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Abstract

Cross-species transmission (CST) of bacterial pathogens has major implications

for human health, livestock, and wildlife management because it determines

whether control actions in one species may have subsequent effects on other

potential host species. The study of bacterial transmission has benefitted from

methods measuring two types of genetic variation: variable number of tandem

repeats (VNTRs) and single nucleotide polymorphisms (SNPs). However, it is

unclear whether these data can distinguish between different epidemiological sce-

narios. We used a simulation model with two host species and known transmis-

sion rates (within and between species) to evaluate the utility of these markers for

inferring CST. We found that CST estimates are biased for a wide range of

parameters when based on VNTRs and a most parsimonious reconstructed phy-

logeny. However, estimations of CST rates lower than 5% can be achieved with

relatively low bias using as low as 250 SNPs. CST estimates are sensitive to several

parameters, including the number of mutations accumulated since introduction,

stochasticity, the genetic difference of strains introduced, and the sampling effort.

Our results suggest that, even with whole-genome sequences, unbiased estimates

of CST will be difficult when sampling is limited, mutation rates are low, or for

pathogens that were recently introduced.

Introduction

Bacterial cross-species transmission (CST) is of major con-

cern for public health, agriculture, and wildlife manage-

ment. First, CST is the most significant cause of disease

emergence in humans and other species (Lloyd-Smith et al.

2009), with wildlife zoonotic diseases of bacterial origin

being the most common group of human emerging dis-

eases (Jones et al. 2008). Secondly, CST between wildlife

and livestock for diseases such as tuberculosis and brucello-

sis has appreciable economic impacts in agriculture by

reducing livestock productivity and imposing export

restrictions (Gort�azar et al. 2007). As a result, wild and

domestic species are sometimes intensively managed to

reduce potential spillover transmission. This is the case of

the hazing of bison (Bison bison) around Yellowstone

National Park due to brucellosis (White et al. 2011) or

badger culling to prevent cattle tuberculosis (Donnelly

et al. 2006). Underestimating CST can decrease the effi-

ciency of measures aiming to stop disease spread by focus-

ing only on within-species transmission (WST), while

overestimating CST can lead to unnecessary measures aim-

ing to stop CST when most disease transmission happens

within a single species.

Several studies have focused on defining CST scenarios

based on disease prevalence, e.g., ‘rare spillover events’ ver-

sus ‘multihost systems’ (Haydon et al. 2002; Dobson 2004;

Fenton and Pedersen 2005). However, detecting CST and

estimating its rate based only on prevalence data remains

challenging. On the other hand, the explosive development

of molecular techniques has opened new possibilities for

using phylogenetic analysis of parasite genetics to infer epi-

demiological parameters (Grenfell et al. 2004; Archie et al.

2009; Didelot et al. 2012). Genetic techniques to study
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transmission were first used for fast evolving RNA viruses

(Pybus and Rambaut 2009). In contrast, several bacterial

pathogens harbor low DNA sequence diversity (Comas

et al. 2009), limiting the inferences that could be made

using genetic markers. Genetic studies of bacteria previ-

ously focused on variable number tandem repeat (VNTR)

data (Lindstedt 2005) and, more recently, single nucleotide

polymorphisms (SNPs) derived from whole-genome

sequencing (Pearson et al. 2009; Didelot et al. 2012). The

low cost and high mutation rates of VNTRs made them

particularly useful to detect genetic differences in recent

outbreaks (Lindstedt 2005). SNPs have a lower mutation

rate per locus than VNTRs but deliver more stable and reli-

able genetic relationships between bacteria isolates, which

is more suitable for studies on bacterial phylogenies (Foster

et al. 2009). Both of these marker types have great potential

and are now being used to answer a range of epidemiologi-

cal questions, although reduction in cost of whole-genome

sequencing will probably favor the use of SNPs rather than

VNTRs in the near future (Achtman 2008).

Studies focusing on CST using VNTRs or SNPs have

mainly described differences in bacteria genotypes between

the two host species, and some have reconstructed the bac-

teria phylogeny using a clustering analysis, a phylogenetic

tree or a network approach (see Table 1 for examples on

identifying CST using genetic markers). However, these

analyses have been conducted with relatively small sample

sizes (especially in the wildlife species) and to our knowl-

edge, no study has yet estimated CST rates using bacterial

genetic markers (for viruses see Streicker et al. 2010).

Table 1. Example published studies focusing on CST between humans, livestock and wildlife using genetic markers.

