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Editorial: Growth & Change   
 

Bharath Sriraman, Editor 
The University of Montana 

 
2006 heralds the third year of The Montana Mathematics Enthusiast. The journal has undergone  
healthy mutations  since its rebirth in April 2004. We now have in place since October 2005 an 
illustrious international editorial board and contributing editors with a very wide range of 
experience and expertise. The aims, scope and editorial information link on the journal website 
provides this information for the interested reader. The peer review process for papers submitted 
to the journal has also been smooth and timely, which has helped in attracting more submissions 
with quality control checks in place to maintain the scholarly status of the journal. TMME has 
also begun the process of acquiring indexing in well known research databases worldwide. The 
website statistics for Vol2no2 (August 2005) and TMME in general have been nothing short of 
staggering in terms of the places from which the journal was accessed. We have thus far been 
accessed from 91 different countries (!) and counting. A new statistical feature on the journal 
website allows readers to get a rolling glimpse of countries from which the journal is accessed 
based on the last 100 page loads. Sample statistics on journal access during the last five months 
is included at the end of this issue for the interested reader. The current issue: Volume 3, no1 is 
both wide in scope and dense with ideas, consisting of seven articles focused on topics within 
mathematics; mathematics and philosophy; mathematics education history; talent development 
and challenges for mathematically promising students. One underlying theme of many of the 
articles is ways in which mathematics can stimulate us, capture our  imagination, and even excite 
us with its possibilities for teaching and learning from the elementary school level onto the 
professional levels. The geographic range of the authors attests to the benefits of open access for 
the wide dissemination of ideas without institutional and subscription restrictions. 
 
The first paper by Joran Elias (Montana) provides an interesting application of Wu’s method of 
proving geometric theorems algorithmically. The paper also serves as an accessible introduction 
to ideas from elementary algebraic geometry for those interested in this area of mathematics. 
Viktor Freiman (Canada) contributes a research based article based on a 7-year longitudinal 
study in K-6 classrooms in Eastern Canada on ways to boost mathematical talent in the early 
grades. The paper provides a glimpse at the sophisticated mathematical capacities of young 
children once a challenging situation captures their interest. Freiman also makes novel use of 
Krutetskii’s findings on the mathematical abilities of school children and Guy Brousseau’s 
theory of didactical situations to illustrate how his model of boosting mathematical talent works 
in the mixed-ability classroom setting. One question that has perplexed researchers is how and 
why natural mathematical talent gets stifled in the institutionalized school setting despite the best 
intentions of teachers and curricula. Some conjecture that this happens because of the non-
recreational and non-realistic characteristic of mathematics in the school curriculum as a student 
progresses from kindergarten onto high school. The physicist, George Gamov (1904-1968), also 
took an interest in education as evidenced in his numerous writings accessible to “lay” persons. 
Gamov proposed the building blocks problem as a recreational problem to determine the center 
of gravity of blocks laid on top of another, staggered by a fixed number. The problem is intended 
to provoke mathematical thought and a solution not relying on any numerical formulas although 
solutions can involve the use of the harmonic series and the logarithmic function. Yutaka 
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Nishiyama (Japan) writes that university students majoring in the sciences are unable to solve 
this problem although their Calculus background provides them with (context independent) 
knowledge of showing how harmonic series diverge. Nishiyama argues the need to provide 
context to mathematics if the goal is to get students at the tertiary level excited about 
mathematics. Steffen Iversen (Denmark) investigates authentic situations which allow for 
philosophical competencies to develop in the high school mathematics classroom,  and presents a 
conceptual model for further developing interdisciplinary connections between mathematics and 
philosophy. Iversen’s views are pragmatic in nature and warn us to be wary of implementing 
interdisciplinary reform prescribed by a governmental body (the Danish ministry of Education)  
without fully thinking of the didactical consequences, both positive and negative. The paper 
presents the results from a series of qualitative interviews of high school teachers on 
interdisciplinary activities which integrate mathematics and philosophy at the high school level. 
The paper presents a didactical model for integrating math and philosophy, which Steffen 
Iversen and Claus Michelsen are trying to expand to the sphere of physics and other subjects of 
natural sciences. The next three papers explore mathematics education history and talent 
development. Fulvia Furinghetti (Italy) sketches important elements of mathematics education 
history in Italy, starting with the contributions of influential mathematicians like Guiseppe 
Peano, Luigi Cremona, Federigo Enriques, onto the formation of the present research community 
of mathematics education researchers as a result of their experiences in the international 
community after WWII. In this article, the reader will identify current day tension between 
research, practice and policy. However Furinghetti’s article stresses the possibility of a mutually 
supportive relationship between the mathematics community and researchers engaged in 
mathematics education research as well as the dependency of national policy and priorities with 
the political history of the country.  In a similar vein, in the U.S context, Linda Sheffield (USA) 
contributes a paper on the history of mathematic s education in the U.S with an emphasis on the 
changes needed in current policy to maintain a technological edge in today’s world. Sheffield 
draws attention to the growing inequity in the United States in education and examines some 
consequences of “squandering” opportunities of nurturing talent in mathematics and science.  
The paper by Agnis Andžans, Inese Berzina & Dace Bonka (Latvia) examines the role of 
mathematical competitions in fostering mathematical talent at the secondary level. They write 
that contests are of great importance in Latvia and provide a classification of suitable problems 
which are algorithmic in nature, are accessible to younger students and take into account recent 
trends in mathematics.  

 
On a concluding note, readers are informed that Volume 3 will consist of three issues (February 
2006, August 2006 and December 2006) as opposed to the normal frequency of 2/year. The third 
issue (Vol3, no.3) scheduled to appear in December 2006 will be a special issue focused on 
social justice issues in mathematics education worldwide. Putting together a special issue on this 
topic is a non-trivial task and will be in no means exhaustive on the topic. We are aiming 
towards a multitude of worldwide perspectives on the subject. Therefore the journal would like 
to provide readers interested in contributing articles for the special issue to contact the Editor. 
We especially welcome classroom teachers working with vulnerable populations to contribute 
short articles on reflective practice. A network of experienced researchers is available to provide 
teachers support with the writing and the review process.   We have received commitments from 
distinguished researchers in South Africa, Australia, U.S and Europe to contribute papers to this 
issue and are open to practitioner’s perspectives on this issue.  
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Automated Geometric Theorem Proving: Wu’s Method

Joran Elias
University of Montana

Abstract: Wu’s Method for proving geometric theorems is well known. We inves-
tigate the underlying algorithms involved, including the concepts of pseudodivision,
Ritt’s Principle and Ritt’s Decomposition algorithm. A simple implementation for
these algorithms in Maple is presented, which we then use to prove a few simple
geometric theorems to illustrate the method.

1 Introduction

This article will discuss algebraic methods in automatic geometric theorem proving,
specifically Wu’s Method. Proving geometric statements algorithmically is an area
of research which has particular importance in the fields of robotics and artificial
intelligence. While a computer implementing Wu’s Method can hardly be said to be
“thinking” geometrically in the same sense as a human might, it can lend a computer
the ability to interact with its physical environment in a fairly sophisticated and
independent manner (see the discussion of robotic arms in [4]).

In general, we will follow the subject as presented in [1]. First, we will discuss the
translation of geometric statements to the realm of algebra. After considering some
examples we will move on to record some basic algebraic results needed throughout
the rest of the paper. Next, we motivate Wu’s Method with a brief discussion of
geometry theorem proving using Groebner basis techniques. Third, we introduce the
details of Wu’s Method including the concepts of pseudodivision, ascending chains
and characteristic sets and Ritt’s Decomposition Algorithm. Next, we illustrate how
Wu’s Method is used to prove geometric theorems. The last section consists of a
very basic implementation of Wu’s Method in Maple, and its application to several
examples.

Here we briefly outline Wu’s Method:

• Translate a geometric theorem into a system of algebraic equations, yielding
a set of hypotheses equations f1, . . . , fr and a conclusion g (Section 2).

• Transform our system of hypothesis equations into a triangular form using
pseudodivision (Section 4.1). By triangular form, we mean that the hypothesis
equations can be written as:

f1 = f1(u1, . . . , ud, x1)
f2 = f2(u1, . . . , ud, x1, x2)
...

fr = fr(u1, . . . , ud, x1, . . . , xr)

The Montana Mathematics Enthusiast, ISSN 1551-3440, Vol. 3, no.1,
pp. 3-50.
2006 c©The Montana Council of Teachers of Mathematics



TMME, vol.3,no.1,p.4

and the variety V (f1, . . . , fr) contains the irreducible components of the orig-
inal variety defined by the hypothesis equations (see Section 4.2 for details on
this special triangular form).

• Perform successive pseudodivision (Section 4.1.1) on the transformed hypothe-
ses in triangular form and the conclusion equation, yielding a final remainder.
If this final remainder is zero, we will say that the conclusion g follows from
the hypotheses f1, . . . , fr.

• Examine the nondegenerate conditions that arose while triangulating the hy-
potheses (Section 5). In particular, we conclude that g follows from the hy-
potheses f1, . . . , fr given that the nondegenerate conditions hold. These condi-
tions take the form p �= 0 where p is a polynomial that arises naturally during
our triangulation process.

2 Algebraic Formulation of Geometric Theorems

To illustrate the translation of geometric statements into a suitable system of al-
gebraic equations, we consider a few examples. The simplest place to start is the
theorem stating that the intersection of the diagonals of a parallelogram in the plane
bisects the diagonals (this theorem is used repeatedly as an example in both [1] and
[4]). The situation we have in mind is illustrated below.

A B

C D

O

Figure 1: Parallelogram

Example 1 The basic idea is to place the figure above in the coordinate plane and
then to interpret the hypotheses of the theorem as statements in coordinate,
rather than Euclidean, geometry. So we begin by coordinatizing the parallel-
ogram by placing the point A at the origin, so A = (0, 0). Now we can say
that the point B corresponds to (u1, 0), and that C corresponds to (u2, u3).
The last vertex, D, is completely determined by the other three. We indicate
this distinction in its coordinates by labeling D with the coordinates (x1, x2).

It will always be the case that some coordinates will depend upon our choices
for other points. In other words, some points will be arbitrary while others
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(0,0) (u1,0)

(u2,u3) (x1,x2)

(x3,x4)

Figure 2: Coordinatized Parallelogram

will be completely determined. We will distinguish these points by using the
ui for arbitrary coordinates and the xi for the completely determined points.
Finally, the coordinates for the intersection of the diagonals, O, are also com-
pletely determined by the previous points so we let O = (x3, x4).

The first hypothesis in our theorem is that ABCD is a parallelogram. This
can be restated as saying that both AB‖CD and AC‖BD. We can translate
these statements into equations by relating their slopes. For example, the
slope of the line determined by the points A and B is the same as the slope
of the line determined by C and D. After clearing denominators, this yields
the equations:

x2 − u3 = 0
(x1 − u1)u3 − x2u2 = 0

We label the polynomials on the left hand sides in the above equations h1 and
h2. (The labels h1, h2 etc. will always refer to the polynomials in the equations
we get upon translating our theorem. For brevity, we will not call attention to
this distinction from now on. If we speak of assigning a label to an equation,
we mean the polynomials as in above.) Now we must consider the assumption
that O is indeed the intersection of the two diagonals. In other words, we
mean that A,O,D and B,O,C are sets of collinear points. Again using the
slope formula we get the equations:

x4x1 − x3u3 = 0
x4(u2 − u1) − (x3 − u1)u3 = 0

Call these h3 and h4. Hence we have a system of four equations representing
the hypotheses. A simple use of the distance formula gives us the following
equations representing the conclusion of our theorem:
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x2
1 − 2x1x3 − 2x4x2 + x2

2 = 0
2x3u1 − 2x3u2 − 2x4u3 − u2

1 + u2
2 + u2

3 = 0

which we label g1 and g2. So the algebraic version of our theorem states that
g1 = 0 and g2 = 0 should hold whenever h1 = 0, h2 = 0, h3 = 0, h4 = 0 also
hold.

Note that our conclusion is represented by two equations, not just one. In
general, our conclusion may involve several algebraic equations.

See Example 2 in Section A for a demonstration of the remaining steps in
Wu’s Method.

The following two examples are taken from exercises in [4].

Example 2 Another standard geometry theorem states that the altitudes of a tri-
angle �ABC all meet in a single point, H, called the orthocenter (see Figure
3).

A

B C

H

D

F
E

Figure 3: Orthocenter Diagram

First we construct the triangle in the coordinate plane by letting A = (u2, u3),
B = (0, 0), C = (u1, 0), as in Figure 3. Next we construct the altitudes. For
example, if we let D be the point given by (u2, 0) then the line segment AD
is the altitude from A. The other two altitudes require more work.

Let E = (x1, x2) and F = (x3, x4) be points such that BF,CE are the al-
titudes from B,C respectively. This means that we must have B,E,A and
C,F,A collinear. Also, we must have CE⊥AB,BF⊥AC. This yields the
following four hypotheses:

x2u2 − x1u3 = 0
x4(u2 − u1) − u3(x3 − u1) = 0

x2u3 + u2(x1 − u1) = 0
x4u3 + x3(u2 − u1) = 0
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labeling the polynomials as h1, h2, h3 and h4. Now, we want to conclude that
all three altitudes meet at a single point. Hence we construct the following two
additional points: G = (u2, x5) and H = (u2, x6). We intend that G should be
the intersection of AD and CE while H should be the intersection of the line
segments AD and BF . Hence we need the additional hypotheses that G,E,C
and H,B,F are collinear yielding the following two equations:

(x2 − x5)(x1 − u1) − x2(x1 − u2) = 0
x6x3 − x4u2 = 0

which we call h5 and h6. Finally, our conclusion becomes the assertion that
the points G and H are in fact identical. Hence, we get the equation:

x5 − x6 = 0.

Call this polynomial g. We should mention here that the translation of ge-
ometric problems is in general much more difficult than establishing their
validity algorithmically. For example, it should be clear from our examples
that we could have performed these translations in slightly different ways. We
frequently have a certain degree of latitude in translating geometry theorems.
While this will typically not alter the validity of the conclusion (for an excep-
tion see Example 6 in Appendix A) some translations may be substantially
easier to work with. For these reasons, a human is usually needed to perform
the translation accurately.

A common difficulty that arises while translating theorems is that the typical
statement of geometry theorems contains implicit assumptions that are easy
to overlook. As an example of what can go wrong, consider the following
example.

Example 3 Let �ABC be a triangle in the plane. Construct three points A′, B′, C ′

so that �ABC ′,�AB′C,�A′BC are equilateral triangles. This situation we
have in mind is illustrated below (ignore imperfections in the figure).

A theorem of classical geometry states that the line segments AA′, BB′, CC ′
all meet at a single point, S, called the Steiner point.

If we translate the theorem directly as stated above, and then attempt to use
the methods described below to prove the theorem, we will fail. The reason
is that we tacitly assumed that the point A′ should be on a specific side of
the segment AC (and similarly for B′, C ′). We could have constructed the
figure with the equilateral triangles “folded over” so that they overlapped the
original triangle:

This construction is consistent with the theorem (again ignoring imperfections
in the figure), but it is obviously not what we intended. Indeed, in this case
the three lines in question do not meet in a single point S. If we reformulate
the theorem in such a way that this alternate construction is excluded, then
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A B

C

S

A'
B'

C'

Figure 4: Steiner Point Theorem

A B

C

A'

B'

C'

Figure 5: Incorrect Steiner Point Theorem
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Wu’s Method will be successful. Specifically, we could include the hypothesis
that the distance from A to A′ is equal to the sum of the distances from A to
S and from S to A′, which is easily translated using the distance formula.

Now that we’ve seen how to translate plane geometry theorems into systems
of algebraic equations, in the next section we will summarize the algebraic
results assumed for the rest of the article. Then we will specify what it means
for an algebraic equation to “follow” from a system of additional algebraic
equations (see Section 3.2).

3 Preliminaries

3.1 Algebraic Results

Here we set out the prerequisite notation and results from algebra that we will
need in developing the notions underlying Wu’s Method. In general we assume the
reader is familiar with basic results involving rings, fields, ideals, prime and radical
ideals, and algebraic and transcendental field extensions. If the reader is interested
in proofs of these results, see [4], or any standard algebra text (e.g. [5]).

Let k be a field and denote by k[x1, . . . , xn] the polynomial ring in n variables over
k. Similarly, k(x1, . . . , xn) is the field of rational functions of k in n variables. We
need the following theorem due to Hilbert,

Theorem 3.1 (Hilbert Basis Theorem). Every ideal I of k[x1, . . . , xn] is finitely
generated, or equivalently, k[x1, . . . , xn] has no infinite strictly increasing sequences
of ideals.

In particular, given any ideal I in k[x1, . . . , xn], we can write I = 〈f1, . . . , fr〉 where
the fi are a finite set of polynomials. We denote the radical of the ideal I by

√
I.

We say that a field F is an extension of the field k if k is a subfield of F . Let F be
an extension of k and let α be an element of F . Then α is said to be algebraic over
k if it is the root of some nonzero polynomial with coefficients in k. Otherwise, α is
transcendental. Let α1, . . . , αr be elements of an extension F , of k. The subfield
generated by α1, . . . , αr over k is denoted by k(α1, . . . , αr) (the respective subring
is given by k[α1, . . . , αr]). We need the following theorem.

Theorem 3.2. Let F be an extension of the field k and let α ∈ F . If α is algebraic
over k then,

(i) k(α) = k[α]

(ii) k(α) ∼= k[x]/〈f〉 where x is an indeterminate and f is an irreducible poly-
nomial of degree n ≥ 1 and f(α) = 0.
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(iii) Every element of k(α) can be expressed uniquely in the form cn−1α
n−1 +

· · · + c1α + c0, where ci ∈ k.

We also need the ability to factor polynomials in our polynomial ring, and also in
algebraic extensions, so we include the following theorems.

Theorem 3.3. If D is a unique factorization domain, then so is the polynomial
ring D[x1, . . . , xn]. In particular, k[x1, . . . , xn] is a UFD.

Theorem 3.4. Let D be a UFD with quotient field k. Let α be in any extension of
k that is algebraic over k. If there is an algorithm for factoring in D then,

(i) there is an algorithm for factorization in the polynomial rings D[x] and k[x].

(ii) there is an algorithm for factorization in the polynomial ring k(α)[x].

This last theorem is certainly not trivial. For proofs see [9], or [10, Section 25]. Chou
developed an algorithm in [2] for factoring polynomials over successive quadratic
extensions over fields of rational functions that worked efficiently for most of the
geometry theorems proved in [1].

We also need some basic results from affine algebraic geometry. Again, let F be an
extension of the field k and let k[x1, . . . , xn] be the polynomial ring in n variables
over k.

Definition 3.5. Given a nonempty set of polynomials S ⊂ k[x1, . . . , xn], the vari-
ety V (S) is defined to be the set of common zeroes of all the elements of S, i.e.

V (S) = {(a1, . . . , an) ∈ kn | f(a1, . . . , an) = 0 for all f ∈ S}

We can define varieties in terms of ideals as well. If I is the ideal generated by
the polynomial set S in k[x1, . . . , xn] then V (S) = V (I) and by the Hilbert Basis
Theorem we can write, V (I) = V (f1, . . . , fr) where the ideal I is generated by the
fi. Hence, every algebraic variety is the set of common zeroes of a finite polynomial
set.

We may also define an ideal using a nonempty subset U of kn by letting

I(U) = {f | f ∈ k[x1, . . . , xn] and f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ U}

The following useful properties of V and I are easy to check: S ⊂ I(V (S)) and
U ⊂ V (I(U)).

Proposition 3.6. Let S1 and S2 be polynomial sets and S1S2 be the set of all
products of an element of S1 with an element of S2. Then,
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(i) V (S1 ∪ S2) = V (S1) ∩ V (S2)

(ii) V (S1S2) = V (S1) ∪ V (S2)

It is often possible to decompose varieties into unions of smaller varieties.

Definition 3.7. A nonempty variety V is irreducible if whenever V is written in
the form V = V1 ∪ V2 where V1, V2 are varieties, then either V = V1 or V = V2.

Definition 3.8. Let V be a variety. A decomposition V = V1 ∪ · · · ∪Vs, where each
Vi is irreducible and Vi �⊂ Vj for all i �= j is called a minimal decomposition.

Note that the irreducibility of a variety depends on whether or not k is algebraically
closed.

When k is algebraically closed we have the following convenient characterization of
irreducible varieties,

Proposition 3.9. Let V be a nonempty variety over an algebraically closed field k.
Then V is irreducible if and only if I(V ) is a prime ideal. If k is not algebraically
closed, the converse still holds.

Theorem 3.10. Let V be a variety. Then V has a minimal decomposition, V =
V1 ∪ · · · ∪ Vs, and this decomposition is unique up to the order in which the Vi are
written.

Definition 3.11. The dimension of a prime ideal P (also known as its co-
height) is the transcendence degree of the quotient field of the integral domain
k[x1, . . . , xn]/P over the field k. Equivalently, its dimension is the supremum of
the lengths of chains of distinct prime ideals containing P . The dimension of an
irreducible variety V is the dimension of its prime ideal I(V ). The dimension of a
(reducible) variety V is the highest dimension of one of its components.

The following definition is crucial in light of our distinction between dependent and
independent variables when translating geometric theorems.

Definition 3.12. Let V be an irreducible variety with P = I(V ) its prime ideal.
Let U be a subset of the variables xi in the ring k[x1, . . . , xn]. The variables in U
are said to be algebraically independent on V if P does not contain a nonzero
polynomial involving only variables from U . Otherwise, the variables in U are said
to be algebraically dependent.

Definition 3.13. A generic zero of an ideal I � k[x1, . . . , xn] is a zero α =
(a1, . . . , an) of I in an extension of k such that f ∈ I if and only if f(a1, . . . , an) = 0.

Theorem 3.14. An ideal I has a generic zero α in some extension of k if and only
if it is a proper prime ideal.
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Proof. First suppose that I has a generic zero α in some extension of k. Since 1 �∈ I,
I is proper. Let f, g be polynomials such that fg ∈ I. Then (fg)(α) = f(α)g(α) = 0,
which implies that either f(α) or g(α) is zero. Hence either f or g must be in I, so
I is prime.

Now suppose that I is a proper prime ideal. Let R = k[x1, . . . , xn]I be the lo-
calization of k[x1, . . . , xn] at I, and consider the field R/II containing k. Let
α = (x̄1, . . . , x̄n) where x̄i ∈ R/II is the canonical image of xi. So α is the canonical
image under the mappings:

xi �→ xi

1
�→ xi

1
+ II = x̄i

We claim that α is a generic zero of I. To see this, let f ∈ I. Then f =
∑

J aJxJ

where each xJ is a product of the variables xi and aJ ∈ k. Evaluating at α we get:

f(α) =
∑
J

aJ x̄J =
∑
J

aJxJ + II = 0

The last equality above holds since
∑

J aJxJ ∈ I ⊂ II .

Now, for an arbitrary g ∈ k[x1, . . . , xn], suppose that g(α) = 0. This implies (by
the equalities above) that in fact g ∈ II . So g =

∑r
i=1

hi
pi

fi where pi �∈ I and fi ∈ I.
So we have that p1 · · · prg ∈ I, and since I is prime and pi �∈ I, we conclude that
g ∈ I.

Corollary 3.15. If α = (a1, . . . , an) is a generic zero of I, then k[a1, . . . , an] is
isomorphic to the quotient ring k[x1, . . . , xn]/I under the mapping ai �→ x̃i where x̃i

is the canonical image of xi in k[x1, . . . , xn]/I. Also, (x̃1, . . . , x̃n) is a generic zero
of I and the dimension of I is the transcendence degree of a1, . . . , an over k.

Proof. That the mapping described in the corollary is an isomorphism is easily
checked. Suppose that f(x̃1, . . . , x̃n) = 0 in k[x1, . . . , xn]/I. By our isomorphism,
we have that f(a1, . . . , an) = 0, and hence f ∈ I. Also, if f ∈ I then f(x̃1, . . . , x̃n) =
0. Hence (x̃1, . . . , x̃n) is a generic zero of f . Finally, the dimension of I is just
the transcendence degree of Frac(k[x1, . . . , xn]/I) ∼= k[x̃1, . . . , x̃n] over k and our
isomorphism shows that this is the same as the transcendence degree of k(a1, . . . , an)
over k.

Remark The best way to interpret this degree is the size of any maximally alge-
braically independent subset of a1, . . . , an.

For the following results, and henceforth, we assume that k is algebraically closed.
There are two equivalent forms of Hilbert’s Nullstellensatz and one important con-
sequence (we present them as in [1]).
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Theorem 3.16 (Hilbert’s Weak Nullstellensatz). If I is a proper ideal in k[x1, . . . , xn]
then V (I) �= ∅.
Theorem 3.17 (Hilbert’s Strong Nullstellensatz). Given any ideal I in the polyno-
mial ring k[x1, . . . , xn], we have that I(V (I)) =

√
I.

Proposition 3.18. If P is a proper prime ideal in k[x1, . . . , xn] then V (P ) is irre-
ducible and I(V (P )) = P .

3.2 Proving Translated Theorems

We have seen that we can translate a geometric theorem into a system of alge-
braic equations in the ring k[u1, . . . , ud, x1, . . . , xr]: h1, . . . , hr (the hypotheses) and
g1, . . . , gs (the conclusions). From now on we will assume that our translation only
yielded one conclusion (s = 1) since we can always consider each gi individually. In
what sense then does our conclusion, g, follow from the hypotheses, h1, . . . , hr?

The basic idea is that we want g to be satisfied by every point that satisfies h1, . . . , hr.
In other words, we want every point in the variety defined by the hypotheses to
satisfy g. Hence we start with the following definition.

Definition 3.19. The conclusion g follows strictly from the hypotheses h1, . . . , hr

if g ∈ I(V ) ⊂ k[u1, . . . , ud, x1, . . . , xr] where V = V (h1, . . . , hr).

We will briefly investigate a straightforward attempt to use this definition which will
serve to motivate both a revised definition and the practicality of Wu’s Method. The
techniques employed for this brief discussion rest upon Groebner Basis methods that
we will not treat in any detail here. If the reader is unfamiliar with the concepts
used below, see [4]. We use this approach simply because it allows us a direct way
to motivate Definition 3.21.

In general, the field k may not be algebraically closed, so we cannot rely on comput-
ing I(V ) directly using Hilbert’s Nullstellensatz. We can, however, use the following
test.

Proposition 3.20. If g ∈ √
(h1, . . . , hr), then g follows strictly from h1, . . . , hr.

Proof. The hypothesis g ∈ √
(h1, . . . , hr) means that gs ∈ 〈h1, . . . , hr〉 for some s.

Hence gs =
∑n

i=1 Aihi, where Ai ∈ k[u1, . . . , ud, x1, . . . , xr]. Then gs must vanish
whenever the hi vanish, and hence g does as well.

This test is useful because we have an algorithm for determining if g ∈ √
(h1, . . . , hr).1

Let us recall Example 1, and consider attempting to show that the first conclusion
follows from our hypotheses. Hence we have the following hypotheses:

1Specifically, we have containment if and only if {1} is the reduced Groebner basis for the ideal
〈h1, . . . , hr, 1 − yg〉 ⊂ k[u1, u2, u3, x1, x2, x3, x4, y]. See Chapter 6 Section 4 in [4] for more details.
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h1 = x2 − u3

h2 = (x1 − u1)u3 − x2u2

h3 = x4x1 − x3u3

h4 = x4(u2 − u1) − (x3 − u1)u3.

The conclusion we are interested in is

g1 = x2
1 − 2x1x3 − 2x4x2 + x2

2.

To use Proposition 3.20 we compute a Groebner basis for the ideal, 〈h1, h2, h3, h4, 1−
yg1〉 in the polynomial ring R[u1, u2, u3, x1, x2, x3, x4, y]. Unfortunately, we do not
get the Groebner basis {1} as we should. The cause of our problem lies in the variety
defined by the hypotheses: V (h1, h2, h3, h4). If one computes a Groebner basis for
these four equations one sees 2 that this variety is actually reducible. In particular,
after some calculation we see that the variety defined by our hypotheses actually
has four components, V = V ′ ∪ U1 ∪ U2 ∪ U3 defined by:

V ′ = V

(
x1 − u1 − u2, x2 − u3, x3 − u1 + u2

2
, x4 − u3

2

)

U1 = V (x2, x4, u3)
U2 = V (x1, x2, u1 − u2, u3)
U3 = V (x1 − u2, x2 − u3, x3u3 − x4u2, u1).

Our original strategy revolved around showing that the conclusion, g1 = x2
1−2x1x3−

2x4x2 + x2
2, vanishes on the variety defined by our hypotheses. But this clearly

cannot happen on some of the components above. Consider the Ui. Each has as one
of its defining equations an expression that involves only the ui. But now recall our
construction of our theorem concerning the diagonals of a parallelogram

In our construction, the coordinates corresponding to the ui were intended to be
arbitrary. But in U1 for example, we must have u3 = 0. In this case, we won’t have
a genuine parallelogram. It now becomes clear that u3 = 0 is a degenerate case of
our diagram. Since each of the Ui contain equations that involve only the ui, each
Ui corresponds to degenerate cases of our theorem. If we repeated our approach
using only the component V ′, then Proposition 3.20 will work as we intended.

