriculum and teaching at their 
respective levels. At the primary level the teachers favour Empiricism over Rationalism for both 
science and mathematics, though both are important, and this contrasts with the findings above. 
At the primary level of course much mathematical work is empirical in nature. For the 
Sociological dimension, Control is much less favoured than Progress also for both. The main 
difference between the subjects appears in the Sentimental dimension where Openness and 
Mystery reverse their positions with the two subjects, the first being more favoured than the 
second in mathematics and the reverse in science. This difference shown by the primary teachers 
reflects the educational implications of the educators’ views above. 
 
For the secondary teachers, the Ideological dimension reflects the educators’ views, with 
mathematics favouring Rationalism and science favouring Empiricism, disagreeing with the 
primary teachers. For the Sociological dimension, the secondary teachers largely agree with their 
primary colleagues and for the Sentimental dimension, they again agree with their primary 
colleagues favouring Openness for mathematics compared with Mystery, and reversing these for 
science. Indeed mystery for science is ranked 2 and 4 by the secondary teachers and ranked 2 and 
3 by the primary teachers, showing how significant they consider that aspect to be.  
 
In general, the conceptualisation put forward for this project has begun to show interesting and 
interpretable results. Discussions with the teachers have revealed an interest in the issues of 
values teaching in all subjects, but also a lack of vocabulary, and conceptual tools to enable them 
to develop explicitly the values underlying mathematics education. One of the goals of this 
project was by contrasting mathematics and science, to help teachers develop those conceptual 
tools further. As we have seen, and as has been shown above, the contrasts between these two 
closely related forms of knowledge are provocative, and already reveal worthwhile challenges 
particularly for mathematics teaching to pursue.  
 
For example, the difference between the emphasis on Empiricism at primary level and on 
Rationalism at secondary level implies some important challenges for explicit values development 
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in the teaching of mathematics at those two levels. How should that values development be 
smoothed across the primary/secondary divide? 
 
The differences in the views on Progress are also revealing, with the development of 
understanding in science contrasting with the construction of new knowledge in mathematics. 
How can we reconstruct our views of the mathematics curriculum so that progress through that 
curriculum is not just a matter of acquiring new knowledge but of ensuring that it also deepens 
learners’ understanding of what has been taught before? 
 
Finally could the dehumanised, highly abstract and mystique-laden value of Mystery of 
mathematics which appears to be such an obstacle to mathematics learners be made more explicit 
so that it could be challenged by the more humanised and personal intuitive nature of that value 
which science appears to enjoy?  
 
 However, before jumping to too many conclusions, we must remember that the data are from 
questionnaires and consist of teachers’ reported views of their preferences and their practices. We 
do not know the extent to which their rankings of these practice statements reflect their actual 
practices. However, the data for science at the secondary level, where teachers emphasises other 
values than mathematics, indicates the usefulness of comparing subjects and their values 
emphases. 

  
Finally one can see that, if the data reported here are valid, the differences show that teachers’ 
values in the classroom are shaped to some extent by the values embedded in each subject, as 
perceived by them. This implies that changing teachers’ perceptions and understandings of the 
subject being taught may well change the values they can emphasise in class. Further if teachers 
wish to emphasise values other than those they currently emphasise, it is possible to learn 
strategies from their teaching of other subjects.  

 
Acknowledgement: thanks are due to my colleagues Debbie Corrigan, Barbara Clarke, and Dick 
Gunstone for their contributions to this project and to this paper. 
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Abstract: In this essay mathematics is conceived of as intentional human activity.  Since 
intention implies choice, there are ethical dimensions to making mathematical choices.  
Embracing these dimensions requires acknowledging the contextual nature of mathematics.  First 
John Dewey’s philosophy of mathematics and a reconsideration of mathematical empiricism are 
posited as ways to foster a context sensitive understanding of mathematics.  Next, I address the 
ways in which existent conceptions of mathematics—even those which support reform in 
mathematics education—are insufficient with regard to their ability to recognize its human 
dimensions.  The essay concludes with a distinction between mathematics education that ethically 
applies existing versions of mathematics and mathematics education that seeks to recast 
mathematics as a necessarily and undeniably ethical enterprise.   

 
 
 

All of that time where did it go? 
What did you do and what have you got to show for it? 
Doin’ the math is kind of a bummer  
You best avoid crunchin’ that number 
 
Where are they now and what are they doin’? 
Everyone’s ancient at your high school reunion 
Doin’ the math don’t bring satisfaction 
There’s no more addition now it’s all subtraction 
 
A monkey, a dog, a horse, a giraffe 
They’re all gonna die but they don’t do the math 
Doin’ the math is kind of a bummer  
You best avoid crunchin’ that number 
                           --Singer-songwriter Loudon Wainwright III, from Doin’ the Math 

 
A central argument of this paper is that mathematics is an intentional human activity and that—
since intention implies choice—there are ethical dimensions to making mathematical choices.  
Embracing these connections requires moving away from how we typically conceive of 
mathematics.  Accenting the intentional aspects of engaging in mathematical activity is one 
effective way to counter the predominant ways of thinking about mathematics and mathematical 
knowledge, namely that it is different in kind than most other forms of knowledge.  Blurring the 
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sharp distinctions between mathematics and other activity/knowledge makes possible new ways 
to think about mathematics in the context of its teaching and learning.   

 
As I sat down to begin the task of writing this paper, the first strains of Doin’ the Math emanated 
from my office computer speakers.  The song is a wry but somewhat bleak account of the 
inevitability of growing old.  When Wainwright refers to “doin’ the math” what he presumably 
means is something akin to thinking about aging, dwelling on the inevitable, or something along 
those lines.  I doubt that the songwriter was trying to make a profound philosophical statement 
about the nature of mathematics and yet, to my ear—toward the song’s end—that’s exactly what 
he did.  I was half-listening to the music when Wainwright crooned, “A monkey, a dog, a horse, a 
giraffe…they’re all gonna die but they don’t do the math.”   

 
Wainwright’s point, as I take it, is that the years are increasing for all of us, animal friends 
included, but that this increase in years is understood as adding only by humans.  This is 
significant, as it forms the basis of a powerful plain language philosophical counter-argument to 
the ubiquitous commonsense understanding of mathematics as beyond the human pale.  This 
extra-human, often Plato-inspired conceptualization of mathematics can best be summed up by 
the response I often get when I mention that my work considers what happens when we choose 
to think of mathematics as sets of tools humans have constructed to help solve our problems.  A 
common response is that this cannot be so and typically some version of the “if everyone on the 
planet died tomorrow 2+2 would still equal 4” argument is employed.  The power of 
Wainwright’s claim is that it suggests that if “everyone died tomorrow” mathematical activity 
would cease.  Certainly, giraffes and other animals would still be aging, but there would be no 
addition of years, as addition requires intentional activity. 

 
My sense is that getting people—particularly those responsible for mathematics teaching and 
curriculum design—to fundamentally change their way of conceiving of mathematics will require 
more than just Wainwright’s lyrics.  Thus, in this paper I argue for a recognition, even an 
embracing, of the human and hence, of the ethical dimensions of mathematics.  Andrew Ward 
(2007) argues similarly for recognition of the science-ethics connection.  In order for the two to 
be thought of as coexistent, he claims that science must be thought of differently; namely, its 
contextuality must be put in the foreground.  Here, I apply the same strategy with the 
mathematics-ethics connection, but with mathematics it is a tougher argument to make, as many 
mainstream versions of mathematics do not acknowledge that it has any context, let alone that we 
can choose to focus on contextual factors.  This paper is a call for such a reconceptualization.   

 
To support this call, I first provide a summary of John Dewey’s philosophy of mathematics—
positing it as a way to think about the nature of mathematics that requires acknowledgement of 
its contexts.  Next, I argue that in order for the context of mathematical activity to be 
appreciated, mathematical empiricism needs to be given consideration.  Next, I address the ways 
in which existent conceptions of mathematics—even those which support reform in mathematics 
education—are insufficient with regard to their ability to foster awareness of its context and 
hence its human dimensions.  In the final section of the paper, I make a distinction between 
mathematics education that ethically applies existing versions of mathematics and mathematics 
education that seeks to recast mathematics as a necessarily and undeniably ethical enterprise.   

 
What are generally taken to be sterile, extra-human, ethics-neutral mathematical knowledge and 
techniques have, to paraphrase William James, the trail of the human serpent all over them.  
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Simply saying so is insufficient and the case needs to be made that rethinking the nature of the 
mathematical enterprise can help us make meaningful mathematics-ethics connections and, 
subsequently, to pave the way for an engaging brand of school mathematics that draws 
sustenance from these connections.     
 
Dewey’s Psychology of Number: “Doin’ the Math” is the Math 
I probably found Wainwright’s song so compelling because it serves as the musical complement 
to one of Dewey’s central points about the nature of mathematics.  In The Psychology of Number and 
its Applications to Methods of Teaching Arithmetic (1895), James McLellan and Dewey2 posit that 
mathematics exists when existential circumstances give way to a need for consideration of 
quantity.  Dewey surmises that mathematics originated when human questions turned from the 
crude question of “how much?” to the more refined query of “how many?”  Thus, from the start, 
Dewey frames mathematics in terms of its activity.  One of Dewey’s most potent (and humorous) 
quotes on this topic even employs an animal metaphor quite similar to Wainwright’s.  In making 
the point that mathematics is intentional human activity, Dewey claims, “There are hundreds of 
leaves on the tree in which the bird builds its nest, but it does not follow that the bird can count” 
(p. 23).     

 
Dewey’s unorthodox operationalization of the term “psychology” is crucial to understanding his 
philosophy of mathematics.  Contrary to most philosophers and philosophers of mathematics of 
his day, rather than viewing an individual’s psychology as an impediment to or distorting factor of 
clear apprehension of truth, Dewey saw it as a critical component of coming to know.  This is 
one reason why Psychology of Number, a philosophical look at how children come to grasp the 
concept of number, is such a clear expression of Dewey’s philosophy of mathematics.  That is, 
how children come to know mathematical concepts centers on the mental activities (i.e., 
psychology) of children as they encounter various empirical situations.  Dewey described this 
simple sense of quantity as coming about in light of the human need to measure in order to solve 
practical problems and to improve lives (p. 42).  
 
Dewey saw the commonly understood distinction between counting and measuring as getting in 
the way of understanding how children organically come to know number.  Counting relates to 
determining how many of something there are and measuring involves determination of how much 
of something there is.  In other words, the counting-measuring distinction relates to whether 
something is a series of parts of one whole, or a related group made up of individual units.  
Dewey’s pragmatic answer held that—depending on context— they may be either. The reasons 
the individual engaged in the mathematical activity in the first place must be taken into account 
when answering the question.  
 
Deweyan mathematics is defined and understood by its use.  The concept of a particular number 
(say three) does not reside within a group of three apples, beanbags or any other objects any 
more than it does in the symbol “3.”  Three, as a construct, emerges from activities requiring 
quantification as a means to an end.  Dewey’s accompanying pedagogy accordingly focuses on 
measurement, as all counting is measuring and all measuring is counting.  Making measurement 
the vehicle for mathematical explorations ensures, according to Dewey, that number symbols will 
                                                 
2 Although the Psychology of Number was co-written with McLellan, for the remainder of this paper I will 
refer only to Dewey. See Stemhagen (2003) for a justification of this decision as well as for a fuller 
description of Dewey’s philosophy of mathematics. 
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always be linked to concrete units and encourages active, empirically-oriented, and contextualized 
conceptions of mathematical enterprises.  Finally, Dewey understands measurement as taking 
place in contexts wider than simply the act of measuring.  He uses the measurement of a field as 
an example.  In a genuine mathematical inquiry, simply finding the area of the field will not 
meaningfully measure it.  To do so, wider contexts must be considered—that is, what is the field 
capable of producing?  How does it relate to our lives?  To answer these questions counting 
and/or measuring must be employed (e.g., amount of produce, the price it will bring at market, 
the costs of growing the produce, etc.).  Dewey sums up the ways in which mathematical 
inquiries are inseparable from our broader aims: “All numerical concepts and processes arise in 
the process of fitting together a number of minor acts in such a way as to constitute a complete 
and more comprehensive act” (p. 57).   

 
Any number of calculations could be done to measure the fields, but the ones that relate to how 
we actually live our lives are the calculations that will help us successfully conclude our inquiry.  
In other words, mathematics is more than just crudely counting or measuring; it requires 
thoughtful consideration about a multitude of contextual factors. Thus, Dewey’s version of 
mathematics emphasizes the interplay between empirical objects and our actions; it acknowledges 
the importance of the role of human intent in the construction of mathematical knowledge.  To 
Dewey, the development of mathematics is driven by the ways in which we use it.  In fact, it is 
not too strong of a claim to sum up Dewey’s philosophy of mathematics as mathematics is its 
use.  To borrow from (and add to) Wainwright lyrics, “doin’ the math” is the math. 
 
(Re)Opening the Door to Mathematical Empiricism 
While Dewey was certainly no simple mathematical empiricist, his attention to context, 
particularly physical contexts, possibly leaves him susceptible to critique from those skeptical of 
the place of empiricism in philosophy of mathematics.  By simple empiricism, I am referring to 
the idea that mathematics exists “out there” in the physical world.  That is, the reason why 
2+2=4 is because that is what is true in the physical world.  To the simple empiricist, the idea of 
number resides in the environment and one’s development of mathematical knowledge takes 
place as one observes the environment.  Although it is beyond the scope of this paper to fully 
make the case for a reconsideration of the merits of mathematical empiricism,3 it is interesting 
that Gottlob Frege’s attack on J.S. Mill’s mathematical empiricism had much to do with the 
subsequent marginalization of empiricism as a viable philosophy of mathematics (Kitcher, 1980).   

 
This event is noteworthy because the part of Mill’s position that Frege so savagely attacked was, 
by my read, actually the part whereby Mill went beyond that of a simple empiricist and treaded 
lightly into the territory of the mathematics-as-human-activity camp.  Mill claimed that “… Two 
pebbles and one pebble are equal to three pebbles…affirms that if we put one pebble to two 
pebbles, those very pebbles are three” (Mill, p. 168).  Here Mill suggests that there is a “we” 
required to “put” together the pebbles to make three.  I see this as a nascent affirmation of the 
human hand in the creation of mathematics.  Kitcher (1980) agrees, stating: “Thus the root 
notion in Mill’s ontology is that of a collecting, an activity of ours, rather that that of a collection, 
an abstract object (p. 224).  To Mill’s notion that number comes about from arranging objects, 
Frege responded: “if Mill is right, we are very lucky that not all objects in the world are nailed 
down, for otherwise it would be false that 2+1=3” (1997, p. 94).   
 
                                                 
3 It should be noted that I am uncertain about the worth of making such a case. 



  TMME, Vol5, no.1,p.63 
 

 

If the premise that the contexts of mathematical inquiry matters is on the mark, then Frege’s 
critique is errant.  At first blush, it appears that Frege is attacking the notion that the truth of 
mathematical statements resides in physical contexts.  I think this misses the point, as “nailing 
down” objects prevents their arrangement and not their physical existence.  Clearly there is still a 
physical context, it is just that Frege’s idea of “nailed down” suggests a lack of mobility that, if it 
was actually the case, may very well have affected the direction of the development of 
mathematics.  If our physical reality was so different that our genuine inquiries had no need or 
place for the grouping of objects, it is difficult to imagine how (and maybe more importantly, 
why) mathematics as a discipline would have developed as it did.4 

 
All of this suggests Mill is not thinking like a simple empiricist—in focusing on the activity of 
arranging he is nodding toward the ways in which our choices (in this case choosing to engage in 
mathematical grouping) create mathematics.  Frege mischaracterized Mill’s point when he stated 
that without the moving of objects that addition would be false.  Dewey, Mill, and other non-
simple empiricists might argue that rather than false, without the need and ability to rearrange 
physical objects it might be that 2+1=3 would be irrelevant. 
 
With the tasks of brief explication of Dewey’s philosophy of mathematics and a quick plug for 
the merits of reconsidering empiricism in mathematics complete, let us consider how it is that 
such a way of thinking about mathematics and mathematics education can help to shed light on 
the intersections between mathematics and ethics.  Dewey’s description of the origins and nature 
of mathematics as emerging from willful human interaction with the environment is one way to 
make the case that the mathematics and ethics are inseparable.  If mathematics comes about as 
we engage in inquiries in order to live better in the world, it follows that ethics is never far from 
mathematics.     

 
What’s Wrong with the Ways We Think about School Mathematics? 
The “math wars” is a label given to the dispute between two mathematics education factions.  
Traditionalists or back-to-basics proponents argue that the aim of mathematics education should 
be mastery of a set body of mathematical knowledge and skills.  The philosophical complement 
to this version of the teaching and learning of mathematics is mathematical absolutism.  Reform-
oriented mathematics educators, on the other hand, tend to see understanding as a primary aim 
of school mathematics. Constructivism is often the philosophical foundation for those espousing 
this version of mathematics education.5   

 
Given this paper’s focus on the task of establishing the importance of human contexts to 
mathematics it should not be hard to see that the traditionalist’s point of view, to the degree that 
it conceives of mathematics class as a place for the transmission of preexistent, extra-human 
mathematical truths and skills, is not going to be of much value.  The more interesting claim is 
that reformers, to the degree that they rely on constructivism as an undergirding philosophical 

                                                 
4 For those who are questioning how it is that I can make the leap from children’s rudimentary 
mathematical understandings to the endeavors of contemporary professional mathematicians, I suggest 
reading Kitcher’s The Nature of Mathematical Knowledge (1983).  In it, he works to link the simple origins of 
mathematics to today’s complex discipline.  
5 I do not wish to claim that philosophies and pedagogies correspond perfectly to one another.  Weber’s 
notion of selective affinity (1996) is useful here as while there are no hard fast rules, there seems to be a 
tendency for particular ways of thinking about mathematics to have some relation to certain pedagogies.   
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support also do not have much to offer with regard to the contextualization of mathematics.  
Reform mathematics has had to work against very firmly entrenched and stubborn traditional 
mainstream perceptions of mathematics.  As a result, some of its reliance on philosophical 
constructivism has fostered a preoccupation with the ways in which individual children make 
sense of new mathematical ideas in light of their existing understandings.  While I applaud the 
reform movement’s efforts to make school mathematics more learner-centered, this focus can 
lead to a mathematics education that is overly individual and cognitive.  The constructivist focus 
primarily on the individual’s construction of mathematical knowledge, can lead to neglect of 
other contextual factors, such as social and environmental factors.   

 
Toward a Strong Form of Contextual Recognition 
In an effort to answer a very important question—one that serves as the title of their essay—
What is Mathematics Education For?, Greer and Mukhopadhyay (2003) refer to a contemporary shift 
whereby mathematics is increasingly being thought of as a human activity with a requisite 
increase in “recognition of the historical, cultural, and social contexts of both mathematics and 
mathematics education” (p. 2).  While I embrace their vision of a mathematics education that 
recognizes these connections, I believe that for mathematics to play a meaningful role in making 
our world a more just place, we need to embrace a strong form of recognition of context and to 
move away from how we typically conceive of mathematics.  Furthermore, rethinking the 
purpose of school mathematics as a means to arm students with tools for social justice, while 
certainly an improvement over school mathematics as drill-and-kill or even as sets of isolated 
individual constructions, might miss the point.  It might miss the point because it is a post hoc 
application of mathematics to our social problems.  In other words, a strong form of recognition 
as to the historical, social, and cultural contexts of mathematics and mathematics education 
requires means that—in addition to using pre-decided upon mathematical knowledge and skills to 
improve our social circumstances—we need to acknowledge that mathematics itself is 
fundamentally historically, socially, and culturally situated.6  In other words, rather than simply 
finding ethical uses for mathematics, we need to teach mathematics in a way that recognizes that 
it is not different in kind than other enterprises (particularly ethical ones).  

  
Distinguishing between Ethics as Application and Inseparable, Meaningful 
Mathematics-Ethics Connections   
I have argued that Dewey’s philosophy of mathematics with a small dose of appreciation for the 
role of empiricism in mathematics is one way to pave the way for meaningful mathematics-ethic 
bonds.  In making this claim I have implied a distinction that I wish, at this point, to make 
explicit.  While still certainly not in the mainstream, there is much work being done to study the 
socio-ethical contexts and possibilities of school mathematics.   Moses and Cobb’s Radical 
Equations (2001) is a good example of the moral/ethical questions related to choosing to use 
school mathematics achievement as a sorting mechanism, whereby those who can make it 
through Algebra I get to go to college and those who don’t do not.  There are also ethical 
dimensions related to the performance of marginalized groups in math class.  While this certainly 
relates to Moses’ look at mathematics and poor Southern African-American students, scrutiny of 
the posited gender gap in mathematics performance is also a prime example of this mathematics-
                                                 
6 Jean Lave’s anthropological explorations of the situated nature of cognitive activity, particularly of 
mathematical thinking, provide a good point of departure for such acknowledgement.  See, for example, 
Lave, Murtaugh, and de la Rocha (1984).  
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ethics connection. Finally, there are clearly ethical dimensions related to choosing to apply 
mathematics in order to illuminate social justice issues, with Gutstein’s Reading and Writing the 
World with Mathematics (2006) serving as a recent example of this line of scholarship.  While I 
believe deeply in the worth of the social justice-oriented projects above, I see such efforts as 
consisting primarily of using mathematics as it exists in an ethical matter.  Although I would 
certainly never argue against the merits of using mathematics in an ethical matter, I believe that 
right-minded application is not the extent of the mathematics-ethics connection and that there 
are deeper, more fundamental connections that relate to the very origin and nature of 
mathematics.   
 
According to Dewey, the ethically fertile questions of how we can best arrange ourselves provide 
the origins of mathematics.  Thus, the distinction I am making is between ethics as application of 
existing mathematics for good intent versus the notion of a reconceptualization of mathematics 
as a fundamentally ethics-laden enterprise.7  There is a similar question hotly debated in 
philosophy of technology, where some argue that the commonsense understanding of technology 
as a neutral set of tools that can be used for good or ill ignores the ethics that are built into 
technological artifacts from the start (Winner, 1986).  Winner gives an example of such non-
neutrality by noting how the telephone, rather than being a neutral communication tool to be 
implemented by users as they see fit, possesses powerful tendencies toward certain social 
arrangements and has greatly contributed to fundamentally different social arrangements.  
Winner sums up this technological non-neutrality by asking: “As we make things work, what kind 
of world are we making?” (p. 17).  Part of his solution to this problem is to call for a 
reconciliation between the making and use of technology.  Winner sees our lack of understanding 
about technology as emerging from a sharp division of labor between those who make 
technological artifacts and those who consume them.   
 
Davis and Hersh (1981) similarly warn: “The social and physical worlds are being mathematized 
at an increasing rate.  The moral is: We’d better watch it, because too much of it may not be good 
for us” (p. xv).  One way to counter unchecked mathematization and the making-use distinction 
in mathematics education might be to help students experience some of what goes on in the 
world of those who are involved in the making of mathematics and in the mathematization of 
our experience.  Hersh (1997) explains mathematics as divided into two areas, front and back.  
The front is the highly polished finished product of mathematicians and the back is the area 
where mathematicians are busy engaging in the messy but often practically fruitful activities of 
mathematicians.  He uses the analogy of a restaurant.  In the dining room (front) everything is to 
appear orderly and under control.  Those in the front (students) are not privy to all that goes on 
behind the scenes (in the back) in order to create the seamless experience of dining in the front.   
 
The idea is that if students can get involved in the messy but engaging practices of mathematical 
creation that it will go a long way toward ensuring that mathematics class is a place where 

                                                 
7 Efforts that seek to both reconceptualize mathematics and to apply the reconceptualization for social 
betterment deserve the highest praise.  An example of this vein of scholarship is Jo Boaler’s work to 
broaden what we mean by mathematical rationality and to apply it to making school mathematics more 
inclusive.  See, for example, Boaler (1997) Boaler and Greeno (2000).  Gutstein also engages in thoughtful 
philosophical reconstruction in his project and accordingly he also deserves recognition. Since his 
philosophizing operates instrumentally as a means to support his pedagogy, I position his overall project 
on the application side of the divide.           
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children’s experiences are grounded in genuine inquiry.  That is, our live, human problems could 
serve as a starting point for the teaching and learning of mathematics in class.  The value of what 
gets taught and learned there could be measured against how well the products of mathematics 
class address the initial problem.  Recalling this essay’s opening claim that mathematics should be 
thought of a form of intentional human activity, I hope that this exploration has helped to render 
a vision of school mathematics in which students are encouraged to engage in intentional ethical 
activity to identify problems that lend themselves to mathematical inquiry and that they 
meaningfully engage in “doin’ the math.”                   
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ABSTRACT. The aim of this paper is to investigate the appropriateness, concurrent and 
construct validity of action map as a tool for assessing situated problem solving performance. 
Action map is rooted in activity theory whose stipulations are compatible with situated problem 
solving. Thirty-one last year secondary students were given three tasks with real –world context. 
Based on the analysis of the written solutions and interviews, evidence is presented on the 
appropriateness and validity of action map as an instrument to assess situated problem solving 
performance.  
 
Despite many calls for including applications as a major goal of teaching mathematics citing a 
variety of social, psychological, pedagogical reasons and justifications, assessment lagged behind 
in developing appropriate tools to assess situated problem solving (de Lange, 1996). Existing 
assessment taxonomies, rubrics, and models are lacking in that they are not embedded in a theory 
that adequately explain the complexity of interaction with reality in situated problem solving. We 
believe that the action map is an appropriate assessment tool for situated problem solving and at 
the same time is embedded in activity theory (Leont’ev, 1981) that stipulates that human behavior 
and thinking are inseparable and occur within meaningful contexts as people conduct purposeful 
goal-directed activities. The aim of this paper is to describe the action map as an instrument for 
assessing situated problem solving and to present evidence in support of its construct and 
concurrent validity. The action map is based on activity theory whose conceptual framework is 
compatible with situated problem solving. Concurrent validity will studied in relation to an 
assessment rubric for problem solving.  
 
Activity Theory 
Activity theory was developed by Leont’ev (1981). He defined activity as: “…the unit of life that 
is mediated by mental reflection. The real function of this unit is to orient the subjects in the 
world of objects. In other words, activity is not a reaction or aggregate of reactions, but a system 
with its own structure, its own internal transformations, and its own development.” (p.46). A 
central assertion of activity theory is that our knowledge of the world is mediated by our 
interaction with it, and thus, human behavior and thinking occur within meaningful contexts as 
people conduct purposeful goal-directed activities. This theory strongly advocates socially 
organized human activity as the major unit of analysis in psychological studies rather than mind 
or behavior. Leont’ev (1981) identified several interrelated levels or abstractions in theory of 
activity. Each level is associated with a special type of unit. The first most general level is 
associated with the unit of activity that deals with specific real activities such as work, play, and 
learning. The second level of analysis focuses on the unit of a goal-directed action that is the process 
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subordinated to a conscious goal. The third level of analysis is associated with the unit of operation 
or the conditions under which the action is carried out. Operations help actualize the general goal 
to make it more concrete. 
 
Human activity can be realized in two forms: “mental” activity or internal activity and practical 
objective or external activity (Leont’ev, 1981). The fundamental and primary form of human 
activity is external and practical. This form of activity brings humans into practical contact with 
objects thus redirecting, changing and enriching this activity. The internal plane of activity is 
formed as a result of internalizing external processes. “Internalization is the transition in which 
external processes with external, material objects are transformed into processes that take place at 
the mental level, the level of consciousness” (Zinchencho & Gordon, 1981, p.74).  
 
