University of Montana ScholarWorks at University of Montana

Syllabi

Course Syllabi

1-2014

ASTR 365.01: Stellar Astronomy and Astrophysics II

Nathan T. McCrady University of Montana - Missoula, nate.mccrady@umontana.edu

Let us know how access to this document benefits you.

Follow this and additional works at: https://scholarworks.umt.edu/syllabi

Recommended Citation

McCrady, Nathan T., "ASTR 365.01: Stellar Astronomy and Astrophysics II" (2014). *Syllabi*. 987. https://scholarworks.umt.edu/syllabi/987

This Syllabus is brought to you for free and open access by the Course Syllabi at ScholarWorks at University of Montana. It has been accepted for inclusion in Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

Astronomy 365: Stellar Astronomy and Astrophysics II

University of Montana Spring 2014 MWF 10:10 – 11:00 am CHCB 231 Course Number 34891

Professor Nate McCrady

e-mail: nate.mccrady@umontana.edu Office: 122 CH Clapp Building Office Hours: Tue/Thur 3-4pm, Fri 1-2pm, and by appointment Course website: http://cas.umt.edu/physics/astr365/

Course Description

Stars in the night sky appear fixed and unchanging, eternal. In this course, we will apply our physical understanding of the structure and composition of stars to discover that they are in fact ever-changing objects locked in a constant struggle against gravity. We will begin with the relatively benign life cycle of low-mass stars like our Sun. Next, we will investigate the violent life cycle of high-mass stars. From there we will apply physical principles from mechanics, thermodynamics, statistical mechanics, relativity, and quantum, atomic and nuclear physics to develop a physical understanding of the nature of stellar remnants, stellar atmospheres and spectroscopy, and the formation of stars. The unifying theme of the course will be to understand the Hertzsprung-Russell diagram via basic principles of physics. The first semester, ASTR 363, focused on the internal structure of individual main sequence stars. In the second semester, ASTR 365, we will investigate the time evolution of stars, their birth and end states.

Course Objectives

My goals in this course are to ...

- 1. Apply physics to understand the life cycle and end states of stars.
- 2. Introduce the physics and phenomena of star formation and the interstellar medium.
- 3. Develop a physical understanding of stellar spectra.

Required Materials

An Introduction to Modern Astrophysics, 2nd Ed. By B.W. Carroll and D.A. Ostlie available from amazon.com (and elsewhere) for ~ \$120

Expectations of the Professor

This upper-division course is intended for physics majors with a concentration in astrophysics. I expect that you will have completed the designated pre-requisite courses: Astronomy 363 (the first half of this course), Astronomy 132 or 142 (introductory astronomy) and Physics 217 (physics with calculus). It is advantageous if you have also taken Physics 343 (modern physics), but we will study the necessary quantum, atomic and nuclear physics within this course. Integral and differential calculus are essential in this course, and you should have a strong understanding of the pre-requisite Math 273 (multi-variable calculus). You should also be comfortable working with logarithms, scientific notation and the Greek alphabet!

Time in the classroom is an essential part of this course, and it will be to your benefit to attend lectures. Exams and homework will be based primarily on material presented in class. No single textbook completely covers the full range of topics presented in this course, but the readings will help you prepare for class meetings. This syllabus includes assigned readings and a brief summary of what you should learn from each reading. *I expect students to read the material in advance of the class on a topic, and to be prepared to discuss the material in class.*

This course is a collaborative effort – please ask questions, offer your ideas and be prepared to participate in the discussion. Written work submitted in this course must be expressed in your own words. I specifically encourage students to work together, but each student must write up her or his own response to problems. This step is essential to your learning – writing up the answer to a question requires you to understand the conclusion of your group, whereas transcription of the work of another does not. When in doubt, please ask me what is acceptable.

And of course, while in class, please turn off your phones and other electronic gadgets. Laptops are acceptable for note-taking, if you so desire.

Pedagogical Philosophy of the Professor

My primary goal in teaching upper-division majors is to help you develop physical intuition and apply principles of fundamental physics learned in introductory coursework. This class in particular is an advanced course in astrophysics, a field of applied physics. As with any applied field, there is a significant amount of vocabulary specific to the discipline. This course will help develop your fluency in the language of astrophysics.