Now it should be clear that our goal is to develop a general method for establishing
the validity of our conclusion only on those components of V that do not correspond

2In fact, we get {x1x4 + x4u1 − x4u2 − u1u3, x1u3 − u1u3 − u2u3, x2 − u3, x3u3 + x4u1 − x4u2 −
u1u3, x4u

2
1 − x4u1u2 − 1

2
u2

1u3 + 1
2
u1u2u3, x4u1u3 − 1

2
u1u

2
3}, which is reducible. Specifically, we can

factor three of these equations.
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(0,0) (u1,0)

(u2,u3) (x1,x2)

(x3,x4)

to degenerate cases of our theorem. In other words, we are only interested in those
components of V on which the ui are algebraically independent. Let us revise
Definition 3.19 accordingly.

Definition 3.21. A conclusion g follows generically from the hypotheses h1, . . . , hr

if g ∈ I(V ′) ⊂ k[u1, . . . , ud, x1, . . . , xr] where V ′ is the union of those irreducible
components of V (h1, . . . , hr) on which the ui are algebraically independent.

Now that we have a clearer definition to work with we can move on to discuss Wu’s
Method. The approach we used in Proposition 3.20 relied upon Groebner Basis
techniques. While it is possible to design theorem provers around these techniques
Wu’s Method is tailored more specifically to the task and hence is often more com-
putationally efficient (see [3],[6],[7]).

4 Wu’s Method

4.1 Pseudodivision

The primary tool in Wu’s Method is a variation on the division algorithm for
multivariable polynomials (see [4] for a description) called pseudodivision. Let
f, g ∈ k[x1, . . . , xn, y], with g = apy

p + · · · + a0 and f = bmym + · · · + b0, where the
ai, bj are polynomials in the x1, . . . , xn. Then we have the following result.

Proposition 4.1. Let f, g be as above and assume that m ≤ p and that f �= 0.
Then,

(i) There is an equation
bs
mg = qf + r

where q, r ∈ k[x1, . . . , xn, y], s ≥ 0, and r is either the zero polynomial or its
degree in y is less than m.

(ii) r is in the ideal 〈f, g〉 in the ring k[x1, . . . , xn, y].
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Proof. First, we will use the notations deg(f, y) and lc(f, y) to denote the degree
of f in the variable y and the leading coefficient of f as a polynomial in y. We will
establish the proposition using the following algorithm:

Input: f, g
Output: r, q

r := g, q := 0
While r �= 0 and deg(r, y) ≥ m Do
r := bmr − lc(r, y)fydeg(r,y)−m

q := bmq + lc(r, y)ydeg(r,y)−m

We begin by using induction to show that the first part of (i) holds at each iteration
of the above algorithm, or that after the ith iteration we have bi

mg = qif + ri. For
the base case, consider the situation after one time through the above algorithm.
We get that

q1f + r1 = apy
p−mf + bmg − apy

p−mf = bmg.

So indeed we have that bmg = q1f + r1. Now suppose that bi
mg = qif + ri and

consider what happens on interation i + 1. We get:

qi+1f + ri+1 =
(
bmqi + lc(ri, y)ydeg(ri,y)−m

)
f +

(
bmri − lc(ri, y)fydeg(ri,y)−m

)
= bmqif + bmri

= bm(qif + ri)
= bi+1

m g.

The assertion that either r = 0 or deg(r, y) < m follows from the While statement
in the algorithm assuming that the algorithm terminates. Now we show that the
algorithm terminates. The claim is that the degree of ri in y is strictly decreasing
with each iteration of the algorithm. To see this, consider ri+1.

ri+1 = bmri − lc(ri, y)fydeg(ri,y)−m.

Now, the highest y-degree term in both bmri and lc(ri, y)fydeg(ri,y)−m are both of
degree deg(ri, y), and they have the same coefficient. Hence these terms cancel,
meaning that the degree of ri+1 in y is strictly less than that of ri. Hence the
algorithm does terminate. Part (ii) follows trivially.
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The proof of Proposition 4.1 shows that if the variable xi does not occur in f then
deg(r, xi) and deg(q, xi) are less than or equal to deg(g, xi).

Note that this algorithm outputs a unique q, r. However, if no restrictions (beyond
being nonegative) are placed on the exponent s then there are not unique q, r such
that bs

mg = qf + r. In particular, q and r are unique if s is minimal(For a brief
discussion of this, see Chapter 6 of [4]). For our purposes, it is enough that our
algorithm outputs a unique q, r. Hence, we denote the remainder on pseudodivision
(pseudoremainder) of f by g with respect to the variable y by prem(f, g, y).

4.1.1 Successive Pseudodivision

The critical use of the pseudodivision algorithm comes in performing successive
pseudodivision. Suppose that f1, . . . , fr are a set of hypothesis equations that are
in triangular form, so that we can write them as:

f1 = f1(u1, . . . , ud, x1)
f2 = f2(u1, . . . , ud, x1, x2)
...

fr = fr(u1, . . . , ud, x1, . . . , xr).

Let g = g(u1, . . . , ud, x1, . . . , xr) be our conclusion equation. Performing successive
pseudodivision simply involves the following: set Rr = g, Rr−1 = prem(Rr, fr, xr),
Rr−2 = prem(Rr−1, fr−1, xr−1), . . . etc. Continuing in this fashion, we get a final
remainder R0 = prem(R1, f1, x1). R0 is called the final remainder upon successive
pseudodivision of g by f1, . . . , fr and is denoted prem(g, f1, . . . , fr). We have the
following result.

Proposition 4.2. Suppose that the polynomials f1, . . . , fr are in triangular form
and g = g(u1, . . . , ud, x1, . . . , xr) is our conclusion. Let R0 = prem(g, f1, . . . , fr)
and let dj be the leading coefficient of fj as a polynomial in xj. Then

(i) There exist integers s1, . . . , sr ≥ 0 and polynomials A1, . . . , Ar such that

ds1
1 · · · dsr

r g = A1f1 + · · · + Arfr + R0

(ii) Either R0 = 0 or deg(R0, xi) < deg(fi, xi) for i = 1, . . . , r.

Proof. To establish (i) and (ii) we use induction on r. If r = 1 then we are sim-
ply performing normal pseudodivision (see Proposition 4.1) and the result holds.
Suppose that (i) and (ii) hold for r − 1, so that we have
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ds1
1 · · · dsr−1

r−1 Rr−1 = A1f1 + · · · + Ar−1fr−1 + R0

with deg(R0, xi) < deg(fi, xi) for i = 1, . . . , r − 1. Now note that Rr−1 can also be
written Rr−1 = dsr

r g−Arfr and substitute this into the equation above. The result
follows.

Example For a simple illustration of this process consider the following system of
equations in triangular form:

f1 = u1x1 − u1u3

f2 = u3x2 − (u2 − u1)x1

f3 = (u3x2 − u2x1 − u1u3)x3 + u1u3x1

f4 = u3x4 − u2x3

and let g = 2u2x4 + 2u3x3 − u2
3 − u2

2. Now if we perform successive pseudodi-
vision on this system we get:

R3 =prem(g, f4, x4) = (2u2
3 + 2u2

2)x3 − u3
3 − u2

2u3

R2 =prem(R3, f3, x3) = (−u4
3 − u2

2u
2
3)x1+

((u2 − 2u1)u3
3 + (u3

2 − 2u1u
2
2)u3)x1 + u1u

4
3 + u1u

2
2u

2
3

R1 =prem(R2, f2, x2) = (−u1u
4
3 − u1u

2
2u

2
3)x1 + u1u

5
3

+ u1u
2
2u

3
3

R0 =prem(R1, f1, x1) = 0.

Since the final remainder upon successive pseudodivision is zero, we have shown
that g follows from the hypothesis equations f1, f2, f3, f4.

Remark - We can still calculate prem(g, f1, . . . , fr) even if the fi are not quite in
triangular form. Specifically, as long as the leading variables in each fi are distinct
we can find prem(g, f1, . . . , fr) inductively by defining it to be
prem(prem(g, f2, . . . , fr), f1). The above remainder formula still holds. The reason
for presenting successive pseudodivision in the context of a system in triangular form
is that this will be the form our system will be in when actually performing Wu’s
Method (see the discussion of the Dimensionality Requirement following Definition
4.13).

4.2 Ascending Chains and Characteristic Sets

The next several sections focus on specifically how Wu’s Method takes our hypoth-
esis equations and transforms them into a triangular form. To do this we need to
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discuss the notions of ascending chains and characteristic sets. First we introduce
some notation: all polynomials under consideration are in k[x1, . . . , xn] (here we
temporarily abandon our distinction between the ui and xi to simplify our nota-
tion). We say that the class of a polynomial f , denoted class(f), is the smallest
integer c such that f ∈ k[x1, . . . , xc]. If f ∈ k then class(f) = 0. We call xc the
leading variable of f , denoted lv(f). Similarly, we say that lc(f) is the leading
coefficient of f as a polynomial in xc. We will sometimes refer to this coefficient
as the initial of f . Also, the degree of f in its leading variable is denoted ld(f).

A polynomial g is reduced with respect to f if deg(g, xc) < deg(f, xc) where
class(f) = c > 0. In other words, prem(g, f, xc) = g. Note that by our pseudo-
division algorithm, prem(g, f, xc) is always reduced with respect to f . Also, for any
finite set of polynomials, f1, f2, . . . , fr, we say that g is reduced with respect to
f1, f2, . . . , fr if deg(g, xi) < deg(fi, xi) for each 1 ≤ i ≤ r where xi is the leading
variable of each fi.

The basic ideas introduced here are that ascending chains are polynomial sets that
are close to being triangular, and characteristic sets will be defined to be “minimal”
ascending chains in a sense to be explained below.

Definition 4.3. Let C = f1, f2, . . . , fr be a sequence of polynomials in k[x1, . . . , xn].
It is a quasi-ascending chain if either

(i) r = 1 and f1 �= 0 or,

(ii) r > 1 and 0 < class(f1) < · · · < class(fr).

We say that a quasi-ascending chain is an ascending chain if fj is reduced with
respect to fi for all i < j.

Note that in a quasi-ascending chain, fj is automatically reduced with respect to fi

for all i > j. So in an ascending chain, fj is reduced with respect to fi for all i �= j.

We will briefly illustrate this definition with a few examples.

Example The set {f1 = y5
1, f2 = y6

1 + y2} is not an ascending chain since the
degree of f2 in y1 is greater than that in f1 (it is still a quasi-ascending chain).
However, the set {f1 = y2

1, f2 = y1 + y3
2} is an ascending chain.

Example If f1, . . . , fn is an ascending chain, then fj is reduced with respect to fi

for all i < j. Specifically, this means that the variable xi must appear with
a lower degree in fj than it does in fi, for each i < j. In particular, this
implies that the class variable of fi appears to a lower degree in the initial of
fj. Hence, the initials of fj are reduced with respect to fi for i < j.

Example Additionally, if f1, . . . , fn is an ascending chain, then since the initials of
the fj are reduced with respect to all the previous elements of the ascending
chain, then we must have that prem(di, f1, . . . , fn) �= 0 for i = 1, . . . , n (Here
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di is the initial, or leading coefficient of fi). This can be seen if we use the
recursive definition of successive pseudodivision. Since di is reduced with
respect to f1, . . . , fi−1 we have that prem(di, f1, . . . , fi−1) = di. And since di

is clearly reduced with respect to the remaining polynomials in the ascending
chain we get that prem(di, f1, . . . , fn) = di �= 0.

Now we define the following partial ordering on the ring k[x1, . . . , xn].

Definition 4.4. Given f, g ∈ k[x1, . . . , xn] we say that f < g (g is higher, or of
higher rank) if either

(i) class(f) < class(g), or

(ii) class(f) = class(g) and ld(f) < ld(g).

Polynomials f and g have the same rank if they are not comparable, i.e. if
class(f) = class(g) and ld(f) = ld(g).

Note that distinct polynomials may have the same rank.

Proposition 4.5. The partial ordering < defined above on k[x1, . . . , xn] is a well-
ordering. In other words, under this ordering, every set has a (not necessarily
unique) minimal element.

Proof. Let S ⊆ k[x1, . . . , xn]. If S contains an element of k, than this element is
minimal. Otherwise, by the fact that the positive intergers are well-ordered, let S1

be the subset of S consisting of polynomials of minimal class. Again, by the well-
ordering of the positive integers, choose an element of S1 of minimal leading degree.
This is a minimal element of S.

Now we use this ordering to define a partial order on ascending chains,

Definition 4.6. Let C = f1, . . . , fr and C1 = g1, . . . , gm be ascending chains. We
say that C < C1 if either,

(i) ∃s ≤ min(r,m) such that fi, gi are of the same rank for i < s and fs < gs,
or

(ii) m < r and fi and gi are of the same rank for i ≤ m.

Not surprisingly, this ordering is also a well-ordering,

Proposition 4.7. Let Γ be a set of ascending chains. Then Γ has a minimal element
with respect to our ordering < on ascending chains.

Proof. By our well-ordering on polynomials defined above, we can let Γ1 be the
subset of Γ consisting of ascending chains whose first polynomials are minimal among
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all the first polynomials in all ascending chains in Γ. If all the ascending chains in
Γ1 have only one polynomial, than any of them are minimal. Otherwise, define Γ2

similarly as above: take the subset of Γ1 whose second polynomials are minimal
among all second polynomials in the ascending chains in Γ1.
Repeat this process at most m times where m is the size of the largest ascending
chain in Γ. Any of the ascending chains in Γm are minimal.

An obvious use for a well-ordering on ascending chains is that it allows us to pick
out a minimal ascending chain. In this way we introduce the idea of a characteristic
set.

Definition 4.8. Let S be a nonempty set of polynomials in k[x1, . . . , xn]. A minimal
ascending chain among all ascending chains formed by polynomials in S is called a
characteristic set.

If C = f1, . . . , fr is a characteristic set, then we say that g is reduced with respect
to C if for each f ∈ C with class(f) = i, deg(g, xi) < deg(f, xi) for all i = 1, . . . , r.

We are particularly interested in the algorithmic contruction of characteristic sets.
The following two results will help us show that characteristic sets can be found
algorithmically.

Proposition 4.9. Let C = f1, . . . , fr be a characteristic set of the polynomial set
S with class(f1) > 0. Let g be a nonzero polynomial that is reduced with respect to
C. Then S1 = S ∪ {g} has a characteristic set less than C.

Proof. If class(g) ≤ class(f1) then the set {g} is a characteristic set strictly lower
than C. This is true since g < f1.

Now suppose that class(g) > class(f1), and let j = max{i | class(fi) < class(g)}. So
fj is the “biggest” element of C that is still lower than than g. Then we claim that
the set f1, . . . , fj, g is an ascending chain lower than C.

It is an ascending chain since we have that class(f1) < · · · < class(fj) < class(g) and
each polynomial is reduced with respect to the previous polynomials (g is reduced
with respect to C). It is lower than C since the polynomials are of the same rank
except for g < fj+1.

Proposition 4.10. Let C = f1, . . . , fr be an ascending chain in the polynomial set
S with class(f1) > 0. Then C is a characteristic set of S if and only if S contains
no nonzero polynomials reduced with respect to C.

Proof. First, suppose that C is a characteristic set of S. If there were some g in S
reduced with respect to C then by Proposition 4.9, we can find a smaller ascending
chain, contradicting the minimality of C.
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To prove the opposite direction, suppose that C is not a characteristic set of S, i.e.
there is a C1 = g1, . . . , gm that is strictly lower than C. Now we have the following
two cases;

Case 1 There exists s ≤ min(r,m) with fi, gi having the same rank for i < s and
gs < fs. Then gs is reduced with respect to all the preceding fi’s since they
are of the same rank as the corresponding gi’s and gs is reduced with respect
to the other fi’s since gs < fi for i ≥ s.

Case 2 r < m and fi, gi are of the same rank for i ≤ r. Then gr+1 is reduced with
respect to C.

So in either case there exists an element of S reduced with respect to C.

Now we can say something about the actual construction of characteristic sets.

Theorem 4.11. Every nonempty polynomial set S has a characteristic set. When
S is finite, there is an algorithm for constructing this characteristic set.

Proof. This first statement follows from the well-ordering property proved above.
Suppose that S is finite, and let f1 be a polynomial of minimal rank in S. If
class(f1) = 0 then the set f1 is a characteristic set, so suppose further that class(f1) >
0.

We can construct the set

S1 = {g ∈ S | g is reduced w/respect to f1}

by computing deg(g, lv(f1)) for every g ∈ S. If S1 is empty then f1 is a characteristic
set. Otherwise, every polynomial in S1 is of higher class than f1. Now let f2 be a
polynomial of minimal rank in S1 and let S2 be the set

S2 = {g ∈ S1 | g is reduced w/respect to f2}

If S2 is empty then {f1, f2} is a characteristic set. Otherwise repeat this pro-
cess. Since S was finite, this process must terminate, yielding a characteristic set
{f1, . . . , fr}.

We end this section by noting a property of characteristic sets for polynomial ideals.

Proposition 4.12. Let C = f1, . . . , fr be a characteristic set of the ideal I �
k[x1, . . . , xn].
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(i) If g ∈ I then prem(g, f1, . . . , fr) = 0

(ii) If I is a prime ideal, then prem(g, f1, . . . , fn) = 0 ⇒ g ∈ I.

Proof. First recall that finding pseudoremainders in this situation is still possible
even though C may not be in triangular form. See the Remark at the end of Section
4.1.1.

(i) Let g ∈ I. By the properties of pseudodivision, we see that prem(g, f1, . . . , fr)
∈ I and is reduced with respect to C. But by Proposition 4.10, it must be
zero, for otherwise C would not be a characteristic set.

(ii) Let I be a prime ideal, and suppose that prem(g, f1, . . . , fr) = 0. Again,
by the properties of pseudodivision, we get that

ds1
1 · · · dsr

r g = A1f1 + · · · + Arfr

where di is the initial (leading coefficient) of fi. Note that the di are in fact
nonzero and reduced with respect to C (see the examples following Definition
4.3), so by Proposition 4.10 di /∈ I. Hence g ∈ I.

4.2.1 Irreducible Ascending Chains

Recall that our goal is to develop a method for “triangulating” our system of hy-
potheses in such a way that we can use successive pseudodivision and Definition
3.21 to establish our geometric result. Our introduction of the concepts of ascend-
ing chains and characteristic sets has taken us a long way in that direction. However,
recall our attempt to prove the geometric theorem in Example 1 using a Groebner
basis. We discovered that we ran into difficulties if the variety defined by the hy-
potheses was reducible. In particular, we saw that we could factor several of the
equations in the Groebner bases for this variety, and that this yielded subvarieties
corresponding to degenerate conditions of our theorem.

Since the “triangular form” we’ve been heading towards involves ascending chains,
we might attempt to investigate the irreducibility of polynomials in ascending chains.
This suggests the following definition.

Definition 4.13. Let C = f1, . . . , fr be an ascending chain with no constants and
with each fi ∈ k[x1, . . . , xn]. Rename the variables xi in such a way that we can
write:
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f1 = f1(u1, . . . , ud, x1)
f2 = f2(u1, . . . , ud, x1, x2)

...
fr = fr(u1, . . . , ud, x1, . . . , xr)

so that n = d + r. An irreducible ascending chain is an ascending chain in the
form above such that each fi ∈ C is irreducible in the ring
k(u1, . . . , ud)[x1, . . . , xi]/〈f1, . . . , fi−1〉.

Example The ascending chain f1 = x2
1−u1, f2 = x2

2−2x1x2 +u1 is reducible since
f2 is reducible over F1 = Q(u1)[x1]/〈f1〉. In particular, f2 = (x2 − x1)2 where
x2

1 = u1.

Notice that at this point we have resumed the distinction in variables between the
dependent and independent coordinates. In practice, any relabeling of variables
is rarely necessary, since most properly translated geometric theorems are in this
form already. However, occasionally we may translate a theorem and find that
some dependent coordinate xi actually does not appear in any of our hypothesis
equations.3 This is the only situation in which relabeling the variables may be
necessary. As Chou notes (see [1, pages 52-53]) this often implies that something
deeper is taking place in the theorem then previously thought. In particular, a
hidden hypothesis is usually to blame, as in Example 3. Reformulating the problem
with this in mind generally solves the problem. Chou actually excludes this from
occurring by adding what he calls a Dimensionality Requirement, which demands
that each dependent variable, xi actually occur as the leading variable in fi in our
ascending chain. We will follow Chou and assume this as well.

Remark 4.14 (Dimensionality Requirement). In an ascending chain, each depen-
dent variable xi must actually appear as the leading variable in the polynomial fi.

Some other notes on the above definition are necessary. First, the ideals 〈f1〉, 〈f1, f2〉,
etc. are in fact ideals in the ring k(u1, . . . , ud)[x1], etc. So we are allowing denomi-
nators in the ui. Second, if we do have an irreducible ascending chain C as above,
then the following sequence forms a tower of field extensions

3As an example, consider the triangle �ABC with medians AD, BE, CF . Let G = AD ∩ BE
and let H = CF ∩ AD. Finally, let P be a point on the line GH. If we translate these hypotheses
(there are ten) we will find that the ascending chain we obtain does not include the variable x10.
In this case, the cause is the fact that G = H is always true.
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F0 = k(u1, . . . , ud)
F1 = F0[x1]/〈f1〉
F2 = F1[x2]/〈f2〉

...
Fr = Fr−1[xr]/〈fr〉,

and each fi ∈ C may be considered as a polynomial in xi over the field Fi−1. We
have the following result on irreducible ascending chains.

Theorem 4.15. Let C = f1, . . . , fr be an irreducible ascending chain as in Defini-
tion 4.13 and let g ∈ k[u1, . . . , ud, x1, . . . , xr] and
Fr = k(u1, . . . , ud)[x1, . . . , xr]/〈f1, . . . , fr〉. Then the following statements are equiv-
alent:

(i) prem(g, f1, . . . , fr) = 0

(ii) Let E be any extension of the field k. If µ = (ũ1, . . . , ũd, x̃1, . . . , x̃r) ∈ Ed+r

is in V (f1, . . . , fr) with ũ1, . . . , ũd transcendental over k, then µ ∈ V (g).

(iii) Viewed as an element of Fr, g is zero. In other words, the canonical image
of g in Fr is 0.

(iv) There exist finitely many nonzero polynomials c1, . . . , cs ∈ k[u1, . . . , ud]
such that c1 · · · csg belongs to the ideal in k[u1, . . . , ud, x1, . . . , xr] generated by
f1, . . . , fr.

First we must establish the following lemma.

Lemma 1. Let p = asx
s
m + · · · + a0 be a polynomial with 1 ≤ m ≤ r, 0 ≤ s, where

the ai are polynomials in k[u1, . . . , ud, x1, . . . , xm−1], and suppose that p is reduced
with respect to f1, . . . fr. Then if µ from (ii) in Theorem 4.15 is a zero of p then p
is in fact the zero polynomial.

Proof. First note that the Lemma is trivial when s = 0, so we assume that s ≥ 1.
We use induction on m. Let p̃ denote the polynomial obtained upon substitution of
µ. Suppose that m = 1. Then p(µ) = 0 implies that

p̃ = ãsx̃
s
1 + · · · + ã0 = 0

(recall that the ai are polynomials as well, so we denote the substitution of µ in
the ai with a tilde). Since p is reduced with respect to f1, we may assume that
s < deg(f1, x1). Now recall the uniqueness of an algebraic expression in an extension
of k (Theorem 3.2 (iii)). Specifically, if we evaluate f1 only at the ũi’s, we get the
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polynomial f1(ũ1, . . . , ũd, x1) which is irreducible in the ring k(ũ1, . . . , ũd)[x1] and
has a root x̃1. So we can consider p̃ above to be in the extension field of k given by

k(ũ1, . . . , ũd)(x̃1) ∼= k(ũ1, . . . , ũd)[x1]/〈f1(ũ1, . . . , ũd, x1)〉

Then by the uniqueness of an expression equal to zero in this extension, we must
have ãj = 0. But the ũ1, . . . , ũd were chosen to be transcendental over k, so the
only way the ãj could evaluate to zero is if each aj is the zero polynomial. Hence p
is the zero polynomial.

Now assume that the Lemma holds for m − 1, and let p(µ) = 0 where p = asx
s
m +

· · · + a0. Then we get that

p̃ = ãsx̃
s
m + · · · + ã0 = 0

Again, since s < deg(fm, xm) we can use the unique representation of an algebraic
expression in an extension (using a similar argument as above) to conclude that all
ãj = 0. So µ is a zero of all the aj. Now note that each aj is in fact reduced with
respect to f1, . . . , fr, so we can use the induction hypothesis on each to conclude
that each aj is the zero polynomial. Hence, p is the zero polynomial, as desired.

Now we can prove the theorem using this lemma.

Proof. (ii) ⇒ (i) Let µ be as in (ii) (such a µ always exists, consider for example
the canonical images of u1, . . . , ud, x1, . . . , xr in Fr viewed as an extension of
k), and suppose that g(µ) = 0. Let R = prem(g, f1, . . . , fr) so that we have

ds1
1 · · · dsr

r g = A1f1 + · · · + Arfr + R.

Hence R(µ) = 0 (recall that fi(µ) = 0 for all i since µ ∈ V (f1, . . . , fr)). But by
Proposition 4.2(ii), R is reduced with respect to f1, . . . , fr so we may invoke
the Lemma to conclude that R = 0.

(i) ⇒ (ii) Now suppose that prem(g, f1, . . . , fr) = 0, so upon pseudodivision we
have the equation

ds1
1 · · · dsr

r g = A1f1 + · · · + Arfr.

Since f1, . . . , fr is an ascending chain, it has the property that prem(dk, f1, . . . , fr)
�= 0 (see Example 3 following Definition 4.3). But by the proof of (ii) ⇒ (i)
this implies that dk(µ) �= 0, which in turn implies that g(µ) = 0.
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(i) ⇔ (iii) (iii) is a particular case of (ii) using µ defined as the canonical images
of the variables u1, . . . , ud, x1 . . . , xr as noted above in (ii) ⇒ (i) , and so our
previous arguments give us (iii) ⇔ (i).

(iv) ⇒ (i) Suppose, as in (iv), there exist finitely many nonzero polynomials c1, . . . , cs

∈ k[u1, . . . , ud] such that c1 · · · csg ∈ 〈f1, . . . , fr〉, the ideal generated by the
fi in the ring k[u1, . . . , ud, x1, . . . , xr]. Let µ be as in (ii). Then since the ũi

are transcendental over k and the ci are nonzero we must have ci(µ) �= 0. But
µ ∈ V (f1, . . . , fr), so we must have g(µ) = 0. Hence, since (ii) ⇒ (i), we can
conclude that prem(g, f1, . . . , fr) = 0.

(i) ⇒ (iv) Suppose that prem(g, f1, . . . , fr) = 0. In other words,

ds1
1 · · · dsr

r g = A1f1 + · · · + Arfr. (1)

In the field Fr = k(u1, . . . , ud)[x1, . . . , xr]/〈f1, . . . , fr〉, we claim that p =
ds1

1 · · · dsr
r is not zero. If this were not the case, then we would have the

formula

ds1
1 · · · dsr

r = Q1f1 + · · · + Qrfr

which implies that prem(dr, f1, . . . , fr) = 0. But this contradicts the fact that
the initial dr is reduced with respect to fr.

This means that p has an inverse in Fr, or in other words that there is a
q ∈ k(u1, . . . , ud)[x1, . . . , xr] such that qp−1 ∈ 〈f1, . . . , fr〉 (viewed as an ideal
in the ring k(u1, . . . , ud)[x1, . . . , xr]). So we have

qp − 1 = Q1f1 + · · · + Qrfr

Clearing denominators yields

q1p − c = Q̄1f1 + · · · + Q̄rfr

Where c involves only the variables u1, . . . , ud. Now if we multiply (1) by q1

we get

q1(A1f1 + · · · + Arfr) = ds1
1 · · · dsr

r gq1

= pgq1

= (Q̄1f1 + · · · + Q̄rfr + c)g

Upon rearranging the last equation we see that gc ∈ 〈f1, . . . , fr〉 as an ideal in
the ring k[u1, . . . , ud, x1, . . . , xr]. But c involves only the ui, so we are done.
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The point µ = (ũ1, . . . , ũd, x̃1, . . . , x̃r) discussed in (ii) of the previous theorem is of
particular importance, so we give it a name: any point µ ∈ E that is in V (f1, . . . , fr)
with the ũ1, . . . , ũd transcendental over k we call a generic point of the ascending
chain f1, . . . , fr in an extension E of k. (Not to be confused with a generic zero
discussed in Section 3.1.)

Proposition 4.16. Let f1, . . . , fr be an irreducible ascending chain and g any poly-
nomial. If prem(g, f1, . . . , fr) �= 0 then there are polynomials q, p with p �= 0 such
that qg − p ∈ 〈f1, . . . , fr〉 and p ∈ k[u1, . . . , ud].

Proof. If prem(g, f1, . . . , fr) �= 0 then we have that

ds1
1 · · · dsr

r g = A1f1 + · · · + Arfr + R, (2)

where R �= 0. As in the proof that (i) ⇒ (iv) in Theorem 4.15, we conclude that R
has an inverse in the ring

Fr = k(u1, . . . , ud)[x1, . . . , xr]/〈f1, . . . , fr〉
.

In other words we have that

Rq − 1 ∈ 〈f1, . . . , fr〉 ⊂ k(u1, . . . , ud)[x1, . . . , xr]

for some (rational) polynomial q. Now if we clear denominators we get

Rq̃ − c = Q1f1 + · · · + Qrfr (3)

Note that since only q had a denominator, R remains unchanged and c ∈ k[u1, . . . , ud].
Multiply equation (2) on both sides by q̃ to get

ds1
1 · · · dsr

r q̃g = Ã1f1 + · · · + Ãrfr + Rq̃.