Three types of actions in mental activities had been identified: perceptual, mnemonic, and 
cognitive (Zinchencho & Gordon, 1981). Perceptual actions are those by which the human being 
maintains contact with the environment. They are initiated by stimuli from the environment and 
enriched on the basis of prior experience. Mnemonic actions refer to actions, which involve 
recognition, reconstruction, or recall (Piaget & Inhelder as cited in Zinchencho & Gordon, 1981). 
Cognitive actions involve thinking in terms of images of real objective processes (Gal’perin cited 
in Zinchencho & Gordon, 1981). 
 
Activity theory was selected as a conceptual model in this study because it advocates socially 
organized human activity as the major unit of analysis in psychological studies rather than mind 
or behavior and because it makes the assumption that thinking and doing are inseparable  
 
Action Map 
The action map is a schematic representation of organization and sequence of the actions of the 
objective content of an activity (see Figure 1) using the method of structural-analysis 
(Zinchencho & Gordon, 1981).  This method was used because it puts forward an operational 
analytic method derived from activity theory itself. It provides a way for representing the 
structure of activity as a system of interconnected units with potential relationships among them 
and among types of connections. In the systematic-structural approach, it is assumed that the 
structure of actions and operations, the internal transitions from one action to another, and their 
sequential organization depend on the objective content of activity. Thus the identification of the 
organization and sequence of the actions of the objective content of an activity provides a 
characterization of its level, form, and type (Zinchencho & Gordon, 1981). 
 
A number of studies used activity theory to investigate work activities ( Millroy, 1992 ; Masingila, 
1996 ; Pozzi et al, 1998). Jurdak and Shahin (2001) used activity theory to compare work and 
learning activities. It is in the last study that structural analysis was used systematically and action 
map was used as a tool without actually using the name ‘action map’.  
 
 
 

Methodology 
Sample 
The sample consisted of 31 grade 12 students selected from four private schools in Beirut, 
Lebanon. Their teachers nominated the students as being from the highest achievers in 
mathematics in their classes. All the students were in the last grade of secondary school and were 
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in the general science stream, which prepares students for university studies in mathematics, 
sciences, and engineering.  
 
Problem Tasks 
The problem tasks were constructed to meet the three criteria set for situated problem solving. 
First, the problem situation has to be real to the population of the students concerned. By that we 
mean that the situation is within the current experiential space of students. Second, the problem 
has to be formulated in a context in the sense that the problem solver may have to put boundary 
conditions or introduce assumptions and data and to engage in a process of mathematization to 
formulate the problem in mathematical terms. Third, the problem task should lend itself to 
multiple approaches and different levels of treatments. 
 
The process of searching, constructing, and screening resulted in three tasks     (Appendix A) that 
were judged by the researcher to be meaningful and satisfy the three criteria. The Car Loan Task 
presents a situation where two options for payment in installments for a car.  The student is to 
decide which option is better and why. The Cell Phone Task presents a situation where two actual 
offers for a cell phone from two companies are presented with all the specifications as advertised. 
The student is to decide which offer is better and to rationalize the decision. In the BMI Task, 
the formula for the body mass index together with a table of norms and BMI chart. The student 
is asked to rationalize how the chart was produced from the table of norms. 
 
Assessment Rubric 
A rubric adopted from the QUASAR project (Lane, 1993) was used to assess the solutions of the 
problems. The rubric assesses mathematical knowledge, strategic knowledge, and 
communication. Mathematical knowledge is defined as the degree to which the student shows 
understanding of the task’s mathematical concepts and principles; uses appropriate mathematical 
terminology and notations; and executes algorithms completely and correctly. Problem solving is 
defined as the degree to which the student may use relevant outside information of a formal or 
informal nature; identifies all the important elements of the task and shows understanding of the 
relationships between them; reflects an appropriate and systematic strategy for solving the task; 
and gives clear evidence of a solution process, and solution process is complete and systematic. 
Communication is defined as the degree to which the student gives a complete response with a 
clear, unambiguous explanation and/or description which may include an appropriate and 
complete diagram; communicates effectively to the identified audience; presents supporting 
arguments which are logically sound and complete; may include examples and counter-examples. 
The five scale points were defined as follows: 
 0 (No Answer), 1 (Inadequate), 2 (Minimal), 3 (Competent), 4 (Exemplary).  
 
Procedure 
In each of the four schools, the selected students were asked to come to a designated room in the 
school. The investigator explained the purpose of the study to them and their queries were 
addressed. Each student was asked to read the three tasks and choose one of them. While solving 
the task, each student was asked by the investigator about how their approach of the solution of 
the task. The problem solving session lasted for 60 to 90 minutes.  Students were allowed to use 
calculators and computers and to ask questions about the task during the session. All interviews 
were audio-taped. It should be mentioned that the tapes were not used for the purpose of this 
study and were intended for another aspect of the study which focuses on studying situated 
problem solving as an activity. All what the students wrote during the problem solving session 
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was collected and properly identified. The written solutions constituted the basic documents that 
were subjected to documentary analysis in two distinct ways. First, using the assessment rubric, 
two raters assessed each solution and a comparison of a sample of the two ratings showed a high 
degree of agreement between the two raters (at least 90% in the three categories). 
  
Second, the written solutions were subjected to structural analysis (Zinchencho & Gordon, 1981).  
This was an iterative process in which a researcher reviewed the written solution of each student 
to identify the actions and putting a short description of each action. The sequence of these 
actions, as they unfolded based on the written solution, were identified. The descriptions of the 
actions were put in boxes and connected with arrows to indicate the sequence of actions. The 
actions were then classified into one of three categories (perceptual, mnemonic, and cognitive). 
The constructed action map was then validated against the written solution and modified 
accordingly. This iterative process continued until the action map was judged as accounting for 
almost all the actions, their sequence, and their type. Another researcher did a second validity 
check by comparing the written solution with the constructed action map. The final product was 
a figure similar to those in Figure 1, which represents two rather contrasting action maps for two 
students who the cell- phoned task. 
 
Data Analysis 
Five variables were identified from the action map: Relative frequency of mnemonic actions 
(R/MN), relative frequency of cognitive actions (R/COG), relative frequency of perceptual 
actions (R/PER), number of actions (ACTIONS), and number of loops (LOOPS) (a loop was 
defined as a triangle formed by the arrows that indicate the sequence of actions). Four variables 
were identified from the assessment rubric as follows: Math knowledge, problem solving, 
communication, and total (the sum of the three variables). 
 Two statistical analyses were done. A stepwise multiple regression was performed to 
identify the variables in the action map that predict problem solving performance as measured by 
the assessment rubric. Second a factor analysis with a Quartimax rotation was done to examine 
the construct validity of the action map by identifying the structure of the action map and the 
factors therein. To illustrate these variables we calculated their values for the two examples in 
Figure 1 (Table 1) 
          Table 1: Values of the variables for examples 1 &2 

 Example 1 Example 2 
R/MN1 2/11 14/16 
R/COG2 9/11 2/16 
R/PER3 0/11 0/16 
ACTIONS4 11 16 
LOOPS5 6 2 
Math Knowledge 4 2 
Problem Solving 4 2 
Communication 4 2 

    1Relative frequency of mnemonic actions  

        2Relative frequency of cognitive actions  
       3Relative frequency of perceptual actions  
      4Number of actions  
       5Number of loops 
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Figure1. An example of an action map (Cell Phone Task) 

Example 1 

Question 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                           Reason 1                              Reason 2               Reason 3 
 
 
 
 
 
 
                          
 
 
 
 
 
 
 
 
 
 
 
                             

      
 
                

        
                        
    Mnemonic action                           Perceptual action                       Cognitive action               
 

 

Calculated cost/day in units

Noticed the difference in the meaning of a 
unit in each company

Calculated cost/day in seconds, compared the results and 
found that the rechargeable Cellis options are the cheapest.

Thought of the 400$ rate 
of the regular line

Thought of the 
economic conditions

Thought of the multiple 
choices offered by Cellis but 
not by Premiere  

Decided that the rechargeable 
Cellis options are the best 

Question 2 

Thought of the 
above three reasons 

Thought of the extra days 
in the rechargeable Cellis 

options 

Thought of making his own 
company that provides the 

missing services  

Again he chose Cellis rechargeable 
lines and would advice anyone to do  
so 
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Example 2 
Question 1 
 
 Premiere  regular line Premiere (180min/2 months)               Premiere (100 units/ month)   Click ( $44/ 50 days) 

 
 
                  
 
 
 
 
 
 
 
     
 
 
 
 
 
        
  
 
 
 
 
 
 
                                                                                       Liban cell                Cellis 
 
 
 
 
 
 
 
 
 
 
 
                          

      
 
 
 

                    Mnemonic action                           Perceptual action                     Cognitive action                

Cal the 
cost 

/month of 
90 units

Calculated the 

number of seconds 

Question 2

Cal. the nb of min. 
cons./month & got 75 min 

Cal. the # of minutes 
cons./day & got 

2.5min. 

Cal. the charge /day & got 
30 cents, then cal. that 
/month & got 90 cents 

Symbolized the 
number of units per 
month as x 

Cal. the payments for 

2 months 

Cal. the 
cost/month 

in $ 

Cal the #of 
minutes cons. 

In 90 units 

Cal. the monthly 
payments as $25+ 

+$9=$34 

Cal the cost of the 
consumed units & got $9 

Cal. the number of 
seconds consumed 
/month as 50x 

Compared 47x and 50x and 
decided that since 50x>47x, 

then Cellis is better 

Cal. the 
cost of 
90 units 

Cal. the cost /2 
months in $ 

Cal the number 
of seconds 
consumed / 

month as 47x
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The action map seems to be an adequate tool for assessing situated problem solving in at 
least two ways. First, it provides a representation of not only the product but also the 
process of problem solving in the sense that it maps the actions and their sequence as they 
unfold in the problem solving process thus providing a visual representation of the internal 
structure of the activity. Second, it captures the interaction between the problem solver and 
reality because it describes the sequence of actions as they occur simultaneously in the 
internal plane (thinking) as well as the external plane (doing).  
 
Reliability 
Cronbach α for the rubric across its five levels and for the action map across its variables 
(relative frequency of mnemonic actions, relative frequency of cognitive actions, relative 
frequency of perceptual actions, number of actions, and number of loops) are reported in 
Table 2. In spite of the small sample in this study, Cronbach α was moderate high, indicating 
a reasonable internal consistency for the action map. 

 
Table 2.Cronbach α for the Rubric and Action Map 

Task Rubric Action Map 
Car .63 .73 
Cell phone .67 .69 
BMI .88 .52 

 
Concurrent Validity 
The concurrent validity of the action map relative to the assessment rubric seems to be quite 
high. The results of the stepwise multiple regression (Table 3) indicate that, as measured by 
the action map, the predictors of mathematical knowledge, problem solving, 
communication, and overall performance, as measured by the rubric, fall into two categories. 
The first category consists of the relative frequency of the type of 

 
 

Table 3.  Results of Regression Analysis 
Math 

knowledge 
Problem 
solving 

communication Total Variable 

R R2 R R2 R R2 R R2 

R/MN1 - - .54 .30 .45 .21 .59 .35 
R/COG2 .57 .33 - - - - - - 
R/PER3 - - - - - - - - 

ACTIONS4 .70 .49 .77 .59 - - .76 .57 
LOOPS5 - - .80 .64 - - - - 

1Relative frequency of mnemonic actions  

2Relative frequency of cognitive actions  
3Relative frequency of perceptual actions  
4Number of actions  
5Number of loops  
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actions (relative frequency of mnemonic actions, relative frequency of cognitive actions, 
relative frequency of perceptual actions) and the second of  the structure of the action map 
(number of actions and number of loops).  For mathematical knowledge, the relative 
frequency of cognitive actions, and number of actions, account for 49% of the variance. For 
problem solving, relative frequency of mnemonic actions, number of actions, and number of 
loops account for 64% of the variance. For communication, relative frequency of mnemonic 
actions account for 21% of the variance. For the overall performance (total score), relative 
frequency of mnemonic actions and the number of actions account for 57% of the variance. 
In general, performance in problem solving increases with the increase in the relative 
frequency of cognitive actions (or the decrease in frequency of mnemonic actions since this 
is negatively correlated with the relative frequency of cognitive actions as indicated in Table 
4) and the increase in number of actions and number of loops. In other words the quality of 
problem solving is dependent on the frequency of cognitive actions and the complexity of 
the structure of the action map. 
 
It is quite remarkable that these two categories of variables in the action map (a tool 
embedded in activity theory) account for high percentage of problem solving as measured by 
the assessment rubric, which has different assumptions. 

 
 

Table 4.Correlation Matrix 
 

 R/MN1 R/CO
G2 

R/PER3 ACTION
S4 

LOOPS5

R/MN1 1 -.85 -.53 .10  .01 

R/COG2 -.85 1 .23 .03 .14 

R/PER3 -.53 .23 1 -.25 -.26 

ACTIONS4 .10 .03 -.25 1 .62 

LOOPS5 .01 .14 -.26 .62 1 

1Relative frequency of mnemonic actions  

2Relative frequency of cognitive actions  
31Relative frequency of perceptual actions  
4Number of actions  
5Number of loops 
 
Construct Validity 
We examined further the structure of the of the action map by performing a factor analysis 
with Quartimax rotation on the variables derived from the action map. The analysis 
provided support to the two- factor structure (Table 5): Factor 1 with high  
loadings on the type of action (relative frequency of mnemonic actions, relative frequency of 
cognitive actions, relative frequency of perceptual actions) and Factor 2 with high loadings 
on the structure of the action map which reflect the complexity of the activity(number of 
actions and number of loops) 
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                                 Table 5:  Factor Structure of the action map 
Factor  Variable 

1 2 
-Ratio of cognitive actions to total number of actions(R/COG) 
-Ratio of perceptual actions to total number of actions (R/PER) 
-Number of actions (ACTIONS) 
-Number of loops (LOOPS) 
-Ratio of mnemonic actions to total number of actions (R/MN) 

.90 

.59 
-.05 
.05 

 -.97  

.18 
-.45 
.86 
.89 

   .04  

%of variance 42.17 35.46 

  
The usability of the action map calls for addressing practical questions as to what and how 
the it may be used as an assessment tool. This study has demonstrated that the action map 
may be used as a theory-embedded alternative tool to the rubric in assessing performance on 
mathematical problem solving by trained researchers in a research context. One would 
conjecture that the action map may be used by teachers to assess problem solving 
performance of situated problem tasks outside the classroom, assuming that teachers are 
trained in using action map. It remains an open question whether the action map can be 
constructed from an audio tape of problem solving through the thinking –aloud technique.  
The decision to use the action map as an alternative to the rubric is to be mediated by 
curricular goals of mathematics as well the comparative costs and benefits of the two tools. 
It should be mentioned that we are not making any claim that action map may be used to 
assess traditional procedural knowledge or conceptual understanding.  
 
This study has also demonstrated that the action map may be constructed from the written 
solutions of students only. Our experience shows that the action map requires less time to 
construct than a rubric, however, the construction of an action map for an individual student 
will require much more than to administer than an already available rubric.   
 
In conclusion, the action seems to be a promising tool for assessing situated problem 
solving. It is a tool which is embedded in a theory compatible with the assumptions of 
situated problem solving and the same time is usable in assessment of problem solving in 
mathematics classes as a viable alternative to rubrics. 
 
Endnote: 
This paper was originally presented at ICME-10 to TSG27 on the topic  “Recent 
Developments in Assessment and Testing in Mathematics Education”, Copenhagen, July, 
2004 
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Appendix A 
Context Problem Tasks 
A.1 Car Loan Task    
Rasamny Youniss Company is making a special offer on Nissan-Almera cars, model 1999, 
and automatic/full option for $13950 cash. Now, you have two options for payment in 
installments, either through the bank or through the company itself. Through the bank, and 
with a down payment of $5,000, you can pay with a 12% annual interest on the balance, 
$305 at the end of each month. However, the second option, and with a down payment of 
$5,000 you can repay, in equal monthly installments for 36 months at an annual interest rate 
of 7.5% on the total.  
1) Suppose you wanted to pay the whole remaining amount after 6 months.   In each 

option, how much do you have to pay to close your account?  
2)  Which is the most convenient option for paying for the car?   
 
 
 
A.2 Cell Phone Task 
 If you want to get a mobile phone, Libancell and Cellis offer multiple services. Both can 
give you a regular line for $400 with $25 fixed monthly payment and the call will be charged 
12 cents/ min. An alternative plan is providing monthly rechargeable cards with a certain 
number of units. While Libancell offers a Premiere line, Cellis provides a Click line. To get a 
Premiere line you have to pay $75 a fixed amount for the line and you can recharge it every 
two months for 103000 L.L. (180 units with duration of 50 second/unit) or 68000L.L (180 
units with duration of 50 seconds/unit). To get a Click line you have to pay $75 a fixed 
amount for the line and you can recharge it through buying separate cards with prices 
varying according to the time it serves. A $22 (90 units) rechargeable cards serves for 15 days 
with 5 extra days for receiving calls only, $33 (135 units) cards serves for 25 days with 10 
extra days for receiving calls only, and $44 (180 units) card serves for 40 days with 10 extra 
days for receiving calls only. With Cellis click line, the unit duration is 47 seconds.  
1) Suppose that you consume 3 units per day on the average. Which of the options is the 

cheapest? Explain. 
2) Given the number of the units consumed daily, which of the three options is the 
cheapest? Explain. 
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A.3 BMI Task 
Finding out your body mass index (BMI) is a quick way to figure out if your weight is 
healthy for your height. Nutritionists have developed refined ways to interpret BMI values, 
for instance, different BMI values can mean you are underweight, ideal weight, slightly 
overweight or obese. BMI can be calculated as W/h2, W=weight (kg), h=height (m).Given 
the following norms, find a mathematical way that may be used to transform these norms 
into the chart below: 
 
 

Symbol A B C D 
BMI < 20 20 ---25 25---27 27> 
Condition Underweight Correct Overweight Obese 
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Abstract 
This paper examines some psychological variables in predicting problem solving ability of in-
service mathematics teachers. The sample consists of 122 in-service teachers enrolled in degree 
programme. Five standardized instruments were used to collect the data on teachers’ 
mathematics anxiety, mathematics teaching efficacy belief, locus of control, study habits and 
problem solving ability. Multiple regression, Chi-square analysis,and Pearson moment correlation 
coefficient  were used to analyze the data. The results show that mathematics anxiety, 
mathematics teaching efficacy belief, locus of control and study habits all have significant 
relationships with problem solving ability with mathematics anxiety having the highest and study 
habits the lowest as stated above. Implications for mathematics teacher education were discussed.  
 
Key Words: Mathematics anxiety; mathematics teaching efficacy belief; locus of control; study 
habits; problem solving ability; in-service teachers   
 
 
Introduction 
 Teachers’ beliefs about mathematics have a powerful impact on the practice of teaching 
(Uusimaki, & Nason, 2004; Charalambos, Philippou & Kyriakides, 2002; Ernest, 2000). It has 
been suggested that teachers with negative beliefs about mathematics influence a learned 
helplessness response from students, whereas the students of teachers with positive beliefs about 
mathematics enjoy successful mathematical experiences that result in them seeing mathematics as 
a discourse worthwhile of study (Karp, 1991). Thus, what goes on in the mathematics classroom 
may be directly related to the beliefs teachers hold about mathematics. Hence, it has been argued 
that teacher beliefs play a major role in their students’ achievement and in their formation of 
beliefs and attitudes towards mathematics (Emenaker, 1996). Addressing the causes of negative  
beliefs held by pre-service primary teacher education students about mathematics therefore is 
crucial for improving their teaching skills and the mathematical learning  of their students 
(Uusimaki & Nason, 2004). Reboli, & Holodick (2002) reported that the National Council of 
Teachers of Mathematics in its 1991 publication Professional Standards for Teaching 
Mathematics (NCTM, 1991) and the current Mathematics Program Standards for the National 
Council for Accreditation of Teacher Education (NCATE, 1998) stress the importance of the 
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disposition of the classroom teacher towards mathematics. They maintain that if students are to 
develop a disposition to do mathematics, it is essential that the teacher communicate a positive 
attitude towards mathematics. Additionally, teachers need to establish a supportive classroom 
learning environment that fosters the confidence of students to learn mathematics. 
Unfortunately, research has reported that many pre-service elementary teachers have negative 
attitudes toward mathematics, are not confident in their own mathematics ability, and claim to 
have a high level of anxiety towards mathematics (Harper & Daane, 1998; Tooke & Lindstrom, 
1998).  So it is important for mathematics teacher educator to continually search for more 
personal factors that could hinder elementary school teachers from adequate delivery of 
instructions to their pupils. 
 
The issue of mathematics teachers’ self-efficacy, study habits, locus of control, anxiety towards 
the teaching and learning of mathematics as well as their problem solving ability is the concerns 
of this study.  
 
Problem solving 
Problem solving has a special importance in the study of mathematics. A primary goal of 
mathematics teaching and learning is to develop the ability to solve a wide variety of complex 
mathematics problems (James W. Wilson, Maria L. Fernandez, and Nelda Hadaway (1993).  
Stanic and Kilpatrick (1988) traced the role of problem solving in school mathematics and 
illustrated a rich history of the topic. To many mathematically literate people, mathematics is 
synonymous with solving problems -- doing word problems, creating patterns, interpreting 
figures, developing geometric constructions, proving theorems, etc. On the other hand, persons 
not enthralled with mathematics may describe any mathematics activity as problem solving 
(Wilson, Fernandez, and Hadaway, 1993). Problem solving is an integral part of all mathematics 
learning. In everyday life and in the workplace, being able to solve problems can lead to great 
advantages. However, solving problems is not only a goal of learning mathematics but also a 
major means of doing so. Problem solving means engaging in a task for which the solution is not 
known in advance. Good problem solvers have a "mathematical disposition"--they analyze 
situations carefully in mathematical terms and naturally come to pose problems based on 
situations they see.  
 
Good problems give students the chance to solidify and extend their knowledge and to stimulate 
new learning. Most mathematical concepts can be introduced through problems based on 
familiar experiences coming from students' lives or from mathematical contexts.  As students try 
different ideas in solving problems, the teacher can help them to converge their ideas towards the 
solution of the problem, thus providing a meaningful introduction to a difficult concept. 
Students need to develop a range of strategies for solving problems, such as using diagrams, 
looking for patterns, or trying special values or cases. These strategies need instructional attention 
if students are to learn them. However, exposure to problem-solving strategies should be 
embedded across the curriculum. Students also need to learn to monitor and adjust the strategies 
they are using as they solve a problem. 
 
Teachers play an important role in developing students' problem-solving dispositions. They must 
choose problems that engage students. They need to create an environment that encourages 
students to explore, take risks, share failures and successes, and question one another. In such 
supportive environments, students develop the confidence they need to explore problems and 
the ability to make adjustments in their problem-solving strategies. (NCTM, 2000). 
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 “The first rule of teaching is to know what you are supposed to teach. The second rule of 
teaching is to know a little more than what you are supposed to teach. . . . Yet it should not be 
forgotten that a teacher of mathematics should know some mathematics, and that a teacher 
wishing to impart the right attitude of mind toward problems to his students should have 
acquired that attitude himself” Polya (p. 173). It then follows that teacher of mathematics should 
by themselves be comfortably with problem solving otherwise they might not be able to 
effectively inculcate the attitude of problem solving to their students.  
 
Many teachers do recognize that non traditional strategies are necessary to meet the learning 
needs of their increasingly diverse students. Embracing change can be unsettling, but these 
teachers venture into new territory, opening a world of discovery for themselves and their 
students. For they know that a young mind carefully nurtured may be the next big thinker to 
solve another of the world’s mysteries (Jarrett, 2000). 
 
The importance of students' (and teachers') beliefs about mathematics problem solving lies in the 
assumption of some connection between beliefs and behavior. Thus, it is argued, the beliefs of 
mathematics students, mathematics teachers, parents, policy makers, and the general public about 
the roles of problem solving in mathematics become prerequisite or co-requisite to developing 
problem solving (Wilson, Fernandez, & Hadaway,1993). The question then is: Are the teachers 
who are suppose to the lay the good foundation for the student’s problem solving capacity 
themselves good problem solvers? 
 
Teacher Efficacy and Academic Achievement  
Teacher efficacy has proved to be powerfully related to many meaningful educational outcomes 
such as teachers’ persistence, enthusiasm, commitment and instructional behavior, as well as self-
efficacy beliefs (Tschannen-Moran, & Hoy, 2001). A teacher’s efficacy belief is a judgment of his 
or her capabilities to bring about desired outcome of student engagement and learning even 
among those students who may be difficult or unmotivated (Armor, Corroy-Oseguera, Cox, 
King, McDonnell, Pascal, Panly & Zellar, 1976) and this judgment may have a powerful effect on 
students learning. According to Bandura (1977) self-efficacy is mediated by a person’s beliefs or 
expectations about his/her capacity to accomplish certain tasks successfully or demonstrate 
certain behavior (Hackett, & Betz, 1981). This expectation determines whether or not a certain 
behavior or performance will be attempted, the amount of effort the individual will contribute to 
the behavior, and how long the behavior will be sustained when obstacles are encountered. 
(Brown, 1999). Some researchers belief that greater efficacy enable teachers to be less critical of 
students when they make errors (Ashton & Webb, 1986), to work longer with a student who is 
struggling (Gibson,& Dembo, 1984) and be less inclined to refer a difficult student to special 
education (Soodak & Podell, 1993). Researches have also shown that teachers with a high sense 
of efficacy exhibit greater enthusiasms for teaching (Allinder, 1994) have greater commitment to 
teaching (Coladarci, 1992) and are more likely to stay in teaching (Burley, Hall, Villeme, & 
Brockmeier, 1991). Teacher’s sense of efficacy has also been related to student outcome such as 
achievement (Armor et al, 1976) motivation (Midgley, Feldlanfer, & Ecceles, 1988). In addition 
teachers’ efficacy beliefs also related to their behavior in the classroom. The effort they invested 
in teaching, the goals they set, and their level of aspirations are products of their efficacy beliefs. 
Teachers with a strong sense of efficacy tend to exhibit greater level of planning and organization 
(Allinder, 1994) are more open to new ideas (Guskey, 1988) and are more willing to experiment 
with new methods to better meet the needs of their students (Stein & Wang,1988). 
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When individual have low self-efficacy expectations regarding their behavior, they limit the extent 
to which they participate in the endeavor and are more apt to give up at the first sign of difficulty 
(Brown, 1999). In order words low efficacy beliefs may serve as barrier to teachers teaching 
effectiveness and efficacy. When teachers have a low self-efficacy, their teaching may tends to be 
characterized by authoritative, teacher-centred roles with a less clear understanding of the various 
development levels of their students. To Rubeck and Enochs (1991) teachers who were week in 
content knowledge background tended to have significantly lower personal efficacy than did 
teachers with strong content background. Teachers with a high self efficacy may tend to teach in 
ways  characterized by the use of inquiry approaches more students centred ,beliefs that they can 
help any students overcome learning and succeed, and are more knowledgeable of their students 
development levels.  
 
The role of self-efficacy helps to examine why people’s performance attainment might differ even 
when they have similar knowledge and skills (Pajares & Miller, 1995). From the fore going 
review, it is clear that the way teachers view themselves and their roles in the teaching context is 
at least partially derived from their self-efficacy beliefs. The issue of pre-service teachers’ 
mathematics efficacy beliefs is therefore very important for them to be able to carry out their 
primary function of teaching diligently and effectively. In the present study the extent of the 
relevance of the construct to problem solving ability of in-service mathematics teachers is part of 
the major concern.      
 