Bacteria studies

Species involved and

number of isolates (n) Marker used Method Study Conclusion References

Brucellosis at

the Greater

Yellowstone

Ecosystem (GYE)

Cattle (23), elk (25),

bison (10)

VNTR (10 loci) Haplotype Network CST from elk to cattle Beja-Pereira

et al. (2009)

Brucellosis at GYE Cattle (43), elk (77),

bison (196)

VNTR (10 loci) Unweighted Pair

Group Method with

Arithmetic Mean

(UPGMA) and

Minimum Spanning

Tree (MST)

CST from elk to cattle Higgins

et al. (2012)

Bovine Tuberculosis

(TB) in Portugal

Cattle (157), wild

boar (4), red

deer (13), goat (7)

VNTR (8 loci) UMPGA and MST CST between cattle and

wildlife

Duarte

et al. (2010)

Bovine TB in Corsica cattle (5), pig (2),

wild boar (9)

VNTR (5 loci) combined

with Spoligotype

Comparison of

VNTR genotypes

CST between wild boar

and cattle suggested

Richomme

et al. (2010)

Bovine TB in Spain Wild boar (21),

red deer (10),

fallow deer (14),

I berian Lynx (4),

fox (2), cattle (41)

VNTR (8 loci) combined

with Spoligotype

Comparison of

VNTR genotypes

CST between wildlife

and cattle

Romero

et al. (2008)

Bovine TB in

Northern Ireland

Badgers (5),

cattle (26)

38 SNPs from Whole-

genome sequence

Comparison of SNPs CST between badger

and cattle

Biek et al.

(2012)

Paratuberculosis

in Germany

Cattle (40),

red-deer (13)

VNTR (8 loci) combined with

other markers (SSR and RLFP)

Comparison of

VNTR genotypes

CST between cattle and

deer suspected

Fritsch et al.

(2012)

Paratuberculosis

in Europe

Cattle (52), sheep (26),

goat (32),

several wildlife

species (54)

VNTR (8 loci) combined with

other markers (PFGE,

AFLP, RFLP)

Comparison of

VNTR genotypes

CST between wildlife

and cattle

Stevenson

et al. (2009)

Leprosy in the US Armadillo (33),

human (39)

51 SNPs from Whole-genome

sequence combined

with VNTR (10 loci)

MST on SNPs

and VNTRs

Possible CST from

Armadillos to humans

Truman et al.

(2011)

Salmonella in the UK Human (186),

poultry (190),

pigs (195)

VNTR (5 loci) combined

with PFGE

Ward algorithm

dendogram

Possible CST from

domestic animals

to humans

Best et al.

(2007)

Escherichia coli O157:

H7 in the US

Feral swine (13),

cattle (26)

VNTR (10 loci) Comparison of unique

VNTR alleles and MST

CST between cattle

and swine

Jay et al.

(2007)
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Therefore, it remains unknown whether the use of bacterial

VNTRs and SNPs allows accurate estimation of CST rates,

and what factors influence this estimation. Here, we used a

simulation model where the true rates of transmission and

mutation were known, to evaluate the ability of VNTRs

and SNPs to correctly estimate rates of CST between two

species (or populations).

The clonal population structure of bacteria (Smith et al.

1993; Haubold et al. 1998) and other pathogens favors the

use of a phylogenetic approach to infer bacterial migration

patterns between hosts or locations (Selander et al. 1990;

Spratt and Maiden 1999; Supply et al. 2003; Grenfell et al.

2004). Several well-studied methods in molecular phylog-

eny are available to reconstruct a parasite transmission his-

tory (Yang and Rannala 2012). Within this phylogenetic

framework, host species identity can be considered as a

character in the parasite phylogeny. Therefore, CST can be

estimated as the number of character changes within the

phylogeny using methods such as the most parsimonious

reconstruction (MPR) (Slatkin and Maddison 1989; Cunn-

ingham et al. 1998) or more complex Bayesian inference

approaches (Ronquist 2004; Lemey et al. 2009; Faria et al.

2013).

The most widely used MPR method assigns character

states to interior nodes on the tree, minimizing the number

of inferred changes in character state that are consistent

with the observed data (Yang and Rannala 2012). This

allows a rapid and intuitive reconstruction of ancestral

states and provides a number of character changes within

the phylogeny (Cunningham et al. 1998). When the ‘char-

acter’ under consideration is host species identity, the

number of state changes provides an estimate of CST

events. However, this method does not incorporate any

mechanistic description of the process by which CST

occurs and can be misleading when rates of evolution are

fast or transmission to and from a particular species do not

have the same probability (Cunningham et al. 1998; Yang

and Rannala 2012). Alternatively, Bayesian inference of

character evolution methods such as the character diffusion

model (Ronquist 2004; Lemey et al. 2009) are currently

being developed for the study of CST in RNA viruses such

as rabies (Streicker et al. 2010; Faria et al. 2013) and

account for tree uncertainty and more complex scenarios.