Now use equation (3) to rewrite Rq̃ in the above equation, yielding

q̄g − c = Ā1f1 + · · · + Ārfr

which establishes the result.
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The following theorem gives us a method for transforming reducible ascending chains
into irreducible ones while preserving most of our “triangular” properties.

Theorem 4.17. Let f1, . . . , fr be an ascending chain. Suppose that f1, . . . , fk−1 is
irreducible, but that f1, . . . , fk is reducible. Then there exist polynomials g, h in the
ring k[u1, . . . , ud, x1, . . . , xr] that are reduced with respect to f1, . . . , fr and such that
class(g) = class(h) = class(fk), and gh ∈ 〈f1, . . . , fk〉.

Proof. Suppose that fk is reducible in the ring Fk−1[xk]. Then we can factor fk

viewed as a member of the one variable polynomial ring Fk−1[xk] (this is often the
most difficult computational hurdle in Wu’s Method; we need factorization over
algebraic extensions).

Hence there exist polynomials g′′, h′′ ∈ k(u1, . . . , ud)[x1, . . . , xk] of positive degree in
xk such that fk − g′′h′′ = 0 in Fk−1[xk]. Specifically, we get an equation

fk − g′′h′′ = Amxm
k + · · · + A0 (4)

where each Ai belongs to k(u1, . . . , ud)[x1, . . . , xk−1] and is zero in

Fk−1 = k(u1, . . . , ud)[x1, . . . , xk−1]/〈f1, . . . , fk−1〉.

The equality in (4) still holds if we evaluate the right hand side at xk = 1. Then
clear denominators to get Qfk − g′h′ = p where p is the resulting polynomial from
the right hand side of (4) and p is a polynomial in k[u1, . . . , ud, x1, . . . , xk−1] (since
we evaluated at xk = 1).

Now note that p ≡ 0 in the ring Fk−1[xk], so we can use (iii) ⇒ (i) of Theorem
4.15 to conclude that prem(p, f1, . . . , fk−1) = 0. Then a simple series of algebraic
manipulations yields the following series of equations:

ds1
1 · · · dsk−1

k−1 p = Q1f1 + · · · + Qk−1fk−1

ds1
1 · · · dsk−1

k−1 (Qfk − g′h′) = Q1f1 + · · · + Qk−1fk−1

−(ds1
1 · · · dsk−1

k−1 )g′h′ = Q1f1 + · · · + Qk−1fk−1 − Q̃fk.

So we have that (ds1
1 · · · dsk−1

k−1 )g′h′ is in the ideal 〈f1, . . . , fk〉. Let

g = prem((ds1
1 · · · dsk−1

k−1 )g′, f1, . . . , fk−1)
h = prem(h′, f1, . . . , fk−1).
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It is an easy calculation using the remainder formula from pseudodivision to check
that gh ∈ 〈f1, . . . , fk〉. Also, the properties of pseudoremainders ensure that g, h are
both reduced with respect to f1, . . . , fk−1. We noted above that g′′, h′′ were both
reduced with respect to fk. This implies that g′, h′ are as well, and in turn that g, h
are reduced with respect to fk. Since both g, h were obtained from fk by factoring
and division, the highest variable appearing in each must be xk, so they must be
reduced with respect to fk+1, . . . , fr since fk was as well.

Finally, we need to check that class(g) = class(h) = class(fk). First, in the fac-
torization of fk, we must have that the class of both g′′, h′′ are the same as fk.
Second, when we rationalized the denominator, this contributed only ui’s, so the
class of g′, h′ remained the same. Third, pseudodivision by f1, . . . , fk−1 won’t effect
the appearance of xk, so the class of g, h will remain the same. Hence g, h have all
the desired properties.

The usefulness of irreducible chains is illustrated by the following theorem.

Theorem 4.18. Let f1, . . . , fr be an irreducible ascending chain and let P be defined
by

P = {g | g ∈ k[u1, . . . , ud, x1, . . . , xr] and prem(g, f1, . . . , fr) = 0}

Then the following assertions are true:

(i) P is a prime ideal with f1, . . . , fr as a characteristic set.

(ii) A generic point of f1, . . . , fr is a generic zero of P .

(iii) If k is algebraically closed, then a polynomial g vanishes on V (P ) if and
only if prem(g, f1, . . . , fr) = 0.

(iv) For any field k, dim(V (P )) ≥ d (the number of independent variables, ui)
where V (P ) = {x ∈ kn | f(x) = 0 ∀ f ∈ P}. If prem(g, f1, . . . , fr) = 0 then g
vanishes on V (P ) ⊆ kd+r.

Proof. First recall a result from Section 3.1, Theorem 3.14. Let µ be a generic point
of the irreducible ascending chain f1, . . . , fr. Then by (i) ⇔ (ii) in Theorem 4.15
we have that P = {g | g(µ) = 0}. This establishes (ii), and also easily implies that
P is in fact an ideal. So µ is a generic zero of the ideal P which by Theorem 3.14
mentioned above implies that P is in fact a proper prime ideal.

In addition, since everything in P has remainder of zero when divided by f1, . . . , fr,
we have that there are no nonzero polynomials in P that are reduced with respect to
f1, . . . , fr. Hence by Proposition 4.10 we see that f1, . . . , fr is in fact a characteristic
set of P . This establishes (i).
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If k is algebraically closed, then we have that I(V (P )) = P by Theorem 3.17 and
the fact that all prime ideals are radical. Hence a polynomial g vanishes on V (P ) if
and only if g ∈ P , i.e. prem(g, f1, . . . , fr) = 0. This establishes (iii).

If k is any field (not necessarily algebraically closed) then the dimension of V (P ) is
the same as the dimension of its prime ideal I(V (P )). Note that I(V (P )) ⊃ P so
we have that dim I(V (P )) ≥ dim P . Now, the dimension of the prime ideal P is
the transcendence degree of the quotient field of k[u1, . . . , ud, x1, . . . , xr]/P over k.

From the proof of (ii) ⇒ (i) in Theorem 4.15 we know that the characteristic set
f1, . . . , fr has a generic point µ, and by (ii) in the present theorem we see that µ is
a generic zero of P . Then by Corollary 3.15 we see that

k[u1, . . . , ud, x1, . . . , xr]/P ∼= k[ũ1, . . . , ũd, x̃1, . . . , x̃r].

Since µ is a generic point, the ũ1, . . . , ũd are algebraically independent over k. Hence
the transcendence degree of the quotient field of k[u1, . . . , ud, x1, . . . , xr]/P over k is
at least d. Hence dim I(V (P )) ≥ d, so we have that dim V (P ) ≥ d.

The remaining statement in (iv) follows easily from the fact that every prime ideal
is radical and for any field we have

√
P ⊂ I(V (P )).

We should note here what happens with V (P ) if k is not algebraically closed. In
particular, we cannot conclude that the variety V (P ) is irreducible. This is trouble-
some because we wish to use characteristic sets and their prime ideals P in order to
find an irreducible decomposition of the original variety defined by the hypothesis
equations. However, we do have the following statement.

Proposition 4.19. In the situation above, if V (P ) is of dimension d, then it is
irreducible.

Proof. Suppose that k is not algebraically closed, and that V (P ) is of dimension d.
Let V1 ⊂ V (P ) be a component of dimension d. Then if we take the ideal of both
sides we get that I(V1) ⊃ I(V (P )) ⊃ P . Now I(V1) is a prime ideal with dimension
d and it contains P . We also have that the dimension of P is d, since the ui’s are
assumed to be algebraically independent over P .

Now recall that the dimension of a prime ideal is also defined as the supremum of
the lengths of chains of distinct prime ideals that contain it.

Hence we claim that P = I(V1) = P1. Specifically, if P �= P1 then the dimension of
P1 would be strictly smaller than that of P .

We conclude that V (P ) = V (P1) = V1, so V (P ) is irreducible.
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We’ve seen that we can generate prime ideals from irreducible ascending chains.
The following theorem allows us to move in the opposite direction.

Theorem 4.20. Let P be a nontrivial prime ideal of k[u1, . . . , ud, x1, . . . , xr], and
let f1, . . . , fr be a characteristic set of P . Then f1, . . . , fr is irreducible.

Proof. From Proposition 4.12 we know that P = {g | prem(g, f1, . . . , fr) = 0}.
Suppose, to get a contradiction, that f1, . . . , fr is reducible. Then there is a k > 0
such that f1, . . . , fk−1 is irreducible but f1, . . . , fk is reducible. By Theorem 4.17 we
can find polynomials g, h such that they are reduced with respect to f1, . . . , fr and
gh ∈ 〈f1, . . . , fk〉 ⊂ P (also, the degrees of g, h in xk are positive).

Since g, h are both reduced with respect to f1, . . . , fr, we have that prem(g, f1, . . . , fr)
�= 0 (the same is true of h as well). But this implies that neither are contained in
P , while their product is in P . This contradicts P being a prime ideal.

4.3 Ritt’s Principle

Previously, our construction of characteristic sets always involved picking polyno-
mials from the original polynomial set. Here we introduce a slight generalization,
called an extended characteristic set, where the elements of the characteristic set are
not necessarily in our original polynomial set, but they are in the ideal generated
by our original polynomial set. The definition we have in mind is the following:

Definition 4.21. Let S = {h1, . . . , hm} be a finite nonempty set of polynomials in
the ring k[x1, . . . , xn], and let I = 〈h1, . . . , hm〉. An extended characteristic set
is an ascending chain C such that either

(i) C consists of just an element of k ∩ I, or

(ii) C = {f1, . . . , fr} with class(f1) > 0 such that fi ∈ I and prem(hj , f1, . . . , fr) =
0 for all i, j.

Note the differences between this definition and our definition of characteristic sets.
Before we only required that no element of S be reduced with respect to C, here we
demand that the remainder actually is zero. Also, as noted above, here the elements
of C may not come from S, although they will be in the ideal I.

We also note that every extended characteristic set of a polynomial set S = {h1, . . . , hm}
is also a characteristic set of the ideal I = 〈h1, . . . , hm〉.
Proposition 4.22. Let S = {h1, . . . , hr} be a polynomial set in k[x1, . . . , xn], with
extended characteristic set Ce = f1, . . . , fr. Then Ce is also a characteristic set of
the ideal I = 〈h1, . . . , hm〉.
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Proof. If the extended characteristic set Ce consists of only an element from the
field k, then I certainly doesn’t contain any nonzero elements that are reduced with
respect to Ce and so by Proposition 4.10, it is a characteristic set.

If Ce is not a trivial extended characteristic set, we proceed by contradiction.
Suppose that g ∈ I is a nonzero polynomial that is reduced with respect to Ce.
Then we see that prem(g, f1, . . . , fr) = g. We also know that fi ∈ I and that
prem(hj , f1, . . . , fr) = 0 for all i = 1, . . . , r and all j = 1, . . . ,m. Hence for each
j = 1, . . . ,m we can write the equation

d
s1j

1 · · · dsrj
r hj = Q1jf1 + · · · + Qrjfr. (5)

Now let si = max {sij | j = 1, . . . ,m}. But from the fact that g ∈ I we see that

g = A1h1 + · · · + Amhm

for some polynomials A1, . . . , Am. Now multiply this equation on both sides by the
polynomial ds1

1 · · · dsr
r , yielding

ds1
1 · · · dsr

r g = A1 (ds11
1 · · · dsr1

r h1) + · · · + Am (ds1m
1 · · · dsrm

r hm)

Then by using the equations (for j = 1, . . . ,m) mentioned in (5) above we see that
we can write g as

ds1
1 · · · dsr

r g = Q1f1 + · · · + Qrfr.

But this contradicts the fact g is reduced with respect to f1, . . . , fr noted above.
Hence I must not contain any polynomials reduced with respect to Ce, and so Ce

must be a characteristic set by Proposition 4.10.

Theorem 4.23 (Ritt’s Principle). Let S = {h1, . . . , hm} be a finite, nonempty set
of polynomials in k[x1, . . . , xn], and let I = 〈h1, . . . , hm〉. There is an algorithm to
find an extended characteristic set C of S.

Proof. By Theorem 4.11 we can construct a characteristic set C1 of the polynomial
set S = S1. If C1 contains only a constant, then we have (i) in Definition 4.21.
Otherwise we expand S1 by adding all nonzero remainders of elements of S1 on
pseudodivision by C1 = f1, . . . , fr to get a new polynomial set S2. Specifically, we
find prem(hj , f1, . . . , fr) for all j. If the remainder is nonzero we include it in S2.
If S1 = S2 then we are in (ii) of Definition 4.21. Otherwise repeat this process on
S2, yielding the characteristic set C2. By Proposition 4.9 we know that S2 has a
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characteristic set that is strictly lower than C1. Then the characteristic set found by
our algorithm in Theorem 4.11 must be lower than C1; i.e. we have that C1 > C2.

Repeating this process yields a sequence of polynomial sets

S1 ⊂ S2 ⊂ · · ·

and a corresponding decreasing sequence of characteristic sets

C1 > C2 · · ·

Since characteristic sets are well-ordered, this strictly decreasing chain must termi-
nate, i.e. we must have that Sk = Sk+1 or Ck consisting of only a constant. We
claim that in either case Ck has the properties in Definition 4.21. If Ck is only a
constant, this is trivial.

By the construction of Ck = f1, . . . , fr we have that prem(hj , f1, . . . , fr) = 0 for
all j. It remains to show that fi ∈ I for all i. We use induction to show that for
all i, both Si ⊂ I and Ci ⊂ I. The base case (i = 1) is trivial. Now suppose
that Ci ⊂ I and Si ⊂ I. To get the characteristic set Ci+1 we add the nonzero
remainders of elements of Si upon pseudodivision by Ci. It is an easy consequence
of the remainder formula for pseudodivision that this remainder also lies in I. This
establishes the result.

We emphasize here that this algorithm produced an increasing sequence of sets
and a corresponding decreasing sequence of characteristic sets. When the algorithm
terminates, we have a final characteristic set, which we call C and a final polynomial
set which we call S′.

We need the following property of extended characteristic sets.

Proposition 4.24. Let S = {h1, . . . , hn}, and suppose that C = f1, . . . , fr is an ex-
tended characteristic set of S (with no constants). Let dj denote the initials (leading
coefficients) of the fj and let Sj = S∪{dj}. Finally let P = {g | prem(g, f1, . . . , fr) =
0}. Then we have that

(i) V (f1, . . . , fr) − (V (d1) ∪ · · · ∪ V (dr)) ⊂ V (P ) ⊂ V (S) ⊂ V (f1, . . . , fr)

(ii) V (S) = V (P ) ∪ V (S1) ∪ · · · ∪ V (Sr)

Proof. (i) Let p ∈ V (f1, . . . , fr) − (V (d1) ∪ · · · ∪ V (dr)). Then we have that
fi(p) = 0 but di(p) �= 0 for all i. For any g ∈ P we have by pseudodivision the
following formula,

ds1
1 · · · dsr

r g = Q1f1 + · · · + Qrfr
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and this forces us to conclude that g(p) = 0. So p ∈ V (P ). The same reasoning
using the pseudoremainder property of extended characteristic sets shows that
p ∈ V (S).

(ii) First we claim that V (S) ⊂ V (P )∪ (V (d1) ∪ · · · ∪ V (dr)). To see this note
that using (i) we get:

V (S) ⊂ V (f1, . . . , fr) ⇒ V (S) − (V (d1) ∪ · · · ∪ V (dr)) ⊂ V (f1, . . . , fr)−
(V (d1) ∪ · · · ∪ V (dr))

⇒ V (S) − (V (d1) ∪ · · · ∪ V (dr)) ⊂ V (P )
⇒ V (S) ⊂ V (P ) ∪ (V (d1) ∪ · · · ∪ V (dr)) .

Now suppose that p ∈ V (S). Then by the claim above, p is contained in
V (P ) ∪ (V (d1) ∪ · · · ∪ V (dr)). Then p ∈ V (P ) or p ∈ V (dj) for some j. In
either case, we have V (S) ⊂ V (P )∪ V (S1)∪ · · · ∪ V (Sr), since V (S ∪ {dj}) =
V (Sj).

Now suppose that p ∈ V (P ) ∪ V (S1) ∪ · · · ∪ V (Sr). If p ∈ V (Sj) for some j,
then clearly p ∈ V (S). And finally, if p ∈ V (P ), then we have p ∈ V (S) by
(i).

4.4 Ritt’s Decomposition Algorithm

Now we are ready to present Ritt’s full algorithm for completely decomposing vari-
eties. Recall the situation presented in Section 2. We have a collection of hypotheses
h1, . . . , hr and a conclusion equation g, all in the polynomial ring
k[u1, . . . , ud, x1, . . . , xr]. Our method depends upon deciding if g vanishes on the
irreducible components of the variety V (h1, . . . , hr) that do not correspond to de-
generate cases of our theorem.

Theorem 4.25. Let S be a finite nonempty polynomial set in the ring k[x1, . . . , xn].
There is an algorithm to determine whether 〈S〉 = k[x1, . . . , xn] or otherwise to
decompose the variety,

V (S) = V (P1) ∪ · · · ∪ V (Ps)

where each Pi is the prime ideal given by an irreducible characteristic set as in
Theorem 4.18 (i).

Proof. Let D be a set of characteristic sets, which to begin our algorithm is empty.
We can apply Theorem 4.23 to the polynomial set S to get an extended characteristic
set C and also the corresponding polynomial set S′ (the final polynomial set in the
increasing sequence that arose in the algorithm in Ritt’s Principle). Then we have
the following cases:
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Case 1 C consists of just a constant. In this case we conclude that V (S) is empty
and 〈S〉 = k[x1, . . . , xn].

Case 2 C = {f1, . . . , fr} is an irreducible ascending chain. Let dk be the initials of
the fk, and let Sk = S′ ∪ {dk}. Then by (ii) of Proposition 4.24 we have that

V (S) = V (P1) ∪ V (S1) ∪ · · · ∪ V (Sr)

where P1 is the prime ideal with characteristic set C, so that

P1 = {g | prem(g, f1, . . . , fr) = 0}

by Theorem 4.18 (i). Then by Proposition 4.9 we know that each Sk has a
characteristic set strictly lower than C.

Add the characteristic set C to D and repeat this algorithm on each Sk.

Case 3 C = {f1, . . . , fr} is a reducible ascending chain. Specifically, there is a
k > 0 such that f1, . . . , fk−1 is irreducible but f1, . . . , fk is reducible. In this
case we use Theorem 4.17 (here we need to be able to factor polynomials over
algebraic extensions) to conclude that there are polynomials g, h, both of the
same class as fk and reduced with respect to f1, . . . , fr such that

gh ∈ 〈f1, . . . , fk〉

We claim that V (S) = V (S′) = V (S1) ∪ V (S2) where S1 = S′ ∪ {g} and
S2 = S′ ∪ {h}.
Since S ⊂ S′ we have that V (S) ⊃ V (S′). To establish the opposite con-
tainment it suffices to show that V (Si) ⊂ V (Si+1) for all i in the algorithm
outlined in Ritt’s Principle (Theorem 4.23).

Let p ∈ V (Si), where Si is a polynomial set in the increasing sequence gener-
ated in the algorithm for Ritt’s Principle. The polynomials that are in Si+1

but not in Si are all remainders given by the formula

d
s1i
1i

· · · dsmi
mi g = Qi1h1i + · · · + Qirhmi + R

where g ∈ Si and h1i , · · · , hmi is the characteristic set of Si. Now, g(p) = 0 and
we also must have that hji(p) = 0 for all j since hji ∈ Si (by our construction
of characteristic sets). But this forces R(p) = 0. Hence V (S) ⊂ V (S′) and we
have the opposite containment.

Now note that V (S1) ∪ V (S2) ⊂ V (S′) is trivial, so let p ∈ V (S′) = V (S).
This means that p ∈ V (f1, . . . , fr). But we know that

gh ∈ 〈f1, . . . , fk〉

so we must have either g(p) = 0 or h(p) = 0. Hence p ∈ V (S1) ∪ V (S2). This
establishes the claim.

Now repeat this algorithm on S1 and S2.
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The above algorithm only adds characteristic sets to D that are strictly lower than
the previous ones. Hence this process must terminate in one of the following two
cases:

(i) D = ∅. In this case V (S) = ∅ and 〈S〉 = k[x1, . . . , xn].

(ii) D = {C1, . . . , Cs} and V (S) = V (P1) ∪ · · · ∪ V (Ps) where each Pk is the
prime ideal given by a characteristic set Ck.

5 Using Wu’s Method to Prove Theorems

Now we wish to use Ritt’s Decomposition algorithm to describe a method for actually
proving geometric theorems. To see how this is done, first recall from the end of
Chapter 3 our definition of what it means for a conclusion g to follow generically
from h1, . . . , hr:

Definition 5.1. A conclusion g follows generically from the hypotheses h1, . . . , hr

if g ∈ I(V ′) ⊂ k[u1, . . . , ud, x1, . . . , xr] where V ′ is the union of those irreducible
components of V (h1, . . . , hr) on which the ui are algebraically independent.

The idea is to first apply Ritt’s Decomposition algorithm to our hypotheses. This
will yield a collection of extended characteristic sets, D = {C1, . . . , Cs}, which
correspond to components of V (h1, . . . , hr) defined by the prime ideals P1, . . . , Ps.
Note that if k is algebraically closed, we may conclude that these varieties are
irreducible, but that if k is not algebraically closed we may not.

We wish to pick out those irreducible V (Pi) on which the ui’s are algebraically
independent. (In other words, we are looking for the Pi that do not contain any
nonzero u-polynomials.) Identifying on which components the ui are independent
is simple: we pick those V (Pi) such that the corresponding extended characteristic
set Ci contains no polynomials involving only the ui’s.

To see that this is sufficient, consider some Ck that contains no polynomials only in
the ui. Suppose that some u-polynomial g ∈ Pk. This implies that prem(g,Ck) = 0,
which is impossible, since g must be reduced with respect to Ck.

It is possible that of the components on which the ui are algebraically independent,
some have dimension higher than d. (Recall that in Theorem 4.18 (iv) we only
proved that dim V (P ) ≥ d.) However, as Chou notes ([1] p. 47) this is very rare.
He observes that among the 600 theorems proved by his implementation, none had
any components that fit this description. Thus, we will treat this occurrence as a
degenerate condition (as Chou does), and ignore these components with dimension
greater than d.
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The remaining components are all of dimension d, so by Proposition 4.19 we know
that they are irreducible.

Recall that we have assumed that the Ck, which are irreducible ascending chains, all
satisfy the Dimensionality Requirement (See Remark 4.14). In other words we are
requiring that each of the xi’s actually appear as the leading variable of a polynomial
in our ascending chain. If they do not, and some dependent variable xi is missing,
we should reexamine the translation of the problem.

Let prem(g,Ck) denote successive pseudodivision of g by the elements of the char-
acteristic set Ck. Now, by (iv) of Proposition 4.18, we know that if prem(g,Ck) = 0
then g vanishes on V (Pk), the component of V (h1, . . . , hn) corresponding to Ck.

Hence to check the conditions in the definition above simply find prem(g,Ck) for
each Ck that does not contain a polynomial involving only the ui. If in each case
the pseudoremainder is zero, then g follows generally from h1, . . . , hn.

This last comment omitted an important exception. When we find each pseudore-
mainder, we get an expression of the form

ds1
1 · · · dsr

r g = Q1f1 + · · · + Qrfr + R.

So in order to conclude that g does indeed vanish on the component of V (h1, . . . , hr)
corresponding to this characteristic set we must additionally assume that each dj �=
0. These comprise our nondegenerate conditions for our geometric theorem. This
discussion establishes the following result

Theorem 5.2. Let h1, . . . , hr, g be as above and let D = {C1, . . . , Cs} be just those
extended characteristic sets obtained from Ritt’s Decomposition algorithm on which
the ui are algebraically independent. Then if prem(g,Ck) = 0 for all k then g is
generically true under the degenerate conditions dj �= 0, where the dj are the initials
of the polynomials in each Ck.

It may be that we get a pseudoremainder of zero on some but not all of the compo-
nents in the above theorem. In this case the formulation of the geometric theorem
should be reexamined for errors or hidden hypotheses. However, if we get a nonzero
remainder on every component in the above theorem, then we may safely conclude
that g is generally false.

We note again that we have assumed throughout that our hypothesis (and hence
all resulting characteristic sets) satisfy the Dimensionality Requirement (Remark
4.14), since a failure to meet this condition usually implies a need to reformulate
the theorem.

Finally, as noted by Chou ([1, page 54]), it is very rare that Ritt’s Decomposition
algorithm will yield more than one characteristic set. Specifically, it is usually the
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case that the variety V ′ in Definition 5.1 above is actually irreducible.

A Implementing Wu’s Method in Maple

We present in this appendix some very basic Maple code that performs the essential
elements of Wu’s Method. If the reader is interested, a more extensive implemen-
tation was created by Dongming Wang in the Maple package CharSet. For our
purposes, we wish only to implement the basic parts of Ritt’s Decomposition algo-
rithm.

We begin with some very simple procedures that we will need as tools later on
in Ritt’s Algorithm. First we have a procedure that returns the class of a given
polynomial.

class:= proc(p::polynom,depvars::list)
local V,test,i;
V:=indets(p);
V:=V[];
V:=[V];
V:=sort(V);
for i from 0 to nops(depvars)-1 do

if member(depvars[nops(depvars)-i],V)
then RETURN(nops(depvars)-i);

fi;
od;
RETURN(0);

end;

In general, our code requires the input of the dependent variables, i.e. the xi. This
is not a terribly restrictive requirement, since a human must typically translate the
theorem. Next, recall that we discussed an ordering on polynomials using the notion
of class. Hence we have a procedure that compares two polynomials and returns
TRUE if the first is less than the second:

PolyCompare:= proc(f::polynom,g::polynom,depvars::list)
if class(f,depvars) < class(g,depvars) then

RETURN(true);
elif class(f,depvars)=class(g,depvars) then

i:=class(f,depvars);
if degree(f,depvars[i])< degree(g,depvars[i]) then

RETURN(true);
else RETURN(false);
fi;

else RETURN(false);
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fi;
end;

Now in the algorithm described in Theorem 4.11 we have a sequence of polynomial
sets from which we must select the least polynomial. Our next procedure performs
this task on a polynomial set.

LeastPoly:=proc(S::list,depvars::list)
if nops(S)=1 then

RETURN(S[1]);
fi;
i:=1;
j:=1;
counter:=1;
IsLeastPoly:=false;
while IsLeastPoly = false do

if i=jthen
j:=j+1;
counter:=counter+1;

elif PolyCompare(S[j],S[i],depvars)=true then
i:=j;
j:=1;
counter:=1;

else
counter:=counter+1;
j:=j+1;

fi;
if counter=nops(S)+1 then

IsLeastPoly:=true;
fi;

od;
RETURN(S[i]);

end;

The algorithm in Theorem 4.11 also requires that we decide whether one polynomial
is reduced with respect to another. So we introduce a procedure that performs this
simple task.

Reduced:=proc(f::polynom,g::polynom,depvars::list)
gClass:=class(g,depvars);
fDegree:=degree(f,depvars[gClass]);
gDegree:=degree(g,depvars[gClass]);
if fDegree< gDegree then

RETURN(true);
else
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RETURN(false);
fi;

end;

Now we are ready to write a procedure that performs the algorithm in Theorem 4.11.
Since our implementation is intended to be used on geometric theorems, we have
ignored the possibility that our starting polynomial set may contain a constant. This
in general will not occur in a properly translated theorem. The following procedure
yields a characteristic set of a given polynomial set (as usual we require the input
of the list of independent variables).

CharSet:=proc(S::list,depvars::list)
C:=[];
S1:=S;
SCopy:=S;
isCharSet:=false;
while isCharSet=false do

C:=[op(C),LeastPoly(SCopy,depvars)];
S1:=[];
for j from1 to nops(SCopy) do

isReduced:=true;
for i from1 to nops(C) do

Check:=Reduced(SCopy[j],C[i],depvars);
if Check=falsethen

isReduced:=false;
fi;

od;
if isReduced=true then

S1:=[op(S1),SCopy[j]];
fi;
od;

if nops(S1)=0 then
isCharSet:=true;

fi;
SCopy:=S1;

od;
RETURN(C);

end;

Before we present the code for producing an extended characteristic set, we need
procedures that perform successive pseudodivision. For completeness, we include
both a version that handles polynomials that are in triangular form and another
that performs the recursively defined version mentioned at the end of Section 4.1.1.
We call them SuccessivePrem and RecursivePrem respectively.
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SuccessivePrem:=proc(g,L::list,depvars::list)
local i,R;
R:=g;
for ifrom 0 to nops(L)-1 do

R:=prem(R,L[nops(depvars)-i],depvars[nops(depvars)-i]);
od;

end;

RecursivePrem:=proc(g::polynom,S::list,depvars::list)
r:=g;
for ifrom 0 to nops(S)-1 do

r:=prem(r,S[nops(S)-i],depvars[eval(class(S[nops(S)-i],depvars))]);
od;
RETURN(r);

end;

Now we have the tools necessary to write a procedure that performs the algorithm
described in Ritt’s Principle. This procedure takes a set of polynomials (and the
list of independent variables) and returns an extended characteristic set.