Research in how people learn indicates that the knowledge of an expert in a topic is organized around core concepts. In order to help you develop expertise in stellar astrophysics, I have organized this course around several core concepts. These are outlined on the class schedule in this syllabus. Each concept is associated with a number of specific learning goals, a complete list of which I will provide you for use as a study aid. Each learning goal is stated from the student's perspective. If you can achieve these specific goals, you will succeed in this course – and be well on your way towards expertise in stellar astrophysics!

Grading Policy

This course will be graded on the University's traditional letter grade system. Your grade will be based on weekly homework sets (40% total), three midterm exams (12% each), and a cumulative final exam (24%). I have not determined in advance how many As, Bs, etc will be assigned – I'm happy to give every student an A if s/he demonstrates mastery of the material. Along the way I will provide regualr updates regarding your grade in the course.

Midterm exams take place during regular class time on the scheduled days. If you cannot be present, tell me *before* the exam and we can discuss arrangements. For *well-documented* compulsory absences, we will arrange a time for you to take the exam *early*.

Homework must be turned in <u>by 5pm on the due date</u> (generally Fridays). Late homework will be penalized 10% per weekday. Homework must be legible! If your first attempt is messy, use it as a draft and rewrite a final version for submission. If I can't read it, you'll get no credit!

Course Schedule & Reading Assignments

STELLAR EVOLUTIONMJan 27M.S. evolution and the Virial theorem2.4, 446-452WJan 29Core hydrogen exhaustion452-457FJan 31Shell fusion and ascent of the RGB457-461MFeb 3Helium fusing stars461-463WFeb 5AGB stars and planetary nebulae463-474FFeb 7Post-MS evolution of high mass stars518-521MFeb 10Approach to the iron catastrophe313-315WFeb 12Supernova observations, SN 1987A15.2FFeb 17Washington-Lincoln Holiday521-523, 15.4FFeb 19Wolf-Rayet stars and gamma ray bursts521-523, 15.4FFeb 21Midterm 114.1MFeb 22Variable stars and the instability strip14.1WFeb 28White dwarfs16.1-16.2MMar 3Degeneracy pressure, Chandrasekhar mass16.3-16.4WMar 5Neutron stars16.6FMar 10Gravity and the equivalence principle17.1WMar 12General relativity and spacetime curvature622-626FMar 14Schwarzschild metric626-633MMar 17Collapse to a black hole633-639WMar 19Astrophysical black holes639-646FMar 24Gas phases in the interstellar medium398-399, 431-432MMar 24Gas phases in the interstellar medium398-399, 431-432MMar 24Gas bastr				Readings
WJan 29Core hydrogen exhaustion $452-457$ FJan 31Shell fusion and ascent of the RGB $457-461$ MFeb 3Helium fusing stars $461-463$ WFeb 5AGB stars and planetary nebulae $463-474$ FFeb 7Post-MS evolution of high mass stars $518-521$ MFeb 10Approach to the iron catastrophe $313-315$ WFeb 12Supernovae isolapse, explosive nucleosynthesis 15.2 FFeb 14Supernovae: collapse, explosive nucleosynthesis 15.3 MFeb 17 <i>Washington-Lincoln Holiday</i> W WFeb 19Wolf-Rayet stars and gamma ray bursts $521-523, 15.4$ FFeb 21 Midterm 1 14.1 MFeb 24Variable stars and the instability strip 14.1 WFeb 26Interacting binaries and Type Ia supernovae $16.1-16.2$ MMar 3Degeneracy pressure, Chandrasekhar mass $16.3-16.4$ WMar 3Degeneracy pressure, Chandrasekhar mass $16.3-16.4$ WMar 10Gravity and the equivalence principle 17.1 WMar 10Gravity and the equivalence principle $622-626$ FMar 14Schwarzschild metric $626-633$ MMar 17Collapse to a black holes $639-646$ FMar 21Midterm 2MMar 24Gas phases in the interstellar medium $398-399, 431-432$ MMar 24Gas phases in the interstellar medium $398-399, 431-432$ <			STELLAR EVOLUTION	