However, they are more computationally intensive, making

the evaluation of their performance (using numerous simu-

lations) difficult. Bayesian methods also require knowledge

to set prior values for parameters that are generally poorly

known in bacterial systems (Yang and Rannala 2012). Here,

we focus on testing the accuracy of CST estimations using

the MPR method based on VNTR or SNP markers. We also

tested the sensitivity of the estimates to several factors that

will likely affect any phylogeny reconstruction, regardless of

the method used.

We compared the ability of VNTRs and SNPs to recon-

struct a known bacterial phylogeny and estimate CST rates

by developing a discrete time susceptible-infectious-recov-

ered individual-based stochastic model with two species (A

and B). WST and CST rates were set to known constant

values. For each stochastic simulation, we counted the

number of both types of transmission and calculated /, the
percentage of all transmission that occurred across host

species. In the model, we tracked the VNTR and SNP bac-

terial genotype of each infected host, with a defined muta-

tional process for each genetic marker. At the end of each

simulation, infected individuals from the population were

sampled, and the phylogeny of the bacteria was recon-

structed from the simulated genetic markers. From the

phylogeny, we estimated /̂ using a MPR algorithm

(Narushima and Hanazawa 1997). We explored how bacte-

rial phylogenetic reconstruction and our ability to estimate

CST is affected by the following: (i) the number of muta-

tions accumulated in the bacteria of each host species after

bacteria introduction, (ii) the genetic similarity established

before introduction between the strains introduced in both

hosts, and (iii) the sample sizes of isolates within each host

species. Finally, we discuss other factors influencing the

reconstruction of phylogenies to reliably assess CST.

Materials and methods

We simulated a scenario where the bacteria are introduced

in both species A and B at the beginning of the simulation

and then both WST and CST can occur. At the beginning

of each simulation, one individual of each population was

infected with a bacterial strain. Details on the transmission

model are given in Appendix A.

Two introduction scenarios

We explored two introduction scenarios. In the first sce-

nario, both strains introduced at time zero in species A and

B were identical in their VNTR or SNPs. This represents

cases where both species are infected by the same strain

from another species at roughly the same time. For exam-

ple, brucellosis in bison (Bison bison) and elk (Cervus

canadensis) in the Greater Yellowstone Ecosystem was

introduced by European cattle (Bos taurus) at the begin-

ning of the twentieth century (Cheville et al. 1998)

(Table 1). This scenario is equivalent to having no bacteria

genetic diversity generated in species A before the first CST

event into species B, because the number of mutations

accumulated prior to CST is low. In the second scenario,

strains introduced in each species were genetically different.

The difference between the introduced strains was five

repeats at each VNTR locus or 50 SNPs. This scenario illus-

trates cases where strains in the two host species are already

776 © 2014 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 7 (2014) 774–787
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genetically different before CST occurs. This is a possible

scenario for bacteria evolving in several species hundreds

or thousands of years ago, with occasional CST between

species. This may be the case for most gastrointestinal bac-

teria such as E. coli and probably the case for endemic

bovine tuberculosis in wildlife reservoirs in Africa, Europe,

and North America (Cosivi et al. 1998; Delahay et al. 2001;

Aranaz et al. 2004; Wobeser 2009; Tenaillon et al. 2010).

This is also equivalent to a scenario where introduction

happens at the same time, but each species receives a differ-

ent strain from a genetically diverse bacteria population in

the contamination source. A third scenario where the bac-

teria evolve first in one species, and then CST occurs, is

intermediate between the two extreme scenarios presented.

Outcomes of this model should be (i) closer to the first sce-

nario if genetic variability is low previous to the first CST

scenario, or (ii) closer to the second scenario, if genetic var-

iability of bacteria in species A before CST to species B is

high. However, we did not test this scenario because it

requires the addition of extra parameters to the model

(e.g., time of evolution in one species before the first CST

event and random selection of the strain transmitted from

species A).