ExtCharSet:=proc(S::list,depvars::list)
S1:=S;
S2Unchanged:=false;
S2:=[];

while S2Unchanged=false do
C1:=CharSet(S1,depvars);
counter:=0;

for i from 1 to nops(S1) do
r:=RecursivePrem(S1[i],C1,depvars);
if member(r,C1) then
fi;
if r<>0then

S2:=[op(S2),r];
counter:=counter+1;

fi;
od;
if counter=0 then

S2Unchanged:=true;
fi;
S1:=[op(S1),op(S2)];

od;
RETURN(C1);

end;
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Obviously, this procedure does not check if the resulting extended characteristic set
is irreducible. This can certainly be done, as Maple has numerous tools for factoring
polynomials. However, we were more interested in the implementation of algorithms
for producing characteristic sets than in algorithms for factoring polynomials. Also,
as we’ve noted before, in most cases in plane geometry the resulting extended char-
acteristic set will indeed be irreducible. If this is not the case, the user can easily
check each polynomial in the extended characteristic set for factorability, and then
repeat the process on each resulting polynomial set using the code above.

We have tested our code on the following examples: (These examples were drawn
from theorems proven mechanically by Chou’s implementation in [1]. Our imple-
mentation differs somewhat from his, so the extended characteristic sets found in
these examples may be different than in [1].) Also, in all of these examples, the
characteristic set is irreducible.

Example 1 Let ABCD be a square, with CG parallel to BD. Construct a point
E on CG such that BE ≡ BD. F is the intersection of BE and DC. Then
DF ≡ DE.

If we let A = (0, 0), B = (u1, 0), C = (u1, u1),D = (0, u1), E = (x1, x2) and
F = (x3, u1), then we can express the hypotheses as h1 = x2

2 + x2
1 − 2u1x1 −

u2
1, h2 = −u1x2−u1x1 +2u2

1, h3 = −x2x3 +u1x2 +u1x1−u2
1. The conclusion is

given by g = x2
3−x2

2 +2u1x2−x2
1−u2

1. Using the code above, our calculations
in Maple are as follows:

> S1:=[x2^2+x1^2-2*u1*x1-u1^2,-u1*x2-u1*x1+2*u1^2,
-x2*x3+u1*x2+u1*x1-u1^2]:
> g:=x3^2-x2^2+2*u1*x2-x1^2-u1^2:
> C:=ExtCharSet(S1,[x1,x2,x3]);

[2u1 2x1 2 − 6u1 3x1 + 3u1 4,−u1x2 − u1x1 + 2u1 2,−u1 3 − u1x1x3 + 2u1 2x3 ]

> SuccessivePrem(g,C,[x1,x2,x3]);
0

Recall from our discussions above that this means we have proven this theorem
under certain degenerate conditions. Specifically, these degenerate conditions
are the leading coefficients of the polynomials in the extended characteristic
set C. So the theorem is true under the conditions:

2u2
1 �= 0

−u1 �= 0

2u2
1 − u1x1 �= 0.

Under these restrictions, the above theorem holds. For example, the first
condition requires that A and B are distinct points.
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Example 2 We use the same situation as in Example 1 in Section 2. Then we get
the following calculations in Maple:

> S1:=[x2-u3,(x1-u1)*u3-x2*u2,x4*x1-x3*u3,x4*(u2-u1)-(x3-u1)*u3]:
> g:=x1^2-2*x1*x3-2*x4*x2+x2^2:
> C:=ExtCharSet(S1,[x1,x2,x3,x4]);

[u3x1 − u1u3 − u3u2 , x2 − u3 , 2u1u3 2x3 − u1 2u3 2 − u3 2u2u1 ,

−u1 2u3 4 − u3 4u2u1 + 2u1 2u3 3x4 + 2u1u3 3x4u2 ]

> SuccessivePrem(g,C,[x1,x2,x3,x4]);
0

The degenerate conditions are:

u3 �= 0

2u1u
2
3 �= 0

2u2
1u

3
3 + 2u1u

3
3u2 �= 0.

Example 3 Next we present Pascal’s Theorem, as translated in [1]. Let O be a
circle, and let A,B,C,D,E, F be points on O. Let P = AB ∩ DF,Q =
BC ∩ FE and S = CD ∩ EA. Then the points P,Q and S are collinear. If
we let A = (0, 0), O = (u1, 0), B = (x1, u2), C = (x2, u3),D = (x3, u4), F =
(x4, u5), E = (x5, u6), P = (x7, x6), Q = (x9, x8) and finally S = (x11, x10),
then we get the following system of equations:

h1 = x2
1 − 2u1x1 + u2

2 = 0

h2 = x2
2 − 2u1x2 + u2

3 = 0

h3 = x2
3 − 2u1x3 + u2

4 = 0

h4 = x2
4 − 2u1x4 + u2

5 = 0

h5 = x2
5 − 2u1x5 + u2

6 = 0
h6 = (u5 − u4)x7 + (−x4 + x3)x6 + u4x4 − u5x3 = 0
h7 = u2x7 − x1x6 = 0
h8 = (u6 − u5)x9 + (−x5 + x4)x8 + u5x5 − u6x4 = 0
h9 = (u3 − u2)x9 + (−x2 + x1)x8 + u2x2 − u3x1 = 0

h10 = u6x11 − x5x10 = 0
h11 = (u4 − u3)x11 + (−x3 + x2)x10 + u3x3 − u4x2 = 0

g = (x8 − x6)x11 + (−x9 + x7)x10 + x6x9 − x7x8 = 0.

Then Maple gives us the following:
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> S4:=[x1^2-2*u1*x1+u2^2,x2^2-2*u1*x2+u3^2,x3^2-2*u1*x3+u4^2,
x4^2-2*u1*x4+u5^2,x5^2-2*u1*x5+u6^2,(u5-u4)*x7+(-x4+x3)*x6+u4*x4-
u5*x3,u2*x7-x1*x6,(u6-u5)*x9+(-x5+x4)*x8+u5*x5-u6*x4,(u3-u2)*x9+
(-x2+x1)*x8+u2*x2-u3*x1,u6*x11-x5*x10,(u4-u3)*x11+(-x3+x2)*x10+
u3*x3-u4*x2]:
> g:=(x8-x6)*x11+(-x9+x7)*x10+x6*x9-x7*x8:
> C:=ExtCharSet(S4,[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11]);

C = [x1 2−2u1x1+u2 2, x2 2−2u1x2+u3 2, x3 2−2x3u1+u4 2, x4 2−2u1x4+u5 2,

x5 2−2u1x5+u6 2,−x1x6u5+x1x6u4+u2x6x4−u2x6x3−u2u4x4+u2u5x3 ,

−x1u5 2x7+2x1u5x7u4−x1u5u4x4+x1u5 2x3−x1u4 2x7+x1u4 2x4−x1u4u5x3+
u2x4x7u5−u2x4x7u4−u2x3x7u5+u2x3x7u4 ,−u6x8x2+u6x8x1+u6u2x2−
u6u3x1+u5x8x2−u5x8x1−u5u2x2+u5u3x1+x8x5u3−x8x5u2−x8x4u3+

x8x4u2−u5x5u3+u5x5u2+u6x4u3−u6x4u2 ,−x1u5 2x5+x1u5 2x9+u5 2x2x5−
u5 2x2x9−u6 2x1x4+u6 2x1x9+u6 2x2x4−u6 2x2x9+x1u5u6x4+x5u3x9u6−
x5u3x9u5 − x5u2x9u6 + x5u2x9u5 − x4u3x9u6 + x4u3x9u5 + u2x4x9u6−
u2x4x9u5 + u6u2x2x5 − u6u2x2x4 − u6u3x1x5 + u6u3x1x4 − u5u2x2x5+
u5u2x2x4 +u5u3x1x5−u5u3x1x4 +2u6x2x9u5−u6x2u5x5−2u6x1x9u5+
u6x1u5x5−u5x2u6x4 ,−u6x10 x3+u6x10x2+u6u3x3−u6u4x2+x5x10u4−
x5x10u3 ,−u6 2x11 x3 + u6 2x11x2 + u6x11x5u4 − u6x11 x5u3 + x5u6u3x3−

x5u6u4x2 ]

> SuccessivePrem(g,C,[x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11]);
0

The degenerate conditions are:

−x1u5 + x1u4 + u2x4 − u2x3 �= 0

−x1u
2
5 + 2x1u5u4 − x1u

2
4 + u2x4u5 − u2x4u4 − u2x3u5 + u2x3u4 �= 0

−u5x1 + u5x2 − x4u3 + x5u3 − u6x1 + x4u2 �= 0

x1u
2
5 + u6x4u2 − u2

5x2 + · · · − 2u6x1u5 − u2
6x2 �= 0

−u6x3 + u6x2 + x5u4 − x5u3 �= 0

u6x5u4 − x5u3u6 − u2
6x3 + u2

6x2 �= 0.

Example 4 This example uses the same theorem as in Example 2 in Section 2
which stated that the altitudes of a triangle all meet in a single point (called
the orthocenter). As we saw in that example our hypotheses and conclusion
equations are given by:
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h1 = x2u2 − x1u3 = 0
h2 = x4(u2 − u1) − u3(x3 − u1) = 0
h3 = x2u3 + u2(x1 − u1) = 0
h4 = x4u3 + x3(u2 − u1) = 0
h5 = (x2 − x5)(x1 − u1) − x2(x1 − u2) = 0
h6 = x6x3 − x4u2 = 0
g = x5 − x6 = 0.

When entered into Maple we get the following calculations:

> S1:=[x2*u2-x1*u3,x4*(u2-u1)-u3*(x3-u1),
x2*u3+u2*(x1u1),x4*u3+x3*(u2-u1),
(x2-x5)*(x1-u1)-x2*(x1-u2),x6*x3-x4*u2]:
> g:=x5-x6:
> C:=ExtCharSet(S1,[x1,x2,x3,x4,x5,x6]);

C = [−u2 2u1 + u2 2x1 + u3 2x1 , u2 3x2 + u2x2u3 2 − u2 2u1u3 , x3u2 2−
2u2x3u1+x3u1 2+u3 2x3−u3 2u1 , u2 3x4−3u2 2u1x4+u2 2u1u3+3u2u1 2x4−
2u2u1 2u3 − u1 3x4 + u1 3u3 + u3 2u2x4 − u3 2u1x4 , u3 2u1x5u2 + u3u1u2 3−
u3u1 2u2 2, u3u1u2 3 − 2u3u1 2u2 2 + u3u1 3u2 + u2x6u1u3 2 − u3 2u1 2x6 ]

> SuccessivePrem(g,C,[x1,x2,x3,x4,x5,x6]);
0

The degenerate conditions are:

u2
2 + u2

3 �= 0

u3
2 + u2u

2
3 �= 0

u2
2 − 2u2u1 + u2

1 + u2
3 �= 0

u3
2 − 3u2

2u1 + 3u2u
2
1 − u3

1 + u2
3u2 − u2

3u1 �= 0

u2
3u1u2 �= 0

u2u1u
2
3 − u2

3u
2
1 �= 0.

Example 5 Here we prove the well known theorem due to Pappus. Let A,B,C
and A′, B′, C ′ be two sets of collinear points. Then let P = AB′ ∩ A′B,
Q = AC ′ ∩ A′C and finally let R = BC ′ ∩ B′C. Then the points P,Q,R are
collinear.

For our translation, let A = (0, 0), B = (u1, 0), C = (u2, 0), A′ = (u3, u4), B′ =
(u5, u6), C ′ = (u7, x1), P = (x2, x3), Q = (x4, x5), R = (x6, x7). Note that
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the point C ′ is partially dependent on our choices of A,B,A′, B′, so one of its
coordinates is x1. Then we have the following seven hypotheses and conclusion:

h1 = (u6 − u4)(u7 − u3) − (x1 − u4)(u5 − u3)
h2 = x3u5 − u6x2

h3 = u4(x2 − u1) − x3(u3 − u1)
h4 = x5u7 − x1x4

h5 = x5(u3 − u2) − u4(x4 − u2)
h6 = x7(u7 − u1) − x1(x6 − u1)
h7 = u6(x6 − u2) − x7(u5 − u2)
g = (x5 − x3)(x6 − x2) − (x7 − x3)(x4 − x2).

In Maple, this translation yields the following:

> pappus:=[(u6-u4)*(u7-u3)-(x1-u4)*(u5-u3),x3*u5-u6*x2,u4*(x2-u1)-
x3*(u3-u1),
x5*u7-x1*x4,x5*(u3-u2)-u4*(x4-u2),x7*(u7-u1)-x1*(x6-u1),u6*(x6-u2)-
x7*(u5-u2)]:
> c:=(x5-x3)*(x6-x2)-(x7-x3)*(x4-x2):
> C:=ExtCharSet(pappus,[x1,x2,x3,x4,x5,x6,x7]);

C = [(u6 − u4 ) (u7 − u3 ) − (x1 − u4 ) (u5 − u3 ) . . .]

> SuccessivePrem(c,C,[x1,x2,x3,x4,x5,x6,x7]);
0

The (extremely large) set C has been omitted for space reason. Here the
degenerate conditions are:

−u5 + u3 �= 0
u5u4 − u6u3 + u6u1 �= 0

u2
5u4 − u5u6u3 + u5u6u1 �= 0

−u5u7u4 + u6u7u3 − u6u7u2 − u6u
2
3 + u6u3u2 + u4u7u2 + u4u5u3 − u4u5u2 �= 0

u2
7u4u

2
5 − u5u

2
7u6u3 + · · · + u2

7u6u
2
3 − u3u

2
7u6u3 �= 0

u5u6u3 − u6u7u3 + · · · + u4u5u2 − u6u3u2 �= 0.

Example 6 Finally, we include an example in which we discovered an error in
Chou’s proof of Simson’s Theorem as presented in [1]. Chou states the theorem
as follows: Let D be a point on the circumscribed circle (with center O) of
triangle ABC. From D draw three perpendiculars to the sides of the triangle,
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BC,CA,AB. Let E,F,G be the three feet respectively. Then E,F,G are
collinear.

Chou translates the theorem as follows: let A = (0, 0), B = (u1, 0), C =
(u2, u3), O = (x2, x1),D = (x3, x4), E = (x5, x4), F = (x7, x6), G = (x3, 0).
The hypotheses are:

h1 = 2u2x2 + 2u3x1 − u2
3 − u2

2 = 0 OA ≡ OC

h2 = 2u1x2 − u2
1 = 0 OA ≡ OB

h3 = −x2
3 + 2x2x3 + 2u4x1 − u2

4 = 0 OA ≡ OD

h4 = u3x5 + (−u2 + u1)x4 − u1u3 = 0 E,B,C collinear

h5 = (u2 − u1)x5 + u3x4 + (−u2 + u1)x3 − u3u4 DE ⊥ BC

h6 = u3x7 − u2x6 = 0 F,A,C collinear

h7 = u2x7 + u3x6 − u2x3 − u3u4 = 0 DF ⊥ AC

and the conclusion is given by g = x4x7 + (−x5 + x3)x6 − x3x4 = 0. Chou
then triangulates these hypotheses yielding the irreducible ascending chain:

f1 = 4u1u3x1 − 2u1u
2
3 − 2u1u

2
2 + 2u2

1u2 = 0

f2 = 2u1x2 − u2
1 = 0

f3 = −x2
3 + 2x2x3 + 2u4x1 − u2

4 = 0

f4 = (−u2
3 − u2

2 + 2u1u2 − u2
1)x4 + (u2 − u1)u3x3 + u2

3u4 + (−u1u2 + u2
1)u3 = 0

f5 = u3x5 + (−u2 + u1)x4 − u1u3 = 0

f6 = (−u2
3 − u2

2)x6 + u2u3x3 + u2
3u4 = 0

f7 = u2x7 + u3x6 − u2x3 − u3u4 = 0.

However, it is easy to verify using Maple that successive pseudodivision on this
set of equations does not yield a remainder of zero, as it should. We believe
that Chou’s error lies in his translation of the problem. His construction of
the point D = (x3, u4) is incorrect. If one constructs each point of the triangle
ABC in succession, then we are left in a serious difficulty in constructing
D. The coordinates for D are only partially restricted by our choices for the
coordinates of A,B and C. In particular, we must have that x3 doesn’t force
D to lie beyond our circle. Hence, x3 cannot really be completely determined
from the previous points.

Instead, we translated the theorem as follows: Let A,C,B,D be four point on
a circle centered at O. From D draw three perpendiculars to the sides of the
triangle ABC: BC,CA,AB. Let E,F,G be the three feet respectively. Then
E,F,G are collinear.

Our version is clearly equivalent, and yields the following translation: A =
(0, 0), O = (u1, 0), B = (x1, u2), C = (x2, u3),D = (x3, u4), E = (x4, x5), F =
(x6, x7), G = (x8, x9). This gives us the following nine hypotheses:



TMME, vol.3,no.1,p.49

h1 = u2
1 − (x1 − u1)2 − u2

2 = 0 AO ≡ BO

h2 = u2
1 − (x2 − u1)2 − u2

3 = 0 AO ≡ CO

h3 = u2
1 − (x3 − u1)2 − u2

4 = 0 AO ≡ DO

h4 = −x4u2 + x5x1 = 0 E,A,B collinear
h5 = x6(u3 − x7) + x7(x6 − x2) = 0 A,F,C collinear
h6 = (x1 − x8)(x9 − u3) − (u2 − x9)(x8 − x2) = 0 B,G,C collinear

h7 = −(x3 − x4)x1 − (u4 − x5)u2 = 0 DE ⊥ AB

h8 = (x3 − x6)x2 + (u4 − x7)u3 = 0 DF ⊥ AC

h9 = (x3 − x8)(x1 − x1) + (u4 − x9)(u2 − u3) = 0 DG ⊥ BC

and the conclusion is given by g = (x4 −x6)(x7 −x9)− (x5−x7)(x6 −x8) = 0.
Using these equations, we get the extended characteristic set:

> Simsons:=[u1^2-(x1-u1)^2-u2^2,u1^2-(x2-u1)^2-u3^2,u1^2-
(x3-u1)^2-u4^2,-x4*u2+x5*x1,x6*(u3-x7)+x7*(x6-x2),(x1-x8)*
(x9-u3)-(u2-x9)*(x8-x2),(x3-x4)*(-x1)+(u4-x5)*(-u2),(x3-x6)*x2
+(u4-x7)*u3,(x3-x8)*(x1-x2)+(u4-x9)*(u2-u3)]:
> SimsonConclusion:=(x4-x6)*(x7-x9)-(x5-x7)*(x6-x8):
> C:=ExtCharSet(Simsons,[x1,x2,x3,x4,x5,x6,x7,x8,x9]));

C=[u12−(x1 − u1 )2−u2 2, u1 2−(x2 − u1 )2−u3 2, u1 2−(x3 − u1 )2−u4 2, x1u2u4+
2x1u1x3 −2x1u1x4 −u2 2x3 ,−x1u2 2u4 −2u2x1u1x3 +u2 3x3 +4u1 2x5x1 −
2u1x5u2 2,
x2u3u4 + 2x2u1x3 − 2x2u1x6 − u3 2x3 , x2u3 2u4 + 2u3x2u1x3 − u3 3x3 −
4u1 2x7x2 +2u1x7u3 2,−2x1 x2x3 +2x1x8x2 +x1u2u4 −x1u3u4 −x2u2u4 +
x2u3u4 − x1u3u2 + x1u3 2 + 2x8u3u2 + u2 2x2 − u2x2u3 + 2x2u1x3 −
2x2u1x8 −u3 2x3 +2x1u1x3 −2x1u1x8 −u2 2x3 ,−4x2u1 2u2 +2u2x1u1x3 −
2u3x2u1x3−2x1x2x3u2+2x1 x2x3u3−2x1u2u4u3+2x2u2u4u3+2x2u1x3u2−
2x1u1x3u3 + 2u3u2x1x9 − 2u3u2x9x2 − 2x2u1x1u3 +
2x1u1u2x2 + x1u2 2u4 − u2 3x3 + u3 3x3 − x2u3 2u4 − x1u3 3 + u2 3x2 +
x1u3 2u4−x2u2 2u4−x1u3u2 2−2x1u3 2u2+u2x2u3 2+2u2 2x2u3−u3 2x3u2+
u2 2x3u3 + 4x2u1 2x9 + 2u3 2x1x9 + 2u3 2u1u2 − 2u3 2u1x9 − 4x1u1 2x9 +
4x1u1 2u3 − 2u2 2x9x2 + 2u2 2u1x9 − 2u2 2u1u3 ]

And then under successive pseudodivision we get:

> SuccessivePrem(SimsonConclusion,C,[x1,x2,x3,x4,x5,x6,x7,x8,x9]);
0
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Abstract: Several studies of mathematical giftedness conducted in the past two decades reveal 
the importance of creation of learning and teaching environment favourable to the identification 
and nurturing mathematically talented students. Based on psychological, methodological and 
didactical models created by Krutetskii (1976), Shchedrovtiskii (1968), Brousseau (1997) and 
Sierpinska (1994), we have developed our challenging situation approach. During 7 years of 
field study in the elementary K-6 classroom, we collected sufficient amount of data that 
demonstrate how these challenging situations help to discover and to boost mathematical talent 
in very young children keeping and increasing their interest towards more advanced 
mathematics curriculum. In this article, we are going to present our model and illustrate how it 
works in the mixed-ability classroom. We will also discuss different roles that teachers and 
students might play in this kind of environment and how each side could benefit from it.            
 
1. Introduction 
 
The biographers of famous mathematicians often refer to the evidence of a particular nature of 
their talent which can be detected already at a very young age. One can ask where this deep 
insight in mathematics comes from. How can teachers discover their talent and nurture it? And, 
as a result of this discovery, what kind of a classroom environment would be advantageous for 
these children? What can be done by teachers to help these children to realise their potential?  
 
From their very early pre-school and school years, mathematically gifted children are active and 
curious in their learning, persistent and innovative in their efforts, flexible and fast in grasping 
complex and abstract mathematical concepts, and thus represent a unique human intellectual 
resource for our society, which we have no right to waste or to loose.   
 
Numerous studies of mathematical giftedness conducted during past decades provide us with 
different lists of characteristics of gifted children and suggest various models of identification 
and fostering them in and beyond mathematics classroom.  
 
Long time experimentation with schoolchildren and observations made by teachers allowed 
Krutetskii (1976) to construct a list of characteristics of mental activity have shown by 
mathematically gifted children in a comparatively early age : 
§ An ability to generalize mathematical material (an ability to discover the general in what is 

externally different or isolated) 
§ A flexibility of mental processes (an ability to switch rapidly from one operation to another, 

from one train of thought to another) 
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§ A striving to find the easiest, clearest, and most economical ways to solve problems 
§ An ability chiefly to remember generalized relations, reasoning schemas, and methods of 

solving type-problems 
§ Curtailment of the reasoning processes, a shortening of its individual links 
§ Formation of elementary forms of a particular 'mathematical' perception of the environment - 

as if many facts and phenomena were refracted through prism of mathematical relationships. 
 
Miller (1990) mentions some other characteristics that may give important clues in discovering 
high mathematical talent: 
 
q Awareness and curiosity about numerical information 
q Quickness in learning, understanding and applying mathematical ideas 
q High ability to think and work abstractly 
q Ability to see mathematical patterns and relationships 
q Ability to think and work abstractly in flexible, creative way 
q Ability to transfer learning to new untaught mathematical situations 
 
Another model focusing on giftedness as "intersection" of various factors has been developed by 
Renzulli (1977). By means of this model, Ridge and Renzulli (1981) define giftedness as an 
interaction among three basic clusters of human traits: above average general abilities, high 
levels of task commitment, and high levels of creativity. Upon their definition, gifted and 
talented children are   those possessing or capable of developing this composite set of traits and 
applying them to any potentially valuable area of human performance.   
 
In a similar way, Mingus and Grassl (1999) focused their study on students who display a 
combination of willingness to work hard, natural mathematical ability and / or creativity. 
The authors consider natural mathematical ability, which might be represented by several 
characteristics discovered by Krutetskii (see above) as well as non-mathematical ones as 
willingness to work hard (that means being focused, committed, energetic, persistent, 
confident, and able to withstand stress and distraction) or high creativity (i.e. capacity of 
divergent thinking and of combining the experience and skills from seemingly disparate domains 
to synthesise new products or ideas). The authors labelled students possessing a high degree of 
mathematical ability, creativity, and willingness as "truly gifted". 
 
Reflecting on our classroom observations of 4-5-year old children using educational software 
with some mathematical tasks we became interested in studying deeply   mathematically 
precocious children  
 
We noticed that some of them always choose more challenging activities, go through all the 
levels up to the highest ones, understand each activity almost without any explanation from the 
teacher, demonstrate very systematic approach to the problem, have very sharp selective memory 
of important facts, details, methods, they are very creative in their work with “open-ended” 
problems (such as creating puzzles and patterns), and often share their discoveries with their 
peers being very proud of themselves.   
For example, working with counting tasks such as finding a domino piece with number of dots 
corresponding to a show number from 6 to 9, some children count all the dots on almost every 
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card using their fingers, others choose first one which contains more  than 5 dots (for example, 
they may choose 8), then again, most of them count dots and if the result is not good, they jump 
randomly to another with similar number of dots. There is also a small group of children that try 
to spot a card with less than 8 dots on it.  Finally, one child clicks immediately on card with 7 
dots, saying "I know it's this one because 5 and 2 make 7".    
 
Analyzing children's strategies, we could see their different approach to numbers. Some children 
see cards as pictures with objects to count and they use the same strategies as they were 
manipulative objects (like toys). Other children try to use a different, more complex approach – 
thinking globally (I see it's five here, I know that 7 is less than 8) and abstractly one (number as 
an abstract characteristic of a set of dots) along with using a number of shortcuts which helped 
them to increase efficiency of their mathematical work.  
 
Our next example is a comparison task with two cards shown to the child: one with a certain 
number of dots arranged within an array 3x4 (12 dots as maximum) and another one with a 
number 1-12 written on it as a digit. The child has to decide whether two cards present the same 
numbers or not. For the most of 5 year old children, this is a relatively simple task but adding the 
time limit does make activity extremely challenging for children whose strategy of counting is 
limited by "finger pointing". The best winning strategy was found by children who used 
estimation (I know that I have much more dots here than number 3 on another side) and counting 
with eyes (without fingers). Some children were giving surprisingly deep comments like "I know 
this number of dots is 12 because I see 4 row of 3 dots which make 12" which demonstrate 
precocious insight into numbers and number relationships.         
 
Some tasks give children an opportunity to create some patterns asking to construct a personage 
following certain pattern, or to create their own personage. This second option was seeing by 
many children more as an art activity, although our observation showed that some 4 year old 
children create personages upon more complex pattern of mathematical nature (like color, 
background, part of cloths). One activity presented a grid 6x6 with a set of different puzzles to 
reproduce (pictures are given as a model) or to create their own puzzle and many young children 
(4-5 year old) did it just as drawing another picture.  
 
Again, we could notice few children building spontaneously more mathematically abstract 
tessellations using complex, sometimes symmetrical configurations of shapes which would be 
more expected from older children already familiar with geometric transformations like 
reflection or translation.  Another activity presented a factory for making cookies with chocolate 
chips on them. One mode of this activity asks child to put a number of chips on a cookie 
corresponding to a randomly given number (1 to 10). Another mode prompts to create a cookie 
with an arbitrary chosen number of chips. Giving free choice to children it allowed us to observe 
some of them making cookies with consecutively chosen numbers from one to ten repeated in 
two rows. And even more, they were so fascinated with their result so they started to repeat the 
same pattern more and more without any visible fatigue, although it was a routine repetition of 
the same procedure. It seems that here we have an example of a mathematical creativity of a 
particular kind: seeing beauty of mathematical structure in the same repeating pattern.  
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Equalizing task is a complex task for very young children. For example, an activity of feeding 
rabbits with carrots shows some rabbits "waiting for a food", on another – an empty field in 
which a child has to put carrots keeping in mind that each rabbit would get one carrot. In fact, the 
child has to control two conditions at the same time to ensure that number of rabbits is equal to 
the number of carrots. Our observation shows that some children decide to arrange carrots in a 
certain geometric pattern (row, stair, or array) helping themselves to keep control of conditions 
showing thus more complex way of thinking.  
 
Finally, working on ordering tasks like one of arranging 7 dolls "matreshka" in increasing or 
decreasing order by size, some children proceed rather by trial and error, others do it more 
systematically (looking at neighbors and switching if necessary). Few of them do it in a very 
systematical way: starting with putting a smallest/biggest one first, then going to the next 
smallest/biggest and so on. This strategy allows them to simplify the process of problem solving, 
and at the same time, shows their ability to apply more complex thinking.     
               
Reflecting on these examples, one can ask: Why do these children demonstrate such unusual 
behavior at an early age?  Is it simply related to the attractiveness of computer games on the 
screen, or does it reflect a much more complex structure of their mind?  Our further study of 
these children’s strategies while solving “purely” mathematical tasks led us to believe that, 
indeed, the latter might be the case and that it is worth while searching for a specific structure of 
the mathematically able mind.  
 
Our further questions were: How to identify “pure” mathematical components of the children's 
learning activity?  What kind of cognitive structure enables a child to act like a mathematician?  
And, from the point of view of practicing teacher, we asked:  How to organize children's 
mathematical activities so that they were motivated to act this way? 
 
In the following section, we will analyze several theories that form our theoretical framework 
enabling us to analyze problems that help to boost mathematical talent in young children.  
 