FJan 31Shell fusion and ascent of the RGB457-461MFeb 3Helium fusing stars461-463WFeb 5AGB stars and planetary nebulae463-474FFeb 7Post-MS evolution of high mass stars518-521MFeb 10Approach to the iron catastrophe313-315WFeb 12Supernova observations, SN 1987A15.2FFeb 14Supernovae: collapse, explosive nucleosynthesis15.3MFeb 17Washington-Lincoln HolidayVWFeb 19Wolf-Rayet stars and gamma ray bursts521-523, 15.4FFeb 21Midterm 114.1MFeb 26Interacting binaries and Type Ia supernovae16.1-16.2MMar 3Degeneracy pressure, Chandrasekhar mass16.3-16.4WMar 5Neutron stars16.6FMar 7Pulsars16.7MMar 10Gravity and the equivalence principle17.1WMar 12General relativity and spacetime curvature622-626FMar 13Schwarzschild metric626-633MMar 17Collapse to a black holes633-639WMar 21Midterm 2398-399, 431-432WMar 22Gas phases in the interstellar medium398-399, 431-432MMar 24Gas phases in the interstellar medium398-399, 431-432WMar 26Interstellar dust and extinction399-404FMar 28Atomic gas406-411FA	Μ	Jan 27	M.S. evolution and the Virial theorem	2.4, 446-452
MFeb 3Helium fusing stars $461-463$ WFeb 5AGB stars and planetary nebulae $463-474$ FFeb 7Post-MS evolution of high mass stars $518-521$ MFeb 10Approach to the iron catastrophe $313-315$ WFeb 12Supernova observations, SN 1987A 15.2 FFeb 14Supernova: collapse, explosive nucleosynthesis 15.3 MFeb 17Washington-Lincoln Holiday 15.3 WFeb 19Wolf-Rayet stars and gamma ray bursts $521-523, 15.4$ FFeb 21Midterm 1 14.1 MFeb 24Variable stars and the instability strip 14.1 WFeb 26Interacting binaries and Type Ia supernovae $18.1, 18.5$ STELLAR REMNANTS $516.3-16.4$ MWMar 3Degeneracy pressure, Chandrasekhar mass $16.3-16.4$ WMar 5Neutron stars 16.6 FMar 10Gravity and the equivalence principle 17.1 WMar 12General relativity and spacetime curvature $622-626$ FMar 13Astrophysical black hole $633-639$ WMar 19Astrophysical black holes $639-646$ FMar 21Midterm 2 $398-399, 431-432$ WMar 24Gas phases in the interstellar medium $398-399, 431-432$ WMar 26Interstellar dust and extinction $399-404$ FMar 28Atomic gas $406-411$ FApr 10Recolar clouds $406-411$ <td>W</td> <td>Jan 29</td> <td>Core hydrogen exhaustion</td> <td>452-457</td>	W	Jan 29	Core hydrogen exhaustion	452-457
WFeb 5AGB stars and planetary nebulae463-474FFeb 7Post-MS evolution of high mass stars518-521MFeb 10Approach to the iron catastrophe313-315WFeb 12Supernova observations, SN 1987A15.2FFeb 14Supernovae: collapse, explosive nucleosynthesis15.3MFeb 17Washington-Lincoln Holiday521-523, 15.4WFeb 19Wolf-Rayet stars and gamma ray bursts521-523, 15.4FFeb 21Midterm 114.1MFeb 24Variable stars and the instability strip14.1WFeb 26Interacting binaries and Type Ia supernovae18.1, 18.5STELLAR REMNANTSSTELLAR REMNANTS16.1-16.2MMar 3Degeneracy pressure, Chandrasekhar mass16.3-16.4WMar 5Neutron stars16.6FMar 10Gravity and the equivalence principle17.1WMar 12General relativity and spacetime curvature622-626FMar 17Collapse to a black hole633-639WMar 19Astrophysical black holes639-646FMar 24Gas phases in the interstellar medium398-399, 431-432WMar 26Interstellar dust and extinction398-399, 431-432WMar 27Radio astronomy406-411FApr 10Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16 <td>F</td> <td>Jan 31</td> <td>Shell fusion and ascent of the RGB</td> <td>457-461</td>	F	Jan 31	Shell fusion and ascent of the RGB	457-461