Genetic markers

VNTR

Each infected individual contains a single pathogen strain

characterized by several VNTR markers. Each VNTR locus

consists of short nucleotide sequences that are repeated in

tandem, and the number of repeats (considered as alleles)

varies among genotypes (Vogler et al. 2006). We per-

formed a limited review of 30 randomly selected studies

that obtained bacterial VNTR genotypes and calculated an

average of 10 [range from 4 to 49] VNTR loci used per

study. Thus, we performed simulations for 10 loci (referred

to as 10-VNTR) and the maximum value of 50 loci

(referred to as 50-VNTR) (Le Fl�eche et al. 2001). For sim-

plicity, all loci had the same mutation rate h. We varied h
to produce different values of allelic variation (AV = aver-

age number of alleles per locus). Specifically, we chose to

simulate AV = 2, 5, and 15, which correspond to low, med-

ium, and high values of AV observed in different empirical

systems (Keim et al. 2000; Farlow et al. 2002; Bricker and

Ewalt 2005). Repeat copy number variation at these loci is

the result of mutations resulting in the gain or loss of some

number of repeats, known as the multistep mutation model

(Fan and Chu 2007). This model is empirically supported

as the mutation model for several bacteria (Vogler et al.

2006, 2007). If mutation occurred (at rate h), the proba-

bility of mutating from x repeats to x � n repeats was

drawn from Vogler’s study on Escherichia coli, one of the

few focusing on the mutation mechanisms of VNTR

(Vogler et al. 2006). These probabilities were fixed to P

(n = 1) = 0.75, P(n = 2) = 0.13, P(n = 3) = 0.04, P

(n = 4) = 0.03, P(n = 5) = 0.02, and P(n = 6–10) = 0.03.

Adding or subtracting a number of n repeats had equal

probability (Vogler et al. 2006). A VNTR locus can mutate

back to a previous number of repeats, which can generate

genotypes that are identical, but not by descent. Detection

of such cases, known as ‘homoplasy’ (Reyes et al. 2012),

depends on the resolution of the genetic data and sampling.

Homoplasy can cause erroneous inference about the

genetic similarity between isolates and is especially

problematic after many generations of isolation between

lineages.

Single nucleotide polymorphism

Single nucleotide polymorphisms (SNPs) are single nucleo-

tides in the bacterial genome that vary due to random point

mutations, horizontal gene transfer or intragenic recombi-

nation (Brumfield et al. 2003; Pearson et al. 2009). SNPs

can theoretically occur at any nucleotide throughout a gen-

ome and because nucleotides have relatively low mutation

rates compared with VNTRs, multiple mutations at a single

site are unlikely (Brumfield et al. 2003). Thus, most SNPs

are only bi-allelic (i.e., only two nucleotide states are

observed) and are typically not affected by homoplasy

(Pearson et al. 2009). The declining cost of DNA sequenc-

ing (SNPs are identified by flanking sequences) should facil-

itate the discovery and genotyping of SNPs in many

bacterial genomes, thus likely increasing their use as bacte-

rial genetic markers in the near future (Achtman 2008). In

this model, we mimic a set of SNPs by a string of binary

integers (0 or 1). At each time step, each nucleotide can

mutate with probability x. We only allowed each nucleotide

to mutate once. To reduce computational time, the bacterial

genome was simulated by a 10 000 nucleotide string. Differ-

ent mutation rates allowed an accumulation of 100–1000
variable SNPs after introduction. Although up to 10 000

SNPs have been identified for Mycobacterium tuberculosis

worldwide (Achtman 2012), many bacteria show less than a

hundred informative SNPs at the geographic scale relevant

to epidemiological studies, for example, around 100 for

brucellosis at the Greater Yellowstone Ecosystem (Foster

et al. 2009), 38 forM. bovis strains in Northern Ireland that

have identical VNTR genotype (Biek et al. 2012), and 51 for

M. leprae in the United States (Truman et al. 2011).

Phylogenetic reconstruction and CST estimation

We reconstructed phylogenies from both VNTR and SNPs

using a neighbor-joining (NJ) tree method (Saitou and Nei

1987), from a pairwise matrix of genetic distance between

strains. The NJ method is widely used to reconstruct bacte-

ria phylogenies using both of these markers (Klevytska
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et al. 2001; Chen et al. 2007; Comas et al. 2009; Monot

et al. 2009). The MPR algorithm (Narushima and Hanazawa

1997) was used to estimate c, the minimum number of

character changes necessary to construct a tree compatible

with the matrix. Although c is considered to be propor-

tional to the number of CST events, no analytical relation-

ship has been established to estimate CST from c (Slatkin

and Maddison 1989). We suggest that the true percentage

of CST / ¼ CST
CSTþWST � 100 is approximated by the esti-

mated percentage /̂ ¼ c

Total number of nodes
� 100. Phy-

logenetic analyses were performed using the ape package in

R 2.15.2 (R Development Core Team 2012). Model initiali-

zation and parameter values are detailed in Appendix A.