Mathematics Anxiety and Achievement in Mathematics 
 According to Tooke (1998) mathematics anxiety has been the topic of more research than any 
other area in the affective domain and has become very popular research topics for both 
mathematics educators and educational psychologists. Mathematics anxiety has serious 
consequences in both daily life and in work, and has its roots in teaching and teachers (Williams, 
1988) and has been tied to poor academic performance of students, as well as to the effectiveness 
of elementary teachers (Bush, 1989; Hembree, 1990). Mathematicians and mathematics educators 
have great concern that teachers' attitudes toward mathematics may affect more than their 
students' values and attitudes toward mathematics; these attitudes may affect the effectiveness of 
the teaching itself (Teague & Austin-Martin,1981). Mathematics anxiety is more than a dislike 
toward mathematics. Smith (1997) characterized mathematics anxiety in a number of ways, 
including: (a) uneasiness when asked to perform mathematically, (b) avoidance of math classes 
until the last possible moment, (c) feelings of physical illness, faintness, dread, or panic, (d) 
inability to perform on a test, and, (e) utilization of tutoring sessions that provide very little 
success.   Mathematics anxiety has been defined as a state of discomfort which occurs in 
response to situations involving mathematical tasks which are perceived as threatening to self 
esteem (Cemen, 1987). In turn, these feelings of anxiety can lead to panic, tension, helplessness, 
fear, distress, shame, inability to cope, sweaty palms, nervous stomach, difficulty breathing, and 
loss of ability to concentrate (Cemen, 1987; Posamentier & Stepelman, 1990). Although only a 
small proportion of persons suffer from a propensity to experience this condition, it is important 
to recognize how it can lead to a very debilitating state of mind. Those persons with severe cases 
of mathematics anxiety are limited in college majors and career choices. There is a particular 
concern in the case of elementary teachers, because it is has been reported that a 
disproportionately large percentage experience significant levels of mathematics anxiety 
(Buhlman & Young, 1982; Levine, 1996). This leads to doubts as to their potential effectiveness 
in teaching mathematics to young children (Trice & Ogden, 1986). NCTM (1989) recognizes 
math anxiety as a problem and has specifically included in its assessment practices, since a 
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teacher's job is to assess his/her students' mathematical dispositions (Furner, J.M., & Breman, 
B.T (2004). NCTM (1989) has included the following in its Standards document for teaching 
mathematics: 
 
“As mathematics teachers it is our job to assess students’ mathematical disposition regarding: 
-confidence in using math to solve problems, communicate ideas, and reason; 
-flexibility in exploring mathematical ideas and trying a variety of methods when   solving problems; 
-willingness to persevere in mathematical tasks; 
-interests, curiosity, and inventiveness in doing math; 
-student ability to reflect and monitor their own thinking and performance while doing math; 
-focus on value of and appreciation for math in relation to its real-life application, connections to other disciplines, 
existence in other cultures, use as a tool for learning,  and characteristics as a language” (p. 233). 
  
According to Hadfield and McNeil (1994) the causes of mathematics anxiety can be divided into 
three areas: environmental, intellectual, and personality factors. Environmental factors include 
negative experiences in the classroom, parental pressure, insensitive teachers, mathematics 
presented as rigid sets of rules, and non participatory classrooms (Dossel, 1993; Tobias, 1990). 
Intellectual factors include being taught with mismatched learning styles, student attitude and lack 
of persistence, self-doubt, lack of confidence in mathematical ability, and lack of perceived 
usefulness of mathematics (Cemen, 1987; Miller & Mitchell, 1994). Personality factors include 
reluctance to ask questions due to shyness, low self esteem, and viewing mathematics as a male 
domain (Cemen, 1987; Gutbezahl, 1995; Levine, 1995; Miller, & Mitchell, 1994). 
 
Many researchers attempt to trace the evolution of mathematics anxiety among high school and 
college students back to their elementary school classroom experiences. When early school 
experiences get the blame for mathematics anxiety, the elementary teacher is usually labeled as 
the responsible party. Mathematically anxious teachers are said to pass their anxieties on to their 
students (Buhlman & Young, 1982). They are also often doubted as to their effectiveness as 
teachers of mathematics (Hadfield & McNeil, 1994; Kelly & Tomhave, 1985). According to 
Brush (1981), mathematically anxious teachers tend to use more traditional teaching methods, 
such as lecture, and concentrate on teaching basic skills rather than concepts. This is contrary to 
the current movement toward teaching mathematical concepts and problem solving through 
cooperative learning and projects (National Council of Teachers of Mathematics, 1989). It is 
certainly agreed upon by most educators that elementary school teachers are at a disadvantage if 
they possess mathematics anxiety, and to admit their fears and attempt to overcome them would 
not only be in their best interest, but also be in the best interest of their students. Amelioration 
any perceived mathematics anxiety noticed in pre-service teachers during their training may go a 
long way in reducing these cankerworms and thereby making them a more effective mathematics 
teacher. 
 
The changes in levels of mathematics anxiety among future teachers in two different mathematics 
materials and methods classes were investigated by (Vison, Haynes, Sloan, & Gresham, 1997). 
The changes were a function of using: (a) Bruner’s framework of developing conceptual 
knowledge before procedural knowledge, and (b) manipulative to make mathematics concepts 
more concrete. The sample included 87 pre-service teachers enrolled in mathematics methods 
courses. Two strategies were used to gather data both at the beginning and ending of each 
quarter. First, future teachers completed 98-item, Likert-type questionnaires. Second, some of the 
factors that influence the levels of mathematics anxiety were determined through the use of 
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questionnaire-guided narrative interviews. Multivariate analysis of variance was employed as the 
quantitative measure for comparing mathematics anxiety both at the beginning and ending of the 
quarter. Data revealed a statistically significant reduction of mathematics anxiety levels. Turkey’s 
HSD was used to determine that a significant difference in mathematics anxiety levels occurred 
between the classes in the fall and winter quarters. Results of the study have implications for 
teacher education programs concerning the measurement of mathematics anxiety levels among 
future teachers and the determination of specific contexts in which that anxiety can be 
interpreted and reduced (Vinson, 2001). 
 
Trujillo (1999) through administration of the Revised Mathematics Anxiety Rating Scale (R-
MARS) to 50 pre-service elementary teachers identified the five most mathematically anxious 
teachers. Each of the five identified participants was interviewed with regard to her mathematics 
experiences in elementary school, high school, college, and family setting. Their perceptions as to 
the causes of their specific anxieties about mathematics were expressed. Their future plans to deal 
with their anxieties about teaching mathematics when they join the teaching profession were also 
voiced. Negative school experiences, lack of family support, and general test anxiety were trends 
found within the backgrounds of the participants. Despite their current apprehensions regarding 
the study and teaching of mathematics Trujillo(1999) found out that most of the subjects were 
very confident and optimistic as to the possibility of setting aside their fears in order to develop 
into effective teachers of mathematics themselves.  
 
All of the prospective elementary teachers in this study had environmental, cognitive, and 
personality factors that contributed to their levels of mathematics anxiety. They all had negative 
classroom experiences and minimal family support, they all suffered from mathematics test 
anxiety, and they all had fears in regard to teaching mathematics themselves. He also found out 
that they all are aware of their negative feelings toward mathematics, and they are all determined 
to prevent the passage of their negative feelings on to their own students. 
 
Haper and Daane (1998) analyzed math-anxiety levels among elementary pre-service teachers 
before and after a mathematics methods course, noting factors that promoted math anxiety. 
Interviews and surveys indicated significant reductions in math anxiety at the end of the course. 
Anxiety stemmed from rigid and structured classroom instructional practices. The main factors 
causing math anxiety were word problems and problem solving. Poole (2001) says many 
prospective and current elementary teachers admit, although reluctantly, that their weakest 
subject area is math. This weakness is compounded by their lack of confidence and poor attitudes 
toward the subject. He also says many of these teachers attribute unhappy, negative experiences 
in the “early grades” as sources of their weakness. Whatever the reasons, educators should not 
foster 'negative feelings' about math. They should implement programs that enhance learning 
about, and improve attitudes toward, the subject of mathematics, particularly for prospective 
elementary teachers.  
 
 Teacher attitudes have been a major focus of many research studies involving mathematics 
anxiety. Teague and Austin-Martin (1981) investigated teachers’ mathematics anxiety and its 
relationship on teaching performance.  The results indicated a correlation between the two 
variables.  In addition, mathematics methods courses were found to reduce anxiety towards 
mathematics, but not significantly change attitudes towards mathematics.  Similarly, Olson and 
Gillingham (1980) concluded from their study that attitude toward mathematics and mathematics 
anxieties were not significantly related.  On the other hand, Arem (1993) structured a popular 
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self-help book, on the premise that a positive attitude toward self and mathematics serves as a 
solid foundation for overcoming math anxiety.  
 
Teacher variables have been studied to determine effects upon student achievement and 
mathematics anxiety. Van de Walle (1973) investigated third- and sixth-grade teachers’ formal 
(mathematical emphasis on rote memory) and informal (probing and trial-and-error) perceptions 
of mathematics. Findings indicated a positive effect on students’ mathematical comprehension 
when teachers exhibited informal perceptions and evidence of positive attitudes, such as low 
mathematics anxiety. Furoto and Lang (1982) studied teaching strategies designed to foster 
students’ positive self-concepts and their subsequent effects on attitudes, anxieties, and 
achievement in mathematics. The study revealed a positive relationship between students’ 
achievement and teacher attitudes, as  
well as, a reduction in mathematics anxiety levels as a result of positive  
self-concepts.  
 
 From an academic standpoint, Post (1992) warned that negative attitudes  
toward mathematics can produce negative results in mathematics due to the  
reduction of effort expended toward the math activity, the limited persistence one exerts when 
presented with an unsolved problem, the low independence levels one is willing to endure, and 
whether or not a certain kind of activity will even be attempted. Cruikshank and Sheffield (1992) 
wrote that they were unconvinced that elementary school children suffer from mathematics 
anxiety.  Instead, they argued that teachers, who fail to implement seven important measures, 
cause their students to learn math-anxious behaviors.  These measures include teachers who: (a) 
show that they like mathematics; (b) make mathematics enjoyable; (c) show the use of 
mathematics in careers and everyday life; (d) adapt instruction to students’ interests; (e) establish 
short-term, attainable goals; (f) provide successful activities; and (g) use meaningful methods of 
teaching so that math makes sense. Martinez (1987) has noted that, “Math-anxious teachers can 
result in math-anxious students” p.117. Sovchik (1996) offered the relationship between 
mathematics anxiety and future students as one that is passed from teachers to students. 
Teachers, Sovchik warned, must first examine the symptoms of math anxiety to see if they 
themselves exhibit any. In addition to that, teachers were encouraged to incorporate strategies in 
the classroom to alleviate mathematics anxiety altogether. In a study conducted by Scholfield 
(1981), teacher attitudes were directly linked to student performance in and student attitudes 
toward mathematics.  Results indicated that high-achieving teachers produced high-achieving 
students with least-favorable attitudes toward mathematics.  Those teachers who were classified 
middle- or low-achieving in their abilities to teach mathematics had students whose attitudes were 
the most-favorable, yet maintained the lowest achievement scores. Akinsola (2002) study 
mathematics anxiety and its relationship to in-service teacher’s attitude to the studying and 
teaching of mathematics and found significant relationships between teachers’ mathematics 
anxiety and their attitudes towards the studying and teaching of mathematics. Teachers with high 
mathematics anxiety tend to avoid studying and teaching of mathematics.  This study will like to 
see what relationship exist between mathematics anxiety and problem solving ability of the 
subject.  
 
 Locus of Control and Academic Achievement.          
It has often been said that obtaining a good education is the key to being successful in the world. 
But what determine been successful while in school? While many factors may contribute to 
school achievement, one variable that is oven overlooked is locus of control (Grantz, 2006). 
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Locus of control refers to an individual’s generalized expectations concerning where control over 
subsequent events resides (WikEd, 2005). In the context of education, locus of control refers to 
the types of attributions we make for our success and for/or failures in school tasks (Grantz, 
2006). Locus of control is grounded in expectancy-value theory, which describes human behavior 
as determined by the perceived likelihood of an event or outcome occurring contingent upon the 
behavior in question, and the value placed on that event or outcome. More specifically, 
expectancy-value theory states that if (a) someone values a particular outcome and (b0 that 
persons believes that taking a particular outcome action will produce that outcome, then (c) they 
are more likely to take that particular action (WikEd, 2006). Locus of control is the perceived 
source of control over our behavior. It influence the way we view ourselves and our 
opportunities (Gershaw, 1989). Rotter (1966) classified locus of control into a bipolar dimension 
from internal to external. Internal control is the term used to describe the belief that control of 
future outcomes resides primarily in oneself. In other words, people with internal locus of 
control believe they control their own destiny (Gershaw, 1989). External control refers to the 
expectancy that control is outside oneself, either is in the hand of other powerful people or due 
to fate/chance or luck. 
 
Research has shown that having an internal locus of control is related to higher academic 
achievement (Findley & Cooper. 1983) , students with internal locus of control earn better grades  
and work harder(Grantz,1999) and include spending more time on home work as well as studying 
longer for test. These make sense because if you believe working hard pay off then you are likely 
to do so (Grantz, 1999).  
 
External locus of control may be caused by continued failure in spite of continued attempts at 
school tasks (Bender,1995) and a high external locus of control, in turn, leads to a lack of 
motivation for study and school in general (Grantz,1999). If one has an external locus of control, 
he may feel that working hard is futile because their efforts have only brought disappointment. 
Ultimately, they may perceive failure as being their destiny (Grantz, 1999). In other words, 
students with an external locus of control are more likely to respond to failure by giving up hope 
and not trying harder (Anderman & Midgley, 1997). Out of the 36 studies reviewed by Bar-Tal 
and Bar-Zohar (1997) on locus of control and academic achievement 31 of the studies indicated a 
significant relationship with internals having higher achievement than external.  
 
Becker (1987) comparing student teachers’ with internal locus of control and external locus of 
control during the student teaching experience found that student teachers with internal locus of 
control expressed more confidence in themselves than student teachers with external locus of 
control. Also student teachers with internal control attempted to check for their students’ 
understanding of concept more frequently than student teachers with external control. The result 
of this study underlying the importance of the locus of control construct as factor that could 
affect the pattern of instructional delivery by teachers.   
 
Weiner asserts that people attribute their successes and failures to internal or external reinforces. 
An "internal person" attributes successes and failures to her ability or to her effort. An "internal 
person" attributes her performance to causes for which she assumes personal responsibility. An 
"external person" attributes her performance to factors for which she has no responsibility and 
over which she has no control. If she fails, the "external person" assumes that the task was too 
difficult or that she was unlucky (or both). If the "external person" succeeds, she attributes her 
success to the easiness of the task or to luck. (Weiner, 1986)  
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Bandura's theory of observational learning concerns learning from models (Bandura, 1969). He 
asserts that much behavior is acquired through observing and imitating other people. He 
contends that new patterns of behavior are learned through observing behavior without the 
observer overtly responding or receiving any reinforcements in the exposure setting. He writes, 
"Modeling influences . . . can create generative and innovative behavior." (Bandura, 1977: 40-41)  
He argues that observers watch models performing responses, which embody a certain principle. 
Later the observers behave in a way stylistically similar to the model's behavior, even though the 
observer is not mimicking the model's specific responses, because the observer has applied what 
she has learned from the model to a new, but related, situation. (Bandura, 1977). 
 
Bandura and Walters assert that teachers as role models may have three types of effects on 
students (Howard, 1996). The first is the "modeling effect," which involves the student's direct 
imitation of the model's behavior. The second is the "disinhibitory effect," which involves the 
student's observing the consequences of the model's actions and consequently choosing behavior 
in opposition, if the model's observed consequences were undesirable. For example, when female 
faculty members are regarded with low esteem by school administrators and are not treated as 
equals, the effect may be to inhibit female students' aspirations toward the teaching profession. 
The third modeling effect is the "eliciting effect," which involves the increased susceptibility in a 
student to the influence of the role model. For example, a female teacher who holds high 
expectations for female students' achievement may have an increased probability of influencing 
the female students' performance through cues which elicit a positive response in the students. 
(Bandura & Walters, 1969). Teachers are visibly in a position to be imitated by their students and 
having an internal locus of control or external locus of control can affect the directions of 
student learning.  
 
 This study will like to determine if there is a relationship between locus of control and problem 
solving ability of in-service teachers. 
 
 Study habits and Academic Achievement 
There are many factors responsible for underachievement like, motivation, study habits, attitude 
towards teacher, attitude towards education, school and home background, concentration, mental 
conflicts, level of aspiration, self-confidence, examination fear, etc.(Sirohi,2004). Poor habits of 
study not only retard school progress but develop frustration, destroy initiative and confidence 
and make prominent the feeling of worthlessness towards himself and the subject of study 
whereas effective methods ensure success, happiness and sense of accomplishment (Smith & 
Littlefield, 1948).  All too often, students perform poorly in school simply because they lack good 
study habits. In many cases, students don't know where to begin, don't fully understand the 
material, are not motivated by it, or feel that there was too much work given to them with too 
little time to complete or study it. If their studying skills do not improve, these students will 
continue to test poorly and not perform to their fullest potential 
  
 In a study of underachievement in relation to study habits and attitudes by   Sirohi (2004) the 
most significant factor contributing to underachievement is poor study habit which has been 
indicated by 100% underachievers in their study. 
 
Good work habits and skills are not acquired theoretically or in vacuum, it is proper habit of 
work and insistence on them in every detail and over a long period of time that create right 
attitudes and values (Secondary Education Commission, 1952). 
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Since learning is not a team sport but an activity that involves solely the student and the 
knowledge, it behooves on individual students to set a good work or study habits rather than 
been vagarious. Since certain skills need to be acquired at an early age—particularly mathematics 
and reading, writing, and thinking in one's native language—it is important that the idea of self-
teaching be inculcated  in the earlier years  so that learning these essential skills will automatically 
lead to the development of good study habits.  
 
There is a general need of teaching students the use of general study habits and each subject 
teacher, as he teaches specific subject skills, should call attention to this general habits. The 
question is: Are the elementary school teachers themselves have good study habits for them to be 
able to impact it to their students? What is the relationship of teachers’ study habits to their 
problem solving ability? 
 
Research questions 
(1) How much did mathematics teaching efficacy belief, locus of control, study habits and 
mathematics anxiety (when taken together) contribute to the prediction of problem solving ability 
of in-service teachers? 
(2) What is the relative contribution of each of the variables to the prediction of problem solving 
ability among the subjects? 
(3) Is there is a significant relationship between: 
(a) in-service teachers with high and low mathematics teaching efficacy belief and problem 
solving ability. 
(b) in-service teachers with high and low mathematics anxiety and problem solving ability 
(c) in-service teachers with internal and external locus of control and problem solving ability.  
  
Method 
 
Design 
 The design employed in this study was an ex-post facto type. In such a research, the 
investigation does not have a direct control of independent variables because their manifestations 
have already occurred or because they are inherently not manipulable. What the researcher  did in 
present study was to examine the four psychological variables(independent variables-mathematics 
teaching efficacy belief, locus of control, study habits and mathematics anxiety) and problem 
solving ability(dependent variable) as it occurred rather than creating these manifestations. 
 
Participants    
Data for this study were collected from a total of 122 in-service mathematics teachers enrolled in 
the B.Ed primary education programme in the Department of Primary Education, University of 
Botswana. The sample included 92 females and 30 males. The mean age of the participants was 
37years. Their ages range from 29 to 50 years while their working experience ranged from 6 to 25 
years. 
 
Instrumentations 
(1) Mathematics Teaching Efficacy Belief Instrument (MATEBI) 
The MATEBI consists of 25 items in a four-point Likert type scales ranging from strongly agree, 
agree, disagree and strongly disagree. The MATEBI was adopted from Enochs and Riggs 
(1990).Though the Enochs and Riggs scale is a five-point Likert scale the present study contains 
four because the investigator want all participant to have an opinion on all items. So the 
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undecided portion was removed. The internal consistency of the MATEBI score was measure by 
Cronback’s coefficient of alpha. The coefficient alpha is the function of the extent to which items 
in a test have commonality and is the lower limit of the reliability of a set of test scores (Cortinal, 
1993). The reliability of scale scores will naturally be influenced not only by the instrument used 
but also by the sample composition and variability (Davis, 1987). It is therefore important to 
report reliabilities coefficient for the actual data collected (Vacha-Haase, Kogan, & Thompson, 
2000), Isaac, Friedman, & Efret, 2002). The MATEBI was subjected to Cronback alpha reliability 
coefficient. It was found to be 0.91. 
 
(2) Locus of Control Scale 
The locus of control behavior scale based on Rotter (1966) was used as measuring instrument. It 
consists of 13 paired items. The instrument has a coefficient alpha of 0.82.  
 
(3) Mathematics Anxiety Rating Scale 
The mathematics anxiety rating scale by Richardson & Suinn, 1972 modified by Akinsola (2002) 
was used to measure the teachers’ mathematics anxiety.  It consisted of 30 items on a five-point 
Likert scale. The instrument yielded a reliability index of 0.79.  
 
(4) Problem Solving Ability Inventory. 
This was assessed with the aid of Rodman, Dean and Rosati (1986) instrument which was 
modified by Yokomoto, Buchanan, & Ware (1995) to reflect a shift in emphasis toward problem 
solving.  The inventory is divided into two parts, with the first set (items 1-11) assessing student 
beliefs and attitudes towards problem solving in learning and testing process whilst the second 
set (items 12-16) assessed student appreciation for mathematics , algebra word problems, and 
puzzles, and it also assessed student self-perception of their competencies as problem solvers. 
Students could select “strongly agree,” agree,” “disagree,” or “strongly disagree” as their response 
on each item. To ensure the suitability of the instrument for the current study however, it was 
subjected to test-retest reliability analysis. The obtained reliability coefficient was 0.77 
 
(5) Study Habits Scale 
The study habits questionnaire was a 35 items (3-point scale) adapted from Nneji (2002) study 
habits questionnaire. It is a 3 point Likert Scale featuring Mostly, Occasionally and Only. A test-
retest reliability coefficient of 0.79 was obtained when given to fifty in-service secondary school 
teachers to score.   
 
Procedure 
 
Data Analysis Procedure 
The stepwise multiple regression procedure(backward solution) was used to examine the joint 
and separate contribution of mathematics self-efficacy, locus of control, study and mathematics 
anxiety to the prediction of problem solving ability while chi-square analysis and Pearson 
moment correlation coefficient were used to determine significant relationship between the 
various aspects of the independent variables on the dependent variable.  
 
Results 
The research question was interested in knowing the joint contribution of the independent 
variables (mathematics teaching efficacy belief, locus of control, study habits and mathematics 
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anxiety) and dependent variable (problem solving ability). The results of multiple regression 
analysis are presented in Table 1 below: 
 
 
 
Table 1: Multiple regression analysis on problem solving data 
Multiple R                                   = 0.79251 
R-Square (R2)                              = 0.62807 
Adjusted R-Square                      = 0.62431 
Standard Error (SE)                     = 5.38421      
                          Analysis  of  Variance 
Source Df SS MS F-Ratio P 
Regression  
 
Residual 

4 
 
 
117 

10,025.36120 
 
 
3507.40326 

2506.34030  
 
 
29.97781 

 
83.60652 

 
<0.05 

 
 
The above table shows that the predictor variables contributed 62.81% of the variable in problem 
solving ability. The table further reveals that the analysis of variance of the multiple regression 
data yields an F-ratio of 83.60652 which is significant at 0.05. 
 
The results presented in table 2 below show the contribution of each of the variable to the 
prediction of problem solving ability. The table contains the standardized regression weight for 
each of the variables which from 3.1963 to 7.32625 and standard error of estimate which ranged 
from 0.09043 to 0.41162. The t-observed for each variable ranged from 4.11965 to 13.61185 
which are all significant at 0.05 levels. 
 
 
 
Table 2: Testing the significance of regression weight.  
Variable          B       SEB     Beta T obs. Signif. T 
Math 
Anxiety 

-5.60291 0.41162 0.732635 -13.61185 .000 

Math Self-
Efficacy 

4.26312 0.33617 0.42007 12.68144 .000 

Locus of 
Control  

-0.58233 0.09224 0.36241 -6.31320 .001 

Study Habits 0.37254 0.09043 0.31963 4.11965 .001 
Constant 68.42371 4.27311   .000 
 
The data were also analyzed using chi-square test. The chi-square result shows that there is no 
significant relationship between internal locus of control and problem solving ability while 
significant relationship was found between external locus of control and problem solving ability. 
In-service teachers with internal locus of control had a higher problem solving ability and those 
with external locus of control had a lower problem solving ability.  Also with chi-square test, no 
significant relationship was found between in-service teachers with low mathematics anxiety and 
problem solving ability whilst significant relationship was found between in-service teachers with 
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high mathematics anxiety and problem solving ability. However, the result shows that in-service 
teachers with low mathematics anxiety had a higher problem solving ability whilst in-service 
teachers with high mathematics had a low problem solving ability. Similarly, in-service teachers 
with high mathematics teaching efficacy had high problem ability while those with low 
mathematics teaching efficacy had low problem solving ability.  
   
Discussion of finding 
The result of this study as evident from Table 1 has shown that the four construct of 
mathematics anxiety, mathematics teaching efficacy belief, locus of control and study habits 
contributed 62.81% of the variance of problem solving ability in that order. The multiple R value 
of 0.79251 signified a high correlation between the predictor and the predicted variables. The 
result indicated that the predictor variables are potent contributors to the problem solving ability 
of the in-service mathematics teachers. This was further corroborated by the F-value of 83.60652 
which was significant at 0.05 levels. The result thus shows that these variables without exceptions 
have high predictive value in relation to problem solving ability. 
 
The result revealed that mathematics anxiety contributed mostly to problem solving ability in 
mathematics thus imply that the more the mathematics anxiety of in-service teachers the weaker 
their problem solving ability. The image and fear of mathematics is molded and shaped by past 
experiences and that it is very difficult to teach something you don’t possess yourself. These 
tensions and pressures in the teacher towards problem solving may inhibit sustainable confidence 
in the delivery of mathematics instruction thereby making them slothful and less effective. 
Mathematics anxiety is a very real fear for millions of people but the problems becomes acute 
when the person most afraid of problem solving is standing in front of the classroom trying to 
teach the subject. The National Council of Teachers of Mathematics in its 1991 publication, 
Professional Standards for Teachers of Mathematics (NCTM, 1991) and the Mathematics 
Programme Standards for Accreditation of Teacher Education (NCATE, 1998) stress the 
importance of the disposition of the classroom teacher towards mathematics. It was their view 
that if students are to develop a disposition to do mathematics, it is essential that their teacher 
communicates positive attitude towards mathematics, so the prospective teacher of mathematics 
has to be kind in words and deeds to them. To break the cycle of poor attitudes generating poor 
attitudes and provide students with positive experience in learning mathematics taking fears into 
account can help the teacher approach the subject with attitude that students can learn these 
subjects, and be sensitive to students who fail due to a lack of confidence. Teachers may also 
want to take extra care to teach these subjects well and to encourage questions. These presuppose 
that the teacher himself/herself is not fearful of the subject.   
 