 
 
2. Theoretical background  
 
Kulm (1990) remarks that since so much of school mathematics in the past has been focused on 
practised skills, the completion of a large number of exercises in a fixed time period has been 
accepted not only as a measure of mastery, but as an indication of giftedness and potential for 
doing advanced work. On the other hand, higher order thinking in mathematics is by very nature 
complex and multifaceted, requiring reflection, planning, and consideration of alternative 
strategies. Only the broadest limits on time for completion make sense on a test purposing to 
assess this type of thinking.       
       
Burjan's (1991) recommendation to use 
 
♦ Open-ended investigations and open-response problems rather than multiple-choice 
♦ Problems allowing several different approaches 
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♦ Non-standard tasks rather than standard ones 
♦ Tasks focusing on high-order-abilities rather than lower- level-skills 
♦ Complex tasks requiring the use of several "pieces of mathematical knowledge" from 

different topics) rather than specific ones (based on one particular fact or technique) 
♦ Knowledge- independent tasks rather than knowledge-based one 
 
goes in the same direction.    
 
Unfortunately, as it was mentioned by Greenes (1981), the  bulk of our mathematics program is 
devoted to the development of computational skills and we tend to assess students' ability  or 
capability based on successful performance of these computational algorithms (so called "good 
exercise doers") and have little opportunity to observe student's high order reasoning skills. 
 
Sometimes, even a very banal math problem might deliver a clear message about distinguishing 
the gifted student from the good student. Greenes analyses a very simple word problem (given to 
5th Grade children): 
 
Mrs. Johnson travelled 360 km in 6 hours. How many kilometres did she travel each hour? 
 
One bright student surprised the teacher by having difficulty to solve this easy problem. Finally, 
the teacher realised that the student has discovered that nothing was said about the same number 
of kilometres travelled each day. This example demonstrates the child's ability to detect 
ambiguities in the problem, which indicate him/her as mathematically gifted student.        
 
That is why, in a later work Greenes (1997) insists on the importance of presenting situations in 
which students can demonstrate their talents: "One vehicle for both challenging students and 
encouraging them to reveal their talents is to use of rich problems and projects". Greenes 
mentions that such problems accomplish the following: 
 

♦ Integrate the disciplines (application of concepts, skills, and strategies from the various 
sub-discipline of mathematics or from other content areas (including non-academic ones) 

♦ Are open to interpretation or solution (open-beginning and open-ended problems) 
♦ Require the formation of generalisations (recognition of common structures as basic to 

analogue  reasoning) 
♦ Demand the use of multiple reasoning methods (inductive, deductive, spatial, proportional, 

probabilistic, and analogue)   
♦ Stimulate the formulation of extension questions 
♦ Offer opportunities for firsthand inquiry  (explore real-word problems, perform 

experiments and conduct investigations and surveys) 
♦ Have social impact (well-being or safety of members of the community) 
♦ Necessitate interaction with others 

 
Many authors point at teacher's particular role in the process of identification of mathematically 
able children. Kennard (1998) affirms that the nature of the teacher's role is critical in terms of 
facilitating pupil’s exploration of challenging material. Hence, the identification of very able 
pupils becomes inextricably linked with both the provision of challenging material and forms of 
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teacher-pupil interaction capable of revealing key ma thematical abilities. The author votes for 
interactive and continuous model for providing identification through challenge which integrates 
the following strands: 
 

♦ The interpretative framework 
♦ The selection of appropriately challenging mathematical materia l 
♦ The forms of interaction between teachers and pupils which provide opportunities for 

mathematical characteristics to be recognised and promoted 
♦ The continuous provision of opportunities for mathematically able children to respond to 

challenging material 
 
In Kennard's case study based on this model and Krutetskii's categories the identification was 
conducted by the so-called teacher-researcher in the classroom environment where the pupils are 
being taught as well as observed. The questioning approach was used in order to reveal aspects 
of pupils' mathematical approaches and understanding. 
 
Ridge, Renzulli (1981) suggest three types of activities which are important for nurtur ing 
mathematical talents: 
 
• General exploratory activities to stimulate interest in specific subject areas: experiences that 

would demonstrate  various procedures in the professional or scientific world (through 
children's museums and science centres)  in which students would get an opportunity to 
choose, explore, and experiment without the treat of having to prepare report or provide any 
sort of formal recapitulation. 

• Group training activities to develop processes related to the areas of interest developed 
through general activities. The aim of these activities is to enable students to deal more 
effectively with content through the power of mind. Typical for these thinking and feeling 
processes are critical thinking, problem solving, reflective thinking, inquiry training, 
divergent thinking, sensitivity training, awareness development, and creative or productive 
thinking. Problem solving applies   to 

1. The application of mathematics to the solution of problems in other fields 
2. The solution of puzzles or logically oriented problems 
3. The solution of problems requiring specific mathematical content and processes. 

• Individual and small-group investigation of real problems. As giftedness becomes manifest 
as result of student's willingness to go engage in more complex, self- initiated investigative 
activities, the essence of this type of activities is that students become problem finders as 
well as problem solvers and that they investigate a real problem using methods of inquiry 
appropriate to the nature of the problem (p.231).  

 
For his study, Krutetskii (1976) developed several sets of challenging mathematical problems 
and conducted interviews with each of chosen students offering an original way to study 
mathematical abilities within appropriate mathematical activity, which, taken in school 
instruction, consists of solving various kind of problems in the broad sense of word, including 
problems on proof, calculation, transformation, and construction. He analyses seven principles of 
a choice of mathematical problems suitable to discover mathematically able student: 
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1. The problems should represent about equally the different parts of school: mathematics-
arithmetic, algebra, and geometry 

2. Experimental problems should be of various degrees of difficulty 
3. They ought to fulfil their direct purpose: solving them should help to clarify the structure of 

abilities 
4. The problems  should be oriented not so much toward a quantitative expression of the 

phenomenon being studied as toward revealing its qualitative features (process versus result) 
5. We should try to choose problem the solving of which is primarily based on abilities, not on 

the knowledge, habits, or skills 
6. The problems have to allow to determine how rapidly a pupil progressed in solving problems 

of a certain type, how well he achieved skill in solving these problems, and what were his 
maximum possibilities in this regard (instruction versus diagnostic) 

7. The problems are supposed to allow some quintile analysis as well as qualitative one. 
 
Analyzing different children’s approaches to the problems, Krutetskii (1976) provides us with 
several key elements of mathematical ability showing how these challenging problems help us to 
recognize  different children’s approaches to mathematics. In a regular classroom, we often teach 
students direct methods of solving mathematical problems. Then, in order to test their  
knowledge, we give them the same kind of problem and expect them to (re-)produce the same 
solution. 
 
This might lead to several paradoxes, such as Brousseau's (1997) paradox of devolution of 
situations when the teacher "is induced to tell the student how to solve the given problem or what 
answer to give, the student, having had neither to make a choice nor to try out any methods nor 
to modify her own knowledge or beliefs, will not give the expected evidence of the desired 
acquisition." Brousseau thus claims that everything the  teacher undertakes in order to make the 
student produce the behaviors that she expects tends to deprive this student of the necessary 
conditions for understanding and learning of the target notion. 
 
However, several studies point at the fact that, in order to access a higher level of knowledge or 
understanding, a person has to be able to proceed at once with an integration and reorganization 
(of previous knowledge). Sierpinska (1994) sees the need of "reorganizations" as one of the most 
serious problems in education. But we can not just tell the students "how to reorganize" their 
previous understanding, we can not tell them what to change and how to make shifts in focus or 
to generalize because we would have to do this in terms of knowledge they have not acquired 
yet. 
 
Looking for new methodological approaches to teaching and learning, Shchedrovitskii (1968) 
gives striking examples of other paradoxes when we as educators want our children to master 
some kind of action by teaching it directly giving children tasks which are identical with this 
action. But classroom practice shows that the children not only do not learn actions that go 
beyond the tasks, they do not even learn the actions that we teach them within the tasks. 
 
In our challenging situation model, we propose an active everyday use of open-ended 
mathematical activities that would engage children into a meaningful process of exploring, 
questioning, investigating, communicating and reflecting on mathematical structures and 
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relationships. This model represents rather larger vision of mathematical giftedness that 
correlates with Sheffield’s notion of a mathematical promise (Sheffield, 1999) and thus aims to 
give pleasure to more children to think and to act in a mathematically meaningful way.  
 
 
3. Our study: general context   
 
Our experiment reflects 7 years of classroom activities and observations with Grades K-6 
children while teaching challenging mathematics courses. It has been conducted at one Montreal 
located private bilingual elementary school with French and English both taught as a first 
language. Along with a strong linguistic program (with a third language, Spanish or Italian), the 
school insists on offering enriched programs in all subjects including mathematics to all its 
students independently of their abilities and academic performance.   
 
The school thus promotes education as a fundamental value by instilling the will to learn while 
developing the following intellectual aptitudes: 

− being able to analyse and synthesize 
− critical thinking  
− art of learning 

 
The mathematics curriculum is composed of a solid basic course  whose level is almost a year 
ahead  in comparison to the program of the Quebec's Ministry of Education (Programme de 
formation de l'école québécoise, 2001) and an enrichment (deeper exploration of difficult 
concepts and  topics: logic, fractions, geometry, numbers as well as a strong emphasis on  
problem solving strategies). The active and intensive use of "Challenging mathematics" text-
books (Lyons, Lyons) along with carefully chosen additional materials helps us create a learning 
environment in which the students participate in decisions about their learning in order to grow 
and progress at their own pace. Each child competes with himself (herself) and is encouraged to 
surpass himself (herself).  
 
Since the school doesn't do any selection of students for the enriched mathematics courses, all its 
students (total of 238) participated in the experiment. With some of them, this author started to 
work at their age of 3-5, as a computer teacher.  There were many students that we could observe 
during a long period of time (for example some of Grade 6 children in 2002-2003 were our 
students since Grade 1, some of them since the age of 3-5). During this period, some children 
had to leave the school, some of them joined the class later (in the same Grade 6, there were 2 
students who started in our school in Grade 6).  In terms of abilities, we can characterise our 
classroom as a mixed ability classroom with a significant variation in the level of achievement.  
 
The enriched course aimed to foster children's logical reasoning and problem solving skills in all 
children. It is based on challenging situations presented in the 'Challenging Mathematics' 
textbook collection (Défi mathématique (Lyons, Lyons)) along with other different computer and 
printed resources (LOGO, Cabri, Game of Life, Internet, and so on) as well as situations created 
by the author. It included several topics earlier than in the regular curriculum; some topics were 
presented in more depth than in the regular curriculum; various topics which are not included in 
the regular curriculum. Such curriculum thus requires a mobilising of all the inner resources of 
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the child: her motivation, hard mental work, curiosity, perseverance, thinking ability. Since all 
our students are exposed to this enriched curriculum, the differences between them become more 
evident.  
 
In our further more detailed analysis, we will make explicit the role of the challenging situation 
itself showing that without the context of challenging situation, such opportunity for students and 
teachers would be lost.  
 
 
4. Challenging tasks as powerful teaching and learning tools helping to discover and boost 
mathematical talent 
 
The story of Gauss solving a routine problem of calculating the sum of the first hundred natural 
numbers is one of the well known examples of this kind. While all other children were 
desperately trying to add terms one by one, Gauss impressed the teacher by finding a quick and 
easy way to do it regrouping the terms in a special way (see, for example, Dunham, 1990).  
 
But one can ask: what were the characteristics of the classroom situation, which allowed the  
gifted student to demonstrate his talent in mathematics?  
 
The same story says that the teacher had chosen the task for its accessibility to all students (the 
task is routine) and the probably very long time that it would take the students to solve; he hoped 
to thus keep them all quiet and busy for a good while. What he didn't expect that one of the 
students would turn the routine task into a challenging one of finding a quick way of solving an 
otherwise tedious and long computational exercise. The situation was not planned to reveal a 
mathematical talent, yet it did so "spontaneously". The situation became a challenging one by 
chance.  
 
In many similar cases, mathematical talent would not be identified. We could say that using 
routine drill tasks involving numerous standard algorithms is not, in general, offering a good 
opportunity to identify and nurture mathematical talents.        
 
Sheffield (1999) calls such routine tasks "one dimensional". As an example, she cites a class of 
three-four graders reviewing addition of two-digit numbers with regrouping. Children are asked 
to complete a page of exercises such as: 57+45, 48+68, 59+37. As it usually happens with 
brighter and faster students, they finish all exercises before their classmates. So the teacher 
would "challenge" them with 3- or 4-digit additions. Although the calculations become longer 
and time consuming, the tasks themselves are not more complex or more mathematically 
interesting.  
 
As a better didactical solution for these children, Sheffield suggests the use of meaningful tasks 
like one of finding three consecutive integers with a sum of 162: 

Students would continue to get the practice of adding two-digit numbers with regrouping, 
but they also would have the opportunity to make interesting discoveries. Students who 
are challenged to find the answer in as many ways as possible, to pose related questions, 
to investigate interesting patterns, to make and evaluate hypotheses about their 
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observations, and to communicate their findings to the ir peers, teachers, and others will 
get plenty of practice adding two digit numbers, but they will also have the chance to do 
some real mathematics. (Sheffield, 1999: 47)    

 
By giving children a challenging task we would expect them to make efforts in understanding a 
problem, to search for an efficient strategy of solving it, to find appropriate solutions and to 
make necessary generalizations. 
 
Following examples illustrate three very different approaches to the same problem of finding a 
number of handshakes that we obtain when n people shake hands of each other used by 
mathematically talented children.  
 
Marc-Etienne (10) organized an experience with his classmates, considering systematically the 
cases n=2, n=3, etc. Then he made then necessary generalizations.  Here is a transcript of his 
report in which we could observe several steps: 

Step1: two circles connected with an arrow representing two people - one handshake. He 
wrote beside the picture '=1'. 

 

 
 

Step 2: three circles forming a triangle connected with three arrows representing three 
people - three handshakes. He wrote beside the picture '=3' 
 

 
 

Step 3: four circles forming a square connected with six arrows representing four people - 
six handshakes. He wrote aside: '3+2+1=6'  commenting:    

'1 after another, they leave'   
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Step 4: Five circles form a 'domino-5-dots disposition’ connected with only six arrows 

(some arrows are missing). However, he wrote '4+3+2+1=10' continuing the same pattern. 
 

 

 
 

Step 5: Six circles disposed in two rows (by three), no arrows. He wrote '5+4+3+2+1=15' 
 

 
 

Step 6: Seven circles disposed in two rows (three+four), no arrows. He wrote 
'6+5+4+3+2+1=21' 
 

 
 

Step 7: Eight circles disposed in two rows (by four), no arrows. He wrote 
'7+6+5+4+3+2+1=28' 
 

 
 
He concluded his generalization with following sentence that he called 'Formule': 'On calcule 
toujours de la manière que le prochain chiffre soit -1 '2+1' et que chaque chiffre qui précède soit 
+1'  
(We calculate always in the same way in order that each next number in our sum would be 1 
less. ‘2+1’ and each previous number would be +1’).  
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Charlotte (10) used a particular case of 5 people making diagrams doing systematic search for all 
possible combinations. 
 

 
 

 
Christopher (10) was very short in his presentation writing just one single sentence:  
 
1+2+3+4+5+7+8=36 
 
He provided it with the oral explanation that if we have a group of people, each person has to 
shake hands to all people who came before, so with 2 people we would have 1 handshake, with 3 
people - 2 more handshakes (1+2), and so on.  
 
We can see that investigation of initial situation of ‘handshakes’ allowed children to explore the 
problem, to look for patterns and to make important mathematical generalizations. Moreover, 
with a simple boosting question what would be the number of handshakes with 101 people, the 
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class arrived to the same problem tha t Gauss had to deal with but posed in different, challenging 
way. Thus, a further investigation might be provoked here in a more natural way. 
 
And, from the point of view of practicing teacher, we can better understand how to organize 
children's mathematical activities so that they were motivated to act this way.  
 
 
5. From challenging tasks to challenging curriculum: Example of kindergarten enrichment 
course  
 
There are two basic approaches to design a mathematics curriculum for 5-6 year old children; 
one can be labelled as traditional and the other as innovative. The former is based on counting, 
ordering, classifying, introduces basic numbers, operations (addition and subtraction), relations 
(more, less, bigger, smaller, greater) and shapes. The latter puts more emphasis on learning while 
allowing children to play using manipulatives, colouring, arts and crafts, games with numbers 
and shapes. During the past decade, many creative teachers have been trying to use the best ideas 
from each of the two approaches also adding reasoning activities to the mathematics curriculum. 
   
In our school, we used a traditional approach based on Quebec's Passeport Mathématique Grade 
1 textbook along with a new French collection Spirale (Maths CP2) which represents the second, 
modern approach. However, even this combination doesn't provide our children with the material 
necessary for their mathematical development. There is still a gap between their level of ability 
and the requirements of the challenging curriculum that we use starting from Grade 1 (collection 
"Défi mathématique") and which is based on discovery, reasoning and understanding.  
  
In order to fill the gap, we developed an enriched course offered to all kindergarten students (we 
have 30-35 children every year). The course was given on a weekly basis (1 hour a week). We 
base our teaching on the challenging situations approach, developing activities that stimulate 
mathematical questioning and investigations along with reflective thinking.    
  
Each class starts with such questions as What did we do last time? What problem did we have to 
solve? What was our way to deal with the problem? What strategies did we use?, etc. This 
questioning aims to provoke reflection on the problems that children solved as well as on 
methods that they used. Without this reflection, rupture situation (in Shchedrovitskii's sense) 
would never arise, because a rupture is a break with previous knowledge, which needs to be 
brought to mind.   
  
At the same time, we would ask questions that would indicate children's understanding of 
underlying mathematical concepts or methods that we aim to introduce (using appropriate 
vocabulary and/or symbolism).  
  
During this initial discussion we usually try to bring in a new aspect which provides children 
with an opportunity to ask new questions, to look at the problem in a different way. Sometimes, 
we might ask them, simply, what do they think we should do today? 
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Thus we can pass to the new situation/new problem/new aspect of the old problem. We may do it 
by means of provoking questions, of interesting stories or introductory games. Following 
Shchedrovitskii and Brousseau, we try to avoid the teaching paradox by not providing children 
with direct description of the tasks or methods of solutions. We try also to keep their attention 
and motivate them.  
  
After this introductory stage, children begin investigating a problem using different 
manipulatives: cubes, geometrical blocs, counters, etc. They work alone or in groups. During the 
phase of investigation, the role of the teacher becomes more modest: we give children certain 
autonomy to get familiar with the problem, to choose a necessary material, organise their work 
environment, and choose an appropriate strategy.  
  
However, some work has to be done by the teacher to guide children through their actions. We 
have to make sure that the child understands the problem, the conditions that are given (rules of 
the game), the goal of the activity. As the child moves ahead, we shall verify his control of the 
situation: what she is doing now and what is the purpose of the action? (activating reflective 
action). We have to keep in mind that the exploration is used not only as a way to make the child 
do some actions but  also and foremost as an introduction to mathematical concepts or methods. 
  
Therefore, the teacher needs to be prepared to introduce the necessary mathematical vocabulary 
along with its mathematical meaning as well as mathematical methods of reasoning about the 
concepts and about the reasoning. In our experiment, we try to choose those mathematical 
aspects that are considered as difficult and are not normally included in the Kindergarten 
curriculum.      
  
For example, when we want to introduce an activity with patterns, we would organise a game. 
We would start to make a line 'boy, girl, boy, girl,..' children find it easy and are happy to 
discover a pattern. Then we would start a new 'pattern' : 'boy, girl, boy, girl, boy, boy'. Many 
children would protest, saying that the pattern is wrong. But perhaps, some of them would try to 
look for different pattern, like "glasses, no glasses, glasses, no glasses, …".  
 
As the game goes on, children get used to looking for familiar patterns. This is the time to 
challenge them more. For example, we may ask them, how many children would be in the line 
with the pattern 'boy, girl, boy, girl,…'. Since there were only 8 boys in the classroom, one child 
could make a hypothesis that it gives 8+8 children in the line. After such a line had been 
completed, teacher's silence could be broken by a child's voice - 'we can add one more child to 
the line – a girl in the beginning'. 
 
The course is built of various challenging situations that we create in order to give children an 
opportunity to take a different look at mathematical activities that they usually do, to question 
their knowledge about mathematics trying to discover hidden links between different objects, to 
discover structures and relationships between data, learn to reason mathematically based on 
logical inference and at the same leave some space to children's mathematical creativity. We use 
different didactical variables in order to create obstacles making children re-organise their 
knowledge and create new means in order to overcome the obstacle. We were also asking our 
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children to report on their investigations inviting them to communicate their discoveries by 
developing appropriate tools: diagrams, schemas, symbols, signs.  
 
 
6. Guidelines for the design of challenging situations  
 
We consider three kinds of challenging situations: 
♦ open-ended problems and investigations 
♦ routine work turned  into a challenge by the teacher 
♦ routine work turned  into a challenge by a student 

Let us consider these options in details: 
 
6.1 Open-ended problems and investigations  
 
As we look at the video protocol of interviews with 4-6 year old children conducted by Bednarz 
and Poirier (1987) within their study of number acquisition by young children, we see how the 
evidence of differences in organisation of mathematical work by very young children becomes 
explicit with the open character of given tasks.   
 
The video presents children's work on different tasks related to the concept of number: counting, 
formation of collections, order, conservation, comparison. Each task that in a regular classroom 
might be seen as ordinary, was given by authors in a very original challenging, dynamic, and 
open-ended way.  
   
The child was constantly invited to think about the process of her work (how did you do it?), to 
develop an efficient strategy, to re-organise, if necessary, her process, to co-ordinate her actions. 
Thus, the routine tasks became open-ended and a child was given an opportunity to become an 
organiser of her mathematical work. 
  
In our experiment, we also tried to make problems more open than they were usually presented 
to the students.  
 
For example, we can take a problem from one mathematical competition : 
 
---->  1  2  3  
 4  5  6  
 7  8  9  ---->  
 
In this table, we enter by 1 and exit by 9.   
One can only move horizontally or vertically, and it is impossible to step twice on one box. For 
example, moving through boxes 1-2-5-8-9, one gets a sum of 25. But not all the trajectories lead 
us to the number 25. Give all others 9 numbers.  
 
This problem was given to participants of the  regional final of the Championnat International 
des Jeux Mathématiques et Logiques in 2000  for Grade 4-5 children (10-11 year old) 
http://www.cijm.org/cijm.html. 
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We found that this problem would become more challenging for children if posed in a different 
way (open-ended) : 
 
Someone is going to visit a museum, which has 9 exhibition halls, arranged in a square 3x3.  The 
number of paintings in each hall is written in the box. What are all the possible numbers of 
paintings that could be seen by this visitor who does not like to be in one hall twice ? 
 
Not only do we hide the number of different ways, which makes this problem open, we give it to 
our Grade 1 students (6-7 year old). Every student had a task at his/her level (They will all be 
able to find at least a couple of solutions).  
 
Following example illustrate the work of Chantal (6):  
 

 
 
 
This example demonstrates how this open-ended situation helped the student to develop different 
abilities to organize systematic search and to keep tracks of her work   
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6.2 Routine work turned into a challenge by the teacher 
 
The recent Quebec's school curriculum puts emphasis on the importance of mastering basic 
number facts (like multiplication tables). This routine task can be made more challenging in 
many different ways. For example, one day we wrote on the board the 9-table operations: 
1 x 9 = 
2 x 9 = 
3 x 9 = ,   and so on. 
 
Grade 3 children said immediately that it is a very easy table, because there is a well known 
regularity (writing down first digits of the product in order from 0 to 9 and the second ones down 
from 9 to 0, we obtain all the multiples of 9: 09, 18, 27, and so on). Among the answers one 
could find that 6 x 9 = 54.  
 
So, the teacher comes to the board and writes 6 x 9 = 56 telling the story that when he was 
young, he had to memorise all answers, not just 'tricks', and he is sure that 6 x 9 = 56. The 
students are confused, but many of them started to think how to prove that their result (54 was 
the correct one).  
 
Many of them went to the board to share their ideas as well as other ways to obtain a 9-table. As 
a result of the lesson, the 9-table has appeared a couple of times on the board, children said it 
many times aloud, so they could memorise it and at the same time do it in a meaningful way 
questioning and proving their methods and ways of reasoning.         
 
 
6.3 Routine work turned into a challenge by a student 
 

When Grade 4 children are asked to represent 1/8 of a rectangle, they find it an easy and routine 
task. That's why we were surprised by Christopher's way to divide a rectangle in 64 boxes (8 
rows x 8 columns) and to colour 8 boxes randomly. He found that the task was not challenging 
enough and he wanted to make it more complicated.   

 
6.4 Transformation of challenge within one situation 
 
All three ways of creating of challenging situations are not isolated from one another. They can 
also be transformed one into another. 
 
For example, a kindergarten class (5-6 year old) is working on an open-ended problem: 
Amelie needs to build new houses for her farm animals. When one looks at the house from the 
sky, she sees that all of them have a roof in shape of a 'digit'. She has to build now a new house 
for her cows. What 'digit' do you suggest to use for the roof of this new house? 
 
Children used blocs in form of different solids. The activity aimed to make them to explore 
different solids, to make different constructions with them. There are, basically, two ways of 
making constructions: three-dimensional or two-dimensional establishing thus different spatial 
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relationships. For example, we may teach children to verify which shapes fit together recovering 
certain surface. The activity that we gave to our students didn't aim to teach any particular way of 
making constructions: many textbooks contain a lot of exercises asking children to reproduce 
one construction or another. Our situation was designed in order to help children get a certain 
'spatial feeling' trying different way to layout blocs. The main challenge in it was to organise a 
mathematically meaningful investigation within an 'ill-defined' problem.  
 
Some of them chose to imitate shapes of digits in the way we write them, others looked for 
different ways to create more 'economic' constructions taking care of geometric properties (like 
seeing if the blocs fit one to another) . Finally, there was a group of children who moved from 
the initially given situation of building a new 'house' and started to construct many digits 'writing' 
numbers (up to the "1000"). 
  
Soon, we could see that originally challenging and creative, the task became routine for many 
children. So, we decided to put some restrictions (new 'variables') that were sought as means to 
engage children in the investigation of a different problem in which we would be willing to 
construct house that has a "5"- shape and do this with a minimum of blocs. Thus, with the 
intervention of the teacher, a routine problem became a challenging one once again.  
 
This method of a 'sudden' change of didactic variable (Brousseau, 1997) is important in our study 
of relationship between child's organisation of the problem-solving and mathematical giftedness 
because it provokes a reflection (what is new?) and re-organisation of the whole process of 
thinking and acting (what do I need to modify?) and thus gives students a chance to show their 
full potential.   
 



                                                                                                            TMME, vol3, no.1, p.69 

 
 
In our experimental work with young children, we obtained a constant confirmation of the 
fruitfulness of such an approach, especially if one wants to identify and nurture gifted children. 
David (5 years old) was working on the 'minimum' task (see the picture above); he looked happy 
with his solution (4 blocks) but still in what looked like a 'state of alert'. At this moment, we 
began to discuss children's solutions. One group of children has presented a three-blocs solution. 
Suddenly, David started to change something in his configuration; he lost completely ‘fiveness’ 
of his shape while focusing on minimization task. But what is the most intriguing, is the rapid 
reactions of this child to the changing conditions (someone has found a better solution). This 
constant state of 'alert' is an important characteristics of giftedness which could be better 
activated in challenging situation that in the ordinary one.     
 
This state of 'alert' leads them to constantly verify all the conditions going back and forth through 
the situation. Here is one more observation. Grade 4 students worked on their test. Answering a 
question of 'Is it true that if the sum a+c=8 then a and c are two different numbers?', Christopher 
hesitated a lot, saying however, that the numbers have to be different. As his work on the test 
went on, he had to solve a system of two equations with two variables: ab=16, a+b=8. He found 
easily a=4, b=4 as a solution then went back to his previous task and corrected his answer.    
 
We could also observe another interesting phenomenon: challenging situation created by the 
teacher may initiate its further explorations by gifted students.  
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For example, doing the same activity with Grade 1 children (6-7 year old), we could state that it 
was seen as a routine problem by many of them and some of students lost completely their 
interest in it. Yet, we could still observe one girl looking for many different ways of building "5" 
using 4 blocs.  
 
Not only she kept herself working on this problem, she came out with a new one : she started to 
look for possibilities to built a digit "4" with a minimum of blocks. Here, the problem was turned 
into a challenging one by the student. 

 
 

6.5 The role of the teacher 
 
In a challenging environment, the role of the teacher becomes crucial in all the stages:  
• choice of a problem 
• way of presenting it to the students 
• organisation of student's work 
• interpretation of results 
• follow-up  
 
One of the very important conditions of success of the challenging situations approach is the 
teacher's attitude. How should we, as teachers, control the student's work? Related to the learning 
paradox (described in the previous chapter), it is far from being obvious how to find a solution to 
this problem. On the one hand, every word and every gesture said by teacher can affect the 
whole challenge of situation in either a positive or a negative sense.  On the other hand, the 
teacher has to have a full didactical control of the situation (otherwise a mathematical learning 
activity might become a sort of 'arts and crafts in mathematical wrapping'). 
 