Results

At a low number of mutations (allelic variation AV � 2),

the estimated percentage of CST, /̂, was uncorrelated

with the actual percentage of CST in the simulation, /,
for both 10 and 50-VNTR (Figs 1 and 2). / and /̂ were

more correlated when / was less than 10%, allelic varia-

tion was high, and more VNTRs were used. In all cases,

the estimated /̂s from each simulation were highly vari-

able (Figs 1 and 2). /̂ was an underestimate of / when-

ever CST was frequent. When the same strain is

introduced in both species and / = 0, a medium or high

number of mutations could produce /̂ ranging from 0 to

9% when using 10 VNTRs (Fig. 1C). This shows that

high mutation rates can generate false detections of CST.

This was less common using 50-VNTR. This phenome-

non can be visualized in Fig. 3, where reconstructing the

phylogeny using 10-VNTR with / = 0 falsely concluded

that CST happened on several occasions, while the same

phylogeny using 50-VNTR showed no evidence of CST.

Overall, the MPR method tended to underestimate /
when its value exceeded 10%.

Estimations of / using SNPs were usually less biased

than those using VNTR, especially when / < 5%, and this

estimate is improved by increasing the number of SNPs

(Fig. 4). However, 100 SNPs still resulted in highly biased

estimates of CST, in a scenario where the same strain was

introduced in both species (Fig. 4A, C). Values of /̂ using

250 SNPs were within 20% bias of the actual value when /
< 5%. Values of /̂ using 500 and 1000 SNPs were unbiased

when / < 10%, although stochastic variation could gener-

ate simulations over (or under) / by up to 100% (Fig. 4A,

C). Similar to the VNTR results, /̂ was biased low when

CST was frequent. Values of /̂ were less biased for all num-

ber of SNPs when the introduced strains were genetically

different and / < 3%. However, this initial difference in

strains also generated a more pronounced underestimation

for / > 3% (Fig. 4D).

Introducing genetically different strains to the two

hosts allowed a better estimation of / using VNTR data

when / < 10% and in SNPs when / < 3%. Even with

500–1000 SNPs and different host strains, we underesti-

mated the percentage of CST when / was between 5 and

10 percent. When / > 10%, relatively small differences

between introduction scenarios were observed, and gen-

eral underestimation was mostly a consequence of using

the MPR method.

Lower proportions of infected individuals sampled

resulted in larger overestimates of / (Fig. 5). Our results

were similar regardless of whether we used 10, 50-VNTR,

or 1000 SNPs. The number of CST identified in the phylog-

eny increased with the percentage of individuals sampled

(Fig. B1). However, the total number of events (nodes)

detected in the phylogeny (WST + CST) also increased but

with a bigger slope than for CST events (Fig. B1). This gen-

erated a higher bias of /̂ for low sample sizes. For example,

sampling 10% of the population doubled the estimated /̂
compared with sampling the entire population (Fig. 5). An

unbalanced sample size of 10 and 40 for species A and B,

respectively, may mislead a researcher to conclude that spe-

cies B is transmitting bacteria to species A in a scenario

where transmission only occurred from A to B (Fig. 6).

Discussion

Estimates of bacterial CST based on the most parsimonious

phylogeny reconstructed using VNTR markers tend to be

biased across a wide range of the parameter space we

explored. Less biased and variable estimates of CST are

possible using a large number of SNPs and when the per-

centage of all transmission that is across species is less than

10. In general, CST rate estimates were most reliable in sys-

tems with more mutations, markers, and high genetic dif-

ferences between introduced strains. Subsampling the

infected population tended to result in overestimates of

CST. The effect of stochasticity was also substantial using

both SNPs and VNTRs, suggesting that estimations of CST

rates will be generated with large uncertainty over the pre-

cise value. Although we focused on bacteria, the above fac-

tors would play a similar role for other clonal pathogens.

In general, bias in the estimation of CST rates using

VNTRs can be attributed to a poor reconstruction of the

bacteria phylogeny with some ancestor nodes being

wrongly assigned. On the one hand, overestimation of low

CST rates can be exacerbated by the effects of homoplasy

when the number of markers is small and mutation rate is

high. On the other hand, underestimation of high CST

rates can be attributed to the parsimonious nature of this

MPR algorithm, which minimizes the number of CST

necessary to reconstruct the phylogeny. The latter problem

also occurs when using SNPs. Little is known about the

778 © 2014 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 7 (2014) 774–787
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mutation rate of VNTRs in most bacterial species (Vogler

et al. 2007). Therefore, if these markers are used to estimate

CST rates given their simple and cost-effective implementa-

tion, our results suggest that their mutation rate needs to

be estimated, that more than 50 markers are necessary and

that allelic variability per marker should be high. This

requires evaluating whether identifying this amount of var-

iable markers is achievable and economically viable com-

pared with other methods such as SNPs.