Mathematics teaching efficacy beliefs represents a person’s evaluation of his or her ability or 
competency to reach or overcome a mathematics tasks or obstacles. Low self –efficacy has been 
linked to increase cheating, lack of concentration, low motivation, lack of persistence, and 
depression (Finn & Frone, 2004). Conversely, high self-efficacy has been associated with pursuit 
and achievement goals, problem solving and persistence (Vrugt, Langeries, & Hoogstrate, 
(1997).Consequently these factors are related to the problem solving effort of student. In other 
words mathematics self- efficacy may influence how successful students are ready to engage in 
problem solving activities. Students with high mathematics self-efficacy may be ready to confront 
and solve any problem that comes there way whereas students with low mathematics self-efficacy 
may distance themselves from engaging in solving problems they might have perceived as 
difficult thereby leading to poor achievement in mathematics. Students with high mathematics 
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self-efficacy are likely to persist in solving any kind of mathematics problems while those with 
low mathematics self-efficacy easily abandoning solving mathematics problems they considered 
too tasking. High mathematics self-efficacy students are likely to increase personal 
accomplishment, more absorbed in their mathematics and set and maintain more challenging 
mathematics goals.  
 
Thus the way a teacher judge his/her capability to organize and execute the course of action 
required to attain designated types of performance in mathematics like problem solving may 
likely affect the way they approach the task. So, attempting problem solving tasks in mathematics 
by in-service teachers depends on their level of mathematics self-efficacy as revealed from this 
study. In other words a teacher with a high level of mathematics self-efficacy will be willing to 
expend energy, effort and time in solving problem and encouraging his student in the act of 
problem solving. On the other hand, a teacher with a low mathematics self-efficacy may not be 
willing in exerting energy, effort and time on mathematics problem solving. Such a teacher will 
hardly encourage his/her students to persist on solving mathematical problems they might have 
considered too tough to handle. It may be concluded that teachers with high mathematics self-
efficacy are likely to be more apt in fostering and encouraging their students to tackle 
mathematics problems of all colour-ation whilst teacher with low mathematics self-efficacy may 
not be enthusiastic and committed in encouraging their students to embark on problem solving 
in mathematics since they themselves are not kin at problem solving as teachers model the 
behaviour they wish their students to exhibit. 
 
In this study locus of control was find to correlate with problem solving ability of the in-service 
teachers. Further investigation by chi-square revealed significant difference between in-service 
teachers with external locus of control and mathematics problem solving ability. Locus of control 
which is the tendency to ascribe achievements and failures to either internal factors that they can 
control(effort, ability, motivation) or external factors that are beyond control (chance, luck, 
others’ actions) is an important factor that could affect the ways a teacher performs his teaching 
role. It could be ascertain that teachers who believe that effort and ability are essential in the 
learning of mathematics are likely to motivate and encourage their students to tackle and solve 
problems in mathematics whereas those who believe that luck, fate, chance or powerful others 
might not be favourably disposed towards encouraging their students in engaging in strenuous 
mathematics problem solving because they themselves attached their successes to luck, chance or 
fate.   
 
 Study habits have been shown to contribute to students’ failure in mathematics (Mangaliman, 
2007). Study habits correlated least with problem solving ability in this study. Nonetheless, there 
is a significant relationship between study habits and problem solving ability of in-service 
teachers. For teachers to encourage good study habits in their students they themselves have to 
be an epitome of good study habits.  
 
Conclusion          
Attitude cannot be easily separated from learning because they are acquired through the process 
of learning which involves interactions of several variables. As illustrated by the definition of 
learning by Farrant (1994) that “learning is a process of acquiring and retaining attitudes, 
knowledge, understanding, skills and capabilities” p 107. According to Farrant’s definition, 
learners are not born with attitudes but instead they acquire them when they get in contact with 
the new world. This position is supported by Olaitan (1994) that “attitude can be learned and 
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teachers should strive hard to develop the right attitudes in their pupils particularly towards 
acquiring manipulation skills” p27. Attitudes differ according to how learners perceive what they 
are taught and whoever is teaching them. This position is supported by Jonassen (1996) who 
defined attitudes as “how people perceived the situation in which they find themselves” p485. He 
then asserted that if learners are not assisted or encouraged to perceive positively most of the 
things they learn, their performance in class will be affected. Thus the crucial roles of teachers as  
facilitator of positive attitudes of students. 
 
Most mathematics teachers are obtuse to student problems in mathematics thereby failing to 
educe the best from them. Mathematics teachers with lack of understanding and acceptance often 
provide a psychological climate which may precipitate negative attitude and avoidance to 
mathematics by students. This should no be so. As mathematics teachers we should always seek 
for avenue by which we will be making our students elated at the end of our interaction with 
them in the classroom. Methods which are perdurable should be employed always to sustain 
student continuous interest in learning mathematics. This is the only way by which we may be 
able to gear and stir them up and change their negative perception towards the learning of 
mathematics. This presupposes that mathematics teachers themselves are positively oriented 
towards the learning and teaching of the subject.   
 
Our teacher training programme must be evaluated on their ability to prepare mathematics 
teachers for students that have or may have develop discomfort for mathematics and who may 
end up teaching the elementary/junior schools where these feelings have been found to begin. By 
studying the pre-service and in-service teachers, we cannot only ascertain what future and present 
teachers are feeling but we can work with them towards alleviating their own discomfort with 
mathematics as well as prepare them for students they may encounter with similar feelings. The 
power of process resides in the key pathways through which mathematics teachers learn, grow, 
and improve their practices. A high mathematics teaching efficacy, a low mathematics anxiety, 
and internal locus of control and a good study habits are essential factors for would be 
mathematics teacher to be able to perform his teaching tasks creditably and optimally. 
 
A teacher’s competence, a teacher’s identity, a teacher’s ‘self’ is woven into the fabric of everyday 
events in a way which means that they have little choice but to be committed to outcomes of 
events that involve, at one and the same time, both the pupils’ and the teachers’ careers in the 
school (Denscombe, 1995). It is therefore necessary for mathematics teachers to be percipient of 
students’ mood and by so doing they may be able to reduce student often nasty experiences in 
mathematics classroom. 
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Abstract: Any theory of mathematical cognition and learning must ultimately articulate with our 
current understanding of how the mind works and with current theories of how knowledge is 
acquired from both an individual and social perspective. Certainly the human mind is very 
complex; understanding how it works in general and identifying the components that contribute 
to “doing mathematics” in particular is no easy task. To understand how the mind does 
mathematics, we must identify what mathematicians actually do in the context of everyday 
cognition. Here we discuss some of what is known and about this and point out directions for 
future work. 
 

The mind and mathematics 

Human minds did not evolve to do abstract mathematics per se, and yet we can use them to do 
mathematics none the less; there must be an explanation of how we got from there to here. 
Sperber (1996) says, “Materialism… does not commit scientists who espouse it to describing the 
objects of their discipline and the causal process in which these objects enter into the vocabulary 
of physics. What it does commit them to is describing objects and processes in a manner such 
that identifying the physical properties involved is ultimately a tractable problem, not an 
unfathomable mystery (to use Noam Chomsky’s famous distinction…).” (p. 10)  Cognitive 
scientists seek material explanations for how the mind works in general; the missing link we must 
pursue is how mathematical cognition and learning can be explained in terms of the “usual” 
processes of the mind. Despite the delicate and difficult work needed for such a program, we 
must insist on our goal being a theory of how the mind does mathematics without begging any 
questions.  It is argued here that mathematical structures are the cognitive imprint of the 
structural relationships we naturally perceive in the world, refined into idealized “objects” that 
can be studied with an idealized reasoning structure. 
 
Susan Haack talks about scientific reasoning as a refinement and extension of our everyday 
capacities for empirical inquiry. She quotes Thomas Huxley: “The man of science simply uses 
with scrupulous exactness the methods which we all, habitually and at every minute, use 
carelessly” and then Albert Einstein: “[T]he whole of science is nothing more than a refinement 
of everyday thinking.”(p. 95) At some appropriate level of generality, mathematical thinking must 
also arise as a refinement of our everyday cognitive capacities to reason about the world. A 
proper accounting of how this takes place is our best hope for explaining the “unreasonable 
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effectiveness of mathematics” to help us make predictions about the world (to borrow Eugene 
Wigner’s famous phrase). Given the usual perception that abstract mathematics is about anything 
but the everyday world, we must pick our path carefully. We have taken the first step by noting 
that how we think about mathematics must be explainable in terms of our standard-order 
cognitive systems. The next step is to ask, what are these systems and how are they honed to 
learn and do mathematics?   
 
First, let’s illustrate what we might mean by “systems.” The prevailing wisdom is no longer that 
the mind is some general purpose thinking machine, but rather the fusion of different specialized 
“cognitive modules.”  Gallistel (1999) says: 
 

Despite long-standing and deeply entrenched views to the contrary, the brain no longer 
can be viewed as an amorphous plastic tissue that acquires its distinctive competencies 
from the environment acting on general purpose cellular-level learning mechanisms. 
Cognitive neuroscientists, as they trace out the functional circuitry of the brain, should be 
prepared to identify adaptive specializations as the most likely functional units they will 
find. At the circuit level, special-purpose circuitry is to be expected everywhere in the 
brain, just as it currently is expected routinely in the analysis of sensory and motor 
function. (p. 1190)  

 
If we are to ask which cognitive modules and learning mechanisms are harnessed for 
mathematics, we should first look for specific cognitive modules that are adapted for “proto-
mathematics.” This has been the approach of scientists such as Stanislas Dehaene who study our 
understanding of numbers and basic arithmetic.  Dehaene (1997) says:  
 
 

Newborns readily distinguish two objects from three and perhaps even three from four, 
while their ears notice the difference between two sounds and three. Hence, the brain 
apparently comes equipped with numerical detectors that are probably laid down before 
birth. The plan required to wire up these detectors probably belongs to our genetic 
endowment…. [Most] likely, a brain module specialized for identifying numbers is laid 
down through spontaneous maturation of cerebral neuronal networks, under direct 
genetic control and with minimal guidance from the environment. Since the human 
genetic code is inherited from millions of years of evolution, we probably share this 
innate protonumerical system with many other animal species. (p. 61-62)  

 
 
Typically, work in cognitive science has focused on the acquisition and representation of specific 
mathematical topics such as numbers (as in Dehaene’s work), algebra word problems, geometric 
proofs etc. Dehaene claims that “As humans, we are born with multiple intuitions concerning 
numbers, sets, continuous quantities, iteration, logic, and the geometry of space.”(p. 246) While 
there has been work done in general in these other areas, it has not developed to the same depth 
as it has with our understanding of whole numbers and operations. Take, for example, the 
Handbook of Mathematical Cognition; of the 27 chapters dedicated to mathematics and the 
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mind, most treat numbers and operations, with the exception of Lakoff and Nunez’s2 article on 
conceptual metaphor and a few chapters devoted to mathematical disability. 
 

Mathematics and the mind 

While keeping one eye on the work of cognitive scientists, we should also ask what the 
mathematician’s perspective has to offer the study of mathematical cognition. Consider the 
following statement by G. H. Hardy:  
 

I believe that mathematical reality lies outside us, that our function is to discover or 
observe it, and that the theorems which we prove, and which we describe grandiloquently 
as our ‘creations,’ are simply our notes of our observations. 

 
This sentiment reflects a common one among mathematicians. Technically, Platonism is the 
philosophy of Plato, but given that there are different interpretations of Plato’s philosophy, I will 
use the term Mathematical Platonism, or simply Platonism, to be a belief that the objects of 
mathematical study have a reality separate from the human conceptualization of them. 
Mathematical Platonism differs from realist perspectives in science, where the objects of study 
tend to be about physical objects of which we have some empirical evidence. This contrasts with 
mathematical structures, such as groups or hyperspheres, which no one claims exist in the 
physical world as physical objects.  
 
In a paper titled “Reification as the Birth of Metaphor,” Anna Sfard reports on the interviews she 
has conducted with three renowned mathematicians: a logician, a set theorist, and a specialist in 
ergodic theory. In these interviews, the three mathematicians talk about the mathematical 
concepts that they study as if they were concrete in some way.  They talk of perceiving images 
and structures.  Her ergodic theorist says, “In those regions where I feel an expert… the 
concepts, the mathematical objects turned tangible for me.” The term that Sfard uses for this 
cognitive phenomenon is reification (although I am using it more generally than she does): To 
reify is to regard or treat an abstraction as if it had concrete or material existence.  
 
In several pieces of writing, Bertrand Russell reflects on both the reasons for and disillusionment 
of this experience.  In this quote from “Portraits from Memory,” he explains how such a 
sentiment might emerge:   

                                                 
2 Lakoff is well known for his application of his theory of conceptual metaphors to many different 
domains. In a critique of Lakoff’s work in Moral Politics, Jesse Walker says, “The problem is that [Lakoff] 
has… a model that may have some explanatory power but which he has stretched far beyond its limits.” 
This is exactly the fault one can ascribe to the work of Lakoff and Nunez.  Dennett’s analysis of Skinner 
comes to mind:  
 

Skinner was a greedy reductionist, trying to explain all the design (and design power) in a single 
stroke. The proper response to him should have been: “Nice try—but it turns out to be much 
more complicated than you think!” And one should have said it without sarcasm, for Skinner’s 
was a nice try. (p. 395) 

 
And so the criticism of Lakoff and Nunez’s work should go, mutatis mutandis. 
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Mathematics is, I believe, the chief source of the belief in eternal and exact truth, as well as in 
a super-sensible intelligible world. Geometry deals with exact circles, but no sensible object is 
exactly circular; however carefully we use our compasses, there will be some imperfections 
and irregularities. This suggests the view that all exact reasoning applies to ideal as opposed to 
sensible objects; it is natural to go further, and to argue that thought is nobler than sense, and 
the objects of thought are more real than those of sense-perception. Mystical doctrines as to 
the relation of time to eternity are also reinforced by pure mathematics, for mathematical 
objects, such as number, if real at all, are eternal and not in time. Such eternal objects can be 
conceived as God’s thoughts. Hence Plato’s doctrine that God is a geometer, and Sir James 
Jeans’ belief that He is addicted to arithmetic. 
 

Given that there is no way to empirically verify the existence of timeless and tenseless 
mathematical objects, believing in them is a matter of faith. Yet the experience of doing 
mathematics is very compellingly like studying “real” objects. Reuben Hersh says that most 
mathematicians are Platonists in their day-to-day work but only Formalists on Sundays.  So they 
behave as Platonists behind closed doors, but when asked for a public accounting of their 
activities, retreat behind Formalism.  
 
Let us put the philosophical issues aside for a moment. What insights do we gain from these 
introspective ruminations of mathematicians? Looking at this issue from a broader view point 
will be helpful here. In explaining the difference between cognitive neuroscience theories about 
consciousness and, say, motor action, Dehaene and Naccache state, 
 

What is specific to consciousness, however, is that the object of our study is an 
introspective phenomenon, not an objectively measurable response.  Thus, the scientific 
study of consciousness calls for a specific attitude which departs from the ‘objectivist’ or 
‘behaviorist’ perspectives often adopted in behavioral and neural experimentation.  In 
order to cross-correlate subjective reports of consciousness with neuronal or 
information-processing states, the first crucial step is to take seriously introspective 
phenomenological reports. Subjective reports are the key phenomena that a cognitive 
neuroscience of consciousness purport to study…. 
 
The idea that introspective reports must be considered as serious data in search of a 
model does not imply that introspection is a privileged mode of access to the inner 
workings of the mind.  Introspection can be wrong…. We need to find a scientific 
explanation for subjective reports, but we must not assume that they always constitute 
accurate descriptions of reality. ” (p. 3) 

 
Dehaene’s claims about subjective reports being relevant to understanding consciousness have a 
parallel in mathematical cognition.  Mathematicians’ tendency to use introspection to think about 
how mathematics gets accomplished provides important clues for determining how we actually 
do mathematics.  But more than taking the introspective reports at face value, we should consider 
how mathematicians describe their work as data that should be explained by any complete theory 
of mathematical cognition.  
 
Thus, it is more important to understand and explain the cognitive reality of mathematical objects 
than to argue about in what sense they exist. So far, most researchers in human cognition who 
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have addressed the issue of Mathematical Platonism have used our understanding of cognition to 
dismantle Platonism as an epistemology of mathematics.  But it is precisely this subjective 
experience that we should use to give us clues about how mathematicians do what they do. 
Dehaene comes close when he says,  
 

Presumably, one can become a mathematical genius only if one has an outstanding 
capacity for forming vivid mental representations of abstract mathematical concepts—
mental images that soon turn into an illusion, eclipsing the human origins of 
mathematical objects and endowing them with the semblance of an independent 
existence. (p. 242-243)  

 
What Dehaene fails to recognize is that we need to understand and explain how we form “vivid 
mental representations of” abstractions and why they appear to have an independent existence.  
Furthermore, it is not just mathematical geniuses who function this way, but anyone who uses 
mathematics effectively to solve complex problems. Think of the ubiquitous use of the term 
“mathematical tools,” often used as if it stands in opposition to the mathematician’s view of 
mathematical objects.  Yet a function is still a conceptual object if it is used to describe the height 
of a rocket over time.  It is just that some people develop or collect tools, and others prefer to 
use them for some secondary purpose.3 It is the selective attention of (especially pure) 
mathematicians on the mathematical objects themselves vs. how they are used that makes them 
reflect more on the subjective experience of having these mental representations. 
 
Anna Sfard gives a very plausible explanation for the Platonic experience. She says,  
 

It becomes clear that this ‘practical’ Platonism is not a matter of deliberate choice, of 
insufficient sophistication, or a lack of mathematical (or philosophical) maturity. It is because 
of the very nature of our imagination, because of our embodied way of thinking about even 
the most abstract ideas, that we spontaneously behave and feel like Platonists. (51) 

 
Thus, to understand how people do mathematics, we must understand the cognitive origin of this 
experience, that is, we must work to understand the cognitive mechanisms that allow for the 
reification of abstract ideas.  Most writing about this phenomenon has been of a philosophical 
nature, but what is needed now is a cognitive account of it.  

Natural category representation 

To develop a theory of how people might represent mathematical objects in the mind, we should 
look to theories of how they represent more familiar objects such as dogs or tomatoes. The 
                                                 
3 What of this “mathematics as tools?” Certainly one need not understand the wiring or motor design for 
a compound miter saw to use it to build a window frame. A fortiori one need not understand the physics 
behind its electrically powered motor. With physical tools, one can go to the hardware store and purchase 
them ready-made.  In contrast, mathematical tools are constructed in the mind, made up of neuronal 
connections that are shaped by culturally mediated physical, social, and mental experiences.  Because the 
tools themselves need to be assembled by the learner, their inner workings do need to be made plain to 
the assembler.  Furthermore, the very way that mathematical tools are used requires that their structure be 
understood so that it can properly be fitted to the problem at hand.  The metaphor of mathematics as a 
tool is dangerous if we expect too much similarity with saws and hammers. 
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categories that people make to organize what they know about the objects and ideas that they 
encounter in everyday life are referred to as natural categories.   
 
The classical view of category representation was that all categories were determined by 
definitions which described necessary and sufficient conditions for category membership. So in a 
sense, a category was thought to be a well-defined set, and objects were either in the set or not.  
But considerable evidence suggests that there are many natural categories that we do not 
represent this way.   
 
For example, Hampton asked subjects to rate whether certain items belonged in certain 
categories (like whether the kitchen sink was a piece of furniture or a tomato was a vegetable). He 
found that items fell along a continuum so that almost all subjects agreed that certain items 
definitely belonged to the category and others definitely did not, but many items fell in a fuzzy 
range in between where subjects differed on whether they did or did not belong to the category.  
Interestingly, McCloskey and Glucksberg found that subjects who were asked to make similar 
judgments repeatedly on the same items were shown to change their minds about category 
membership much more frequently with these “borderline” cases (tomato/fruit) than on items 
that were consider to be more “typical” of the category (apple/fruit).  
 
Murphy argues that such fuzziness is a necessary result of our need to understand a world with 
many fine gradations of things.  So in a sense, the categories we form discretize a continuous 
world. As a result, natural categories have fuzzy boundaries. Yet while their boundaries are fuzzy, 
their “cores” are very crisp. Even within a given category, certain members are considered more 
or less typical. For example, sparrows are considered to be very typical birds whereas penguins 
are not. Rosch and Mervis articulated a theory that typicality is based on family resemblance, 
which is constituted by the following two conditions: 
 

(1) If they have features common in their category, and 
(2) They do not have features in common with other categories. 
 

Murphy states that the typicality phenomenon reveals a prototype structure to our representation 
of categories. Perhaps it is this prototype structure of our mental representations of categories that 
inspired the original notions of Platonic ideals or Aristotle’s essences.   Thus, the very notion of 
essential dogness or roundness reflects some very deep structure of the human mind, and only 
indirectly reflects the deep structure of the world.  Plato’s work would then represent the original 
introspective reports that provide us clues about how the human mind understands the world.   
 
Gelman suggests that essentialist thinking is an early cognitive bias and that young children are 
natural essentialist thinkers. Clearly it serves us well to see similarities between things we 
encounter in the world and to look for what hidden structures and relationships might account 
for these similarities. But must this tendency we have necessarily reflect the exact structure of the 
world around us?  No—this capacity for essentialist thinking can be a useful strategy without 
representing the world completely faithfully. When we look at a sparrow on the fence, we do not 
perceive every aspect of the bird such as the heart pumping its blood or the electrical activity of 
its nervous system, but the visual representation we have of it is enough to help us know 
something about what it is and what it is likely to do.  Dennett says: 
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Aristotle had taught, and this was one bit of philosophy that had permeated the thinking 
of just about everybody… [that] all things—not just living things—had two kinds of 
properties; essential properties, without which they wouldn’t be the kind of thing they 
were, and accidental properties, which were free to vary within the kind…. [Yet the 
geological record showed that] species were not eternal and immutable; they had evolved 
over time…. Even today, Darwin’s overthrow of essentialism has not been completely 
assimilated…. The essentialist urge is still with us, and not always for bad reasons. Science 
does aspire to carve nature at the joints, and it often seems that we need essences, or 
something like essences, to do the job. (36-39) 

 
If preschoolers are essentialist thinkers, is it really likely that this is the legacy of Aristotle rather 
than a feature of the human mind? Perhaps it is this push to understand the essences of the 
things in the world around us that we refine into mathematical thought, for in the world of 
mathematical objects things really do have essences. We seek to cut nature at the joints because 
of the structures of our minds. This is useful even if not always an identical reflection of reality. 
Piaget considered this possibility in his book Structuralism, where he states, “Must we, to make 
sense of the fact that we are in possession of knowledge of nature, allow for some sort of 
permanent tie, though not of identity, between “external” structures and the structures of “our” 
operations?  If there is such a connection, we should find it in evidence in “intermediate” regions: 
biological structures and our own sensory-motor acts should exhibit it in its efficacy.” (p. 39) 
 
Pinker and Prince discuss category representation in the context of subclasses of regular and 
irregular verbs. From their analysis they conclude, “Both family resemblance categories and 
classical categories can be psychologically real and natural. Classical categories do not have to be 
the product of rules that are explicitly formulated and deliberately transmitted.” (p. 234) 
Furthermore, Maddox and Ashby present findings from standard cognitive laboratory 
experiments, neuropsychological patient data4, and neuroimaging studies in which they argue that 
there is strong evidence that human category learning is mediated by multiple, qualitatively 
distinct cognitive and neural systems. Not only do we use different neural circuits to think about 
different kinds of categories, but there is evidence that different individuals use different neural 
circuits for the same category or concept.  Pinker and Prince conclude, 
 

The referents for many words, such as bird and grandmother, appear to have properties 
of both classical and family resemblance categories. How are these two systems to be 
reconciled?... [A likely] reconciliation is that people have parallel mental systems, one that 
records the correlational structure among sets of similar objects, and another that sets up 
systems of idealized laws. Often a category within one system will be linked to a 
counterpart in another system. (p. 254) 

 
Understanding concepts is not the only instance where we integrate the information provided by 
distinct cognitive systems. We use our different senses to try to understand the objects and 
phenomena that we encounter in our everyday lives, and we integrate the information from the 
different systems so that we may have the most complete understanding of the things we 
encounter. For example, as we stand in the buffet line surveying the choices ahead of us, our 
                                                 
4 Neuropsychological patient studies compare the performance on certain tasks between normal subjects 
and subjects with neurological deficits (e.g. amnesiacs). 
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impression of what is there is drastically different if it looks beautiful but smells rotten or looks 
dreary but smells heavenly.  In this way, we expect that the different data we collect should 
coalesce into an understanding of the things we experience.  We do not think that if we have 
both visual and olfactory information coming in that there are necessarily two stimuli, and if we 
eat with our eyes closed we may still know from the smell, taste and feel of what we put in our 
mouths that it is chocolate pudding or caviar or rotten oranges. Thus, we must have a mental 
representation of the food we eat that can be derived from the integration of different sensory 
inputs in different combinations. By analogy, we should not be surprised if we find that we use 
different mental representations to the same mathematical end. Fayol and Seron suggest that in 
the case of whole numbers and operations, this is exactly the case: 
 

Any model of number processing must account for the fact that educated adults are able 
to recognize and produce numbers in the Arabic code and the verbal code. It is therefore 
necessary to postulate that adults possess mental representations which are able to guide 
these recognition and production operations.  However, researchers disagree as to the 
role and the format of these representations and their interrelations. It now appears to be 
well established that the symbolic representations are functionally independent and that 
they may undergo isolated impairment or be degraded in accordance with specific 
patterns in brain-damaged patients…. Evidence for the existence of some of these 
dissociations is also provided by cerebral imaging data which suggests that the verbal and 
Arabic codes are not processed in the same regions. (p. 8)  

 
Here we see a connection to the mathematics education literature, and the ubiquitous references 
to teaching mathematical concepts using “multiple representations.” We need to make the 
important distinction between external or public representations, such as graphs or equations, 
and internal or mental representations. In the mathematics education literature, multiple 
representations usually refer to the first of these—the external representations. But there is a 
curious silence about what is being represented. If anything, it will be said that they are 
representations of a concept. But what kind of concept is implicitly assumed? Typically, it is a 
family resemblance category and not a classical one. For example, consider the following 
statement taken from the NCTM standards: “In grades 3-5 all students should… develop 
understanding of fractions as parts of unit whole, as parts of a collection, as locations on number 
lines, and as division of whole numbers.” (p. 148) The part-whole “interpretation” of a fraction 
requires one definition and the division of whole numbers “interpretation” requires another, and 
seeing the connection between these requires some real mathematical work (see, e.g. Beckmann). 
It is the justification of the connection between these that allows for the family resemblance 
structure for the category “interpretations of fractions,” but each of them constitutes its own 
classical category in its own right. Furthermore, this category has fuzzy boundaries.  Would we 
consider a ratio as an “interpretation” of a fraction? Looking at the range of approaches to the 
definition of a ratio, we see there would be disagreement about this (see Milgram, p. 219-254). 
 