Our experiment didn't provide us with clear recipes but rather with examples that can be open to 
further questioning and investigations. These examples allowed us to formulate teacher's 
approaches favourable for the challenging situation: 

q Give a child an opportunity to think: being a flexible teacher 
q Support of  children's willingness to learn more about math 
q Challenge students in informal situations: sense of humour 
q Support children in their desire to go beyond pre-planed situations 
q Giving hints without telling solutions 
q Management  of particular cases of mathematical giftedness 
q Use of 'little tricks' as follows : 

• While distributing manipulative material (blocs, cubes, etc.), we would give children time to 
touch it, to play with it, to get a feeling of it; sometimes it gives us important clues of 
children's organisations (how they put material, arrange it, order, classify, build different 
forms, etc.) 

•   When children finish their manipulation, we ask them to write a report. Sometimes it makes 
sense to give them time to break up their constructions. This opens the door to a variety of 
presentations (will the child reproduce his construction, add new details, draw a completely 
different pictures) 
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• When children are asked to communicate their results, it is important to motivate them to 
give detailed explanations. We often ask them to be 'mini-teachers' - to explain to somebody 
who doesn't understand the problem 

• Children often ask us to teach them complicated things. Sometimes, a pedagogical effect can 
be bigger if the teacher makes them wait. Then, starting to teach it, children might become 
more motivated: finally, we got it!    

 
6.6 The role of the student 
 
The role of the students in a challenging situation differs significantly from those in the regular 
learning activity. They have to adapt to a new, open environment. They have no precise 
algorithm of actions, no clear instruction wha t to do. Therefore, they have an opportunity to: 
q demonstrate different approaches to the problem 
q act differently in different situations 
q overcome obstacles, construct various means, discover new relationships 
q work on mathematical problems based on structures and systems using properties and 

definitions, conjectures and proofs  
q use of logical inference with fluency, control, rigour 
q combine logic and creativity in problem solving 
q invent new symbols and signs, use schemas and abstract drawings 
q use reflective thinking  
q ask mathematical questions, create new problems, investigate, use mathematics in non-

mathematical situations, look around with 'mathematical eyes'  
 
7. Conclusions and recommendations  
 
There are a number of educational studies of mathematical giftedness. Various models of 
giftedness based on different characteristics of mathematically gifted students have been 
developed and implemented.  Different programs of support provide gifted students with 
advanced curriculum and guidance of highly qualified professionals. Several mathematical 
contests, Olympiads, and competitions help in searching for mathematically gifted children and 
taking care of their development.  
 
Yet, the problems of identification and nurturing of mathematical talent are far from being 
solved. Many children become bored, at a very early age, with the simplified curriculum, lose 
their interest in mathematics and waste their intellectual potential. Despite the ingenious testing 
system, some children never get admitted to special programs for gifted students. The regular 
school system is not equipped to help these children. 
 
Our study aimed to contribute to filling this gap and providing elementary school (Grades K-6) 
teachers with methods of identification and fostering mathematically gifted children in the mixed 
ability classroom.    
 
We have called our approach, the "challenging situations approach".  The approach is 
theoretically grounded in Krutetskii's (1976) notion of mathematical ability, Shchedrovitskii's 
(1968) developmental model of reflective action, Bachelard's (1938) notion of epistemological 
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obstacle, Sierpinska's (1994) distinction between theoretical and practical thinking in 
mathematics, and Brousseau's (1997) theory of didactic situations.  
 
Following Krutetskii (1976),  we have defined mathematical ability as a 'mathematical cast of 
mind', which represents a unique combination of psychological traits that enable young children 
to think in structures, to formalise, to generalise, to grasp relations between different concepts, 
structures, data and models and thus solve different mathematical problems more successfully 
than children of average or low ability.  
 
At a very early age, these children demonstrate high thinking potential in reasoning about 
mathematical concepts and systems of concepts along with the capacity to reason about their 
reasoning. From the outset, they are better prepared than other children for theoretical thinking, 
which is the foundation of pure mathematical thinking.  
 
The critical point of our study was an understanding that a discovery and nurturing of theoretical 
thinking is not possible if children are working with routine arithmetical tasks, merely applying 
algorithms that had been provided  by the teacher, telling her students what to do and how to do 
it.  
 
The paradoxes of such classroom situations have been described by Brousseau (1997) in his 
Theory of Didactical Situations. Following Brousseau's theory, we bring a notion of challenging 
situation into our model of mathematical giftedness postulating that a gifted child will show her 
talent in mathematics only in specific situations when a real question has been asked and a real 
problem has been posed.  
 
"Challenging situations" use open-ended problems and mathematical investigations. A 
challenging situation initiates the student's action of structuring a problem, and of searching for 
links between data and with her previous experience. Since a real challenge is possible only 
when the situation is new for the learner, the challenging situation must contain a rupture with 
what the student has previously learned, provoking the student to reflect on the insufficiency of 
the past knowledge and construct new means, new mechanisms of action adapted to the new 
conditions, activating her full intellectual potential.  
 
Challenging situation in its very nature gives many growing up opportunities for mathematical 
talent by:  
 
¨ providing the student with an opportunity to face an obstacle of a pure mathematical 

nature, the so called epistemological obstacle. In order to overcome it, the student will 
have to re-organise her mathematical knowledge, create new links, new structures 
following laws of logical inference. We claim that situations satisfying these conditions 
allow the teacher to identify and nurture mathematical giftedness among her students.  

¨ presenting a problem, which goes above or beyond the average level of difficulty. The 
child is encouraged to surpass what is normally expected of children of her age, thus 
demonstrating her precocity, which is a sign of mathematical giftedness. 

¨ helping to create a friendly environment in which a child compete with herself sharing 
her discoveries with other children and learning from others.  Thus it gives 
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mathematically gifted children who are not high achievers to participate actively in class 
and to succeed. 

 
Challenging situation cannot be created as an isolated learning task. It full developmental 
potential can be realised only within a system of teaching based on a challenging curriculum as a 
whole. This would allow creating a learning environment in which every child would be able to 
demonstrate her highest level of ability.  
 
This is why, using a challenging situation model we are not only able to get gifted children 
involved in genuine mathematical activity but also help all children to increase their intellectual 
potential.      
 
Finally, challenging situation has another opening for gifted children: they can always go further, 
go beyond situations, ask new questions, initiate their own investigations, be more creative in 
their mathematical work. This spontaneous mathematical reaction feeds back into the learning 
environment in a positive way and further enhances its potential for all children. We consider 
this feature of the approach as crucial from the point of view of mathematics education for all 
children.  
 
Our study prompts different teaching approaches in mathematics. The teacher is no more re-
translator of knowledge or instructor of methods of problem solving. In a challenging situation 
her role becomes more as moderators of discussions, listeners of student's ideas, student's guide 
through the discovery.  
In helping students go through various obstacles, we shall encourage them to: 
Ø Organise his/her mathematical work 
Ø  Reason mathematically 
Ø Control several conditions (verification, adjustment, modification, reorganisation, awareness 

of contradictions, validation)  
Ø Choose/develop efficient strategies/tools of problem solving 
Ø Reflect on methods of mathematical work 
Ø Communicate his/her results in a "mathematical" way (oral/written form, use of symbols, 

giving valid explanations) 
 
Thus, we will be able to identify gifted children who: 
§ ask spontaneously questions beyond given mathematical task  
§ look for patterns and relationships 
§ build links and mathematical structures 
§ search for a key (essential)  of the problem 
§ produce original and deep ideas 
§ keep a problem situation under control 
§ pay attention to the details   
§ develop efficient strategies 
§ switch easily from one strategy to another, from one structure to another 
§ think critically  
§ persist in achieving goals 
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At the same time, we could nurture their curiosity, willingness to learn more about mathematics, 
provide them with an opportunity to go further in their mathematical learning, to create new 
structures, to pose new problems and thus foster the development of their mathematical abilities.  
 
This approach is very demanding to the teaching. The teacher has to think constantly about 
challenging the students, look for different ways to stimulate children's work, demonstrate a high  
flexibility, ability to react spontaneously on changing  conditions of the classroom situation, be 
ready to provoke students and to get provoked by students asking question which the teacher can 
not answer immediately.  
 
A better understanding of how to help highly talented children to develop deeper mathematical 
thinking would lead to elaboration of efficient didactical approaches for all students.  We shall 
agree with following general remark made by Young &Tyre (1992): "If we examine more 
closely what it is that makes prodigies, geniuses, gifted people, high achievers, champions and 
medallists, we may be better able to increase their number dramatically". 
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Abstract: In this discussion I give an explanation of the divergence and convergence of 
infinite series through the building blocks problem and at the same time I touch on the fact 

that mathematics is not just about manipulating complicated numerical formulas but also a 
field in which logical ways of thought are learnt. I emphasize that in order to overcome the 

aversion of university students to mathema tics, teachers must pour their energies into 
developing study materials taken from topics relevant to the students. 
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1. Is it possible to stagger building blocks by more than the width of one block?  
There has been a lot of publicity about how young people avoid and are "allergic" to 

mathematics. The goal of mathematics is not difficult  numerical formulas but a mathematical 
way of looking at and thinking about things and I would like to present one example of this. 

Let us think about the building blocks problem in Figure 1. There are a few building blocks 
stacked up, and the problem is whether or not it is possible to stack them in such a way that 

the positions of the bottom block and the top block are horizontally separated by more than 
the width of one block. 

 
Most people asked this question would immediately answer that it is not possible. I wonder if  

this tendency to come to a conclusion before even attempting to think about whether 
something is possible or not is a reflection of the digital age. Sometimes it is possible, 

sometimes it is not possible, additionally sometimes we do not know. But they hate vague 
answers very much. This is not magic or a trick, I promise that a solution certainly exists. If a 

person is told to stack building blocks in a staggered way, he or she will stagger them 
uniformly. But if they are staggered uniformly they will fall down every time. I wonder if this 

tendency to stack the blocks uniformly is also a manifestation of digital thinking. 
 

We will not obtain a solution immediately. Let us start by looking at the case of two blocks. It 
is intuitively obvious that the distance they can be staggered is 1/2 of the width of the blocks.  

So the problem is the third block. Let us hold the third block in our right hand and think about 
this problem. Most people would try to stack this block on top of the other two but then they 
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always fall down. If your approach does not work it is important to abandon it, and you 
should search for an alternative approach. To be able to do this, it is necessary to change your 

way of thinking about the problem. 
 

 
 

 
 

 
 

 
 

Figure 1: Is it possible to stagger building blocks by more than the width of one block?  
 

 
 

 
 

Figure 2 : 1/2 Stagger 
 

2. Calculating the center of gravity 
This is the problem of calculating the center of gravity. Rather than thinking about this 

problem with a pen and paper, it is surprisingly fast to use building blocks and look for the 
answer through trial and error.  

 
Here I will give you a hint. Are building blocks best stacked on top of each other? You will 

probably be perplexed by this hint. That is because of the fixed preconception that it is 
because we stack them on top of each other that they are building blocks. But building blocks 

should not be stacked on top of each other; they should be slid under each other. If the third 
building block is placed at the bottom, and we gradually stagger the first two building blocks 

on top of the third building block while maintaining the relationship between the first two 
building blocks as it was, we find that we can stagger the top two blocks by 1/4. In the same 

way, the fourth block can be placed under the other three and stagge red by 1/6, and the fifth 
block can be placed under the other four and staggered by 1/8. If we add 1/2, 1/4, 1/6 and 1/8 

the sum is greater than 1. In other words, we have stacked the blocks in such a way that the 
position of the top block is horizontally separated from that of the bottom block by more than 

the width of  one block. 
 

?  

?  
2
1  
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While referring to Figures 2, 3, and 4, let us confirm the above approach as a center of 

gravity calculation using numerical formulas. First of all let us think about building block ?  

and building block ? . It is clear that we can only stagger them by 1/2 of the width of a block 

(Figure 2 ). 

 
 

 
 

 
 

 
Figure 3: 1/4 Stagger 

 
 

 
 

 
 

 
 

Figure 4: 1/6 Stagger 
 

Next we are going to put building block ?  under the first two blocks so let us think about the 

center of gravity of building blocks ?  and ?  together (Figure 3, left). Because building 

block ?  can be staggered up to the center of gravity, I will obtain the moment, calling the 

stagger distance x . Moment is the product of weight and arm length so the moment of 

building block ?  (rotated clockwise) is x×1 , the moment of building block ?  (rotated 

anti-clockwise) is )
2
1

(1 x−×  and because these two values are equal, 

      )
2
1

(11 xx −×=×  

Solving this equation, we show that 4/1=x . In other words, the stagger distance for building  
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block ?  is 1/4 (Figure 3 , right). 

Next we are going to place building block ?  so let us think about the center of gravity of  

building blocks ? , ?  and ?  together. Let us obtain this center of gravity from the 

combination of the center of gravity of building blocks ?  and ?  together and the center of 

gravity of building block ?  (Figure 4, left). Taking building blocks ?  and ?  together gives 

a weight of 2. The moment of building blocks ?  and ?  (rotated clockwise) is x×2 , and the 

moment of building block ?  (rotated anti-clockwise) is )
2
1

(1 x−×  and because these two 

values are equal, 

      )
2
1

(12 xx −×=×  

Solving this equation, we show that 6/1=x . In other words, the stagger distance for building  

block ?  is 1/6 (Figure 4 , right). 

 
Let us obtain the general result for the center of gravity of n building blocks. As this is 
determined by the center of gravity of )1( −n  building blocks plus the center of gravity of 

one building block, )
2
1

(1)1( xxn −×=×− , therefore 
n

x
2
1= . 

 

 
 

 
 

 
Figure 5 : 1-Block Stagger 

 
Rearranging this equation we can see that if the stagger pos ition is as follows 

      LL ,
2
1

,,
4
1

,
2
1

n
 

then the building blocks can be stacked so that they will not fall down. When the progression 
produced by reciprocal numbers is an arithmetic progression, it is called a harmonic 
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progression. For example, 1, 1/2, 1/3,?  and 1, 1/3, 1/5, ?  are harmonic progressions. 

Harmonic progressions are said to have been used in the study of harmonies theory by the 
Pythagorean School in ancient Greece and the name of harmonic progressions is derived 

from it. Harmonic series are the totals of harmonic progressions so we can also write: 

)
1

3
1

2
1

1(
2
1

2
1

6
1

4
1

2
1

nn
++++=++++ LL  

So now let us calculate the value of this series. 
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So we now know that if we have 5 building blocks we can stagger them by more than the  
width of one block (Figure 5). 

 

3. Convergence and divergence  
In high school and university differential and integral calculus textbooks there are chapters on 
progressions and series. In those chapters the following exercise invariably appears: 

LLLL +++++
n
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is divergent, and 

LLLL +++++ 222
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is convergent. 

 
When n goes to infinity, there are interesting exercises in which sometimes even if the 

general term of the progression converges to 0 the infinite series diverges. Convergence and 
divergence can be approximately known by performing integration as follows: 
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   Figure 6 : 
x
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1=                               Figure 7 : 2
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The first of these two equations is in log order and diverges (Figure 6), and the second of  
these two equations converges (Figure 7 ). Generally, infinite series of the form 

)0(
1∑ >p

n p  diverge if 1≤p  and converge if 1>p . Furthermore, it is known 

that ∑ 2

1
n

converges to
6

2π . Furthermore, whether or not ∑ n
1  converges is determined by 

the Cauchy convergence criteria for the progression. 
     The sum of the first n terms of the progression LL ,,,, 21 naaa  is defined as 

nn aaaS +++= L21 . 

As for the necessary and sufficient condition for the series ∑ na  to be convergent, if we 

make N  sufficiently large compared to any given positive number ε , for all n  and m  

where Nnm >>  it can be shown that: 
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n
Sn

1
3
1

2
1

1 ++++= L , then no matter how big we make n , 

nnnn
SS nn +

++
+

+
+

=− 1
2

1
1

1
|| 2 L   

nnn 2
1

2
1

2
1 +++> L  

n  terms 

2
1=  

So the Cauchy convergence criteria are not met. Therefore ∑ n
1  is divergent. Let us look at 
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this more closely. If we take the number of terms n2  as powers of 2 like this: 2, 4, 8,..., then 
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So we can see that the series diverges. 
 

4. Divergence in log n order 

I have explained that the harmonic series ∑ n
1  diverges to infinity but let us look closely at 

how quickly ∑ n2
1  diverge. I used a personal computer to ca lculate the value of ∑ n2

1 , the 

total stagger distance. The results were as follows: 

When 4=n  10417.1
2
1 >=∑ n

 

When 31=n  20136.2
2
1 >=∑ n

 

When 227=n  30022.3
2
1 >=∑ n

 

So the series does diverge to infinity but at an extremely slow speed.  

If we now compare ∑ n
1  with the integration of the function 

x
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1=  we can establish an 

inequality as follows: 
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So we know that when ∞→n ,∑ n2
1 diverges in nlog

2
1  order. 
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Figure 8 : 2-Block Stagger 

 
Because one more extra building block is necessary at the bottom, the number of building  

blocks necessary is actually 1+n . Only five building blocks (4+1) are sufficient to stagger the  
pile of building blocks by the width of one building block, but 32 building blocks (31+1) are  

necessary to stagger the pile by the width of two building blocks and 228 building blocks  
(227+1) are necessary to stagger the pile by the width of three building blocks. Figure 8  

shows a stack of 32 building blocks but in practice it is impossible to stack up 32 blocks 
accurately staggered in this way. This is just a theoretical discussion. Figure 9 is a graph 

showing the function
x

y
1=  and xy log= , the function resulting from the integration 

of
x

y
1= . If we rotate the log function 90 degrees clockwise and reverse it horizontally it 

becomes the building block stacking problem in Figure 8 . I will leave it to you to confirm 
this. 
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Figure 9: Log function 
 

That completes the proof. I have shown that the harmonic series ∑ n
1  describes the solution 

to the building blocks problem. If we solve these kinds of problems, mathematics should be  
more enjoyable I think. Mathematics in high school and university progressively becomes 

more distant from reality and sometimes students come close to losing sight of them. At times  
like that the student must not forget to apply the problems to reality. The building blocks 

problem is the problem of the calculation of the center of gravity; it also involves harmonic 
series and is extremely mathematical. If we limit ourselves to just solving the problem, we do 

not need to use complicated numerical formulas. The important things are to employ logical 
ways of thought and to have the ability to change your way of thinking. Ironically, university 

students doing science subjects cannot solve this building blocks problem. They can prove 
with numerical formulas that harmonic series diverge to infinity, but they cannot solve the 

real world problem of the building blocks. This is a blind spot in modern education. 
 

I leaned about the building blocks problem from a 1958 work by George Gamow. He was 
both a researcher and educator and it appears that he was of the opinion that the students will 

not get excited about mathematics if the teacher is not excited about it. If you would like to 
confirm the solution to the building blocks problem but you do not have any building blocks 

at hand, you could try doing it with ten volumes of an encyclopedia or ten video tapes. 
 

References: 
Gamow, G & Stern, M. (1958). Puzzle-Math, Viking Press Inc. 

Nishiyama, Y. (2004).  Building Blocks and Harmonic Series, Osaka Keidai Ronshu, 50 (2), 
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Abstract: In this paper a didactical model is presented. The goal of the model is to work as a 
didactical tool, or conceptual frame, for developing, carrying through and evaluating 
interdisciplinary activities involving the subject of mathematics and philosophy in the high 
schools. Through the terms of Horizontal Intertwining, Vertical Structuring and Horizontal 
Propagation the model consists of three phases, each considering different aspects of the nature 
of interdisciplinary activities. The theoretical modelling is inspired by work which focuses on the 
students abilities to concept formation in expanded domains (Michelsen, 2001, 2005a, 2005b). 
Furthermore the theoretical description rest on a series of qualitative interviews with teachers 
from the Danish high school (grades 9-11) conducted recently. The special case of concrete 
interdisciplinary activities between mathematics and philosophy is also considered.  
 
1. Introduction 
There is worldwide consensus that the society we live in today gets increasingly more and more 
complex. Earlier the problem was often to gather information, whereas the knowledge society of 
today is characterized by the fact that much information is easy accessible. The problem 
nowadays is therefore to survey and filter the great amount of accessible information rather than 
to gain access to it. Thus, the schools have to aim at producing students who are prepared to deal 
with such a great complexity of knowledge, that is, scientifically literate students (Gräber et al., 
2001). In the educational system knowledge is still in a very large scale separated into distinct 
blocks by different subjects. This separation of knowledge has shown itself to be very efficient in 
producing and teaching new knowledge, but does not necessarily provide the students with the 
skills necessary to navigate through the constantly increasing amount of accessible information. 
Interdiscip linary activities between different subjects can help to develop a broader context of 
meaning or understanding for the student, and in this way contribute to the ongoing scholarly 
development and provide the student with the tools necessary to deal with complex problem 
solving waiting in the future.  
 
In spite of the fact that many different subjects and areas often contain more and more 
mathematics-rich elements, mathematics, as a subject, mathematics remains quite isolated.  The 
objective importance of mathematics from a social point of view exists side by side with its 
subjective irrelevance experienced by many people. Niss et al. (Niss, Jensen, Wedege, 1998) 
have characterized this as the relevance-paradox of mathematics. One reason for this could be 
found in the fact that mathematical knowledge is hard to transfer to new domains of knowledge 
by the student. Although the subject of mathematics in its very nature often is described as a tool, 
and therefore should be able to establish obvious connections to other contexts, such transfers of 
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mathematical knowledge between different domains seldom occur (Hatano 1996, Michelsen 
2001). Most of the time subjects have their own specific use of language and system of 
terminology and this can prevent the desirable transfer of mathematical knowledge to other 
contexts and domains. 
 
The purpose of using interdisciplinary elements in the teaching of mathematics is, as concluded 
from the description above, 1) an attempt to broaden the students’ curricular perspective and 
general view by removing the discrete lens that characterizes most schools’ separation of 
knowledge into curriculums and present to the students a more real picture of the role and 
importance of mathematics in extra-mathematical contexts1 2) an attempt to help the students’ 
abilities to transfer mathematical knowledge between different curricular domains. 
 
To be able to work with interdisciplinary aspects in the teaching of mathematics one has to 
consider what connections the subject mathematics has to other subjects and areas of knowledge. 
In the first International Symposium of mathematics and its Connections to the Arts and 
Sciences2  (Beckmann, Michelsen & Sriraman, 2005) such connections  were discussed, and a 
sketch of a didactical model for interdisciplinary activities between mathematics and philosophy 
presented (Iversen, 2005). 
  
Afterwards, the modeling of such activities involving mathematics has continued and the 
purpose of this paper is to present a didactical model, a conceptual frame for the planning, 
completion and evaluation of successfully interdisciplinary activities involving mathematics. The 
model will function as a tool to help develop activities that can facilitate a reasonable transfer of 
mathematical knowledge to other subjects and domains. The model is inspired by the work of 
Michelsen (2001, 2005a, 2005b) and is further developed through the special case of 
mathematics and philosophy and a section is therefore devoted to this specific topic. The section 
will also work as a demonstration of how the model should be understood and applied. 
 
2. Theoretical Framework 
Working with interdisciplinary activities implies a belief that there exist elements that is general 
and somewhat identical between the knowledge presented in different subjects. We assume that 
such an intersection of knowledge contains more elements the more related3 the subjects are to 
one another, and at least not-empty (Dahland, 1998). There are different ways of trying to 
describe such assumed curricular intersections. In the development of the didactical model 
presented here a notion of competencies is used to identify and characterize the possible 
intersection of knowledge between mathematics and other subjects.     
 
In the educational system of Denmark a huge step forward is taken with the completion of the 
KOM-report for mathematics (Niss et al., 2002). In this Niss lists eight mathematical 
competencies, valid for all steps of education, which is a meant to work as an overall frame for 
                                                 
1 This follows Sriraman (2004) who argued that students are used to viewing knowledge through the discrete lens of 
disjoint school subjects. 
2 The symposium took place 18-21 May 2005 in Schwäbish Gmünd, Germany. See Beckmann, A., Michelsen, C., & 
Sriraman, B (Eds.). , (2005). Proceedings of the 1st International Symposium of Mathematics and its Connections to 
the Arts and Sciences. The University of Education, Schwäbisch Gmünd, Germany, Franzbecker Verlag. 
3 Related should here be understood in a common way. The subject of mathematics is e.g. is supposed to be more 
related to physics than to English. 
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description of the education in mathematics in Denmark. The concept of a mathematical 
competence is here understood as some sort of mathematical expertise, and is more formally 
defined as an insightful readiness to act appropriate in situations which contains a certain kind 
of mathematical challenges.4 The report has been a starting signal to similar competence 
descriptions of other subjects in the Danish educational system.  
 
A description of mathematics by the means of competencies focuses more on the purpose of 
learning mathematics than to the specific curriculum. This description expresses a broader 
minded view on the teaching of mathematics than a normal curricular-dependent view. But Niss 
describes (Niss et al., 2002, p. 66) the eight mathematical competencies as strictly belonging to 
the sphere of mathematics thereby partly closing down the newly constructed bridge to other 
subject domains. Michelsen et al. (2005a) instead argues that some of the competences put 
forward by Niss et al (2002) are actually interdisciplinary competences, and mentions the 
modeling and representational competence as examples.   
 
In this paper we will try to make use of the interdisciplinary potential inherent in a competence 
approach to mathematics on a theoretical didactical level suggested by Michelsen et al (2005a). 
A less bounded description of mathematical competences can then be substratum that enables an 
entanglement of mathematics with other subjects both on an educational theoretical level and on 
a practical level in the classrooms. It is here suggested that the notion of a mathematical 
competence should contain both a narrow and a broad dimension, by means of which such 
characterization of mathematical expertise in the student can both work as a description 
internally in mathematics and as a link to the rest of the world. As an example Niss (2002) 
mentions the ability to reason mathematically i.e. to be able to follow and judge mathematical 
argumentation, as one of the eight described competences. But the ability to be able to follow 
and judge a reasoning is far from restricted to the sphere of mathematics. It is the kind of 
expertise that is important to master in all the school’s different subjects, and it could therefore 
be argued that some sort of reasoning competence is just as essential in physics or philosophy as 
it is in mathematics. Obviously arguments and reasoning often appear in different use of 
language and forms in different subjects, and therefore a reasoning competence is here suggested 
to be characterized by the ability to follow and judge a reasoning in different curricular domains, 
AND being able to distinguish and characterize different types of arguments thereby having the 
ability to go deeply into a certain subject and follow and judge a reasoning characteristic for this 
one subject.  
 
Within mathematics valid arguments often have character of a proof, while arguments in other 
subjects, as e.g. philosophy or history, often are marked by less cogency and more contingent 
elements. In this context mastering the reasoning competence will be understood as the ability to 
distinguish different kinds of arguments but at the same time know why the different arguments 
work in different contexts, and to be able to dive into a specific argument, as e.g. a mathematical 
proof, and follow its string of reasoning. 
 
This broad minded approach to the notion of competences should be understood as an attempt to, 
over time, change the educational practice which makes it possible that 
 
                                                 
4 My own translation from Danish (ibid.). 
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“Although critical thinking, problem solving and communication are real world 
skills that cut across the aforementioned disciplines students are led to believe that 
these skills are context dependent.”( Sriraman, 2004, p.14). 

 
3. Interviewing high school teachers  
During May 2005 a series of qualitative interviews were conducted. Six high school teachers 
were interviewed individually. The main purpose was to find out: Which didactical (and 
practical) possibilities and obstacles exist for interdisciplinary activities between mathematics 
and other subjects (especially philosophy) in the Danish high school (grade 9-11)?5 The 
interviewees were teachers from different high schools in Denmark and varied both in age and 
seniority. They were chosen so that each one taught either mathematics or philosophy (or both) 
on a daily basis and moreover most of them had been engaged in relevant interdisciplinary 
activities. The hope was to be able to incorporate some of this real- life information into the 
development of the didactical model. In the following I will reproduce some of the, for this 
paper, relevant conclusions one can draw from the conducted interviews.6 
 
Some of the interviewed teachers have conducted interdisciplinary activities between 
mathematics (or physics) and philosophy earlier on in their daily teaching. It has not been 
possible to find any writings about conducted activities between mathematics and philosophy in 
the Danish high school, but some of the interviewed teachers have been involved in documented 
activities involving physics and philosophy. Generally the experiences from these courses were 
positive 
 

“ It’s easy for me to register that the students have been going through these 
activities (involving physics and philosophy) and other teachers can easily do so to. 
… They [the students] own more academically concepts than students usually have. 
They are really good at thinking different subjects together, and they also get very 
good at working together in little groups … I think they simply have a greater 
cultural and historical horizon.” - Teacher 1 

 
The purpose of these activities involving physics and philosophy was primarily to strengthen the 
subject of physics. To embody the  abstractness of physics as one of the interviewed teachers 
told me. This goal was in some sense achieved according to the teacher quoted above and the 
reports of evaluation carried out by the involved students and teachers afterwards. Besides the 
registered positive cognitive effects the students realized that physics can not be reduced to a 
mere collection of dead facts. Physics is a human activity that evolves and therefore 
argumentation actually do count. This shift in the students’ perception of the subject physics 
from being a dusty collection of facts, to being relevant, is an experience that another of the 
involved teachers believe can be re-produced in the case of mathematics.  
                                                 
5 The fact that some of the asked questions particularly involved a reference to the Danish high schools(as opposed 
to any high schools) was because I wanted to find out which effect a forthcoming reform of the Danish high schools 
would have on the daily teaching practice. Most of questions asked involved only general educational components, 
and did not hold any particular reference to any Danish conditions. 
6 All the interviews were conducted in Danish, and the quotes given in the text is therefore my own translation. The 
text in the brackets is my insertions. They are there to give the right coherence in the teachers statements. The 
interviewed teachers are here given only a number, but all the quotes given in this paper are approved by the 
particularly teacher concerned.  
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“We can re-create the part about discovering in the case of mathematics … For 
example the students often only see the end-product when they see a proof for some 
mathematical relation. For them it’s often a strange thing; How have “they” found 
out you are supposed to do like that? They ask themselves. The process from a 
proof starts to crystallize and right to the final version of the proof which needs 
polishing before it appears in a textbook, nice and rounded. That whole process 
one should try in teaching mathematics, I believe it would be very beneficial for the 
students.” -Teacher 2 

 
Besides using philosophy as a tool to illustrate the world and methods of physics the teachers 
involved report how at the same time the activities created the perfect interdisciplinary context 
for developing central concepts from the philosophy of science. Ideas such as: induction, 
empirically investigations and verification were easy for the students to acquire and work with in 
this expanded domain. In this way the activities held the possibility that both involved subjects 
could engage in the work of developing the students’ scientific literacy, but at the same time use 
the cross-curricular context to discover and develop relevant aspects specific to the different 
curriculums. 
 