Single nucleotide polymorphisms present the advantage

that estimations of their substitution rate per genome are

now becoming more available for bacteria (Achtman 2012).

Our results show that estimations of CST rates lower than

5% can be achieved with relatively low bias using as low as

250 SNPs. This confirms empirical results suggesting that

the stability of SNPs is more useful to disentangle bacteria

evolutionary history compared to VNTRs (Comas et al.

2009). For values higher than 10%, the MPR method tends

0
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Figure 1 Relationship between true and estimated percentage of cross-species transmission using VNTRs when the same strain is introduced. The

simulated percentage of CST, /, compared with its estimation, /̂, using the MPR algorithm in a scenario where the strains introduced in each species

were identical. Colored points represent each of the 200 simulations per value of b, whereas each line illustrates the average relationship between

the realized and estimated value (points averaged over the same value of b). The straight line represents a theoretical un-biased estimation. In (A) 10

loci were used, with the average number of total mutations accumulated since introduction equal to 22, 214 and 2145. In (B) 50 loci were used, with

the average number of total mutations accumulated equal to 102, 1013 and 10045. A zoomed plot of 0-10% CST is shown for (A) and B in (C) and

(D), respectively.
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to underestimate CST and does not seem suited for this pur-

pose. Instead, other methods such as Likelihood or Bayesian

analysis of character changes within a phylogeny might be

more accurate (Ronquist 2004), although their efficiency

also needs to be tested in a simulation framework. No esti-

mation of bacterial CST rates has been achieved so far for

empirical systems so it is hard to determine in advance the

possible range of / for a particular CST empirical system

(but see Streicker et al. 2010 in bat rabies for an estimation

of similar parameters). However, we expect that individuals

interact predominantly with members of their own species

and thus / < 10% in most systems, encouraging the use of

SNPs when studying CST. However, until estimates are

available, advancing a CST rate for a given system is mostly

arbitrary, unless prevalence data on both species can help

inferring epidemiological parameters.

Contrary to VNTRs, phylogenies using SNPs are more

stable and homoplasy is reduced. However, if the number

of informative SNPs and the CST rates are low, the lack of

genetic differentiation between bacteria from different host
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species can still lead to an overestimation of CST rates

because similarities in strains derived from a common

introduction will be wrongly attributed to CST events.

Given the relatively low mutation rate of SNPs, even 250

SNPs can be difficult to accumulate in systems where bacte-

ria introduction is relatively recent (see examples given in

the methods section). Thus, our results encourage the cur-

rent effort to increase the number of informative SNPs

available for bacterial pathogens using comparative genom-

ics (Pearson et al. 2009; Achtman 2012). Most viruses have

higher substitution rates than bacteria. Thus, the number

of markers necessary to achieve a reliable estimation of viral

CST should be easier to obtain.

Most bacteria populations will experience population

bottlenecks when introduced into a new geographic area or

jumping to a different host species (Smith et al. 2006;

Achtman 2008). Our two extreme scenarios of bacteria

introduction (identical or different genetic strains intro-

duced within each species), provided insights into the

importance of initial bottlenecks when estimating CST

rates. Overall, our results suggest that initial genetic differ-

ences between strains introduced into the system can either

increase or decrease the precision in the estimates of CST,

depending on the number of SNPs used and the actual

value of the CST rate. In most systems, assessing genetic

differences between strains at the time of introduction (or

host species jump) can be challenging and requires a previ-

ous estimation of both mutation rate and time since intro-

duction. However, this knowledge is necessary to

disentangle genetic differences in strains between host spe-

cies that are due to new accumulated mutations since

introduction, or to differences existing prior to bacteria

introduction. New approaches applying Bayesian statistics

to genetic data have shown promising results elucidating

this type of problem (Sousa et al. 2012).

Methodological issues can also affect the estimation of

CST rates from genetic data. In most empirical systems,

especially focusing on wildlife (Biek et al. 2012; Richomme

et al. 2012), only a very small percentage of the host (and

bacteria) population is sampled. It was expected that the

estimated /̂ would increase with sample size, since geno-

typic diversity almost universally increases with it (Wolda

1981). Our results, however, showed the opposite pattern.

CST was overestimated when sampling a small percentage

of the population. In the case presented here, the estimated

percentage of CST was about two times higher than what

was simulated when sampling 10% of the population.