From the mathematician’s perspective, mathematical categories are, in fact, described by 
definitions giving necessary and sufficient conditions for category membership.  But they may 
arise from experiences with natural categories of objects in the world that are not classical. In 
mathematical categories, we strive to articulate definitions so that the boundaries are not fuzzy—
in fact, if there is confusion about whether something belongs in a particular mathematical 
category, then we say that the category is not “well-defined” and we strive to clarify the 
definition. The purpose of devising definitions in mathematics is exactly so that we may 
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communicate precisely about which objects we mean.  It is not so much that there are “natural” 
mathematical categories with a priori definitions; definitions develop to isolate out the objects 
that interest us in some way, usually along some important structural lines.  (For a better 
understanding of how this works, see the discussion of what a polyhedron is in Lakatos’ Proofs 
and Refutations.) Of course, we inherit definitions from the mathematical culture in which we are 
embedded, and in this way mathematical definitions have an existence that is independent of us 
as individuals. Yet the definitions of mathematical objects and structures originate in our 
experiences with the world as we find it, including the natural world as well as the world of ideas 
that has developed before we enter it. 

A case study: what are circles? 

We come equipped with the ability to see patterns in both images and sound.  Very young 
children easily recognize and name circles. Thus, even children recognize the category of round 
things, but the category of round objects has blurry edges:  
 

 
Given what we know of category representations, this category must also be equipped with a 
category prototype. This is no different than the category prototypes for dogs or tomatoes. Then 
why do we mathematicize circle shapes and not dog shapes?  Note that roundness is a secondary 
property of an object and objects from many different categories can be round. We still recognize 
an oval plate as a plate. But would we recognize a snake-shaped dog? From the cognitive 
perspective, circles are the collection of things in the world that also happen to be round.  
 
But for this proto-mathematical category to mature in to an actual mathematical category, we 
analyze what it means to be “round.” We see there are subtleties involved—do we mean round 
like a plate or round like a ball?5 We develop mutually exclusive categories for these different 
kinds of round things—circles and spheres—and then come up with necessary and sufficient 
conditions for an object to be in one of our new mathematical categories of round things. And in 
doing so, we create an object that exactly embodies each of these kinds of roundness; nothing 
more and nothing less.  Once the structural definition is in place (the set of points equidistant 
from some chosen center in either the plane or 3-space, respectively) we can imagine a circle or 
sphere without any other properties—not a ripple in a pond or a soccer ball, but a new object 
that embodies the ideals of the respective categories of round things. So a mathematical circle is a 
round object with no properties other than those which follow logically from “roundness” 
defined in some appropriate way.   
 
                                                 
5 Note that many books for pre-school children do not distinguish between these, and in fact show 
pictures of balls under the heading of “circle.” 
 

Figure 1: Which of these figures are round? Are any of them circles? 
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Recalling Russell’s comment about sensible vs. ideal objects, we realize that there really is no 
perfect circle in this world as we have defined it. But through the power of thought experiments 
and careful reasoning, there it is, represented in the mind.  
 
In everyday reasoning we usually do not need (or even want) to separate out roundness from the 
other properties of round objects we experience in the world. The kinds of inferences we make 
that connect past experiences with current observation serve us well: “The last time I saw a tree 
with round red things on it I could eat them.”  In mathematical reasoning, however, we do 
carefully separate out distinct characteristics.  This is a hallmark of mathematical thinking, and we 
could not do it without our ability to learn and think about categories with a classical structure. In 
general, we can think of mathematics as the science of essentialism. 

Yes, Virginia, there are mathematical objects 

Many artificial categories that can be defined in this classical way that are used in psychology 
experiments are basically arbitrary, but for mathematical definitions that are inspired by 
phenomena in the world, they can be designed to capture in some essential way the salient 
features6 of the category prototype.  But even when they have concrete origins, they define a new 
abstract set of objects that have their own attributes and that are discovered through deduction. 
In Dubinsky’s words, “Abstraction, in general, is the determination in a given situation, which 
may be a mathematical object, a procedure, or a combination of the two, of what is essential in a 
component of the situation. In mathematical abstraction, one generally expresses this essence in 
some systematic manner.” (Emphasis added.) Mathematicians represent these essential features 
by defining an object or structure that embodies them, and it is these objects that are represented 
in the mind.  
 
It is from this perspective that we might think of mathematical objects as the cognitive imprint of 
structural reality in the same way that visual images are the cognitive imprint of physical reality.  
Just as our mental representations of the objects we see are not equivalent to photographs of 
those objects, so our mental representations of structures and relationships in the world are not 
“snapshots” of those phenomena, but rather idealizations of them that are meaningful in our 
current web of knowledge.  
 
Once mathematical concepts take on their own cognitive reality, we can look for attributes and 
structure in the world of these abstract objects and abstract again.  The most basic example is 
numbers and operations. How else can we talk of the “properties of numbers” and “number 
systems?” After number systems reify, we can think of groups, which are defined to capture the 
particular operational relationships we see in number systems, (or the set of symmetries of a 
square, etc.).    
 

                                                 
6 Even though the case we have described in detail is a category organized by a physical feature, the same 
argument can work with the appropriate kinds of functionally defined categories. For instance, if you have 
three gumball machines where the first gives two gumballs for a quarter, the second gives three and the 
third gives five, then we can see that these gumball machines all have in common a multiplicative rule and 
# gumballs = a * # quarters would be a mathematization of the category prototype. 
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To understand mathematical cognition, we need to understand how external representations 
(such as definitions, equations, and graphs) mediate the corresponding mental representations of 
mathematical categories (such as functions). Given the earlier discussion of the interaction of 
different cognitive systems that support the conceptualization of a single thing, we should expect 
these verbal, symbolic, and pictorial representations to coalesce into the perception of a single 
thing—a mathematical object.  

Idealized objects require idealized reasoning 

Situations that we encounter in everyday life and the relationships between objects we find there 
are complex.  We rarely know all of the facts that are relevant to these situations, so we must 
make decisions with incomplete information.  Because no knowledge of the real world is 
absolutely certain and is never complete, such decisions are probabilistic in nature. But the ideal 
objects that we study in mathematics are very different—because we can choose their properties 
and the situations that we wish to consider them in, we can and do reason about them in an 
idealized way. 
 
LeFevre et al state that “a substantial portion of the research on mathematical cognition is 
focused on the processing of arithmetic problems, especially single-digit arithmetic.” (p. 365) The 
heavy emphasis on numbers and arithmetic is reflected in the conceptualization of mathematics 
held by the cognitive science community.  For instance, Gallistel and Gelman state, “Mathematics 
is a system for representing and reasoning about quantities, with arithmetic as its foundation.” Of 
course, mathematics is about much more than quantity, and Gallistel and Gelman get closer 
when they say, “From a formalist perspective, arithmetic is a symbolic game, like tic-tac-toe. Its 
rules are more complicated, but not a great deal more complicated. Mathematics is the study of 
the properties of this game and of the systems that may be constructed on the foundation that it 
provides.” While a complete and universally satisfactory definition of mathematics is difficult to 
formulate, we can say at least that it is a complex system of reasoning about both quantity and 
space and the abstract structures derived from them (whether one takes a formalist perspective or 
not). Clearly, our reasoning modules developed well before the advent of modern mathematics, 
so we should look to see what types of cognitive modules are being proposed that might 
reasonably be conscripted for mathematical purposes. 
 
According to Markovits and Barrouillet, early theories on the study of the development of 
reasoning were eventually shown to be in contradiction with substantial empirical evidence.  As a 
very simplistic summary, early theories of human reasoning essentially assumed that people 
reason logically (Piaget famously held this view), and ample evidence has shown that this is not 
true in many situations.  Murphy states that the role of concepts is to help us organize our 
knowledge about the things we encounter in the world, and that the inferences (though not 
strictly “logical”) that we make based on these conceptual structures are quite important.   
 
Pinker and Prince state: “Bobick (1987), Shepard (1987) and Anderson (1990) have attempted to 
reverse-engineer human conceptual categories in terms of their function in people’s dealings with 
the world. They have independently proposed that categories are useful because they allow us to 
infer objects’ unobserved properties from their observed properties (see also Rosch 1978; Quine 
1969). (p. 247)” On the other hand, logical reasoning requires us to separate out what we know 
from everyday experience and to look in a purely structural way at an argument. Our reasoning 
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about many everyday situations is certainly not purely logical, yet we use our reasoning structures 
we come equipped with to do purely logical reasoning.  
 
Given the likely modularity of the human mind, it is quite possible that there is more than one 
reasoning system rather than one single all-purpose system. For example, Sperber and Girotto 
discuss Cosmides’ theory that people have “a ‘social contract algorithm’ specialized in reasoning 
about social contracts [that allow us] to detect parties that were not abiding by the terms of the 
contract.” Sperber and Girotto, in turn, argue that, “People tend to be guided not by any form of 
reasoning but by context-sensitive intuitions of relevance (see also Evans, 1989). Intuitions of 
relevance are activated by the pragmatic mechanism involved in comprehending the task (just as 
they are by any comprehension process).”  They go on to say that their approach “is in no way 
hostile to evolutionary psychology. In fact, the relevance-guided comprehension mechanism 
involved in the selection task is viewed as an evolved module specialized for the comprehension 
of communicative intentions, and more specifically as a sub-module of a Theory-of-Mind 
mechanism.” Regardless of the details of future directions such theories may take, this discussion 
reminds us that we must be mindful to look for theories that provide a proper balance between 
general and domain-specific reasoning abilities as they are employed to do mathematics. 
 
An example of the detailed kinds of theories we would need to understand mathematical 
reasoning is given in Gopnick et al (2004), where they have developed a theory of causal 
reasoning based on Bayes nets.  Such work makes it clear that purely logical reasoning would 
actually not be sufficient for making basic inferences about certain kinds of everyday situations. If 
we were able to know with certainty all of the relevant facts about what causes an illness, for 
instance, then pure logic would be the most accurate way of reasoning.  But in practice, what we 
know at any given time is tentative and fragmentary.  Thus, everyday reasoning is likely to devise 
solutions to situations that optimize the likely outcomes given less-than-optimal information. 
Gopnik et al connect this abstract analysis to the particulars of likely information types:    
 

The epistemological difficulties involved in recovering causal information are just as grave 
as those involved in recovering spatial information.  Hume (1739/1978) posed the most 
famous of these problems, that we only directly perceive correlations between events, not 
their causal relationship.  How can we make reliably correct inferences about whether one 
event caused the other? Causation is not just correlation, or contiguity in space, or 
priority in time, or all three, but often enough, that is our [only] evidence. 

  
Just as our sensory systems have evolved to help us represent the objects we encounter faithfully 
enough to be useful to us to navigate our surroundings, find food, avoid danger etc., our 
reasoning7 abilities must have evolved to help us reliably see structures and relationships in the 
world—that is, to reason (relatively) reliably about what we perceive in the world.  As Gopnik et. 
al. said when discussing cognitive representations of the causal relations among events, “Given 
the adaptive importance of causal knowledge, one might expect that a wide range of organisms 
would have a wide range of devices for recovering causal structure.” Perhaps the mechanisms 
that allow for the mental representations of causal relationships in the world are analogous to our 

                                                 
7 Here I use the term reasoning in the broad sense it is meant in the cognitive psychology literature, 
which I take to be any process by which someone draws conclusions based on their current understanding 
of a given situation, and not in the narrower sense of  “logical reasoning.”   
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ability to see structures and relationships in the world that we can then study deliberately through 
more formalized mathematics. 
 
How might this work? Gopnick’s Bayes net models for representations of causal knowledge 
include both causal chains and associated probabilities. Logical arguments can be seen as a 
particular subset of such causal structures where the associated probabilities are always assumed 
to be zero or one. In this way, we can think of mathematical reasoning as an idealization of a 
certain kind of everyday reasoning.  

In summary 

While one must keep them in perspective, there is a benefit to be gained from trying to explain 
the introspective reports of mathematicians. In the words of Jacques Hadamard: 
 

Will it ever happen that mathematicians will know enough about the physiology of the 
brain, and neurophysiologists enough of mathematical discovery, for efficient 
cooperation to be possible?  

 
We may find in the end that some modified version of Platonism holds; not that mathematical 
structures exist in some timeless or tenseless place, but as structures themselves they reflect or 
approximate to greater and lesser extent the structure of the natural world and natural systems.  
The cognitive reality of mathematical structures may, in fact, result from a refinement of natural 
concepts that are designed to give us a better understanding of the world, and in that way, have a 
“reality” that is objective—as much as any mental representation can be. Mathematics is the 
study of all possible ideal worlds, and in so far as any of these bear a resemblance to the actual 
world, we find the power of mathematics to describe what we see.  
 
I would like to expand on the opening lines of G.H. Hardy’s “A Mathematician’s Apology”: 
 

A Mathematician, like a painter or poet, is a maker of patterns. 
 
Let us generalize this to encompass a broader definition of what mathematics is and who 
qualifies as a mathematician. 
 
Painters and musicians create images and sounds that can either be representational or abstract—
each utilizing critically important cognitive/sensory systems.  Writers use language to create both 
fiction and non-fiction. The medium for mathematicians’ creative works is structure and 
reasoning, and applied mathematicians’ work is representational while pure mathematicians’ work 
may not be.  But just as we may find both intrinsic beauty as well as links between the abstract 
works of artists, musicians, and fiction writers to the world of human experience, so at times we 
find our pleasure in pure mathematics from both its intrinsic beauty and the serendipitous 
insights we gain from it into the world around us.  It is the combination of the need to accurately 
represent the world with our sensory and reasoning systems and our capacity for creativity that 
gives rise to the paradox of the “unreasonable effectiveness of mathematics” to describe the 
world around us. 



Umland 

 

References 

Ashby, G. Maddox, T. (2005) Human Category Learning. Annual Review of Psychology, 56, 149-178. 
 
Beckmann, S. (2005). Mathematics for Elementary Teachers with Activities. Addison Wesley Higher 
Education 
 
Campbell, J. (ed.) (2005) Handbook of mathematical cognition.  New York, NY: Psychology Press 
 
Cosmides, L. (1989). The logic of social exchange: Has natural selection shaped how humans 
reason? Studies with the Wason selection task. Cognition, 31, 187-276. 
 
Dehaene, S. (1997) The number sense: how the mind creates mathematics. New York: Oxford University 
Press 
 
Dehaene, S. and Naccache L. (2001). Towards a cognitive neuroscience of consciousness: basic 
evidence and a workspace framework. In Dehaene (ed.) The cognitive neuroscience of consciousness. 
Cambridge, Mass.: MIT Press 
 
Dennett, D. (1995). Darwin's dangerous idea : evolution and the meanings of life. New York: Simon & 
Schuster 
 
Dubinksy, E. (2000). Mathematical Literacy and Abstraction in the 21st Century, School Science and 
Mathematics, 100, 289-297  

Fayol, M and Seron, X. (2005). About numerical representations: Insights from 
neuropsychological, experimental, and developmental studies., In Campbell, J (ed.) Handbook of 
mathematical cognition.  New York: Psychology Press 

Gallistel, C. R. (1999). The replacement of general-purpose learning models with adaptively 
specialized learning modules. In M.S. Gazzaniga, (ed.). The Cognitive Neurosciences. 2d ed. (1179-
1191) Cambridge, MA. MIT Press  

Gallistel C. R., Gelman, R. (2005) Mathematical Cognition. In K Holyoak & R. Morrison (Eds) 
The Cambridge handbook of thinking and reasoning. (559-588) Cambridge University Press 
 
Gelman, S. (2003) The essential child: origins of essentialism in everyday thought. New York: Oxford 
University Press 
 
Gopnick, A., Glymour, C., Sobel, D., Shulz, L., Kushnir, T, & Danks, D. (2004). A theory of 
causal learning in children: Causal maps and Bayes nets. Psychological Review, 111, 1- 31.  

Haack, S. (2003) Defending Science-Within Reason: Between Scientism and Cynicism. Amherst, New York: 
Prometheus Books  

Hadamard, J. (1945) An Essay on the Psychology of Invention in the Mathematical Field. Princeton, NJ: 
Princeton University Press 



  TMME, Vol5, no.1,p.115 

 115

Hampton, J.A. (1979) Polymorphous concepts in semantic memory. Journal of Verbal Learning & 
Verbal Behavior, 18, 441-461. 

Hardy, G. H.. (1940). A Mathematician's Apology. Cambridge: Cambridge University Press  

Hersh, R. (1997) What is mathematics, really? New York: Oxford University Press  

Lakatos, I.  (1976) Proofs and refutations: the logic of mathematical discovery edited by John Worrall and 
Elie Zahar. New York: Cambridge University Press 

Lakoff, G. and Núñez, R. (2000) Where mathematics comes from: how the embodied mind brings 
mathematics into being. New York: Basic Books 

LeFevre, J., DeStefano, D. and Coleman, B. (2005). Mathematical cognition and working 
memory. In Campbell, J. (ed.) Handbook of mathematical cognition.  New York: Psychology 
Press 

Markovits H. and Barrouillet P. (2004) Introduction: Why is understanding the development of 
reasoning important? Thinking and Reasoning, 10, 113–121 

McCloskey, M. and Glucksberg, S. (1979) Decision processes in verifying category membership 
statements: Implications for models of semantic memory. Cognitive Psychology, 11,1-37  

Milgram, R.J. (2005). The Mathematics Pre-Service Teachers Need to Know.  
math.stanford.edu/ftp/milgram/FIE-book.pdf 

Murphy, G. (2002) The big book of concepts.  Cambridge, Massachusetts: MIT Press  

National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school 
mathematics. http://www.nctm.org/standards/overview.htm 

Piaget, J (1970) Structuralism. Translated and edited by Chaninah Maschler. New York: Harper & 
Row  

Pinker, S. and Prince, A. (2002). The Nature of Human Concepts: Evidence from and Unusual 
Source. in Jackendoff, R., Bloom, P., Wynn, K. (eds.) Language, Logic, and Concepts: essays in memory 
of John Macnamara Cambridge, Mass.: MIT Press 

Rosch, E. Mervis, C. (1975). Family resemblances: Studies in the internal structure of categories. 
Cognitive Psychology, 7, 573-605  

Russell, B. (1956). Portraits from memory, and other essays. New York: Simon and Schuster  

Sfard, A. (1994).Reification as the Birth of Metaphor. For the Learning of Mathematics, 14, 44-55  

Sperber, D. (1996) Explaining culture : a naturalistic approach. Oxford, UK: Blackwell 



Umland 

 

Sperber, D. (2004) Modularity and relevance: How can a massively modular mind be flexible and 
context-sensitive? In Carruthers Peter , Laurence Stephen and Stich Stephen, (eds.) The Innate 
Mind: Structure and Content.  

Sperber, D., Girotto, V. (2003) Does the Selection Task Detect Cheater-Detection? In: Fitness, J. 
& Sterelny, K. (eds.), New directions in evolutionary psychology, Macquarie Monographs in Cognitive 
Science, Psychology Press 
 
Wigner, E. (1960) The Unreasonable Effectiveness of Mathematics in the Natural Sciences. 
Communications in Pure and Applied Mathematics, 13, 1-14 
 
 



 

The Montana Mathematics Enthusiast, ISSN 1551-3440, Vol. 5, no.1, pp. 117-124          
2008©The Montana Council of Teachers of Mathematics & Information Age Publishing 

 
Reflections upon Teaching a Poorly-Conceived Lesson 

 
 

Yuichi Handa† 
Mathematics Department 

California State University, Chico 
 

 
Abstract 
Using a “failed” mathematics lesson as a mini-case study, I explore some of the challenges 
inherent in teaching an inquiry-style mathematics lesson.  The ensuing discussion centers around 
two issues: the preparation and subsequent scaffolding involved in guiding students to desired 
understandings, along with the tension inherent in “telling” and “not telling” in an inquiry-style 
pedagogy.  I resort to personal reflection, as well as to Wenger’s (1998) theoretical construct of 
participation and reification in revealing the underlying link between the manner of lesson 
preparation and consequent engagement of students during the enactment of the lesson. 
 
  Reflections upon Teaching a Poorly-Conceived Lesson 
One of the difficulties in attempting to transform one’s teaching practices from a traditional 
lecture format to a more student-centered mode of instruction is that one oftentimes relinquishes 
a certain degree of control and predictability in the classroom.  As opposed to simply planning 
out a lecture with the expectation that students will ask questions when they do not follow the 
course of reasoning as set out by the instructor, the new practice requires one to more carefully map 
out—that is, to anticipate and be prepared for— various contingencies: in particular, such issues 
as, in what manner might the ideas be best embedded within activities (as opposed to directly 
telling them), what degree of scaffolding might be necessary and optimal for the different levels 
of students in the class, in what manner might one want to go down divergent learning paths 
depending upon student input, and so on.  As such, in opening up the classroom discourse, by its 
very nature, student-centered teaching practices introduce new and necessary skills for the 
teacher to acquire both in preparation and in interaction with the students (see Lampert, 2001).  
 
When the lesson plan has been carefully thought out in these terms and more, the teaching itself 
can be a real thrill.  It affords a richness of dialogue, and even learning opportunities for the 
teacher that lecture-based teaching does not often enable.  On the other hand, when done poorly, 
this other way of teaching can leave both teacher and students alike in pedagogical predicaments 
that the traditional approach safely steers clear of for the most part.  I am particularly interested 
in this latter case, of when things are not aright, of when such attempts can go messily wrong.  I 
am interested in this, for I believe that it is in exploring when and how a particular pedagogical 
approach fails that one sometimes comes to a deeper understanding of how it might come to 
succeed.   

                                                 
† yhanda@csuchico.edu 
yhanda@gmail.com   
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In this short paper, I would like to relate my own teaching experiences using an “activity-based” 
mathematics lesson that in my opinion came up short.  The lesson is chosen not for its 
uniqueness, but for how it epitomizes a collection of “failed” lessons from a semester’s teaching.  
In describing my interactions with the lesson, I hope to begin characterization of a few choice 
principles in lesson planning that may perhaps carry over into curriculum design.   
 
A Post-Introductory Prelude 
Prior to my involvement in a collaborative lesson-planning group at a university-level 
mathematics education department, I taught for approximately six years at the collegiate level 
within mathematics departments.  The primary distinction between my prior teaching experiences 
and my currents ones are as follows: whereas I planned and taught alone before, I am currently 
involved with three to four other instructors in the lesson planning.1 In addition, our lessons are 
more of the activity-based lessons, while I used to teach mostly in a traditional lecture or 
recitation-style format.   
 
I want to relate here a series of incidents from my first semester during this transition that I think 
relevant to the discussion to follow.  First, to set the scene: the teaching concerns a sequence of 
mathematics content and methods courses for prospective elementary teachers.  As mentioned, 
part of the teaching involves collaborative planning of the lessons.  We gather together, on 
average, once a week for one to two hours to discuss our learning goals and the manner in which 
we would like to structure our lesson to accommodate those learning goals.   
 
I recall one particular lesson, sometime during mid-semester that I somehow was not able to 
“bring to life.”  I found myself ill-prepared for fostering the kind of lively discourse among the 
students that up until that point, I felt I had successfully encouraged.  I remember having two 
competing thoughts: the first was that student-centered pedagogy was hard, and that perhaps it 
was my inexperience with this type of teaching that left me feeling somewhat a failure as a teacher. 
The second thought was that maybe the lesson didn’t really fit my pedagogical style, and it wasn’t 
that I was a failure as I thought.  
 
The real revelation occurred during our next planning meeting.  Somehow, I let it be known that 
my confidence as a teacher was waning.  Then one of the other instructors confided that she too 
felt the same way, and immediately, yet another instructor admitted to similar sentiments.  The 
fourth instructor, who had been involved in the group planning process longer than two out of 
the three of us, mentioned that the lesson plan had been problematic for him!   
 
What struck me about the last colleague’s comment, and also the convergence of our so-called 
failures in teaching, was that until that point, I had been conceiving teaching in terms of 
individual and highly idiosyncratic teaching abilities, or more specifically, in terms of one’s personal 
ability to bring a lesson to life in the classroom.  Somehow, in the previous lessons when the 
lesson seemed to go well, I had secretly thought, what a great and talented teacher I am that I am able to 
bring these half-baked lessons to life and to engage the students in lively and meaningful discourse!   And 
suddenly, I realized that there could be a lot more to it than that.  It dawned on me that my 
“performance” abilities might have had a little less to do with some innate talents, and that 
instead it was more the lesson plans that seemed either to offer the space within which to bring 
out my capacities as a teacher or constrain them by their ill-planned nature.   
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As if that one experience were not enough, during subsequent lessons, whether I felt, again, the 
same old sense of success or of failure, I noticed that my experiences were regularly matched by 
the experiences of my colleagues.  I found myself fascinated and intrigued by this fact, that even 
with our wildly divergent teaching styles and teaching backgrounds, we were having remarkably 
similar teaching experiences over each of the lessons. What this did for my thinking was that 
whereas I had previously placed much of the credit as well as blame of teaching upon my 
performing abilities (and in some ways upon my personality), I began to think instead of the 
lesson plan as the more meaningful point of focus in terms of what worked and did not work in a 
lesson.2   
 
In retrospect, I think that the lessons seemingly failed when we had not carefully enough thought 
about the relevant mathematical and pedagogical issues involved and had instead glossed over 
some crucial details in our planning.  It is not a particularly deep or earth-shattering insight, but I 
do think that it is an important one.  In fact, it is the primary point that I now hope to elaborate 
upon more concretely in the context of a so-called failed lesson.  I hope also to make a secondary 
point, again in the context of the lesson, regarding the tension between “telling” and “not telling” 
in mathematics teaching.  I will first present the lesson, then an account of my own experience of 
teaching it, followed by reflections upon the lesson. 
 
The Lesson3 

The lesson motivates an alternate algorithm—sometimes referred to as the common denominator 
approach— to the invert-and-multiply procedure for division of fractions.  Here is an example:  

3
838

12
3

12
8

4
1

3
2

=÷=÷=÷ .   

 
The idea is that when given a division-of-fractions problem, one first finds the common 
denominator.  Once both fractions are rewritten with a common denominator, only the 
numerators need be considered in the division—that is, the denominators can essentially be 
“ignored” in the subsequent calculation.    
 
To begin, the exploration lays out its intent by stating, “The purpose of this exploration is to help 
you to understand this [alternate] algorithm and why it works” (p. 154).  Its aim is for students to 
arrive at such an understanding through a process of discovery, as will be made clear through the 
ensuing description.  The first task begins by offering five story problems, all of which model a 
division operation.  Here is a modified example: 

 Rick has 4 lbs of sugar.  Each time he wants to make a cake, he uses 2/3 lbs of sugar.  How many 
cakes can he make with the sugar he has? 
 

For each of the story problems, the students are asked to represent the problem and its solution 
using a diagram.  One could imagine a student beginning by drawing four rectangles to stand for 
the four pounds, where each of the rectangles is then partitioned into thirds to accommodate the 
eventual “taking away” of the 2/3 pounds at a time.  After counting that this can be done six 
times, the student would conclude that the answer (by use of a measurement model for division) 
is six. 
 
The activity then asks the students to “consider carefully” and “describe” what “[they] did in 
order to arrive at [their] answer.”  The students are subsequently asked to “try to connect what 
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[they] did on paper to how the problem could be solved using only numbers.”  One hint is 
offered in “For example, in the first problem, the original number sentence is 4÷2/3, but 
regardless of the diagram you draw, you will divide each of your four units into thirds, and thus 
you are now solving 12/3÷2/3” (p. 154) 

 
An ideal description in response to the prompt for the sample problem above would sound like 
this (I have italicized the key turn in reasoning): 
        I drew four boxes to represent the four pounds.  I needed to take away 2/3 pounds at a 

time, and see how many times I could do that.  So, I needed to partition each of the 
boxes into thirds.  So, instead of just 4, I now had 12/3. So, the problem really is 
12/3÷2/3.  At this point, I am asking how many times can I take away 2/3 from 12/3.  
But at this point, it doesn’t matter that each of the pieces are called thirds.  It’s really just a matter of 
taking away two pieces at a time from 12 pieces, and seeing how many times you can do that.  Whether 
you call those pieces ‘thirds’ or ‘ones’—or even ‘fourths’ or ‘fifths,’ for that matter—it’s still the question 
of “how many times can you take away 2 from 12?”  They would all give you the same answer of 6.  So, 
12/3÷2/3 is the same as 12÷2.”  