Others of the interviewed teachers had themselves planned and conducted interdisciplinary 
activities involving mathematics and philosophy. In both cases the activities had been carried out 
in relation to the daily teaching of mathematics, and both set of activities centered about 
argumentation and proof in mathematics. The purpose of the different activities varied slightly 
but fundamentally they both tried to illustrate characteristics of mathematical argumentation and 
how this often is worked out. 
 

“When we speak about method, we did something about; When do you examine 
something and when do you actually construct a proof? And also, what is needed to 
construct a proof and what is the nature of a mathematical proof? These issues are 
very philosophical I think, and the activities were a great success for the 
students.”- Teacher 3 

 
“We worked with paradoxes and reasoning and things like that … The overall 
theme was argumentation. It was a very good course, and the students were very 
fond of it.” - Teacher 4 

 
The work with these topics in mathematics was carried through based on a wish to equip the 
students with some general tools, or concepts, which could function as some sort of cognitive 
scheme for their ongoing daily struggle for learning mathematics. 
 
 
 
 

“A part of the teaching is about giving them [the students] a set of concepts which 
they can use to relate to what the are doing concretely. When they engage in a 
specific task in mathematics, they now have some concepts, some work habits, 
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some patterns, some ways of thinking which they can use to throw light on what 
they are actually doing.” - Teacher 3 

 
Mathematics propagates through a large and branching taxonomy of concepts and ideas. Several 
of the interviewed teachers pointed out that, cross-curricular activities between mathematics and 
a subject as philosophy should deal with concepts placed fairly high in the mathematical 
taxonomy used in the high school. To illustrate this point we can consider the relative position of 
two mathematical concepts in the taxonomy. Look for example at say the concept of function and 
a specific function as f(x)=sin(x). Both entities can be considered as a concept that a student in 
the high school should become acquainted with at some point. The concept of function however 
will be placed highest of the two in a taxonomy of mathematical concepts, and we will therefore 
regard this as a meta-concept in comparison with f(x)=sin(x). This way there also exists meta-
concepts in comparison with the concept of function. The concept of functional is an example of 
a such, and the use of the name meta-concept will therefore always be relative. 
 
For high school students the concept of proof will be regarded as a meta-concept most of the 
time and a direct investigation of this in the classroom by the students will often involve several 
problems. According to Dreyfuss (1999) most of the students on this educational level has a very 
restricted knowledge about what constitutes a mathematical proof. Also Hazzan and Zazkis 
(2005) point to the importance of trying to help the students acquire relevant mathematical meta-
concepts as e.g. the proof.  
 
According to Niss (1999) a major finding of research in mathematics education is students’ 
alienation from proof and proving. Students’ conceptions of the mathematical proof and those 
held by the mathematical community is separated by a huge gap. Niss concludes that 
 

“Typically, at any level of mathematics education in which proof or proving are on 
the agenda, students experience great problems in understanding what a proof is 
(and is not) supposed to be, and what its purposes and functions are, as they have 
substantial problems in proving statements themselves, except in highly 
standardized situations.” (Niss , 1999, p. 18). 

 
Instead the students’ consider proofs and proving as strange rituals performed by professional 
mathematicians that are not really meant to be understood by ordinary human beings. The 
activities referred to above by the interviewed teachers are exactly concerned with these 
problems and shows how other subjects such as philosophy can be used in the struggles. 
 
The interviewed teachers generally believed that interdisciplinary activities involving 
mathematics were very relevant for the students. Focusing on the special case of mathematics 
and philosophy some of teachers suggested that relevant activities could take as a starting point 
the purpose of illuminating the structure of mathematics, its fields of study and its characteristic 
form of argumentation. It comes as no surprise that the examples mentioned here are of a very 
general character. Engaging in interdisciplinary activities should hold the possibility of gaining 
something for all the involved subjects, and this would indeed be a very difficult premise to 
fulfill for both mathematics and philosophy if the activities centered about the quadratic equation 
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and Socrates’ famous Defence. Both are examples of a far to narrow approach to 
interdisciplinary activities determined too much by curricular considerations. 
 
In spite of a general optimism shared by the interviewed teachers towards integrating the 
teaching of mathematics with other subjects, several of them also point to a number of 
difficulties with the subject of mathematics that must be overcome if the interdisciplinary 
activities should be rewarding.  
 
The subject of mathematics is regarded as a subject that holds great technical difficulties for the 
students. According to the interviewed teachers exciting problems and topics in mathematics 
often demands a severe amount of preparation from the students before they can engage with the 
activities thereby losing the immediate interest that is so important for the learning process 
(Mitchell, 1993). Other subjects, e.g. philosophy, is for most students easier to engage in and this 
often leads to a shift in the students attention away from the mathematical content of the chosen 
topic. For that reason the development of successful interdisciplinary activities involving 
mathematics needs the development of a working culture among teachers and students where it is 
respected that a subject as mathematics can be hard accessible and show this problem extra 
attention in the classroom. 
 
Most of the interviewed teachers highlighted the fact, that in many cases interdisciplinary 
activities end up bringing in the mathematics teacher to simply help the students read of some 
values on a prefabricated curve or similar. Here the actual mathematical content is far from 
challenging or relevant for the students (or the teacher). To avoid this situation one of the 
interviewed teachers point out that 
 

“There’s an interaction between the other subject [than mathematics],, the way it 
asks its questions and the areas of mathematics you can point out and work with. 
Sometimes mathematics and the other subject actually pose the same kinds of 
questions but they each give different kinds of answers. … The problems that the 
activities are meant to center on must have double-relevance, and that means that 
they should have relevance both in the reality to which they belong and also in 
mathematics. As a thought I think that is very correct because often they [the other 
teachers] say; Yes, this topic is really interesting could the mathematics teacher 
please come in here and help reading of the curve! I answer: No, no that’s not 
really interdisciplinary activities.” - Teacher 4 

 
The subject domains involved in the activities must in some sense meet and use each other 
properly. Subjects are not actually co-operating when the co-operation is reduced to a parasitic 
process where one of the subjects de facto is not gaining anything as described in the above 
quote. 
 
4. Modeling interdisciplinary activities involving mathematics and philosophy 
The purpose of developing a didactical model for interdisciplinary activities involving 
mathematics and philosophy is, as mentioned earlier on, multiple. The model should function as 
a link between educational theory and the daily teaching practice in mathematics, both in the 
development of new activities, the carrying through of already planned ones and the evaluation 
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of completed activities. The model gets inspiration from the work of Michelsen (2001, 2005a, 
2005b), and a former version was presented at MACAS 1 and described in Iversen (2005). The 
didactical model consists of three phases - the horizontal intertwining, the vertical structuring 
and the horizontal propagation. Freudenthal (1991) introduced the idea of two different types of 
mathematization in an educational context – horizontal and vertical mathematization. In the 
horizontal mathematization students develop mathematical tools that help them organize and 
work with mathematical problems situated in real- life situations. The process of reorganizing the 
mathematical system itself Freudenthal designates vertical mathematization. Also Harel & Kaput 
(1991) sees a distinction between horizontal and vertical growth of mathematical knowledge. 
They associate the term horizontal growth with the translation of mathematical ideas between 
extra-mathematical situations (and models of these) and across other representation systems. By 
vertical growth is understood the construction of new mathematical conceptual systems. 
 
5. The Horizontal Intertwining 
As mentioned by some of the interviewed teachers interdisciplinary activities involving 
mathematics very often end up as fictitious constructs without much relevant mathematical 
content. In the first phase of a cross-curricular collaboration the attention should be centered on 
the importance of obtaining a real intertwining of the involved subjects. Such a curricular 
intertwining involves considerations about which fields of study, problems and methods in 
mathematics and the other subjects involved that have potentiality as interdisciplinary elements. 
Such elements must not originate from oversimplified lingual similarities among the subjects, 
but instead from considerations about how these elements can be used later in the continued 
learning of e.g. mathematics. This kind of intertwining of the subjects’ core subject matter the 
students will often experience as “the meeting of different subjects”, and the term of horizontal 
refers therefore to the students pre-understanding of the chosen curricular element as belonging 
to both mathematics and another involved subject, but not necessarily as an subject-exceeding 
element. Often the students do not consider ideas to be related because of their logically 
connection, but because they are being used together in the same kind of problem solving 
situations (Lesh & Doerr, 2003; Lesh & Sriraman, 2005). Michelsen et al. (2005a) suggest the 
term horizontal linking to describe the process of identifying contexts across mathematics and 
other subjects of science that are suitable for integrated modeling courses. I will here suggest the 
notion of horizontal intertwining to describe a related process of identifying and characterizing 
interdisciplinary problems and context suitable for integrating the subjects of mathematics and 
philosophy, thereby emphasizing the broader scope the integration of mathematics with a subject 
not from the natural sciences demands. 
 
The interdisciplinary activities should be chosen so they set up non-routine problems, which in 
order to be solved properly, need the involvement of all the involved subjects. A competence 
approach to the subject of mathematics contains a possibility to identify such relevant subject-
exceeding elements, because this approach focuses on what the students master after going 
through the courses, and not on concrete curricula. As argued in the theoretical section of this 
paper such an approach demands a broadminded view on the notion of competencies to be able 
to work as an educational tool. 
 
A horizontal intertwining of the subjects designates a weaving together of the involved subjects’ 
core subject matter by identifying non-routine problems and contexts suitable for integrating 
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mathematics and philosophy. In order to be able to do this one needs to clarify what constitutes 
such core subject matters. Furthermore, such a weaving together of subjects demands a 
clarification of the overall purpose of the activities. The purpose must have relevance for both 
mathematics and the other subjects involved in order to be justified. In practice it can span a 
wide field of areas; from helping the cognitive growth of the individual student (e.g. in relation 
to concept formation), trying to strengthen the motivation for the involved subjects or even 
trying to create a unified view of knowledge and science in the students.   
 
6. The Vertical Structuring 
A reasonable intertwining of the involved subjects facilitates the possibility that the student can 
identify with the cross-curricular aspects of the chosen problems, and thereby engage 
meaningfully in the activities. A clarification of the overall purpose with the activities will from 
the beginning help the teacher to follow the students’ cognitive development along the activities. 
Such observations will often involve that the mathematics teacher abandons the usual 
authoritarian role and take on a more guide-like function instead.7 From a combination of the 
involved subjects’ core subject matter the student should under suitable guidance and activity go 
through a cognitive development – a so called vertical structuring - that will root the cross-
curricular phenomenon concerned conceptually. It is crucial for a successful interdisciplinary 
engagement that the involved phenomena are central for the further learning of mathematics. If 
the purpose of the activities is the formation of new mathematical concepts the vertical 
structuring could be described as the construction of a new mathematical concept image (in the 
sense of Tall and Vinner, 1981). More theories describe how the formation of a new concept 
image in the student involves a qualitative change in the students perception of the specific 
concept. The change of perception is registered as a cognitive shift between perceiving the 
mathematical concept as an activity (or a process) and viewing the concept as an entity in itself 
i.e. a kind of structure or object (Dubinsky 1991, Sfard 1991, Tall 1997, 2001).  
 
In activities where the over-all purpose is to equip the students with a greater curricular 
perspective and overview we can describe the vertical structuring as the cognitive development 
of a new cross-curricular platform in the student, whereto new knowledge later can be attached 
to and grow from. 
 
7. The Horizontal Propagation 
A successful vertical structuring should be evaluated in a greater perspective. The development 
of new significant concepts and connections based on interdisciplinary elements should be 
further developed in the different curricular domains of mathematics and philosophy. According 
to Lesh & Doerr (2003) the real challenge of the teacher is not only to introduce new ideas and 
concepts but also to create situations where the students need to express their current ways of 
thinking so this can be further tested and revised in directions of stronger development. In the 
case of mathematics the student should be allowed to use the newly learned knowledge in 
different mathematical activities and thereby apply, test and approve the specific mathematical 
concepts in question for the purpose of developing a more firm and generalized mathematical 
structure in the end. This is only possible if the original purpose with the activities is aimed at 
such a propagation of the new knowledge in other contexts. In other words the vertical 
structuring should be followed up by a horizontal propagation of the newly acquired structures in 
                                                 
7 For a more developed description of this shift in the teachers role in the classroom, see e.g. Gravemeijer (1997). 
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the students and thereby this knowledge can find its use in both mathematics and other involved 
subjects. 
 
In this way the cross-curricular elements can work as a new basis, or context, for the student 
which can use it in the continued learning of mathematics furthermore in the development of 
new interdisciplinary connections between subjects thereby being able to overcome the crucial 
problems of transfer mentioned in the theoretical section of this paper. This is the true gain of 
such interdisciplinary activities. 
  
After the carrying through of a longer cross-curricular course one of the interviewed teachers 
describes an example of what could be characterized as a horizontal propagation as follows 
 

“I see the acquired competencies applied in many different places. They [the 
students] simply travel faster over the learning-ground. One can say that they 
fundamentally have a greater prerequisite for both conceptual entities and in 
working contexts.” - Teacher 1 

 
8. Designing relevant activities involving mathematics and philosophy 
After sketching the different components that make up the didactical model it should be 
illustrated how it can be used in the development of relevant interdisciplinary activities between 
mathematics and philosophy. Here we consider the special case of proof and proving in 
mathematics and philosophy. 
 
First we need to identify relevant non-routine problems, topics or phenomena which can function 
as curricular-exceeding elements between the two subjects and thereby establish a reasonable 
horizontal intertwining. We can use a competence approach to the curriculums of mathematics 
and philosophy respectively, hereby focusing on what cognitive qualities the two subjects aim at 
developing in the students. Common to the two subjects is a (seemingly endless) search for 
logically healthy arguments and conclusions and the ability to follow and judge such kind of 
reasoning therefore belongs to the core subject matter in both mathematics and philosophy. In 
planning the activities we can therefore reasonably focus on developing some sort of reasoning 
competence as mentioned earlier. This involves an ability to compare and differentiate the 
different kinds of argumentation used by the two subjects, but also the ability to dive into 
specific arguments from each subject and be able to follow and judge such specific reasoning. 
 
In all of the school’s different subjects the students’ ability to argue clearly and reason 
reasonably plays an important role, and a development of this capacity is a key area in both 
mathematics and philosophy. Philosophy is in fact often characterized as a subject that tries to 
generate and develop the students’ ability to understand and use forms of argumentation and 
knowledge that cut across the school’s different disciplines and dimensions. 
 
Mathematical reasoning takes many forms but is in its clearest form crystallized as actual proofs. 
The power to give a definite proof for a certain conjecture is characteristic for the subject of 
mathematics and the students’ knowledge about the meta-concept of proof is, as argued earlier in 
this paper, therefore central in the teaching activities in the high school. In philosophy the idea of 
proof also plays a key role. Earlier on, philosophers tried to transfer the mathematical (in some 
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sense Euclidean) idea of proof to actual philosophical arguments. The most famous philosophical 
“proofs” are the proofs of the existence of God. These were put forward by e.g. Anselm of 
Canterbury and Thomas Aquinas, who both believed that giving a formal proof of the existence 
of God was actually possible. The high school teachers who took part in the interviews also 
highlighted argumentation and the concept of proof as phenomena that could transcend the gap 
between the subjects of mathematics and philosophy and thereby overcome the problem of 
transferring mathematical knowledge to other contexts and domains. 
 
To sum up we have, starting from a wish to advance the students’ ability to argue and reason 
within mathematics and philosophy identified the concept of proof as a concrete topic suitable 
for a curricular intertwining of the two involved subjects. 
 
The activities originate from a study of which role the actual proving of statements and 
conjectures holds within the two subjects. What constitutes a proof? At what point can we say 
we actually have proven something? And what kind of knowledge does a proof give us? Is it 
true? Is it unchangeable? 8 In practice one could use simple proofs, easy for the students to 
master mathematically, such as small proofs from the classical Elements by Euclid himself  
(Euclid,  2002). E.g. using the proof that the sum of the angles in a (Euclidean) triangle is equal 
to the sum of two right angles or the proof of the Pythagorean theorem. Then comparing these to 
actual proofs of philosophical character e.g. a modern version of Anselms Ontological proof of 
the existence of God. It is important that the students subsequently are placed in different 
situations where they themselves are forced to work out small proofs thereby experiencing the 
process of trying to argue for a conjecture. This will enable the students to apply, test and further 
develop their understanding of the concept of proof. An understanding that (hopefully) in time 
will evolve further and be a useful tool for the students. 
 
Through an experimenting approach, as described above, to the idea of proof a vertical 
structuring of the meta-concept proof should be developed. At the same time focus is on the 
students’ ability to separate different kinds of argumentation. Most of the interviewed teachers 
agree that this would be of significant importance in the students’ continued engagement with 
both mathematics and philosophy. 
 
A vertical structuring of the concept of proof subsequently work as a structure which must be 
applied, re-valued and tested further in the daily teaching practice that follows within both 
subjects. Hereby obtaining a horizontal propagation of the newly acquired knowledge which 
results in a greater basis or context for the further learning and understanding of both 
mathematics and philosophy. 
 
The Danish Ministry of Education has recently published an Education Manual for the high 
schools. The manual focuses on interdisciplinary activities and a large part is devoted to 
paradigmatic examples of concrete activities. In this manual I’ve contributed to more fully 
describe activities between mathematics and philosophy as the one sketched above.9 
 

                                                 
8 All questions Niss (1999) emphasized as extremely difficult for students to answer properly. 
9 The manual can be found at http:us.uvm.dk/gymnasie/vejl/?menuid=15 (unfortunately only in Danish). 
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9. Conclusion 
In the paper a didactical model which should function as a concept frame for the development, 
completion and evaluation of interdisciplinary activities involving mathematics and philosophy, 
was presented. The model consists of three phases that these activities involve; The horizontal 
intertwining, the vertical structuring and the horizontal propagation. Although the model is 
presented as linear, the process of going through the different phases is in some sense to be 
understood as an iterative process that can be run through several times by each student.   
 
In the description of the first phase it was argued that it is of great importance that the actual 
mathematical content in interdisciplinary activities is not reduced to simple instrumental 
activities. Instead one should seek to identify and characterize interdisciplinary phenomena and 
contexts which can facilitate a proper intertwining of the different subjects involved by setting up 
relevant non-routine problems which need the involvement of both mathematics and philosophy 
to be answered. This can be enabled by a competence-approach as to what constitute 
mathematical skills. Such an approach is broader than the usual curriculum-approach to 
mathematics which often works as a drag to the development of successful interdisciplinary 
activities. 
 
The model’s second phase describes how the students’ engagement in the planned activities 
should facilitate a vertical structuring which leads to the development of new conceptual 
systems, objects or contexts in the student. This can appear as a formation of new mathematical 
concept images, by which the interdisciplinary phenomenon considered, conceptually is 
anchored. This can work as a further basis in the students’ continued learning of both 
mathematics and philosophy. 
 
Finally the third phase focuses on how ongoing activities involving the newly acquired 
constructions are the overall purpose with all interdisciplinary activities. Furthermore it is argued 
that the cross-curricular phenomenon should be applicable in the daily teaching practice through 
a horizontal propagation of the considered phenomenon in both mathematics and the other 
subjects involved. 
 
An anchoring of the model in the daily teaching practice was sought through a series of 
qualitative interviews of Danish high school teachers. Furthermore the model was illustrated 
through a design of a concrete interdisciplinary activity between mathematics and philosophy, 
and it was thereby argued how the model can be used to develop concrete interdisciplinary 
activities between these two subjects. The sketched activities take the concept of proofs and 
proving as a starting point and centers themselves around argumentation and reasoning in both 
mathematics and philosophy. 
 
As the modeling of such activities is still (and perhaps always) a work- in-progress the presented 
model is somewhat tentative in its nature. The model originates from a wish to develop a concept 
frame for interdisciplinary activities between mathematics and philosophy, and found inspiration 
in the work of Michelsen (2001, 2005a, 2005b) which centers about interdisciplinary activities 
between mathematics and physics. A further perspective is to continue the work of developing 
concrete teaching activities, as well as trying to adapt and evaluate the model’s strengths and 
weaknesses as a didactical tool to integrating the subjects of mathematics and philosophy. The 
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author, therefore, invites all interested readers to further test and revise the model as well as 
concrete realizations and afterwards sharing experiences which hopefully will lead to the 
improvement of the didactical model as a result. 
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Abstract. In this note I outline some elements of the history of mathematics education in Italy. 
Initially the chief characters were mathematicians who played a role in designing curricula 
and in editing textbooks. The development of the Italian community of mathematics educators 
towards the present day trend in research was fostered by participation in  international 
activities after the Second World  War. I also identify some elements of continuity with the 
past to stress the influence of some mathematicians in the development of present research. 

Key words: history of mathematical instruction; Italy; research in mathematics education; 
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1. The Past 

Though the development of mathematics education as a discipline is affected by many factors 
I deem that the national policy of the system of instruction plays a major role. In turn this 
policy is strictly linked to the history of the country and to the academic world (in the case of 
mathematics the world of mathematical research.) As an example I briefly outline the events 
that preceded the birth of the Italian community of mathematics education research to catch a 
glimpse of links between the present situation and the past. 

Italy became a unified country in 1861, before which it was composed of little states which 
had different systems of instruction or no system at all.  To create a national system was one 
of the main concerns of the new government. It is remarkable that the concern about public 
instruction was already present before the unification, as evidenced by the proceedings of the 
annual meetings of scientists held from 1839 to 1847 in the future Italian territory. These 
scientists called themselves “Italian” before Italy existed as a political entity and planned the 
survey of the situation of the instruction in the Italian territory. It is said that the motto chosen 
for the proceedings of their meeting in 1846 was “The educator and not the weapon will be 
in the future the arbiter of world’s destiny” and that this sentence was ink-cancelled (deleted) 
by order of the governor in almost all the already printed copies. Strong ideals were present 
in the scientific community: in particular, some important mathematicians participated 
personally in the independence wars and, when the process of unification was achieved, were 
involved in political activities (also as members of the parliament) concerning instruction. 
The evolution of the political situation in the following century changed the initial ideal 
position. The motto now proposed to school children in the 1930s (Fascist period) was “Book 
and musket”. 
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In the pioneering period after the unification the Italian community the relation of 
mathematics school teachers with professional mathematicians was sometimes difficult, as 
evidenced by the well known episode of the controversy around the teaching of elementary 
geometry. This episode parallels an analogous episode which happened in England and 
shows how similar situations may lead to different outputs in different countries. These are 
the facts. In Italy before the unification there was no tradition in mathematics education and 
textbooks were mainly imported from abroad. The first significant act of the new born nation 
was to publish an Italian mathematics textbook for secondary school. This happened in 1868 
and the book was the edition of Euclid’s Elements edited by two outstanding mathematicians 
(Enrico Betti and Francesco Brioschi). The Ministry of Education proposed it as a textbook to 
be adopted in Italian schools. The content was good from the mathematical point of view, but 
not suitable for secondary students. Teachers and mathematicians with some feeling of what 
mathematics education should be expressed a strong disappointment against the use of this 
book as a school text. A hot controversy was hosted in one of the two journals of 
mathematical research existing in Italy in those times (Giornale di Matematiche) from 1868 
to 1871, see (Furinghetti and Somaglia, 2005). In one side of the duel there were the two 
editors of the Elements and Luigi Cremona, an important mathematician author of the official 
national programs for mathematics, in the other side there was a second rank mathematician 
who was caring for the pedagogical point of view and of school teachers’ opinions. At those 
times the ordinary teachers had no voices, since professional journals did not exist, nor 
associations of mathematics teachers. 

In England for many years the admission examinations to Cambridge, London and Oxford 
universities were based on rote exercises of Euclidean geometry. Many people were 
complaining about that, among them outstanding mathematicians such as Augustus De 
Morgan and James Sylvester. Books based on new syllabi were produced from 1868 
onwards. In 1871 the A.I.G.T. (Association for the Improvement of Geometrical Teaching) 
was founded; it was the mother of the Mathematical Association  founded in 1894. John 
Perry’s address on ‘The teaching of mathematics’ delivered to the new ‘Education’ section of 
the British Association (1901) opened new perspectives to this problem: the educators were 
pushed to hear the voices of those students who would  not become mathematicians and 
needed of a kind of mathematical education close to the requirements of the changing society. 
Perry’s ideas were clearly expressed in the article ‘The teaching of mathematics’ (Nature, 
1900, 317-320), see Howson (1982, pp. 147-148): 
 

The young applier of physics, the engineer, needs a teaching of mathematics which will 
make his mathematical knowledge part of his mental machinery, which he shall use 
[…] readily and certainly […] 
 [This] method is one which may be adopted in every school in the country, and 
adopted even with the one or two boys in a thousand who are likely to become able 
mathematicians.  

 

In Italy things evolved in a different way. The academic power of mathematicians choked the 
timid attempts of rebellion to the use of the Elements. A sentence in the mathematics 
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programs issued after Italian unification epitomises the official attitude towards mathematics 
in school: “mathematics is a gymnastic of the mind.” This view was not unanimously 
accepted (especially by school teachers) and ironic references to this expression are present in 
papers appeared in the following years. 

Many factors affected the different evolution in the two countries. Not only authors such as 
Herbart influenced the view of certain mathematics educators in England, but also the 
different level of industrialisation which called for a different role of education in society. 
This latter fact is evidenced by Godfrey’s passage as reported in (Howson, 1982, p. 158): 

In England we have a ruling class whose interests are sporting, athletic and literary. 
They do not know, or if they know do not realise, that this western civilisation on which 
they are parasitic is based on applied mathematics. This defect will lead to difficulties, 
it is curable and the place for curing it is school. 
 

A relevant factor in the different development s was mathematicians’ attitude about rigour. In 
Italy at the beginning of the twentieth century the concept of rigour was shifted from the 
Euclidean rigour to Hilbert’s and Peano’s rigour, but still remained the main concern of 
university professors when discussing mathematics teaching in school. This strong concern is 
epitomised by the important report on the various types of rigour in textbooks at the first big 
international meeting of I.C.M.I. in Milan (see Castelnuovo, 1911). 

In the meanwhile teachers  were growing up professionally.  In 1874 the first Italian journal 
devoted to mathematics teaching was founded. After its death a journal was founded, which 
was the cradle of the Italian association of  mathematics teachers born in 1895 (Mathesis). 
These journals were concerned with discussing details of mathematical subjects taught in 
school rather than on pedagogical issues. In principle the association of mathematics teachers 
should have been the right place to discuss educational issues, but this did not happen. Most 
energies were devoted to decide if university professors could be admitted as members. The 
association had various deaths and resurrections until it acquired a rather stable status in 1921 
under the chair of Federigo Enriques, one of the greatest Italian mathematicians of the 
twentieth century. He was a researcher in algebraic geometry, and also author of textbooks 
and books for teachers translated into foreign languages. The first half of twentieth century 
was dominated by this relevant personage, who had to face events important for the Italian 
system of instruction, such as the reform promoted by the philosopher Giovanni Gentile. 
Unfortunately, in accordance with the idealistic philosophical theory of Gentile, scientific 
culture (including mathematics) was relegated to a second rank position. Other Italian 
mathematicians were contributing to the discussion on mathematics teaching and had 
contacts with the international milieu of I.C.M.I.. Besides Enriques, Guido Castelnuovo and 
Gino Loria were among the nine persons awarded by I.C.M.I. with the special 
acknowledgement for  their work in the field of mathematics instruction at the world Congress 
of mathematicians in Oslo (1936). 

We see that, as it happened in the pioneering period of the nineteenth century, the chief 
characters in mathematics education of the first half of twentieth century were mainly 
university mathematicians. In summarising their attitudes towards mathematics teaching we 
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may say that Enriques and Loria were interested in the dynamic of mathematics (its history, 
the psychology of the great mathematicians, the relationship of mathematics with painting, 
music,…). As a historian Loria was a pioneer in facing the problem of the use of history in 
mathematics teaching, especially in teacher education. Castelnuovo stressed the importance 
of modelling and application of mathematics; already at the beginning of the twentieth 
century he proposed the introduction of probability in mathematical programs. A singular 
position was that of Giuseppe Peano, who tried to apply directly the object of his research 
(logic) to school practice. According to him the language of logic, which is clear and not 
ambiguous, should make mathematical knowledge accessible to all students. Peano’s project 
was utopian, but his enthusiasm and good willingness attracted secondary teachers who 
collaborated with him. His environment constitutes an early example of a mixed group of 
university professors and school teachers working on didactic problems. 