The total size of the infected population (around 500 indi-

viduals in our simulations) and the sample size used to

reconstruct the phylogeny will also influence the amount of

10-VNTR 50-VNTR

Figure 3 Phylogenetic reconstructions of a representative scenario with no CST transmission using 10 and 50 VNTRs. A NJ tree was reconstructed

for 20 randomly selected infected individuals using either 10-VNTR or 50-VNTR with the same individuals sampled in both cases. In this scenario,

there was no cross-species transmission, AV = 15.1, and the same strain was introduced in both species.
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variation around the estimates generated by stochasticity.

Another recurrent sampling problem in empirical systems

is that sampling is almost always unbalanced among host

species (Biek et al. 2012; Higgins et al. 2012). Our results

suggest that unbalanced sampling can substantially affect

the phylogenetic reconstruction and conclusions inferred

from that phylogeny. In our simple scenario, we showed

how CST direction can be wrongly interpreted from a phy-

logeny using unbalanced sampling. Sampling a large por-

tion of each species is almost never achieved (see Table 1),

especially when working with wildlife species. Therefore,

using a simulation approach to study their impact on CST

rates such as the one presented here might be an alternative

way to correct for bias related to sampling effort.

Other factors influencing phylogeny reconstruction and

CST estimation

Several assumptions of our model are simplistic representa-

tions of reality and understanding how their relaxation

would influence estimates of CST rates requires further

investigation. For example, CST was modeled as a constant

rate per time step, but CST events could be clustered in

time (e.g., only in years with particular environmental con-
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ditions). This will generate a more heterogeneous phylog-

eny than the ones analyzed in this model, which could

influence the estimations of CST rates. Furthermore, all

individuals were simultaneously sampled at the end of a

simulation, but several data sets of bacteria include samples

that have been collected over the course of an outbreak.

Samples collected at a similar time could cluster together in

the phylogeny and affect the estimations of CST. In this

model, we also fixed the time of bacteria introduction and

we introduced only one strain in each species. However,

the time of bacteria introduction in many empirical sys-

tems remains unknown. The MPR method used here does

not include information about time (e.g., branch length)

and is therefore not suited to infer parameters such as the

time of first introduction. Finally, we used a simple model

of mutation rate, particularly for VNTR, where all loci had

the same mutation rate. Understanding consequences of

applying more complex and realistic models of mutation,

for example, with different sections of the genome mutat-

ing at different rates (Barrick et al. 2009), will require fur-

ther work.

There are several other methodological and epidemiolog-

ical factors influencing estimates of CST rates that we

do not explore in this model. Methodological factors

include for example that (i) different clustering methods

such as the NJ tree, minimum spanning tree (Teh et al.

2010), UPGMA (Davis et al. 2009) do not generate the

same phylogenetic reconstruction (results obtained from

simulations, data not shown) but are all used in different

studies focusing on VNTR, (ii) SNP discovery bias reduces

the amount of informative SNPs available (Pearson et al.

2009), and (iii) host spatial clustering can also generate

phylogenetic clustering (Ruzzante et al. 1996). Other fac-

tors related to bacteria evolution making CST rates difficult

to estimate include (i) host immune system selection of

particular strains in different species (Brunham et al.

1993), (ii) bacteria recombination affecting phylogenetic

reconstruction (Feil et al. 2001), (iii) within-host evolution

of the bacteria (Gyuranecz et al. 2013), or (iv) changes in

bacteria population through time (for viruses, see: Volz

et al. 2009; Frost and Volz 2010). All or some of these fac-

tors may apply to a given system studied and should also

be taken into account when trying to estimate CST rates

from phylogenetic data.

Given the highlighted limitations in this study and the

numerous factors influencing CST rates, we recommend

that future studies pay particular attention to twomain steps

in the process of using genetic markers to estimate CST

rates. First, the phylogenic tree used in the analysis needs to

capture the underlying epidemiological process generating

the tree. This will require a balanced sample between species

and also an understanding of how much genetic variability

of the bacteria is represented by the given sampling effort.
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Figure 5 The influence of sample size on /̂. The percent

Bias ¼ jTrue-Estimatedj
Estimated

� 100 in /̂ decreased as the sampling percent-

age of the infected populations approached 100%. For this simulation,

we assumed that / = 10%, 50-VNTR, and an allelic variation (AV) equal

to 5.2 or 15.3. Each point is an average of 400 random samplings for a

given simulation and sampling intensity. Error bars represent standard

errors of the mean.