 
Lastly, the activity closes with the following instructions: “After completing the five problems, 
look for commonalities in all the problems that lead to a generalization (rule) that you could use 
in all the division problems” (p. 154).  The goal, obviously, is for the students to come to know 
and to understand, through a process of discovery, the ‘common-denominator algorithm.’   
 
How the Lesson Actually Proceeded 
Here is how the flow of this lesson transpired from my perspective as the instructor.  First, I 
noticed how most all of the students were able to represent, with relative ease, the problem and 
its solution through a diagram.  We had already covered the topic of representing division 
solution strategies with diagrams in previous class meetings. 
 
But when asked to describe what they did in order to arrive at their answer, suddenly no one in 
the entire class appeared to know what the problem was “getting at.”  Many of those who 
vocalized their confusion were able to describe what they had done in their diagrams, but mostly 
in procedural ways, such as, “I drew 4, and then I took away 2/3 pieces six times, and so the 
answer is six.”  When pressed, some students were able to mention the repartitioning of 4 into 
12/3 but little more.  Not one student was able to describe the key turn in reasoning that this 
activity was meaning to raise.  We had established a class norm of justifying mathematical claims 
by this time in the semester, but at the same time, previous discussions had centered on much 
simpler and more straightforward ideas and conjectures. 
 
I recall thinking to myself that the lesson was not working.  It was not leading the students to the 
desired mathematical insight and thinking as we, the instructors, had expected.  I tried asking 
various questions that I thought might lead to the desired key turns in reasoning, but to no avail.  
Unable to generate the appropriate kind of scaffolding question that might gently guide the 
students’ thinking toward the desired end, I ended up telling the students what the activity was 
getting at (the common denominator approach) and showed how the diagram for the first story 
problem ‘proved’ that such an approach worked.  I was essentially modeling for the students 
what they were to do with the remaining four problems.  During my elaboration, I guessed that 
less than half the students had grasped the argument I was expressing, though at the time, I was 
at a loss as to how I could deal with the situation in a better way.  Secretly and with some distress, 
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I was hoping that those students who understood my explanation would later explain it to those 
who didn’t during the subsequent group work. 
After allowing for some time for group work on the remaining problems, I asked a few students 
to explain their explanations in regards to problems two through five.  As expected, few if any of 
the students showed that they had truly grappled with the reasoning process and instead had 
somehow proceduralized the reasoning into something fairly routine and superficial. They now 
knew how the new common-denominator algorithm itself worked and could be applied, but the 
conceptual reasoning as grounded in diagrammatic referents—more or less, the why—somehow 
got lost in the process.  And again, my attempts at having students explain the why were met with 
confused and somewhat hostile glares.  Interestingly, all four instructors had similar experiences 
with the lesson. 
 
Reflecting Upon the Lesson 
The central question for me is this: what might be the lessons learned from such a lesson?  What 
general principles might I extract from this experience? In reflecting back, I think of the activity 
as assuming too much of the students’ ability to see what the designers of the activity clearly saw. 
While we, the instructors, knew how to look at the reasoning process involved in the use of the 
diagram in order to see, or extract out, a justification for the alternate algorithm embedded within 
it, the students, in fact, had no idea of what to even look for.  Nowhere in the lesson, up until 
that point, was it mentioned that the point was to derive and justify the common-denominator 
approach to division of fractions.  In some ways, it could be asserted that the pre-service teachers 
were asked to stare at their diagrams and somehow chance upon a half-baked proof for an 
algorithm whose existence they had no knowledge, nor awareness of—what, in retrospect, I 
might suggest as a tricky and next-to-impossible task.   

 
A question arises: if indeed I have captured some essential aspect of the lesson—specifically in 
how such an activity purposefully withholds important information that might otherwise help a 
student to “see” the mathematical relationship or concept—how could such an activity ever see 
the light of day, especially in a published textbook?  Of course, a group of us chose this activity 
for our own lesson!  So, though I might not capably answer the question in regards to its 
publication, I might at least speculate as to how a group of us might have overlooked its 
particular shortcomings.  I do so through a particular theoretical framework. 

 
In his book Communities of Practice (1998), Etienne Wenger discusses the interplay between 
participation and reification.  Participation is defined as the "complex process that combines doing, 
talking, thinking, feeling, and belonging. It involves our whole person including our bodies, 
minds, emotions, and social relations" (p. 56).  Meanwhile, reification is defined as the "process 
of giving form to our experience by producing objects that congeal this experience into 
thingness" (Wenger, 1998, p. 58), and would include mental objects such as concepts and even 
words.  As an example, a book is a reification of someone’s thinking, with the act of thinking 
being a form of participation.  Even a person’s understanding of something is a kind of 
reification, as long as it has solidified into something that one might call an understanding, whether 
correct or not.  Wenger points out the interplay between the two, that participation often leads to 
a reification, which in turn affords further participation, and so on.  So a lesson plan can be 
looked upon as one very concrete reification of the act of participating in discussion and/or 
preparation, while that same lesson plan also gives rise to the kinds of participation (in the form 
of thinking, discussing, solving, and so on) that are available to students.  Wenger also points out 



Handa 

 

the notion of premature reification—that is, the idea of arriving at reifications before sufficient 
participation has been realized. 
Thus, in terms that Wenger has introduced, one way to describe what happened during the lesson 
is to say that the students had prematurely moved to reifying their understanding before 
sufficient participation with the ideas had occurred.  Telling a student to “carefully consider” 
what they had done in making a set of diagrams is not a sufficient prompt toward the kind of full 
participation necessarily for the kind understanding (reification) sought of the reasoning involved. 
Without sufficient participation, the resulting understanding is oftentimes fragile, as Wenger 
posits.  Or in the case of the lesson, it was not in any way complete nor deep.   

 
Put differently, one could say that the activity’s intent of having the students come to an understanding of why 
the algorithm works was circumvented due to insufficient engagement with the key ideas.  Of course, expecting 
students to “discover” a new piece of mathematics without sufficient scaffolding, or support, 
more often than not will fail to foster the desired engagement. 

 
Yet, one might also go backwards in this back-and-forth chain between participation and 
reification.  That is, insufficient grappling with the mathematical ideas amongst ourselves (the instructors) during 
our planning sessions appears the culprit in the deficiency within the lesson (the reified object)—a deficiency which 
led to our students mirroring our own insufficient engagement with the mathematics.  That is, to say that the 
lesson plan “failed” to engage the students in full participation (leading to a failure to reify a desired 
understanding) is in some ways to say that the participatory act on the part of the lesson planners 
was not deep or thorough enough.  One mirrors the other.   
 
Another relevant factor, I believe, was the rather unreflective grappling with the role of telling 
and not telling in mathematics pedagogy.  It occurs to me that it would be fairly easy to 
internalize the message of reform as, “Let students discover the mathematics, rather than telling 
them.”  This approach to mathematics teaching, no doubt works in some contexts, but it also 
fails quite miserably, as can be seen, in other contexts such as this.  The challenge is in knowing 
when telling or guiding would unnecessarily clamp down on what otherwise might be productive 
thinking and when it would be beneficial, perhaps even necessary, and lead to fruitful learning.  It 
is certainly not a trivial issue (see Chazan & Ball, 1999 for a discussion on the use of “judicious 
telling”). 
 
In Summary 
Two critical points emerge.  The first and primary point relates to a level of detail in support 
offered or not offered within an activity—sometimes, referred to as “scaffolding.”  When viewed 
from Wenger’s framework (reification and participation), implicit in a presence or lack of 
scaffolding within a lesson is the presence or lack of careful thought (or in the discussion, if 
group planning) around the planning and construction of the lesson. Another way to think of it 
would be to say that the lack of engagement on the students’ part during the lessons makes manifest the 
shortcomings in the lesson plans, which in turn reflects the deficiency in the engagement with the relevant 
mathematical ideas during the designing of the lesson plans themselves. 

 
As a teacher, I have in the past thought, if it takes me, the instructor, a little effort to solve a problem, then 
chances are half the students won’t be able to solve it.  Perhaps others have had similar (and useless) 
thoughts.  In light of the point I am raising, I might offer an amendment to the thought and offer 
it instead as a workable pedagogical principle: if it takes a teacher a little effort to solve a problem (solved, 
likely through tacit understanding of the underlying concepts), that’s likely an indication that s/he needs to be very 
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clear and explicit on the mathematics at a finer-grained level, appropriate to his/her students’ mathematical 
maturity and understanding. That is, there must further engagement (participation) with the pertinent 
mathematics. Further, such a teacher also needs then to take his or her finer-grained understanding to reconstruct a 
scheme for approaching the problem with an eye on how best to elucidate, or bring about understanding of the key 
points.  Through careful thinking of these issues, the teacher might be better prepared with 
appropriate scaffolding questions; or for the curriculum developer, these key insights might be 
contained and explicitly surfaced within the activity/lesson, if the implementing teacher is to have 
a chance at successfully bringing the lesson to life. 
 
The second point relates to the pedagogical awkwardness that results in withholding a piece of 
information that would otherwise help the students to “see” a particular mathematical concept or 
relationship, especially under the guise of allowing for “discovery” or “not telling.”  The essential 
factor, in this case, might not be in the form of the teaching – telling or not telling—but in 
whether telling, or not telling, is supporting or hampering the engagement level of the students.  I 
would posit that it is the degree of student engagement, and not the form of the teaching, that 
stands as the first principle in both lesson/curriculum design as well as in teaching.  It is the 
question of how best to raise and maintain a high level of cognitive engagement, and in turn 
reflection upon subject matter that tells us what pedagogical actions a teacher might adopt in a 
teaching situation.    
 
In closing, I would like to note how I began by describing this and other such lessons as “failed” 
lessons.  A point worth making is that a so-called “failed” lesson, in fact, has the potential to 
becoming a meaningful success toward professional growth if one takes the time to extract out new 
learnings from them, and perhaps that is one underlying message of this entire tale. 
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Endnotes: 

1.     I am not speaking here of “lesson study,” as in Japanese lesson study (see Stigler & Hiebert, 
1999), but instead, I mean planning each of a semester’s lessons together with colleagues, and all 
of us teaching that same lesson.   
2.    An interesting benefit that I have noticed regarding such a view of teaching is that one feels 
less threatened by observers and criticism.  Whereas before this experience I might have felt that 
any criticism of the teaching was directed at me as teacher, I have begun thinking of criticism as 
being pointed more to the lesson, and less to myself.  This in turn has helped ease the transition 
from working in isolation as a teacher to becoming part of a larger teaching community. 
3.    The lesson consists essentially of going over a handout (“Exploration 5.12: An alternative 
algorithm for dividing fractions) from Bassarear (2001).  As such, I will refer to it interchangeably 
as “lesson,” “activity,” or “exploration.”   
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Abstract: This paper explores how the constructions of  mathematically gifted fifth and sixth 
grade students using Euler’s polyhedron theorem compare to those of  mathematicians as 
discussed by Lakatos (1976). Eleven mathematically gifted elementary school students were 
asked to justify the theorem, find counterexamples, and resolve conflicts between the theorem 
and counterexamples. The students provided two types of  justification of  the theorem. The 
solid figures suggested as counterexamples were categorized as 1) solids with curved surfaces, 
2) solids made of  multiple polyhedra sharing points, lines, or faces, 3) polyhedra with holes, 
and 4) polyhedra containing polyhedra. In addition to using the monster-barring method, the 
students suggested two new types of  conjectures to resolve the conflicts between 
counterexamples and the theorem, the exception-baring method and the monster-adjustment 
method. The students’ constructions resembled those presented by mathematicians as 
discussed by Lakatos.  
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1. Introduction 
 

One perspective on mathematics education states that it is important to analyze and 
reconstruct the historical development process of  mathematical knowledge for improving 
mathematics teaching and learning. A number of  scholars including Clairaut (1741, 1746), 
Branford (1908), Klein (1948), Toeplitz (1963), Lakatos (1976), Freudenthal (1983, 1991), and 
Brousseau (1997) share this perspective. This view usually assumes a close relationship 
between the historical genesis and individual learning process, and supposes that students, 
with the assistance and guidance of  a teacher are capable of  constructing knowledge similar 
to that obtained historically by mathematicians. In particular, Lakatos (1976) demonstrated 
this view in his book, Proofs and Refutations, through an imaginary conversation between a 
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teacher and pupils. The teacher and pupils support and criticize one another’s claims from the 
perspective of  various historical figures. However, the knowledge construction carried out by 
the teacher and pupils as presented by Lakatos is, in fact, the construction performed by 
prominent mathematicians including Euler, Legendre, and Cauchy. Lakatos’ (1986) 
quasi-empirical view seems to ask students to learn mathematics by working like 
mathematicians (Chazan, 1990) prompting the question, “Is it also possible for elementary 
students to carry out knowledge constructions based on Euler’s polyhedron theorem similar 
to those produced by mathematicians as discussed by Lakatos’?” In seeking a response to this 
question, this study focuses on (1) the knowledge constructions of  mathematically gifted 
elementary students in comparison to those of  mathematicians as discussed by Lakatos 
(1976), (2) how mathematically gifted fifth and sixth grade students justify Euler’s polyhedron 
theorem, (3) the figures they suggest as counterexamples to Euler’s polyhedron theorem, and 
(4) how they react when presented with counterexamples. 
 

2. Background 
 
2. 1. Literature Review 
 

Sriraman found (2003) that the problem solving behaviors of  mathematically gifted high 
school students’ and those of  non mathematically gifted students differed significantly. He 
reported that gifted students invest a considerable amount of  time in trying to understand the 
problem situation, identifying the assumptions clearly, and devising a plan that was global in 
nature. Previous studies on the cognitive processes of  mathematically gifted students have 
focused on generalization, abstraction, justification, and problem-solving (Krutetskii, 1976; 
Lee, 2005; Sriraman, 2003; 2004). Lee (2005) also found that mathematically gifted students 
have a tendency to advance to higher-level reasoning through reflective thinking. 

Some researchers have analyzed the knowledge construction of  students based on 
Lakatos’ perspective (Athins, 1997; Boats et al., 2003; Borasi, 1992; Cox, 2004; Nunokawa, 
1996; Reid, 2002; Sriraman, 2006). For example, Sriraman (2006) reconstructed the 
quasi-empirical approaches of  six above average high school students' attempts to solve a 
counting problem and present the possibilities for mathematizing during classroom discourse 
in the spirit of  Lakatos. Cox (2004) reported that the ability of  high school students to proof  
improved after introducing them to the process of  ‘conjecture → proof  → critique → accept 
or reject’ in geometry classes. Borasi (1992) described the process where two high school 
students revised the definition of  polygon and concluded that working on polygon “à la 
Lakatos” provided the context for valuable mathematical thinking and for activities that 
encourage participants to make use of  their mathematical intuition and ability. Reid (2002) 
analyzed the problem-solving process of  fifth-grade students and categorized their process of  
dealing with counterexamples based on monster-barring and exception-barring into three 
reasoning patterns. Athins (1997) reported that he observed a case of  monster-barring on 
angles in a fourth grade mathematics class. 
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2.2. Euler’s polyhedron theorem in Lakatos’ Proofs and Refutations 
 

In Lakatos’ (1976) Proofs and Refutations, some justifications for Euler’s theorem such as 
Cauchy’s proof  that appeared in the history of  mathematics are shown in the dialogues 
between the teacher and pupils. For example, Lakatos has pupils Zeta and Sigma say the 
following explanation (pp.70-72). 

 
Step 1 : For a polygon, EV = . 
Step 2 : For any polygon 0=− EV  (Fig. 1 (a)). If  I fit another polygon to it (not 

necessarily in the same plane), the additional polygon has 1n  edges and 1n  vertices; 

now by fitting it to the original one along a chain of  1'n  edges and  1'1+n  vertices 

we shall increase the number of  edges by 11 'nn −  and the number of  vertices by 

)1'( 11 +− nn ; that is, in the new 2-polygonal system there will be an excess in the 

number of  edges over the number of  vertices: 1=−VE ; (Fig. 1 (b)); for an unusual 
but perfectly proper fitting see Fig. 1 (c). ‘Fitting’ a new face to the system will always 
increase this excess by one, or, for an F-polygonal system constructed in this way 

1−=− FVE . 
 

 
(a) (b) (c) 

Figure 1 

Step 3 : I can easily extend my thought-experiment to ‘closed’ polygonal systems. Such 
closure can be accomplished by covering an open case-like polygonal system with a 
polygon-cover: fitting such a covering polygon will increase F  by one without 
changing V  or E . Or, for a closed polygonal system – or closed polyhedron – 
constructed in this way, 2=+− FEV . 

 
Following the conjecture and proof, there appear counterexamples that refute the 

conjecture and proof. Lakatos called a counterexample that refutes lemma or subconjecture a 
local counterexample, and a counterexample that refutes the original conjecture itself  a global 
counterexample (pp. 10-11). He suggested six types of  counterexamples which appeared in 
the history of  mathematics as described below.  
 



Yim, Song & Kim 
 

 

Figure 2. Hollow cube 
(p.13) 

 

Figure 3. Two tetrahedra with a 
common edge or vertex  (p.15) 

 

Figure 4 . Star-polyhedron 
(p.17) 

 

Figure 5. Picture-frame 
(p.19) 

 

Figure 6. Cylinder (p.22) 

 

Figure 7. Crested cube 
(p.34) 

 
When a general counterexample is presented, there are five options. The first option 

considers the refuted conjecture incorrect and rejects it. The second option is to use the 
method of  monster-barring in which the counterexample is seen as a monster, and the 
original conjecture is maintained (pp.16-23). This method generates clearer definition, but it is 
not useful from a heuristic point of  view because it does not improve the conjecture. The 
third option is the method of  exception-barring in which the original conjecture is changed 
into a revised conjecture by adding a conditional clause that mentions an exception (pp.24-27). 
This method does not guarantee that all exceptions are specified, and leaves the question of  
what is the range in which the theorem is valid. The fourth option is the method of  
monster-adjustment where the perspective under which the example was considered as a 
counterexample is seen as distorted, and the counterexample is interpreted as an example by 
readjusting the perspective (pp.30-33). The fifth option is the method of  
lemma-incorporation, where careful analysis of  the proof  is made to identify the guilty lemma. 
The lemma can then be incorporated in the conjecture to improve the refuted conjecture 
(pp.33-42). 
 

3. Methodology 
 
3.1. Participants 

 
Although there are diverse definitions of  mathematical giftedness, there is no one 

universally accepted definition (e.g., Bluton, 1983; Miller, 1990; Gagne, 1991). In this study, 
Gagne’s (1991) definition of  mathematically gifted students as “students who are 
distinguished by experts to have excellent ability and potential for great achievements” was 
applied. Eleven fifth and sixth-grade male students (aged 10 -12) from different Korean 
elementary schools in Gyeonggi province participated in the study. Five students were in the 
fifth-grade and six were in the sixth-grade. The sixth grade students were attending an 
advanced program for mathematically gifted students; three (A, B, and C) in a Korean 
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government sponsored university program, and three (D, E, and F) in an office of  education 
program. The fifth-grade students (G, H, I, J, and K), having passed a screening process 
which included a written test, an in-depth interview, and recommended from their school 
principal, were scheduled for admission to the university program. All students were 
motivated and confident of  mathematics. 
 
3.2. Tasks 
 
The participants were presented with the following tasks:  

Task 1:  Explain what you know about the relationship between vertices (V), edges (E) 
and faces (F) in polyhedra. Explain how the relationship is justified. 

Task 2:  Is 2=+− FEV  true in all polyhedra? If  not, when is it not true? 
Task 3:  If  you consider a counterexample a polyhedron, how would you revise the 

theorem?  
If  you believe a counterexample is not a polyhedron, how would you revise the 

definition of  a polyhedron? 
 

Task 1 was designed to identify the participants’ knowledge of  the polyhedral theorem 
and to determine how they justify the theorem. Task 2 was developed to establish the types 
of  counterexamples the participants identified. Task 3 was designed to observe how the 
participants resolved the disparity between the theorem and the counterexample.  

The participants were familiar with the relationship between vertices, edges and faces, 
2=+− FEV , before taking part in this study. However, they had not previously examined 

whether the theorem was true in all polyhedra, nor had they sought counterexamples to the 
theorem. 
3.3. Data Collection and Analysis 
 

This study was designed based on Yin’s (2003) multiple case study methodology. The 
eleven participants were presented with the tasks in a set order and interviewed between 
November 2005 and January 2007. Each participant was video-taped by one researcher while 
they worked on the tasks and later while being interviewed by another researcher. The 
participants completed the tasks in approximately two hours. The video clips, transcriptions, 
observation reports and participants’ worksheets were analyzed.  

The analysis was conducted on three types of  data collected: (a) the types of  justification, 
(b) types of  counterexamples, and (c) the methods for solving the conflict. The types of  
justification and counterexamples presented by the participants were analyzed using open 
coding (Strauss and Corbin, 1998). The types of  justification were divided into two categories, 
and the counterexamples were categorized into four types, three of  which were subdivided 
into two to three subtypes. The analysis of  the participants’ attempts to deal with the disparity 
between the counterexamples and the conjectures highlighted by the counterexamples was 
made using selective coding (Strauss and Corbin, 1998) which was based on “the method of  
monster-barring,” “the method of  exception-barring,” “the method of  monster-adjustment” 
and “the method of  lemma-incorporation” suggested by Lakatos (1976). Cross-tabulation 
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analysis was performed, and the results were examined by peers (Merriam, 1998). 

 
4. Results 

 
4.1. Participants’ justification of  Euler’s polyhedron theorem 
 

The participants’ justification of  the theorem can be divided in two ways; 1) to classify 
polyhedra into several categories and justify the theorem for each category of  polyhedra, and 
2) to attempt general justification without classifying polyhedra. The majority of  participants 
justified the theorem by classifying polyhedra into categories and justifying the theorem. 
Participant D, in Episode 1 below, demonstrated this by logically explaining that the theorem 
is justified in prisms, pyramids, and prismoids.  
 
  Episode 1: 

Participant D: First, in prisms, it seems to be justified in all cases.  
Interviewer: Why is that? 
Participant D: (Drawing figures) Well, look at an n -angle prism. A rectangular prism, it’s 

called that because the bases are rectangles. So, there are four vertices on the top 
face and four on the bottom face, so, the number of  vertices is n2 . Also, the 
number of  edges is n3  because there are four edges on the top face, four on the 
bottom face, and four on the lateral sides. And, the number of  faces is 2+n  
because there are four faces on the lateral sides plus the top and bottom faces. In 
the case of  a pentagonal prism, also, the number of  faces is 2+n , as there are 
five lateral faces plus the bases (top and bottom faces). ‘ FEV +− ’ stands for 
‘number of  vertices – number of  edges + number of  faces,’ and in n-angle 

prisms, it is ‘ )2(32 ++− nnn ,’ so ‘ FEV +− ’ equals 2. 

Interviewer: Yes. 
Participant D: So, I’m done with prisms... in pyramids, too, it is justified all the time. 
Interviewer: Please explain. 
Participant D: ..... an n -angle pyramid. It’s justified because the number of  its vertices is 

1+n , and it has n2  edges and 1+n  faces. If  you add the number of  vertices 
and the number of  faces, and then subtract the number of  edges, you get 2. 

         
Participant D provided explanations using polyhedra such as rectangular prism in the 

case of  prisms, pyramids, and prismoids. Rectangular prism is a generic example (Mason and 
Pimm, 1984) which represents general n -angle prism. In the case of  regular polyhedra or a 
polyhedron like the soccer ball, D investigate the theorem application by counting the 
numbers of  points, edges, and faces of  specific solids.  

Participant B did not categorize solid figures but instead attempted generalized 
justification. He started with a point and verified FEV +−  as the number of  points, lines, 
and faces gradually increased. According to him there is only one V  at first, but V  and E  
or E  and F  increases by 1 respectively as procession is made from (a) to (g) and, 
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FEV +−  is maintained at 1. In the last stage, when one face is covered in (g), he proved 
that 2=+− FEV , based on the fact that the number of  F  increases by 1. This 
justification is similar to the explanation of  pupils Zeta and Sigma in Lakatos (1976, pp. 
70-72).  

 

 
 (a)        (b)             (c)            (d)          (e)          (f)          (g) 

Figure 8 

After justifying Euler’s theorem, all the participants expressed the view that there might 
be a polyhedron with which Euler’s theorem was not true. For example, participant D, as 
indicated in Episode 2, thought that the theorem would not hold in all polyhedra. 
 
Episode 2: 

Participant D: Well... first, it is justified in regular polyhedra without exception, because 
there are only five kinds of  regular polyhedra. I think it is justified in all of  the 
five, and then, it is justified, first, in prisms and pyramids. So, I think it is justified 
in the majority of  general polyhedra... 

Interviewer: Then, do you think there are some cases in which it doesn’t apply? 
Participant D : In some cases... I think it won’t apply in all cases. (Starts drawing figures to find 

solids with which the polyhedral theorem is not true)  
 

Although participant B justified the theorem using a general method, he tried to find a 
counterexample, thinking that there still might be one. All the participants express the view 
that there had to be an example in which the theorem does not apply.  
 
4.2. Solid figures suggested by participants as counterexamples 
 

Participants suggested various types of  solid figures as counterexamples to the theorem. 
The solid figures suggested by the participants were categorized into the four groups below.   
 
4.2.1. Solids with curved surfaces 
 

Six participants (B, C, E, F, H and I) suggested solids with curved surfaces such as a 
cone (Fig. 9), a cylinder (Fig. 10) and a sphere (Fig. 11) as counterexamples. Each participant 
had a different reason for suggesting the cone as a counterexample. Participant F drew the net 
of  a cone in order to count the points, lines, and faces. He claimed that the circle in the net 
was not counted as an edge because it was a curve, but the radius of  the sector had to be 
counted as an edge because it was a straight line ( 1=V , 2=E , 2=F , 1=+− FEV ). 
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Participant E insisted that the radius of  the sector in the net could not be counted as an edge 
because it was not actually seen in the solid, and thus, 1=V , 0=E , 2=F , 

3=+− FEV . Participant H said that a cone provided a counterexample, “Because you can’t 
say how many edges there are in a circle.”  

 

Figure 9 

 

Figure 10 

 

Figure 11 

 
4.2.2. Solids made of  multiple polyhedron sharing points, lines, or faces 
 

Nine participants (A, B, C, D, E, F, G, H and I) cited solids made of  two polyhedra 
sharing points, lines, and faces as counterexamples. These solids can be divided into (1) solids 
that completely share some points, lines, or faces (Fig. 12 through Fig. 15), and (2) solids that 
only partially share lines or faces (Fig. 16 through Fig. 19). 
 
4.2.2.1. Solids that completely share points, lines, or faces  

In solids that share one point as shown in Fig. 12, the theorem holds in each polyhedron 
and two polyhedra share a point, 3=+− FEV . Participants also suggested solids that share 
an edge (Fig. 13) and those that share a face completely (Fig. 14 or Fig. 15) are 
counterexamples.  
  