2. The Present 

The international panorama has changed since the period I have considered before. In the 
period after the second world war , we saw international efforts of important initiatives, which 
slowly lead the community of mathematics educators to become a community of researchers 
in the new discipline of mathematics education, (see Bishop, 1992; Dreyfus and Paola, 2004; 
Freudenthal, 1968-1969; Kaufman, B.A. and Steiner, 1968-1969; Niss, 1999; Sierpinska and 
Kilpatrick, 1998). The wrench with the past was marked by the creation of the journal 
Educational Studies in Mathematics in 1968, which initially gathered the contributions of 
mathematics teachers and university mathematicians. This was the time of the birth of the 
ICME conferences. In this international movement Italy was represented by few persons. One 
of them, the secondary teacher Emma Castelnuovo, daughter of Guido, was member of the 
first editorial board of Educational Studies in Mathematics. The impact inside the country of 
what was happening abroad was confined to a few groups of resear chers in some Italian 
universities. Some good projects for renewing the mathematics teaching were carried out 
under the guidance of mathematicians, who were interested in mathematics teaching. Until 
ICME 5 in Berkeley (1984) the Italian participants to ICME conferences were very few. As a 
consequence also the involvement in the activities of the affiliated Study Group (HPM1 and 
PME) created in 1976 was very poor. Initially the conferences of the commission for 
improving the mathematics teaching CIEAEM were the main bridge of Italians with the 
international community. The sudden increasing of the number of Italian participants at 
ICME 6 (1988 in Budapest) may be taken as a mark in the internationalisation of our 
community. 

Important aspects of the development of mathematics education research in Italy until the 
1990s are outlined in (Arzarello and Bartolini, 1998). Moreover, since ICME 6 (Québec, 
1992) the national community of mathematics educators has issued special books containing 
summaries of papers authored by Italian researchers and surveys of the Italian streams of 
research.  

                                                 
1 HPM: History and Pedagogy of Mathematics Group; PME: International Group of the Psychology of 
Mathematics Education. 
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I feel that the Italian community has developed its own identity and independence from the 
mother-community of mathematicians, nevertheless I observe remarkable elements of 
continuity. Firstly, though our attitude towards rigour has strongly changed, still the interest 
for the approach to proof in secondary school is central in our research as for all the stages 
(exploring, conjecturing, proving) and for all mediators (paper and pencil, computer, 
mathematical instruments, language), (see Boero, 2002). Secondly, in Italy many groups of 
research are characterised by close collaboration of teachers and researchers in planning and 
carrying out educational studies. This contributes to make the relation between theory and 
practice less problematic than in other countries. Our research has always in mind the 
classroom. Unfortunately the position of teachers as researchers is also not officially 
acknowledged by the Ministry of Education and the involvement of teachers is voluntary and 
without official rewards. In conclusion, as chair of the HPM Study Group in the years 2000-
2004, I can not forget the historical flavour present in many Italian works, which is a direct 
heritage of Enriques’s and Loria’s style of approaching mathematics education problems. 
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1. The Space Age 
On October 4, 1957, with the launch of Sputnik 1 by the Soviet Union, the world entered the 
Space Age and the United States became quite concerned that the Soviet Union had a head start 
in the space race. A year later, realizing that the support of gifted and talented mathematics and 
science students was critical to national security, the United States federal government passed the 
National Defense Education Act (NDEA), providing aid to education in the United States at all 
levels, primarily to stimulate the advancement of education in science, mathematics, and modern 
foreign languages. Also, during this time, “new math” was introduced with an emphasis on more 
abstract concepts and unifying ideas. One of the most unique of the projects developed during 
that time, the Comprehensive School Mathematics Program (CSMP) from McREL, Mid-
continent Research for Education and Learning, continues to be available online at 
http://ceure.buffalostate.edu/~csmp/. Although never fully implemented as intended, some of the 
“new math” projects along with the NDEA contributed to the dominance of the United States in 
science and technology in the latter part of the twentieth century as they inspired thousands of 
students to enjoy mathematical investigations and to pursue degrees in mathematics, science and 
technology.  
 
On July 16, 1969, the Apollo 11 launched from the Kennedy Space Center and on July 20, 1969, 
Commander Neil Armstrong became the first man on the moon and said the historic words, "One 
small step for man, one giant leap for mankind." The sixth and final manned moon landing 
occurred in December 1972, and the United States declared victory in the space race. For fifteen 
years, Americans had supported gifted and talented students interested in learning mathematics 
and science, especially as related to space technology, but what has happened since that time? 
 
2. The Growth of Technology 
Partially in reaction to the “new math”, the 1970s saw a strong “back-to-basics” movement with 
an emphasis on basic skills such as computation. In 1980, the National Council of Teachers of 
Mathematics (NCTM) published An Agenda for Action noting that the most important basic skill 
was problem solving. The following statement, from this same report pointed to the growing 
recognition of the importance of the development of gifted mathematics students.  
The student most neglected, in terms of realizing full potential, is the gifted student of 
mathematics. Outstanding mathematical ability is a precious societal resource, sorely needed to 
maintain leadership in a technological world.  
NCTM, 1980, p. 18 

 
 
In 1983, The National Commission on Excellence in Education warned in its report, A Nation at 
Risk, that the skills and knowledge of the U.S. workforce would have to improve dramatically in 
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order for the nation to remain internationally competitive. In 1989, the first President Bush 
convened an Education Summit with the nation’s Governors and adopted six National Education 
Goals. The fifth goal was: “U.S. students will be first in the world in mathematics and science 
achievement by the year 2000.” In spite of the public acknowledgement of the importance of 
students with high-level skills in mathematics and science, little has been done in the past 25 
years to support our most promising students. 

 
3. The Information Age 
In 1993, Richard Riley, the U. S. Secretary of Education, in the introduction to National 
Excellence: A Case for Developing America’s Talent, stated, “All of our students, including the 
most able, can learn more than we now expect. But it will take a major national commitment for 
this to occur.” (Ross, 1993, p. iii) The report goes on to point to a “quiet crisis in educating 
talented students” with the following statement. 

The United States is squandering one of its most precious resources – the gifts, talents, 
and high interests of many of its students.  

Ross, 1993, p.1 
 
The year after this report came out, the NCTM appointed a Task Force on Mathematically 
Promising Students to analyze this issue specifically for mathematics. The Task Force agreed 
that a major national commitment was needed to turn around this quiet crisis for mathematically 
promising students who were defined as “those who have the potential to become the leaders and 
problem solvers of the future”. The Task Force called for a strategy that seeks to greatly increase 
the numbers and levels of mathematically promising students by maximizing their ability, 
motivation, beliefs, and experiences/opportunities. The report pointed out that these four factors 
are all variables that could and should be increased with proper support and encouragement. 
Noting research on brain functioning that demonstrates that significant changes in the brain are 
due to experiences, the report called on administrators, teachers, parents and students themselves 
to make sure that all students have the opportunity to experience the joy of solving challenging 
mathematical problems on a regular basis and that high-level mathematics courses are available 
to all students regardless of where they go to school. Recognizing that the culture in the United 
States often works against students’ desire to excel in science, technology and mathematics, the 
report also noted the importance of students’ realizing that excellence in mathematics is not only 
possible, but also leads to careers in fulfilling and intriguing areas. (Sheffield, et al, 1995) The 
recent popularity of the television series Numb3rs goes a long way toward supporting this goal, 
but much more is needed. 

 
4. The Twenty-First Century 
By 2000, it was evident that the United States was a long way from the goal of being first in the 
world in math and science. The Trends in International Mathematics and Science Study (TIMSS) 
in 1995 and the repeat of the study in 1999 and 2003 showed that not only were we not first, but 
top students in the United States were not at the same level as top students in other countries. 
In1995, 9% of U. S. fourth graders and 39% of Singapore fourth graders scored above the 90th 
percentile on the mathematics portion of the TIMSS test. That year, 5% of U. S. eighth graders 
and 45% of Singapore eighth graders scored above the 90th percentile on the TIMSS 
mathematics test. By 2003, 40% of the eighth grade students in Singapore, 38% of eighth graders 
in Taiwan, and 7% of U. S. eighth graders scored at the most advanced level. Although this was 
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an improvement for students in the United States, it was still far behind other developed 
countries.   
 
Similar results were found by the Program for International Student Assessment (PISA). In 2003, 
U.S. performance in mathematics literacy and problem solving was lower than the average 
performance for most OECD (Organization for Economic Co-operation and Development) 
countries. Even the highest U.S. achievers (those in the top 10 percent in the United States) were 
outperformed on average by their OECD counterparts. (National Center for Education Statistics, 
2003) 
 
The No Child Left Behind Act of 2001 had as a major purpose that all students reach proficiency 
on challenging state standards and assessments, closing the achievement gap between high and 
low-achieving students. But what happens to students for whom moving toward proficiency is 
moving backwards when there is a goal to close the achievement gap between high and low-
performing students? 
 
In a study of the effects of teachers and schools on student learning, William Sanders and his 
staff at the Tennessee Value-Added Assessment System put in this way:  

"Student achievement level was the second most important predictor of student learning. 
The higher the achievement level, the less growth a student was likely to have." DeLacy, 2004, 
p. 40 

 
Certainly one way to close the achievement gap between high and low-performing 

students is to slow down the learning of high-performing students, but is that a goal that we can 
afford?  

The United States is losing its edge in innovation and is watching the erosion of its 
capacity to create new scientific and technological breakthroughs. …If America is to sustain its 
international competitiveness, its national security and the quality of life of its citizens, then it 
must move quickly to achieve significant improvements in the participation of all students in 
mathematics and science. 
Business-Higher Education Forum, 2005, p. 1, 3 
 
In 2005, the Annual Conference of the National Association of Gifted Children (NAGC) featured 
a special strand on Mathematics and Science with a keynote address by Jim Rubillo, the 
Executive Director of the National Council of Teachers of Mathematics and Gerry Wheeler, the 
Executive Director of the National Science Teachers Association, and NAGC appointed a 
Math/Science Task Force to continue this work.  If the United States is to maintain leadership in 
this technological world, it is critical that we collaborate to take immediate drastic action to 
recognize, support, create and develop the mathematical promise in large numbers of students 
and their teachers - male and female; black and white; preschool through graduate school; rich 
and poor; rural and urban. As we approach the fiftieth anniversary of Sputnik and the National 
Defense Education Act, let’s join together to inspire a new generation of students to excel in 
these areas critical to the welfare of our country and indeed of the entire world. 
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Abstract: Mathematical contests are of great importance for advanced education in Latvia 
today. Their content must be well-balanced and must correspond to the inner logic and 
recent trends of mathematics. A classification of algorithmic problems and characteristic 
examples are considered. 
Key words: Mathematical contests, algorithmic problems, method of interpretation. 
 
1. Introduction 
Mathematical contests have become an essential part of middle and high school education in 
Latvia. They are the broadest national scale tests on advanced level. In the situation when the 
curricula of exact disciplines is reduced constantly in favor of social and humanitarian ones 
(considering this as “humanization” of education) math contests have not lost their high 
standards and are the most popular academic competitions in Latvian schools (e.g., the Open 
Latvian Mathematical Olympiad alone gathers more participants than competitions in all 
other disciplines together in Latvia). 
 
In such a situation a great attention must be (and is) paid to the scientific content of contest 
problems. In accordance with the increasing role of the discrete branches of mathematics vs. 
continuous branches of it the proportion of combinatorial, number – theoretic etc. problems 
does not fall below 50% of the total number of them, being considerably higher in younger 
grades where the students have not yet accumulated enough knowledge to solve serious 
problems in algebra, geometry, calculus etc. Naturally, this leads to the fact that “Olympiad 
curricula” contains also many ideas and formal tools from computer science, which becomes 
the central discipline in today’s education. Without any doubt, the central concept of it is the 
concept of algorithm.  
 
 
2. Main classes of algorithmic problems for contests 

 
The problems of algorithmic nature mostly used in math competitions can roughly be 
classified as follows: 

1. Games 
1.1.Games with symmetry 

1.1.1. Games with usual symmetry.  
1.1.2. Games with generalized symmetry. 

1.2. Model of the game. 
1.2.1. Model in the grid. 
1.2.2. Model in the graph. 

1.3. Games with prehistory. 
1.4. Indirect proofs on winning strategies. 
1.5. Invariant of the game. 
1.6. Probabilistic games. 
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1.7. Continuous games, including games of search and ambush.  
2. General combinatorial algorithms 

2.1. Inference of algorithms. 
2.2. Analysis of algorithms. 
2.3. Developing of algorithms. 

2.3.1. “Divide – and – conquer.” 
2.3.2. Procedures. 
2.3.3. Inductive algorithms. 
2.3.4. Exhaustive search.  

2.4. Optimization of algorithms. 
2.4.1. Problems of searching and sorting. 
2.4.2. Algorithms for performing arithmetical operations. 
2.4.3. Algorithms in graphs. 
2.4.4. General methods of obtaining lower bounds. 

2.5. Proofs of the correctness of algorithms. 
2.6. Proofs of nonexistence of an algorithm. 

2.6.1. Uses of invariants and semi- invariants. 
2.6.2. Exhaustion. 
2.6.3. Modeling.  
2.6.4. General idea of a cycle. 

2.7. Nondeterministic algorithms. 
2.8. Probabilistic algorithms. 
2.9. Algorithms dealing with incomplete information.  

 
Of course, not all of these types are suitable for junior students. Those we find appropriate for 
them are given in italics above. The above list shows also some shifts that have occurred 
during last decades. Until the 1960’s the problems of geometric constructions were very 
popular; at present they have almost disappeared from “contest curricula”. On the other hand, 
almost no examples of the type 1.4., 2.4.4., 2.5., 2.6.4., 2.7., 2.8, can be found in contests 
before 1970. 

 
3. System of Math Contests for Junior Students in Latvia 
 
There are two main classes of competitions, mainly in problem solving. 

 
A. Mathematical Olympiads. 
 
They are organized at three levels: 
• school olympiads, often supported by universities; they are usually held in 

November, 
• regional olympiads held in 39 different places in Latvia each year in February,  
• Open math olympiad held each year in April. This competition is a very large one; 

more then 3000 participants arrive in Riga. 
All these competitions are open to everybody who wants to participate. 
Other present-way competitions are organised at schools, at summer camps etc. 
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B. Corresponding contests. 
 
There are many students who need more than some 4-5 hours (usually allowed during math 
olympiads) to go deep enough into the problem. For such children a system of 
correspondence contests has been developed: 

• “Club of Professor Littledigit” (CPL) for students up to the 9th Grade. There are 6  
rounds each year, each containing 6 relatively easy and 6 harder problems. Problems are 
published in the newspaper “Latvijas Avize” (having the largest circulation in Latvia), and on 
the INTERNET. 

• “Contest of young mathematicians”(CYM) for students up to 7th Grade, originally 
developed for weaker students than the participants of CPL, especially in Latgale, the eastern 
region of Latvia. The problems are published in regional newspapers and on the INTERNET, 
and today it has become popular all over Latvia. 

• “So much or… how much?” (SMHM) contest for the students up to 4th Grade, 
organized jointly with colleagues from Lithuania  and Belorussia. The problems are published 
in Internet. At the end of the school year an international correspondence competition 
between the students of three countries is organized. 

 
4. Characteristic examples 

 
Example 1 (SMHM). There is a bottle of volume 5 l, full of milk. There also 2 empty 

bottles of volumes 2 l and 3 l correspondingly. The milk can be continuosly transferred from 
one bottle to another one until either the first bottle is empty or the second bottle is full. Show 
how it is possible to obtain exactly 4 l of milk in one bottle. 

 2 l 3 l 5 l 

5 l 0 l 0 l at the beginning

after 1st transfer

after 5st transfer
 

after 4st transfer
 

after 2st transfer
 

after 3st transfer
 

after 6st transfer
  

 
   Answer: it is enough to use ________ transfers. 
 
The task can be accomplished within 3 transfers. This is a typical representative of the 

class 2.3.4 (see above). The problem appeared to be relatively easy. 
 
Comment 1. If similar problem was proposed for the students of higher grades, possibly 

it should include also the question about the minimality of the number of transfers. 
Comment 2. It is worth attention that a form for providing a solution is included in the 

text of it. Our experience shows that teaching how to write down the solution is not less 
important than teaching how to find it, and it needs a constant effort. As SMHM contest is the 
very first for many students, they should be given examples of correctly formulated solutions. 
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Example 2 (CYM). There are 2005 points marked on the circumference; 999 of them 
are red while the other are green. Each of obtained 2005 arcs is marked with an integer: 

a) if both endpoints of the arc are red, it is marked with “-1”,  
b) if both endpoints are green, it is marked with “1”, 
c) if both endpoints are different, the arc is marked with “0”. 
Find the sum of all integers with which the arcs are marked. 
Solution.  Mark each red point with “-1” and each green point with “1”. It is easy to see 

that the sum of all these new marks equals the requested sum. 
Comment. This is a problem from the class 2.3.2; the idea of a basis is used, though 

indirectly, in the solution. It is a common praxis in Latvia to construct the problems in such a 
way that simple appearances of far-reaching ideas can be encomposed in the solution. 

 
Example 3 (CPL, easy part). There are 8 coins in the row. By one move we can 

interchange two neighboring coins. We must achieve the situation that each coin has 
“visited” both the left end and the right end of the row. Prove that 33 moves are not enough. 

Solution. Let the distance between neighboring coins be 1 unit. During one move the 
distance of 2 units is covered in common. The coin initially occupying the first place must 
cover the distance 7, the coin initially occupying the second place must cover the distance 8, 
etc. The sum of all distances that must be covered is 2 (7+8+9+10) = 2⋅34. So at least 34 
moves are needed. 

Comment 1. The problem appeared to be a ha rd one. Most solutions tried to analyse the 
“worst case” not argumenting why it is really the worst one, what is the typical situation in 
solutions of the problems of class 2.4.1. 

Comment 2. The real minimal sufficient number of moves is 40. That was a problem 
for the hard part of the contest. 

 
Example 4 (CPL, easy part.). There are 100 first -graders in a row, all facing the 

teacher standing in front of them. After the command “Turn to the right!” some of them 
turned to the right, while the other turned to the left. After that after each second each two 
pupils who stood face to face with each other turn around. Prove that the movement will stop 
after at most 99 seconds. 

Solution. It is easy to understand that the development of the process depends only on 
the fact into which direction the pupils occupying correspondingly the 1st, 2nd, …, 100 th place 
are looking at each moment, but not on the fact which particular pupil occupies the 1st, 2nd,  
…, 100th place. Let’s consider another similar process in which the pupils don’t turn around 
but step forward interchanging their places. There is an isomorphism between the two 
processes in the sense that for each i, 1=i=100, the pupil on the i-th place in the first process 
is looking to the right iff so does the pupil on the i-th place in the second process. On the 
other hand it is clear that no pupil can make more than 99 steps, so the conclusion follows. 

Comment 1. This is a typical problem of the class 2.2., using the method of 
interpretations (see [1]). 

Comment 2. The problem comes from the theory of cellular automata. It is still another 
illustration of the great impact the theoretical computer science has made on math contests 
during last 30-40 years. 

 
Example 5 (summer school math contest). 
There are 3 convex polygons drawn inside the unit square: A, B, C. The contours of 

each two of them intersect each other at exactly two points and have no other common 
points; all 6 points of intersection are different. Two players X and Y play the following 
game. At first X chooses one of the polygon and paints either the inner or the outer region of 
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it; then Y does the same with one of the remaining polygons, and X paints the inner or the 
outer region of the only remaining polygon. Prove: X can ensure that the area of the three 

times painted region is 
6
1≤ . 

Solution. In an obvious way, represent the inner and outer regions of polygons by the 
faces of the cube. Then the 8 parts into which the square is dissected are represented by the 
vertices of the cube. Write the area of each part into the corresponding vertice; then the sum 

of all written numbers is 1. Mark the vertices with numbers 
6
1≤  as  ; there are at least three 

  in the cube. There are only 3 substantially different configurations of these  : 
 

 
Now, the move in the game is to choose one face of the cube and delete the opposite 

face from further consideration. It’s almost obvious that the first player can ensure: the 
intersection of three chosen faces is marked with  . 

Comment. The problem appeared to be very hard. It is an example of class 1.2. with 
non-traditional applicatio n of the method of interpretations.  

More examples can be found in [2]. 
 
5. On sources of algorithmic problems 

 
The main, and, we hope, everlasting source of algorithmic problems for math contests is the 
current scientific research. For example, all rich area of “coin – weighing problems” has 
originated from the investigations in sorting algorithms. New types of problems arise in 
connection with non-traditional (from the students’ point of view) types of algorithms. 

 
Example 6 (Latvian summer competition). There are 4 equally looking coins; all of 

them have different masses. We can use a pan balance without counterfeits. Develop an 

algorithm which uses a pan balance twice and find the heaviest coin with the probability 
4
3 . 

Solution. At first, using any generator of random numbers (for example, throwing the 
fair coin twice), decide which coin will be called “read”; other coins will be called “blue”. 
After that find the heaviest blue coin deterministically within two weighings in a standard  
way. Announce this coin the heaviest among all four. 

Clearly there is a probability 
4
3  that the heaviest coin (among all four) will be blue. 

Then it will be announced the heaviest, QED. 
Comment. This problem demonstrates the advantage  of “clever” probabilistic algorithm 

over both deterministic algorithms and pure guessing. It can be easily proved that the task can 
not be completed deterministically. Of course, simple guessing gives the correct answer only 

with a probability 
4
1 . 
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Example 7 (R.Freivalds). There are 14 equally looking coins. The experts have 
established that 7 of them are exact and 7 of them are false. The court knows only that all 
exact coins have equal masses, all false coins have equal masses and an exact coin is heavier 
than the false one. How can expert demonstrate to the court which coins are exact and which 
are false using only 3 weighings on a pan balance without counterfeits? 

Solution. At first expert places one exact coin on the left pan and one false coin on the 
other. The court becomes aware “who is who” of these coins. The expert adds two exact 
coins to the false one and two false coins to the exact one – and the court again becomes 
aware “who is who”. Then the expert gathers 3 “proved exact” coins on one pan and adds 4 
“unproved false” coins to them; other 7 coins are placed on the other pan. It’s not hard to 
understand that all should be clear to the court after this. 

Comment. This problem has great educational value; it demonstrates to the student that 
a proof itself can be principially  simpler than a process of establishing it. Really, an easy 
generalization shows that n exact coins can be separated from n false ones using [ ] 1log2 +n  
demonstrations ; on the other hand, information theory lover bound shows that at least 

2log 3⋅n  weighings are necessary to establish which n coins are the exact ones. 
Other possible variations are to introduce the possibility of unreliable information, to 

consider parallel processes, to deal with more powerful/ more restricted identifying devices 
than yes/no questions  or their equivalents, etc. All these are topics of serious investigations 
in computer science, but yet have not found an adequate reflection in math contests. 
 
6. Concluding remarks  

 
Many investigations have stressed the great educational value of discrete and combinatorial 
problems, e. g., [3]. Algorithmic problems are special among them. They develop the 
analytical and constructive skills of children and provide the  possibilities of interdisciplinary 
education. They are always welcome by the students and often can be reformulated so that 
become suitable for independent investigations of them. Their connections with general 
reasoning methods make them a valuable educational tool.  
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where he teaches mathematics and information since 1985. He is also proud to be known as the 
“Boomerang Professor.” After studying mathematics at the University of Kyoto (1967-1971) he 
went on to work for IBM Japan for 14 years. He is interested in the mathematics that occurs in 
daily life, and has written seven books about the subject. The most recent one, called "The 
mystery of five in nature", investigates, amongst other things, why many flowers have five 
petals. He was a visiting fellow of the University of Cambridge, UK and joined the Millennium 
Mathematics Project (2005).  
 
Steffen Iversen (Denmark) holds a BA in Mathematics and Philosophy and is currently 
working on finishing his Master’s thesis in mathematics education at the University of Southern 
Denmark. His thesis concentrates on how to develop successful interdisciplinary activities 
involving mathematics at the undergraduate level. Steffen’s main interests are interdisciplinary 
issues in mathematics education, mathematical modelling and development of the mathematics 
education of the future. In addition to his thesis he is engaged in a series of teaching experiments 
involving undergraduate student s in the Natural Sciences. In these experiments, the goal is to 
analyse and identify connections between the students’ abilities in standard mathematics and 
their modelling competencies when working with model eliciting activities in mathematics. As a 
teaching assistant Steffen has taught different subjects such as Calculus and His tory of 
Mathematics, and helped to develop educational programs and seminars concerning mathematics 
education for new teaching assistants at the University of Southern Denmark. After obtaining his 
degree in mathematics education he hopes to be able to continue my work on developing the 
mathematics education of the future.  
Contact info: iversen@imada.sdu.dk 
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Fulvia Furinghetti (Italy) is Professor of Didactics at the University of Genoa, Italy. She was 
born and studied in Genoa. Her research concerns both mathematics education and history of 
mathematics. In mathematics education she has studied the impact of beliefs, the problem of 
proof, strategies for teachers’ education. In history of mathematics her main interest are 
mathematical journals of the nineteenth century. Her publications have also explored and studied 
the role of history in mathematics education and in teacher training as a natural link between 
these two fields of interest. She is an internationally known scholar with seminal contributions to 
the field of mathematics education in the aforementioned areas. Among her worldwide 
contributions include playing significant leadership roles in organizations such as International 
Commission on Mathematics Instruction (ICMI) where she chaired the History and Pedagogy of 
Mathematics (HPM) Group.  Her scholarly papers have appeared in journals like Educational 
Studies in Mathematics, For the Learning of Mathematics, as well as international handbooks 
like the Handbook of International Research in Mathematics Education. She recently co-edited a 
special monograph commemorating 100 years of the famous journal L’Enseignement 
Mathématique.  
Contact: furinghe@dima.unige.it 
 
 
Linda Sheffield (USA) is Regents Professor of Mathematics Education and Gifted Education at 
Northern Kentucky University,  and is internationally recognized for her work on developing and 
challenging students from the pre-kindergarten through the university level. She is past president 
of the School Science and Mathematics Association (SSMA), was chair of the Task Force on 

Promising Students for the National Council of Teachers of 
Mathematics (NCTM), and is chair of the Math/Science Task Force 
of the National Association for Gifted Children. She was also editor 
of the NCTM book Developing Mathematically Promising 
Students. Her other books include Extending the Challenge in 
Mathematics for teachers looking for ideas to amplify their 
students’ mathematical power and co-authoring Awesome Math 
Problems for Creative Thinking, a series of problem solving books 
for children; the PreK–2 NCTM Navigations series; Mentoring 
Mathematical Minds, a series of mathematics units for talented 
elementary students; and a math methods book for elementary and 
middle school teachers. She has conducted seminars for teachers 
and students across the United States and as far away as Korea, 

Bulgaria, Denmark, Spain, Germany, England, Sicily, Japan, Australia, China, and Hungary with 
an emphasis on helping students develop their talents and abilities to the fullest extent possible. 
Contact: Sheffield@nku.edu 
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Agnis Andžans  (Latvia) is Professor of mathematics at the University of Latvia, Corresponding 
Member of Latvian Academy of Sciences. His main research interests are theory of automata, 
new methods of advanced teaching of mathematics, the “informatization” of education. He has 
published 6 monographs, approximately. 90 research papers and approximately 120 teaching 
aids. 
 
Inese Berzina (Latvia) is 3rd year mathematics bachelor student at the University of Latvia, 
Faculty of Physics and mathematics, and deputy educational director at A. Liepas 
Correspondence Mathematics School which is a centre of advanced mathematical educational 
system in Latvia. Her research area and main professional activities are connected with 
correspondence mathematics contests for junior students as well as with the curricula and 
teaching process in correspondence for gifted high school students, particularly those organized 
via internet. She is also active in arranging Olympiads, summer schools and regional 
mathematical clubs, mainly in the rural area of Latvia. She is the head of the team checking the 
papers of the multi-stage “Contest of young mathematicians”, involving ~ 150 participants from 
all regions of Latvia. Her non-professional interests include choir singing, traveling, swimming 
etc. 
 
Dace Bonka (Latvia) is a PhD student at the University of Latvia, lecturer at the University of 
Latvia and an educational director at A.Liepas Correspondence Mathematics School.  Already at 
school Dace Bonka was inspired from math olympiads. She has been a member of organizing 
committee and jury of Latvian mathematics Olympiad already for 10 years. Her research area 
and main activities are correspondence mathematics contests for junior students in Latvia. She is 
initiator and leader of the contest “So much or… how much?” (SMHM) for the students up to 
4th Grade in Latvia and co- leader of Junior International Math Olympiad – the last round of 
contest SMHM, organized jointly with colleagues from Lithuania and other neighboring 
countries. She is also the author of problem set for “Contest of young mathematicians” (CYM) 
for students up to 7th Grade. She has published 11 research papers and 5 teaching aids for junior 
and high school students. 
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A ROLLING GLIMPSE OF TMME’S WORLDWIDE CIRCULATION 
 
 
 
 
The following bar graphs give a rolling snapshot of the worldwide access of The Montana 
Mathematics Enthusiast, based on samples of last 100 page loads on randomly chosen weeks from 
September 2005 – January 2006.  
 
 
September 27- October 4, 2005  
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October 5- October 11, 2005  
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December 18 – December 25, 2005. 
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December 25, 2005 - January 01, 2006 
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December 27, 2005 – January 03, 2006 
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January 12 – January 19, 2006 
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January 19 – January 25, 2006 
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