Figure 6 Phylogenetic reconstructions with unbalanced sampling in a

scenario of transmission only from A to B. A NJ tree was reconstructed

with a sample size of 10 individuals for species A and 40 for species B.

Phylogenetic reconstruction from a randomly selected run from a sce-

nario where CST only happens from A to B. Based on a visual assess-

ment, species B seems to be transmitting the bacteria to species A

(indicated by some of the gray arrows), which does not occur in this

model. Parameter values: / = 33%, 10-VNTR and AV = 5.9. The tree

was rooted to infer directionality. Similar results were obtained using

50-VNTR or 1000 SNPs.
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Secondly, the strength of the analysis will depend on the

amount of mutation accumulated since the pathogen was

introduced in the system. Therefore, it is inevitable to focus

efforts on estimating either time since introduction (e.g.,

from historical records of disease prevalence) or the substi-

tution rate of the marker (e.g., from laboratory experiments

or genomic comparative analysis). This is important not

only when using the MPR method but also for Bayesian or

Likelihood approaches that require an estimation of the

mutation rate. Finally and sometimes forgotten, CST will

also affect disease prevalence in the potential host. Thus,

combining both epidemiological time series data with

genetic data may be a powerful approach.
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Appendix A

Transmission model

We used a stochastic discrete time model to simulate the

disease dynamics in the two host species (A and B) assum-

ing that each individual can move through three different

classes: susceptible, infectious, and recovered (Keeling and

Rohani 2008). Susceptible individuals of species i can be

infected by infectious individuals of their species (Ii) or

infectious individuals of the alternative species (Ij) with

probability pi,t per time step t, where i equals 1 or 2 and i

6¼ j. Let ai and bj represent the probability of infection

imposed by one infected individual either within-species

or between-species, respectively. Using a Reed-Frost model

of transmission, the probability that an individual of spe-

cies i is infected in time step t is: pi;t ¼ 1� ½ð1� aiÞIi;t
�ð1� biÞIj;t �. We present results from scenarios where the

transmission rate within the species is the same (ai = aj),
and the CST is also the same (bi = bj) but WST is more

likely than between species (ai > bi). Similar results are

obtained when CST occurred in only one direction

(bj = 0).

When a transmission event occurs, one infected

individual from either host species is randomly assigned to

transmit its bacteria, and genetic markers, to the newly

infected individual. The probability of assigning a bacterial

genotype from its own species is given by
1�½ð1�aiÞIi;t ��

1�½ð1�aiÞIi;t �
�
þ
�
1�½ð1�biÞIj;t �

�. Each infected individual passes

from the infectious to recovered state with probability c.
Following disease transmission, mortality and reproduction

take place as a single death/birth pulse at the end of the

year, keeping a constant population of size N = 1000 indi-

viduals in each species. Each individual dies and is replaced

by a new susceptible individual with probability l. There
was no disease-induced mortality or population structure

in this model.

Model initialization and parameter values

After introduction, the model was run for 100 time steps.

This time step can be considered as a host epidemiological

time step, corresponding to the expected interval between

bacterial transmission events. This time step coincided with

the host generation time, during which the mortality/birth

process takes place. The duration of the simulation was

fixed, so the number of mutations accumulated since intro-

duction only varied with the mutation rate parameter h or
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x. At the end of each simulation (t = 100), all infected

individuals from both species were sampled to reconstruct

the bacteria phylogeny and estimate φ unless stated other-

wise. Although achieving 100% sampling coverage is unre-

alistic for most empirical systems, this scenario was used in

order to study the effects of other parameters such as the

number of mutations accumulated and strain introduction.

Subsequently, we studied the effect of randomly selecting a

proportion of individuals from the total population size.

Several parameters were fixed in the model because we

focused on exploring only the influence of mutation rate,

genetic similarity of the introduced strain and sampling

effort. We assumed that u = 0.06, c = 0.05, N = 1000 indi-

viduals and a = 0.003 in both species. This allowed a dis-

ease prevalence of up to 50% in both species over 100 time

steps. Changing the value of a in one or both species did

not affect qualitatively the results presented. The probabil-

ity of infection imposed by each infected individual of

another species to a susceptible one, b, varied from 0 to

0.003 going from no CST to a scenario where CST = WST.

All simulations were coded and run using Delphi v6 com-

puting software (2006, Borland, Inc.). The code is available

upon request to the corresponding author.

Appendix B
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Figure B1 The influence of sample size on CST estimation. The number

of nodes identified as CST in the phylogeny (CST line) and the total

number of nodes (CST+WST line) are estimated for the same simulation

run as the one used in Figure 5. These numbers are presented as a func-

tion of the percentage of population sampled.
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