 

Figure 12 
 

Figure 13 

 

Figure 14 
 

Figure 15 

 
4.2.2.2. Solids that partially share lines or faces 

Solids such as in Fig. 14 and Fig. 15 raised the issue with participants of  whether it is 
appropriate to consider shared faces as separated faces. Participants suggested that modified 
solids that partially share lines or faces were counterexamples.  
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Figure 16 

 

Figure 17 

 

Figure 18 

 

Figure 19 

 
Where edges are partially shared (Fig. 16) and where an edge is divided (Fig. 17) the 

participants reflected on how to count the number of  edges. And a counterexample such as 
Fig. 19 led the participants to contemplate the question, “Is it appropriate to consider the face 
created by joining two faces a face?” Lakatos (1976, p.74) called this a “ring-shaped face.”  

 

 

Figure 20. Ring-shape face 

 
4.2.2.3. Polyhedra with holes 

The third type of  solids that the participants ( A, B, C, G, J and K) suggested as 
counterexamples is solids with holes as shown in Fig. 21 through Fig. 23. These 
counterexamples also prompted the participants to rethink the definition of  face.  
 

 

Figure 21 

 

Figure 22 
 

Figure 23 

 
4.2.2.4. Polyhedra containing other polyhedra 

Eight participants (A, B, C, D, F, G, J and K) also suggested solids that are polyhedra 
containing other polyhedra are counterexamples. Counterexamples of  this type can be 
subdivided into three subtypes. The first is the type in which other solids -not sharing any 
face, point or line- exist in certain solids (Fig. 24). The second is the type in which two solids 
completely share a face (Fig. 25). The third type is one in which a figure exists inside another 
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and the two figures share part of  a face.  
 

 

Figure 24 

 

Figure 25 
 

Figure 26 

 
 
4.2.3. Participants’ responses to the disparity created by counterexamples 
 

The participants’ responses to the disparity between counterexamples and the theorem 
are divided into four categories; the method of  monster-barring, the method of  exception 
barring; the method of  monster adjustments and new conjectures. 

 
4.2.3.1. The method of  monster-barring 

Participants D and E used the method of  monster-barring. In Episode 3, participant E, 
suggested cones, cylinders, and spheres as counterexamples, and wondered how to determine 
the numbers of  points, lines, and faces in these figures. He then stated, “A polyhedron is a solid 
figure made of  multiple polygons”, and that the curved surface is not a polygon, and thus, solids 
with curved surfaces are not polyhedra but monsters. 
 
Episode 3: 

Participant E: Cones have curved surfaces, so I think they will not work. 
Interviewer: What’s wrong with curved surfaces? 
Participant E: Because in a curved surface, you can’t count the number of  edges, and 

faces... Can you count the number of  faces? But the number of  vertices is one... I 
think there is no edge, in the definition that I think of.  

Interviewer: Can you say a cone is a polyhedron? Euler’s theorem is about polyhedra. 
Participant E: When you talk about curved surfaces, a sphere has a curved surface, and a 

sphere has one face, ... but no distinguishable edge or point, I guess there are 
none.  

Interviewer: What do you think is the definition of  a polyhedron? 
Participant E: I think it is made of  faces that have angles. (Writing down the definition) 

“Polyhedron = solid figure made of  multiple polygons” 
 

Participant D also used the method of  monster-barring where polyhedra existed in other 
polyhedra. He used the method of  monster-barring stating that a polyhedron signified “one” 
solid figure, and that the polyhedron in which there is another polyhedron meant two 
different solid figures. He modified the definition of  polyhedron as “one solid figure 
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surrounded by multiple polygons.” 
 
4.2.3.2. The method of  exception-barring 

Participants A, D, F, G, and I were observed attempting the method of  
exception-barring. Participant F defined a polyhedron as a “figure made of  faces.” So the 
solid figures with curved surfaces are polyhedra because curved surfaces are faces. To exclude 
cones, cylinders, and spheres as exceptions, participant F modified the original conjecture to 
“In all polyhedra excluding those made of  curved faces,  2=+− FEV .” Participant I, Episode 4, 
also used the method of  exception-barring by modifying the theorem to “In polyhedra that do 
not include a circle, 2=+− FEV .”  
 
Episode 4: 

Interviewer: (Pointing to the sphere and cylinder.) Then, can we call them polyhedra, too? 
Participant I: It has one or more faces... We can call them polyhedra. 
Interviewer: Then, don’t we need to modify this ( 2=+− FEV ) ?  
Participant I: Yeah... 
Interviewer: How can we change it? 
Participant I: (Thinking hard) So, if  a circle is included... I guess only the polyhedra 

without any circles belong to this category ( 2=+− FEV ), don’t they? 
 

Participant I suggested two rectangular solids that share one edge (Fig. 27) are another 
counterexample. Then he redefined the theorem to “In polyhedra that do not include a circle 
and are not attached to other polyhedra, 2=+− FEV .” Participant G found solid figures 
with holes as counterexamples, and modified the theorem to “In polyhedra which are not 
completely penetrated by a hole, 2=+− FEV .”  

 
Figure 27 

 
4.2.3.3. The method of  monster-adjustment 

Participants B, D, E, F, and G tried the method of  monster-adjustment to convert a 
counterexample into an example. Participant B thought, after finding the counterexample in 
which part of  a face was shared by two figures, that the justification of  Euler’s theorem 
depended on whether to consider the edge divided by a point as one or two. 
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(a)                           (b)                    (c) 

Figure 28 
 

Participant B compared the results when the edge (line A in Fig. 28(a)) divided by a 
point was counted as one (A=1) and when it was counted as two (A=2). Then, B, Episode 5, 
explained the reason why the edge divided by a point in this solid figure should be counted as 
two. 
 
Episode 5: 

Interviewer: Is the solid a polyhedron? 
Participant B: It is a polyhedron. 
Interviewer: Then, what can we do?  
(Participant B is writing) 
Participant B: If  there is a vertex in the middle of  an edge (even when it is not on the 

exact center), the left and right sides of  the vertex should be separately 
counted… It is absolutely necessary to separately count this part (left part of  line 
A) and that part (right part of  line A). In the case of  plane figures, we count any 
line between two points separately… In solids, to make it (the value of  

FEV +− ) become 2, you need to count the left and right sides of  the point 
separately. 

 
Two polyhedra that completely share a face, with one inside the other (Fig. 25) were also 

considered not to be a counterexample by one of  the participants after the method of  
monster-adjustment was used. Participant D claimed that the figure was not a counterexample 
because it was considered a sunken solid without a lid, rather than two solids sharing one face. 

For the ring-shaped face (Fig. 20), some participants preferred to use the method of  
monster-barring by not considering it as a face, and subsequently, employed the method of  
monster-adjustment by not considering the solid figures with ring-shaped faces as 
counterexamples (e.g. 16=V , 24=E , 10=F , and thus, 2=+− FEV  in Fig. 19 ). 
Participant I, who used the method of  exception-barring for cylinders and spheres, used the 
method of  monster-adjustment for the cone, considering the polyhedral theorem to be 
justified under the condition of  1=V , 1=E , and 2=F .  
 
4.2.3.4. New Conjectures 

The participants’ approaches were not limited to monster-barring, exception-barring, 
and monster-adjustment which are similar in the sense that they are used to support the 
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formula of  2=+− FEV . Participants also suggested two types of  new conjectures. One 
involved the participants searching for a new formula about the value of  FEV +−  with 
which to express the relationships between the points, lines, and faces in solid figures 
including the counterexamples they found. New conjectures suggested by participants are 
summarized in Table 1. 
 

FEV +−  Conditions Participants 

0 
If  the ring-shaped face is not a face, in polyhedra with 
hole(s) 

G 

1 In polyhedra including a circle I 
In polyhedra that completely share either a point or a line 
with other polyhedra 

 E and F 
3 

If  solid figures are attached at a vertex, edge, or face H 

4 
In polyhedra which contained other polyhedra such as a 
hollow cube 

F 

Table 1 Summary of  Participants Conjectures 

 
The other type of  conjecture, suggested by participant A, relates to the necessity of  

considering new elements other than points, lines, and faces. He proposed, Episode 6, that a 
formula that including three-dimensional elements be developed.  
 
Episode 6: 

Participant A: In the two-dimensional circumstance, a rule can be easily found using just 
V , E  and F , but in the three dimensions, a new element of  space is added. So, 
if  Euler’s theorem is a formula established using two-dimensional elements, I 
guess we can make a new formula that exclusively applies to the third dimension 
including space, can’t we?  

Interviewer: The new element of  three dimensions. Can we really do it if  we consider 
that? 

Participant A: Yes, I think so. 
Interviewer: Then how can we determine the numbers in the three dimensions? 
Participant A: Space. 
 

 
(a) (b) 

Figure 29 
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After that, 1=−+− SFEV  and 3=++− SFEV  were proposed as new 
conjectures, and it was confirmed that 1=−+− SFEV  is justified with the type of  solid 
figures in Fig. 29 ((a) : 15=V , 24=E , 12=F , 2=S , 1=−+− SFEV , (b) : 10=V , 

17=E , 10=F , 2=S , 1=−+− SFEV ). This conjecture led participant A to think that 
the polyhedral theorem could be expanded to four-dimensional solids. 
 

5. Discussion 
 

Polyhedra, which the participants studied prior to the research, were limited to the 
category of  regular polyhedra, prisms, pyramids, prismoids, and semi-regular polyhedra such 
as soccer balls, all satisfied Euler’s theorem. Nevertheless, the participants thought that there 
must be some polyhedra for which the theorem was not valid. This belief  appears to resulted 
from the method of  justification that the majority of  participants used. The value of  

FEV +−  can be obtained by counting the numbers of  points, edges, and faces in the case 
of  prisms, pyramids, and prismoids (e.g. in n-angle prism, nV 2= , nE 3= , 2+= nF , and 
thus, 2=+− FEV ). However, this justification fails to provide information about new 
kinds of  solids that have yet to pass this test. The participants’ view that there must be 
polyhedra with which the polyhedral theorem was not valid indicates they belive that the 
scope of  polyhedra is extensive. This view is supported by the various types of  solids that the 
participants presented as counterexamples. 

A strong similarity exists between solid figures suggested by the participants as 
counterexamples and those discussed by Lakatos (1976). The first type of  counterexample 
that participants found, solids with curved surfaces, appeared as cylinders in Lakatos (p.22). 
The second type, two or more polyhedra that shares points, lines, or faces, was discovered by 
mathematicians Hessel (figures that share points or lines) and Lhulier (cube with crest) in 
1832 and 1813, respectively (p.15, p.34). The third type of  counterexample was first 
discovered by Lhuilier (p.19). In addition to the tunnel and picture frame mentioned in 
Lakatos, participants also found a polyhedron which is not completely penetrated. The fourth 
type, polyhedra within polyhedra, was discovered by Lhuilier and Hessel based on the idea 
obtained by observing the crystalloid of  mineralogic collection enclosed within a translucent 
crystalloid (p.13). 

Counterexamples can be used to help students develop their mathematical reasoning 
(Lakatos, 1976; Boats, et al., 2003). In this study participants examined concepts such as 
polyhedron and face and created new definitions. The counterexamples discovered by 
participants also encouraged them to examine more closely the definition of  terms. The 
ring-shaped face in particular prompted some participants to reconsider the definition of  
polygon. They asserted that it could not be called a polygon, because the figure did not 

comply with the sum of  interior angles of  n -polygon )2(180 −× n . This suggests that the 

formula for the sum of  interior angles of  a polygon was seen as a definitive property that 
determines whether the figure was a polygon or not. This method of  defining a polygon is 
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similar to the definition of  polyhedron stated by Baltzer (Lakatos, 1976, p.16), “polygon 
system with which the equation of  2=+− FEV ”  

In Reid (2002) and Athins (1997), the method of  monster-barring and the method of  
exception-barring were observed among elementary students. The method of  
monster-barring, the method of  exception-barring, the method of  monster-adjustment, and 
new conjectures were observed among the participants in this study. The participants did not 
reject the original theorem and attempted to develop new conjectures that comprised 
counterexamples, and of  the five participants who used the method of  exception-barring, 
four developed new conjectures. In the past, there have been cases in which counterexamples 
were first recognized as monsters and excluded, but later reintroduced and accepted as 
examples (e.g. Lakatos, 1976, p.31). This ability to review and change a position was also 
demonstrated by the participants. Initially, they used the monster-barring method or 
exception-barring method for the counterexamples they identified, but they attempted to 
include the counterexamples within the scope of  examples through monster adjustment or 
new conjecture. Krutetskii, (1976) Sriraman, (2004) point out that this flexibility of  thinking is 
an attribute of  mathematically gifted.  

Lakatos (1976) argues that the method of  lemma-incorporation is a productive way of  
refining conjecture based on the proof. Proof-analysis is a prerequisite to this method and, as 
Nunokawa points out (1996) proof-analysis is an important component of  proofs and 
refutations. However, in this study, the method of  lemma-incorporation and proof-analysis 
was not observed. When participant B, provided proof  of  increasing the elements of  
polyhedra, was encouraged considering the validity of  his proof  for a counterexample (Fig. 
18), he provided a monster adjustment solution stating, “It’s not the proof  that’s wrong, but 
there is a problem with this solid.” 

 
6. Conclusion 

 
This study focuses on the constructions of  mathematically gifted fifth or sixth-grade 

students in solving tasks related to Euler’s polyhedron theorem and compares them to those 
of  mathematicians discussed by Lakatos (1976). By analyzing ninth grader students notion of  
proof, Sriraman (2004) reports that the processes used by gifted students demonstrate 
remarkable isomorphism to those employed by professional mathematicians, This study also 
shows parallels in constructions of  mathematically gifted fifth and sixth grade student and 
mathematicians discussed by Lakatos. With the exception of  the method of  lemma 
incorporation and proof-analysis, counterexamples and the method for solving conflicts 
between the theorem and counterexamples suggested by the participants demonstrated 
remarkable similarities to those presented in the history of  mathematics. 
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Abstract: Throughout the duration of what has been termed the “math wars”, many overly-
generalized statements by both sides have detracted from the quest for a solution to the conflict 
between conceptual and procedural approaches to mathematics study. In terms of philosophies 
of mathematics education, the absolutist view posits that mathematical knowledge is certain and 
unchallengeable while the fallibilist view is that mathematical knowledge is never beyond revision 
and correction. We suggest that the major mathematics education reforms have been absolutist in 
focus and have not reflected the changing nature of the discipline. Thus we believe that true 
reform will reflect changing perceptions in mathematics education along with changes in 
American culture and its expectations of mathematics education. 
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“The math wars are over!” “The National Council of Teachers of Mathematics (NCTM) has 
come to its senses.” Such catch-cries abounded in response to the NCTM’s publication of 
Curriculum Focal Points for Pre-kindergarten through Grade 8 Mathematics (2006a). This document 
represents a break with tradition in that it focuses attention on a limited number of significant 
mathematical goals at each grade level. In the September 12, 2006 press release, NCTM President 
Francis (Skip) Fennell asserted that “The Curriculum Focal Points present a vision for the design 
of the next generation of state curriculum standards and state tests” (NCTM, 2006b, para. 3). He 
sees the focal points as the first step to a national discussion on bringing consistency and 
coherence to United States mathematics curricula. This document is seen as one response to the 
“mile wide, inch deep” criticism of United States mathematics instruction, a criticism that most 
typically arises in the context of comparing the performance of American students with 
international students on tests of mathematics achievement. 
 
The assertion by some critics that the Focal Points document represents a shift in the NCTM 
position on basic skills is challenged by Skip Fennell (NCTM, 2006c), who claims that the NCTM 
has always recognized the importance of building students’ ability to memorize certain basic math 
facts and procedures. These critics have claimed that the NCTM is doing an about-face. They cite 
such instances as calculator use replacing mastery of basic skills, that having students describe in 
writing the reasoning behind their answers meant that students were writing about math instead 
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of doing it, and that having students discover their own methods to perform math operations 
could not lead to mastery (Hechinger, 2006). Another critic, Tamar Lewin (2006, November 14), 
asserted that planned changes in teaching math in American schools were driven by students’ 
lagging performance on international tests and parents’ dissatisfaction with their children’s 
performance in mathematics. 
 
The NCTM’s recent involvement in mathematics education reform began with the publication of 
An Agenda for Action (1980) which focused on the need for students to learn how to solve 
problems. More recently, the following documents have caused substantial public reaction: 
Curriculum and Evaluation Standards for School Mathematics (CESSM) (1989), Professional Standards for 
Teaching Mathematics (1991), Assessment Standards for School Mathematics (1995), and the Principles and 
Standards for School Mathematics (PSSM) (2000). Certainly, these documents have focused attention 
on a standards-based approach to mathematics instruction, described by its critics as “fuzzy 
math” where individual accountability was replaced by group work, proficiency in basic skills was 
replaced by reliance on calculators, and serious attention to algorithmic thinking was replaced by 
“real-life problems.” At the time of the publication of PSSM, then NCTM president Glenda 
Lappan asserted that the original standards (CESSM) (NCTM, 1989) put too much emphasis on 
new ideas such as teaching conceptual understanding over basic skill development, so that 
teachers missed the main goal that students become highly skilled in using mathematics (Hoff, 
2000). Accordingly, critics of these reform efforts appear to have misrepresented the initiatives of 
the last two decades. 
 
What tends to be overlooked in these exchanges is how these accusations began. Ever since the 
First International Evaluation of Achievement (Husen, 1967), we have heard charges of the 
American mathematics curriculum being a mile wide and an inch deep. Then, as now, one 
explanation of the relatively poor performance of American students in international tests of 
comparison was the large number of topics covered at the secondary level, many of them topics 
that had been introduced previously. 
 
The purpose of this paper is not to join sides in the “Math Wars,” or to attribute blame to one 
side or the other. In a recent commentary, Wallis (2006, November 19) claimed that American 
education is every bit as polarized, red and blue, as American politics. However, the real issue is 
not this polarization. Rather, it is to try to understand why different groups within our society 
have different expectations of a school mathematics curriculum and how they can be explained 
by differences in philosophy of mathematics education.  
 
Connections between math education philosophy and curriculum change 
There is evidence that the two sides of these math wars are not attending to the points made by 
the other side. McKeown (Hoff, 2000) claimed that the NCTM and its critics agree on 
“platitudes”, but disagree about how much emphasis to put on them.  Thus the real issue seems 
to hinge on different philosophical considerations about the nature of mathematics education. 
Paul Ernest (1991) describes the two opposing perspectives as “[t]he absolutist view of 
mathematical knowledge” which “consists of certain and unchallengeable truths” (p. 7), and the 
“fallibilist view”, which “is the view that mathematical truth is fallible and corrigible, and can 
never be regarded as beyond revision and correction” (p. 18). He maintains that the rejection of 
the absolutist view “leads to the acceptance of the opposing fallibilist view” (p. 18). Ernest (1994) 
sees the “central problem of the philosophy of mathematics education” as “the issue of the 
relationship between philosophies of mathematics and mathematics education” (p. 4). 
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Although it is generally accepted that Ernest’s classification is a dichotomous one, we claim that 
there exists a continuum of positions between these extremes. To support our claim, we would 
draw attention to the philosophy implied when observing a math teacher in action. There should 
be little disagreement when observing a teacher’s math lesson that it be categorized as either 
absolutist or fallibilist. Does that teacher manifest the same implicit philosophy in all lessons 
he/she teaches? Could it not be that this teacher may demonstrate an absolutist philosophy when 
teaching math skills, but a fallibilist philosophy when engaging the students in bona fide problem 
solving? These questions become important when the NCTM is accused of a change of heart. 
Has the organization (or its leadership) really converted from a fallibilist to an absolutist position?  
 
Most mathematics educators would agree with Fennell’s (2006) assertion that the NCTM position 
has in essence not changed. While the Curriculum and Evaluation Standards for School Mathematics 
(NCTM, 1989) made the case that memorization of basic facts and traditional factual tests were 
being de-emphasized (p. xx), it was not claimed that traditional approaches would disappear. 
Moreover, articles published in the NCTM journals (Teaching Children Mathematics, Teaching 
Mathematics in the Middle School, and The Mathematics Teacher) during the past 17 years lean heavily in 
the direction of student involved approaches. Could we infer from this that such approaches 
were typical of the mathematics teaching force?  
 
The most succinct answer to this question is provided by an analysis of the Third International 
Mathematics and Science Study (TIMSS) Grade 8 videotapes. We are told (Stigler, Gonzales, 
Kawanaka, Kroll, & Serrano, 1999; Stigler & Hiebert, 1999) there was uniformity of style among 
American eighth grade teachers, and the focus clearly indicated an absolutist view of 
mathematics. How can we explain the evidence that American teachers consistently design 
lessons grounded in an absolutist perspective despite the existence of a hierarchy of perspectives 
that includes fallibilism?  
 
Although Ernest (1991) asserts that teachers’ strategies in the classroom depend upon their 
philosophical perspective, he emphasizes the importance of social context. That is, teachers who 
have different philosophical perspectives may still teach in similar ways and adopt similar 
classroom practices depending upon the socialization effect of the context. Implementing a 
fallibilist view in practice, for instance, is far less likely if a teacher’s peers and school climate 
support the absolutist perspective. Teachers may “shift their pedagogical intentions and practices 
away from their espoused theories” (p. 289) when faced with constraints created by the social 
context.  
 
Social context, then, is a significant determining factor with respect to educational practice and 
policy. Educational historian, David Tyack (1974), writes that the central reason for reform 
failures “has been precisely that they called for a change of philosophy or tactics on the part of 
the individual school employee rather than systemic change”  
(p. 10). Although Tyack refers to social injustice and attempted social reform through education 
policy and practice, the argument can be applied to mathematics reform initiatives.  Systemic 
change may include, in the case of mathematics education, the transformation of the school 
climate from one emphasizing training for occupation to one enriched with philosophical 
discourse and the concomitant empowerment of teachers and students to create change. Systemic 
change, however, has not been typically the focus of recent reform efforts, and that fact may 
provide a partial explanation for their failures. 
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History of Mathematics Education Reform 
The history of education reform in the twentieth century documents one failure followed by 
another. Curricular and pedagogical change have been the objects of extensive efforts by 
authorities in all fields, only to result in very little visible change in the basic curriculum (Kliebard, 
1987) or classroom practice (Cuban, 1993). If hundreds of educational reform reports and policy 
initiatives have had little to no effect with respect to educational changes, then why have policy 
and reform efforts failed so miserably? Have these policies been poorly designed or designed by 
individuals and organizations that have little working knowledge of what really goes on in 
schools? Are schools simply tools of a power elite or dominant class, and curricular and 
pedagogical reform efforts are designed to maintain the extant power/class structure? Does 
society need to change before classroom practice will change? Is it possible that teachers’ 
conceptions of mathematics need to undergo significant revision before the teaching of 
mathematics can be revised? Ultimately, is the problem one of the construction of policy, a socio-
cultural context, or philosophically-bound practitioners? 
  
The tension between two almost diametrically-opposed philosophies is visible throughout 
educational history in the United States. Beginning with the early reform movements that were 
focused on compulsory education and proceeding through contemporary policy such as the No 
Child Left Behind Act (NCLB) of 2002, claims about the purpose and means of education have 
been contentious. The prominent educational philosopher, John Dewey, supported a vision of 
education as one connected with experience and real-life. Dewey (1936a) argued that 
mathematics education should be integrated: “Number arises in connection with the measuring 
of things in constructive activities; hence arithmetic should be so taught and not in connection 
with figures or the observation of objects” (pp. 213-214). Dewey’s critique of the absolutist 
perspective in mathematics education found expression in his Chicago Laboratory School where 
mathematics experiences were integrated with other disciplines. His contention was that “Until 
educators have faced the problem and made an intelligent choice between the contrasting 
conceptions…I see no great hope for unified progress in the reorganization of studies and 
methods in the schools” (1936b, p. 396). 
 
Lawrence Cremin (1961) points out that Dewey recognized the importance of learning the basics 
before proceeding to interpretation and extension. “To recognize opportunities for early 
mathematical learning, one must know mathematics” (p. 138). According to Cremin, Dewey 
attempted throughout his life to emphasize the necessity of teachers thoroughly comprehending 
the disciplines without creating a strictly utilitarian curriculum that accommodated students to 
existing conditions without enhancing their ability to envision and create change.  Cremin writes: 
“In short, the demand on the teacher is twofold: thorough knowledge of the disciplines and an 
awareness of those common experiences of childhood that can be utilized to lead children 
toward the understandings represented by this knowledge” (p. 138).  
 
Visualizing the range of perspectives as an arena rather than as a continuum with absolutist at 
one end and fallibilist at the other, one might conclude that a melding of the absolutist and 
fallibilist perspectives, or philosophical movement within the arena of mathematics perspectives, 
may be essential for authentic learning to occur.  The melding of the perspectives, however, has 
not been visible in the history of American mathematics education. E. L. Thorndike’s emphases 
on recitation and rote memorization followed by measurement of outcomes through 
achievement testing, advocated in the early years of the twentieth century, have determined the 
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state of affairs in mathematics education. Students trained in an absolutist philosophy who 
become teachers will likely teach from the absolutist standpoint.  
 
New Math Reforms 
The new math reforms took on different formats in various countries. In the United States and 
Europe, there was concern that an insufficient number of well-qualified students would be 
proceeding to post-secondary mathematics. There was a belief among university mathematicians 
that the secondary school mathematics syllabus needed to be reformed. Accordingly, groups 
dominated by university mathematicians set out to determine what mathematics should be 
studied in school to prepare students for university level mathematics. In 1952, the University of 
Illinois Commission on School Mathematics (UICSM) was formed under the leadership of Max 
Beberman and its focus was on the structure of mathematical thinking. The School Mathematics 
Study Group (SMSG) was started in 1958 under the leadership of Edward Begle at Yale (later at  
Stanford) University. Like UICSM, SMSG was university dominated, and focused on the 
development of abstract mathematical ideas.  
 
Likewise, in France, Lucienne Felix (1961), a close associate of the Bourbaki group, characterized 
the revolution there as a response to the need to replenish the supply of potential 
mathematicians, so many of whom were victims of the war. By contrast, in the United Kingdom, 
there was considerable involvement by the teaching community in the reforms undertaken. Bryan 
Thwaites of the University of Southampton headed up the School Mathematics Project where 
teachers did the writing, and the funding came from industry, not the government. In both 
settings, the claim was made that there was little change in the mathematics that was to be taught 
(although that little was quite substantial in the United States and Europe), but that there was to 
be considerable change in how the mathematics would be taught. However, as Beeby (as cited in 
Griffiths & Howson, 1974) points out about the role of teachers in curriculum reform, “the 
average teacher has a very great capacity for going on doing the same thing under a different 
name” (p. 143). 
 
Not all mathematicians in the United States were supportive of the direction their colleagues had 
chosen. Morris Kline (1958) deplored the university domination of the reform efforts which he 
accused of being more interested in training a new generation of mathematicians than in 
providing mathematics courses for all. In particular, he found the SMSG program to be 
prematurely abstract and lacking in links to science. 

 
Why did the “new math” fail? One perspective is offered by Amit and Fried (2002):  

In considering why a reform is desirable one looks at the needs and nature of 
mathematics, the needs and values of society, and the relationship between them; in 
considering who brings a reform about, one discovers that a balanced participation of 
mathematicians, teachers, politicians, parents, and students is necessary and that all must 
somehow work together and come to understand their different motivations and ways of 
thinking. (p. 365) 

 
Logistically, it would appear that the “new math” failed to meet the criteria identified by Amit 
and Fried. It was a top-down reform, initiated by the mathematical community, without buy-in 
from teachers or the public. Griffiths and Howson (1974) discuss two approaches to curriculum 
change, the first being a reorganization of the mathematics itself, which tends to be teacher-
centered, discipline-based and authoritarian. The second is described as an open tendency, one 
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that reflects liberal attitudes in schools and society at large, and tends to be pupil-centered. These 
approaches closely parallel the absolutist and fallibilist philosophical positions as described by 
Ernest. Thus we can infer that one cause of failure of the “new math” was that it represented an 
absolutist philosophy in what was emerging as a fallibilist world. 
 
The “new math” movement in the USA in the early 1960s reflected the point made above by 
Amit and Fried (2002). Larry Cuban (1993) discusses the constancy in mathematics instruction 
even after the “new math” or “Post-Sputnik” reform initiatives were supposedly instituted. 
Cuban contends that if significant change in schooling is to occur, “then organizational 
conditions, the forms of education that teachers receive, and the occupational cultures within 
which they work must also change” (p. 290). The “new math” curriculum changes were not 
accompanied by larger systemic changes, and were thus judged as failures. 
 
Usiskin (see Amit & Fried, 2002) pointed out that the new math movement was judged a failure 
by a public misled by the results of such examinations as the SAT and NAEP. SAT scores were 
low in the new math era, but so were verbal scores. There is a  more crucial point, however: there 
is no evidence that the SAT reflected the values and goals of the new math. Again, as Usiskin 
points out, the new math did nothing to help slower students–nor was this its intent. Thus, on 
this score, it would have been legitimate to challenge the values and goals of the new math. We 
contend, and the history of mathematics education reveals, that a reform movement or new 
policy or practice cannot be evaluated solely in terms of its own criteria. The reform process 
cannot be isolated from the educational system as a whole. 
 
Recent Reform Endeavors 
The above point is also being made by Stigler and Hiebert (1999) when they assert that 
“Educational reforms in this country often have been driven by an effort to change our 
performance on quantifiable indicators” (p. 98). For example, a major thrust of the new math 
reform was changing the textbooks. Thus one might expect, because American teachers typically 
rely on the textbook, that the teaching would change accordingly. The National Advisory 
Committee on Mathematical Education found: “Teachers are essentially teaching the same way 
they were taught in school. Almost none of the concepts, methods, or big ideas of modern 
mathematics have appeared” (Conference Board of the Mathematical Sciences, 1975, p. 77). One 
explanation offered by Stigler and Hiebert is: “The widely shared cultural beliefs and expectations 
that underlie teaching are so fully integrated into teachers’ worldviews that they fail to see them as 
mutable…teachers fail to see alternatives to what they are doing in the classroom” (p. 100).  
 
Many reports have been written in recent decades attesting to deficiencies in American 
mathematics education and suggesting reform initiatives to correct the problems. Those reports 
and the subsequent failure of suggested reforms provide evidence for the necessity for systemic 
change. The problem in mathematics education gained national attention in 1983 with the federal 
government issuance of A Nation at Risk (ANAR) (National Commission on Excellence in 
Education (NCEE), 1983). This report situated blame on education for a perceived diminishing 
economic vitality in the Unites States. The central concern of the report was that the nation was 
falling behind other countries in student achievement which led to a decline in the production of 
automobiles, steel, and tools. Written by a “blue ribbon” commission appointed by the Secretary 
of Education, T. H. Bell, the report expressed concerns about improving the quality of schools 
across the nation. It contained general discussions of the “rising tide of mediocrity” and our 
threatened future if higher standards were not imposed (p. 5). The report contained a great deal 
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of inflammatory language that stressed the necessity of raising achievement test scores and 
increasing the amount of homework required of students. It also contained an interpretation of 
achievement test scores that has since been repudiated by educational researchers (Berliner & 
Biddle, 1997).  
 
Bell expressed a personal hope that the commission would emphasize the mastery of 
mathematics along with other subject areas. The central concern of the final report, however, was 
not mathematics. The report itself was a brief pamphlet that contained vague recommendations 
but no suggestions for federal funding to help in carrying out the recommendations contained. It 
was claimed that the NCEE represented a cross section of the American public, and that the 
concerns expressed were shared by many. Power structure and content analyses, however, 
demonstrate that the commission members did not represent the majority of Americans and the 
recommended reforms would serve specific interests and not others (Hadden, 2003). Despite 
rhetoric to the contrary, it would appear that the objectives of ANAR were not necessarily in line 
with those of mathematics teachers or classroom teachers in general, parents, or students. The 
report, which largely represented the concerns of a section of the American power structure that 
was highly and intricately connected to the federal government, was likely intended to serve other 
interests while creating a climate of fear about education. 
 
Establishing the climate of fear was one of the successes to which ANAR may lay claim. That 
report was quickly followed by hundreds of similar reports nationwide issued by corporations, 
foundations and think tanks, and school districts. All were concerned with issues of technology 
and achievement in mathematics and science. They seemed to have little effect, however, on 
mathematics instruction and learning. Indeed, the ultimate results of ANAR and the other 
reports did not create significant change in mathematics education. Real results, accompanied by 
additional legislation, did not even become visible until much later when the No Child Left 
Behind Act (NCLB) was signed into law in 2002. Between ANAR and NCLB, however, other 
legislation concerning the state of mathematics education appeared. America 2000 Excellence in 
Education Act (1991) and Goals 2000: Educate America Act (1993) established more plans to increase 
student achievement. Evidence for the failure of reform initiatives, however, continued to mount 
as demonstrated by the recent math wars. Thus if reforms are to be successful, the culture of 
both education and our society must be changed. 
 
NCTM Standards 
The National Council of Teachers of Mathematics has spearheaded the effort to focus attention 
on a standards-based curriculum. The most pertinent publications manifesting this attention have 
been the recent NCTM documents identified above. Support for the NCTM Standards came not 
only from the scientific and professional communities, but also from a diverse group of 
community organizations.   
 
In considering why a reform is desirable one looks at the needs and nature of mathematics, the 
needs and values of society, and the relationship between them. In considering who brings a 
reform about, one discovers that a balanced participation of mathematicians, teachers, politicians, 
parents, and students is necessary and that all must somehow work together and come to 
understand their different motivations and ways of thinking. Perhaps this explains why the 
Standards documents have been more generally discussed than previous reform efforts. Whereas, 
by its very nature, the “new math” was a product of the world of mathematicians, the reform 
efforts sponsored by the NCTM have had a broad-based buy-in: “The content and processes 
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emphasized in Principles and Standards also reflects society’s needs for mathematical literacy, past 
practice in mathematics education, and the values and expectations held by teachers and the 
general public” (NCTM, 2000, p. xii).  
 
The Principles and Standards document begins by outlining a vision which, from a 
philosophical standpoint, is clearly fallibilist in nature–constructivist learning where the 
mathematics is substantive and the learning is student-oriented. Not only did that goal fail to 
materialize, but concerns about the state of mathematics and science education have become 
even more vocal in recent years. In the Glenn (2001) report, Before It’s too Late, we are told 
that we have only a small window before the intellectual damage to our youth cannot be 
reversed. Other reports such as Adding It Up (National Research Council, 2001) also call for 
an overhaul of instruction, curricula, and testing for elementary and middle school students in 
the United States. 
 
Nowhere is this problem with mathematics education made clearer than in the results of 
TIMSS. This study has led to hand-wringing, finger-pointing, and considerable discussion 
about what can be done to reverse this trend. One potentially rich explanation emerged from 
the study of the videotaped lessons at the eighth grade level. These results are described in 
Stigler et al. (1999). Looking specifically at the United States and Japan, we note that their 
educational contexts are based on very different cultural traditions. Any attempt to improve 
mathematics teaching in the United States without changing its culture will prove fruitless. 
The work of Stigler and Hiebert, along with that of Fernandez and Yoshida (2004), has led to 
considerable interest in Lesson Study in the United States. (An indicator of this interest is the 
number of workshops conducted at recent meetings of the National Council of Teachers of 
Mathematics.) Ultimately, the issue is whether a program designed to improve mathematics 
instruction in Japan can be transplanted to the United States and prove successful. We can 
transpose that question and ask: Is it possible to change the prevailing educational philosophy 
in the United States?  
 
Stigler and Hiebert (1999) believe it is possible by working within the existing educational system. 
These researchers caution, however, that even in the best of circumstances, change will be 
gradual and incremental. The stage must be set, they believe, by first building a consensus for 
continuous improvement; second, set clear learning goals for students and align assessments with 
these goals; and, third, restructure schools as places where teachers can learn (pp. 138-142). It 
must be emphasized, at this point in the discussion, that Stigler and Hiebert recommend 
professionalizing teachers and the occupation of teaching and building infrastructure for support 
of professionalization. These researchers see Lesson Study and professionalization as answers to 
achievement problems.  
  
Implications of Math Curriculum Reform  
One stated purpose of the NCLB legislation was to provide every child (including the 
disadvantaged) with the opportunity to succeed in mathematics. In fact, the law indicates that 
there will be consequences for schools if all students do not succeed. We have observed that 
students are tested annually, that failure to perform adequately on these tests has serious 
consequences, and that because of these consequences, many teachers are “teaching to the test” 
and ignoring other educational goals. Considering the influence of the NCLB legislation on the 
teaching and learning of mathematics in the United States, and given the nature of these reports 
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and this legislation, it is pertinent to ask whether the conflicting philosophies of mathematics 
education implied by the absolutist/fallibilist dichotomy are rigid or somewhat pliant.  
 
When Stigler and Hiebert (1999) advocate the use of Lesson Study in United States schools, they 
are well aware that its implementation cannot be successful unless it is accompanied by 
ideological and cultural change within schools. We cannot expect this to happen in the short-
term. It will take sustained, deliberate, long-term efforts resulting in small incremental changes. It 
remains to be seen whether this can happen in the USA, or whether the culture is so ingrained 
that change will not readily occur. If this is the case, what will it take to bring about real change in 
mathematics education in the United States?  In the midst of this philosophical debate, it is 
pertinent to think about the different sides in the discussion and whether we are dealing with 
“essentially contested concepts” that are so ideologically laden that they do not allow for 
resolution (Gallie, 1955-1956).  
 
Our concern is that one side's "eternal truths" will be viewed by the other side as "stagnant 
dogma".  Unless the supporters of both perspectives attempt the development of some common 
ground, the future of mathematics education may lead only to the recyling of time-worn 
arguments. If this is the case, elementary and secondary students may continue to ask why this or 
that skill or concept must be learned. The models employed will continue to reduce mathematics 
to a set of measurable objectives, narrowly defined, tested and then discarded because they are 
applicable only in rare circumstances.  
 
We are uneasy about the possibility that mathematics may not be seen as a fruitful avenue for 
solution to real social problems. Perhaps some of our students may continue to believe that as 
long as one can balance the checkbook and employ third grade addition and subtraction skills, 
there is no reason to learn algebra. The models employed will remain constraining and confining. 
They will limit the vision of what is possible. If mathematics is taught as a body of knowledge to 
be memorized and regurgitated, it may lose its dynamic character and become a set of painful 
mind games. If educators continue to plan and teach lessons based on the absolutist 
philosophical position without taking account of history, context, and culture, some students will 
continue to see mathematics as stagnant rather than dynamic–something to be gotten through. 
The end becomes the goal, rather than the goal being a joyful journey of learning. If the fallibilist 
continues to espouse a position that amelioration between philosophical positions is not possible, 
then perhaps it will not be possible.  
 
For all students to see the intrinsic joyfulness and usefulness of mathematics, the subject areas 
must be integrated with the physical, biological, and social sciences. We must teach our students 
that the mathematics are and always have been tied up with power and social relations; and, we 
should encourage our students to study those relations. Students must be allowed the freedom to 
shape curriculum in ways that are meaningful to them. Studying statistics, for instance, without 
the vigor of interpretation may cause the field to become theoretically bankrupt. The question of 
causes and alternative perspectives will enrich that study. Integrated with the study of history and 
economics, the study of statistics becomes a way to reveal underlying power  relations. 
 
Teachers, as well, should be encouraged to develop professionally through philosophical 
discourse with their peers, to plan and teach together, and engage in peer evaluation that is truly 
collaborative and non-threatening.  It is our concern that mathematics may not be seen by 
students or teachers as a spirited discipline with a vivacious past and robust future unless and 
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until it can be seen as interdependent and integrated with other disciplines. On the other hand, 
there are some concepts that must be learned, that appear to us now as eternal and unchanging. 
Those must be taught, as well, with the knowledge that at this time and in this place this concept 
is the one that informs our thinking on this matter. The point is that those "eternal" concepts are 
readily taught and learned. The real work comes in constructing learning that reflects changing 
conceptions and the social circumstances in which they occur.  
 
Our society is undergoing continual transformation. The education system, however, tends to be 
in a reactive mode. The community at large has something of an industrial age expectation of 
mathematics curricula as evidenced by the absolutist perspective and its emphasis on procedural 
competence. We seek, instead, an information age perspective based on a combination of 
absolutist and fallibilist conceptions. We are looking for reforms in mathematics education that 
reflect the changing nature of American society, but incorporate a vision of cultural change. 
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Teaching Proof at KS4 
 

Sue Waring (UK) 
 
Proof is a fundamental component of mathematics and so, in my opinion, it should be part of 
mathematical education in schools. It is an important link between topics and so can help pupils 
achieve a deeper understanding of the “wholeness” of mathematics and, moreover, it is vital for 
able pupils if they are to be inspired by mathematics and given a firm basis for future 
mathematical studies. 
 
Ideally, proof in primary schools would take the form of explanations of (mainly) number 
properties and patterns and the language used could be diagrams, or even pictures. Even in 
secondary schools much proof would be informal but older, able pupils should be exposed to 
formal proofs, probably including some from Euclid, and also be made aware of different proof 
methods. Because this ideal has not always been achieved I have found it necessary to introduce 
some older pupils to ideas about proof during the latter part of their schooling.  
 
I have provided proofs, mainly deductive, for nearly all the traditional mathematics they have 
learned and I have also explained why they cannot yet prove the few exceptions, like the formula 
for the volume of a sphere (they do not study calculus). To cater for the needs of pupils who prefer a 
visual analysis I have used proofs based only on diagrams as proposed by Skemp (1971, p 99), 
alongside the conventional verbal-algebraic forms, of some geometric theorems. Diagrams have 
also been used to explain some numerical and algebraic relationships and some of these are 
shown below. 
 
Diagrams as proof 
Pupils who fail to recognise a sequence of square numbers frequently resort to “adding the next 
odd number” and the first diagram explains why this works. 

  
Many pupils learn algebraic identities by rote and often use them with little real understanding 
and so the next diagram can help to increase insight. 
 

  1  1 + 3 = 5       1 + 3 + 5 = 9    1 + 3 + 5 + 7 = 16   1 + 3 + 5 + 7 + 9 = 25 

Adding consecutive odd numbers 



Waring 

  
 
Proof and pattern 
Although traditional proofs and “proofs without words” can deepen understanding of the 
mathematical concepts they explain they do not necessarily enhance appreciation of the need for 
and the nature of proof. Even some able pupils do not have an intuitive grasp of this. Using the 
context of pattern separates proof from the constraints of formal mathematics, such as symbolic 
language and unknown varying lengths and angles, and so makes it more accessible to more 
pupils. Patterns are either visual or composed of discrete quantities, which can be represented by 
concrete apparatus or diagrammatically, and explaining them does not necessarily involve formal 
mathematical language. 
 
Pupils can often analyse a pattern and work out the next three terms and most able pupils can 
also work out a general rule. In order to do this they assume that the numerical relationships 
observed in the first few terms continue. However, even amongst able pupils, there are many 
who are taken by surprise when asked to explain why the rule works. To alert pupils to the fact 
that not all patterns continue as expected and to emphasise that the purpose of proof is to 
provide confidence in the truth of a claim it is wise to use at least one example where an apparent 
pattern does not continue.    
 
The investigation “Regions in a Circle”, described in my book “Can you prove it?” (Waring, 
published by the Mathematical Association, 2000, p157), uses a counter-example to demonstrate this. 
Pupils count the number of regions (r) formed by joining with straight lines all possible pairs of 
dots around the circumference of a circle. Most pupils describe the pattern observed in the first 
five circles as “doubling” and some can also express it algebraically as r = 2d-1. Pupils expect that 
there will be 32 regions for six dots and are surprised that 31 is correct and that the apparent 
pattern fails. Pupils are not expected to find the correct complex pattern, but should be aware 
that one exists and offered copies of a proof (e.g. Beevers, 1994, p10) to read 
  
There are many other examples of patterns to explain in my book and they are accompanied by 
details of how they have been used in the classroom. One example (part of a pupil worksheet), 
which has the advantage of having several alternative proofs, is given below. 

 
 
       x 2 

 
 
 xy 

        xy y 2 

        x               y 
 
 
x 
 
 
 
y 

(x + y)2 = x2 +2xy + y2
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This task was set for homework after a lesson on a similar growing pattern of triangles. This 
lesson established that for t triangles the result of dividing (t – 1) by 3 produced a triangle 
number. Although pupils were encouraged to tabulate numerical values it was recognised that 
some pupils would analyse the structure of the pattern. 
For the homework assignment one pupil produced the following diagrammatic proof:  

 
Two pupils produced the following diagram and formula   
 

 

s = n2 + (n – 1)2 

Growing Squares 

Stage 1          Stage 2           Stage 3                Stage 4

T3 T3 

T3 T3 

Find a formula for the number of squares (s) at the nth stage. 
Show how you derived it and explain why it works. 



Waring 

but did not explain the link. Neither they nor their class mates could see the connection when 
shown the above diagram in the next lesson, until the diagram below was shown to the class. 

 
When this was done the pupils who had produced the original diagram said that it explained what 
they meant. Most of the pupils in this able group understood that this was a specific example of a 
result which could be generalised since they could also follow the algebraic proof referred to in 
the introductory lesson. On another occasion a pupil produced the following diagrammatic 
analysis of the pattern as the sum of consecutive square numbers. 
 
 
 
 

 
 
Exposure to activities of this kind shows pupils that patterns can be explained, and sometimes in 
more than one way. Exhortation by the teacher that patterns, like all mathematics, should be 
explained and provision of regular practice helps pupils learn to construct their own, albeit 
informal, proofs. 
 
Proof methods 
When pupils have been introduced to such proofs of patterns and also some formal traditional 
proofs it is appropriate to highlight the existence of different proof methods. Another series of 
lessons hoped to achieve this by considering apparently different problems and using different 
proof methods to establish confidence in the findings. The mathematics underlying all the 
problems, namely “Combinations”, has not been studied by the pupils and so they do not have 
access to rote learned responses.  
 
The first problem – “In how many ways can two colours for a team strip be selected from a 
range of five colours” – is appropriate for younger children but is used here as an easy 
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introduction to the main task, and to highlight the method of “proof by exhaustion”. Although 
younger pupils need guidance in how to list possible outcomes systematically older pupils can do 
this quickly and thus are sure that there are ten choices. However, the idea that they have used 
“proof by exhaustion” and the fact that it is appropriate because there are few cases to consider 
are new. 
 
The second problem – “How many different triangles can be formed by joining three dots in a 
set of five dots (no three collinear)” – is included because it is mathematically similar, although 
this is not recognised by pupils. Younger pupils could do this with rubber bands on a pin board 
but older pupils use pencil and paper. They are expected to understand the link with the previous 
problem, that choosing three out of five is equivalent to choosing two, and the fact that proof by 
exhaustion is still feasible. 
 
The third problem – “In how many different ways can you get to each junction of this grid”-  
 
 
 

 
 
is also based on “Combinations” but, because the context is different, this is not recognised 
initially by pupils. Even if they do not realise selecting left or right moves from the total number 
of levels moved this can be made clear in the class discussion about the problem. This discussion 
highlights the fact that the number of ways of getting from A to B is the same as in the previous 
two problems because it is equivalent to selecting two right (or left ) and three left (or right) 
moves from five moves. The method of proof used is still “exhaustion” but the question of 
finding and proving results for a larger grid with, say, twenty levels is raised and the need for a 
more efficient approach appreciated.  
 
The remaining class discussion returns to selecting colours and elicits the facts that there are five 
(or n) ways of choosing the first colour and 4 (or n – 1) ways of choosing the second. 
Consequently there are 5x4 (or n(n – 1)) ways of selecting a first and second colour and therefore 
20/2 (or ½ n(n – 1)) ways of selecting two colours in either order. Pupils can then be reminded 
that this is a deductive proof and is more powerful than the proofs by exhaustion because the 
result can be applied with confidence to the problem of selecting two objects from any number 
of objects, however large.    

Level 1 

Level 2 

Level 3 

Level 4 

Level 5 

A 

B 
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The last problem in the series considers the problem of expanding binomials with powers up to 
five. Introductory class discussion establishes that (a + b)0 =1 and that the coefficients of a and b 
in (a + b)1 are both 1 and then reminds pupils of the expansion for (a + b)2. Some pupils need 
reminding that (a + b)3 can be found by multiplying (a + b)2 by (a + b) and some also need help in 
starting this. They are then given time to expand (a + b)4 and (a + b)5 and told to examine the 
coefficients. The summarising discussion establishes that the coefficients are the same numbers 
as those at Level 5 of the grid above, explains why this is the case and considers the proof 
method used.  
 
It has also been drawn to the attention of pupils that the pattern in the grid and also formed by 
the coefficients of binomial expansion form Pascal’s Triangle. Pupils are interested in this and 
can usually see how it can be extended but combinations of more than three from more than five 
are not discussed at this stage.  
 
To broaden the experience of pupils in mathematics and to introduce a new method of proof, 
Euler’s theorem has been established and its proof discussed with classes of older, able pupils. 
This involves pupils thinking in three dimensions, provides valuable experience in a previously 
unfamiliar area of mathematics and a different style of reasoning, and also an unusual example of 
how changing a problem facilitates its solution. Pupils are given access to a variety of solids and 
told to count faces (F), vertices (V) and edges (E) and tabulate these in groups – prisms, pyramids 
and “others”. Some pupils are able to find a correct relationship between F, V and E and most 
recognise that one form is F + V – E = 2.  
 
Many able pupils can explain why this is true for a prism whose cross-section is a polygon with n 
sides – there are n + 2 faces (n along the length and one at each end); 2n vertices (n at each end) 
and 3n edges (n at each end and a set of n along the length); combining these as n + 2 + 2n – 3n 
gives the required result of 2. Some able pupils can also analyse pyramids in a similar way to give 
(n + 1) + (n + 1) – 2n = 2 and most can understand this proof. The fact that that both these are 
deductive proofs is highlighted. Pupils enjoy handling the many solids and meeting new words 
like “parallelepiped”, “trapezoidal prism” and “icosahedron” and so have a positive attitude to 
this activity. 
 
The proof for other solids cannot be proved in the same way, by deduction. The method used 
explains how any solid can be transformed into a network, by “squashing” it so that faces, 
vertices and edges become regions (R), nodes (N) and arcs (A) and then derives the proof that R 
+ N – A = 2, through class discussion.  The proof is by induction and establishes that R + N – A 
= 2 for the simplest case (two nodes joined by an arc); that R + N – A remains constant if an arc 
or node is added; and that therefore R + N – A must always be two.  
 
In a group of pupils aged 14-15 years and between the 10th and 20th percentiles of mathematical 
ability numerical results were collated and the relationship F + V – F = 2 discovered and also the 
need for proof recognised. Pupils took an active part in the class discussions about proofs and 
were given a printed summary. On a later occasion older (aged 15-16 years), very able (at or 
above 10th percentile) pupils were instructed to investigate polyhedra and networks 
simultaneously and search for and prove any connections. Their reports on the first stage of the 
investigation included proofs of the theorem for prisms and pyramids with little or no teacher 
intervention. After the discussion of the inductive proof for other solids their written 
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explanations indicated that they understood the proof of the relationship for networks and the 
equivalence of the relationship for solids.  
 
 
 
Conclusion 
Although much of the material outlined above has not been specified in the curriculum these 
wider and deeper mathematical experiences seem to interest and motivate able pupils so that 
many of them elect to study mathematics further. I have every confidence that their exposure to 
proof has given them a firm foundation for more advanced mathematics.  
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Consecutive numbers 
 

Steve Humble1  
The National Centre for Excellence, UK 

 
The hidden secrets of our number system can often reveal the magical quality of mathematics. 
Through the process of discovery and discussion with fellow classmates, the hidden depths of 
maths takes on new appeal. Consecutive numbers is one such area that gives this excitement. 
 
 

 
 
 
Starting with the open question: 
 
How many ways can you share out 6 counters? 
 
The children will find cases like these: 
 
1+5, 2+4, 3+3, 1+1+2+2, 1+2+3 
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What about 7 counters and other numbers? 
Are there any special cases from all these? 
 
Then notice that 6=1+2+3 and 7=3+4 can be written as the sum of consecutive numbers. 
 
Why can 7 be made from two consecutive numbers and 6 from three? Are there patterns like this in other 
numbers? Can all numbers be written as the sum of consecutive numbers? 
 
After further investigation a proof can be found for all odd numbers. 
 

12)1( +=++ nnn  
 
It can be seen that all multiples of 3 can be written as three consecutive numbers from the 
following proof: 
 

nnnn 3)1()1( =+++−  
 
After this the students see the real benefit of using algebra and move to four consecutive 
numbers. 
 

)12(224)2()1()1( +=+=+++++− nnnnnn  
 
So if you double any odd number these can be written as four consecutive numbers.  
 
Therefore since we have just proved that we can write all the odd numbers as consecutive numbers, if we double any 
odd number we can also write this as a consecutive number. Is that therefore a proof that all numbers can be 
written as the sum of consecutive numbers? 
 
Odds  1 3 5 7 9 11 13 15 17… 
Double 2 6 10 14 18 22 26 30 34… 
 
You can see from the previous table that gaps still exist in our logic, for example 4, 8, 12, 16, 20, 
24…. 
 
We can find more proofs to help solve some of these problems, but 4, 8, 16, 32… still remain. By 
this time the student may begin to wonder if continuing to prove particular cases will ever prove 
to be enough! 
 
We need to move to the next level and the crowning glory of this problem. By looking at why 
4,8,16,32… cannot be partitioned into the sum of consecutive numbers, we begin to understand 
the link to triangular numbers and other deeper issues. 
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Theorem: All consecutive numbers have at least one odd factor. 
 
Proof:  
 
 
 
 

 
Sum = )1(2

1 ++ nnnm  
Sum = )12(2 ++ nmn  
 
Either i) n  is even, ∴ 12 ++ nm  is odd 
 ii) )12( ++ nm  is even, ∴ n  is odd 
 
 
This problem is an excellent way to motivate thinking about proof and why proof is necessary. It 
gives students confidence in the use of algebra and the ability to find particular results which can 
be shown to always be true. Yet its real magic is in this final proof, which shows the need to 
stand back and look. If we are not careful, sometimes we can lose ourselves in the detail and not 
see the whole picture. 
 
Steve Humble (aka DR Maths) works for The National Centre for Excellence in the Teaching 
of Mathematics in the North East of England (http://www.ncetm.org.uk). He believes that the 
fundamentals of mathematics can be taught via practical experiments. He is the author of the 
book The Experimenter’s A to Z of Mathematics, which develops an experimenter’s investigative 
approach to mathematical ideas. Always having had great fun playing with maths, he enjoys 
teaching this to others. 
For more information on DrMaths go to  
http://www.ima.org.uk/Education/DrMaths/DrMaths.htm 
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