FFeb 7Post-MS evolution of high mass stars518-521MFeb 10Approach to the iron catastrophe313-315WFeb 12Supernova observations, SN 1987A15.2FFeb 14Supernovae: collapse, explosive nucleosynthesis15.3MFeb 17Washington-Lincoln Holiday521-523, 15.4WFeb 19Wolf-Rayet stars and gamma ray bursts521-523, 15.4FFeb 21Midterm 114.1MFeb 26Interacting binaries and Type Ia supernovae STELLAR REMNANTS16.1-16.2MMar 3Degeneracy pressure, Chandrasekhar mass16.3-16.4WMar 5Neutron stars16.6FMar 7Pulsars16.7MMar 10Gravity and the equivalence principle17.1WMar 12General relativity and spacetime curvature622-626FMar 14Schwarzschild metric626-633MMar 17Collapse to a black hole633-639WMar 19Astrophysical black holes639-646FMar 24Gas phases in the interstellar medium398-399, 431-432WMar 24Gas phases in the interstellar medium398-399, 431-432WMar 25Interstellar dust and extinction399-404FMar 28Atomic gas404-406MApr 7Radio astronomy406-411FApr 10Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and	Μ	Feb 3	Helium fusing stars	461-463
MFeb 10Approach to the iron catastrophe313-315WFeb 12Supernova observations, SN 1987A15.2FFeb 14Supernovae: collapse, explosive nucleosynthesis15.3MFeb 17Washington-Lincoln Holiday521-523, 15.4WFeb 19Wolf-Rayet stars and gamma ray bursts521-523, 15.4FFeb 21Midterm 114.1WFeb 26Interacting binaries and Type Ia supernovae18.1, 18.5STELLAR REMNANTSSTELLAR REMNANTS16.1-16.2MMar 3Degeneracy pressure, Chandrasekhar mass16.3-16.4WMar 5Neutron stars16.6FMar 7Pulsars16.7MMar 10Gravity and the equivalence principle17.1WMar 12General relativity and spacetime curvature622-626FMar 14Schwarzschild metric626-633MMar 17Collapse to a black hole633-639WMar 24Gas phases in the interstellar medium398-399, 431-432WMar 26Interstellar dust and extinction399-404FMar 28Atomic gas404-406MApr 7Radio astronomy406-411WApr 9Molecular clouds406-411FApr 14Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	W	Feb 5	AGB stars and planetary nebulae	463-474
WFeb 12Supernova observations, SN 1987A15.2FFeb 14Supernovae: collapse, explosive nucleosynthesis15.3MFeb 17Washington-Lincoln Holiday521-523, 15.4FFeb 19Wolf-Rayet stars and gamma ray bursts521-523, 15.4FFeb 21Midterm 114.1MFeb 24Variable stars and the instability strip14.1WFeb 26Interacting binaries and Type Ia supernovae STELLAR REMNANTS16.1-16.2FFeb 28White dwarfs16.1-16.2MMar 3Degeneracy pressure, Chandrasekhar mass16.3-16.4WMar 5Neutron stars16.6FMar 7Pulsars16.7MMar 10Gravity and the equivalence principle17.1WMar 12General relativity and spacetime curvature622-626FMar 14Schwarzschild metric626-633MMar 17Collapse to a black hole633-639WMar 19Astrophysical black holes639-646FMar 21Midterm 2MMar 24Gas phases in the interstellar medium398-399, 431-432WMar 26Interstellar dust and extinction399-404FMar 28Atomic gas406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441 <td>F</td> <td>Feb 7</td> <td>Post-MS evolution of high mass stars</td> <td>518-521</td>	F	Feb 7	Post-MS evolution of high mass stars	518-521
FFeb 14Supernovae: collapse, explosive nucleosynthesis15.3MFeb 17Washington-Lincoln Holiday521-523, 15.4FFeb 19Wolf-Rayet stars and gamma ray bursts521-523, 15.4FFeb 21Midterm 114.1WFeb 26Interacting binaries and Type Ia supernovae STELLAR REMNANTS18.1, 18.5FFeb 28White dwarfs16.1-16.2MMar 3Degeneracy pressure, Chandrasekhar mass16.3-16.4WMar 5Neutron stars16.6FMar 7Pulsars16.7MMar 10Gravity and the equivalence principle17.1WMar 12General relativity and spacetime curvature 622-626622-626FMar 14Schwarzschild metric626-633MMar 17Collapse to a black hole strapsical black holes639-646FMar 21Midterm 2MMar 24Gas phases in the interstellar medium 399-399, 431-432399-404MMar 26Interstellar dust and extinction 399-404399-399, 431-432MApr 7Radio astronomy406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline 425-429425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	Μ	Feb 10	Approach to the iron catastrophe	313-315
MFeb 17Washington-Lincoln HolidayWFeb 19Wolf-Rayet stars and gamma ray bursts521-523, 15.4FFeb 21Midterm 1MFeb 24Variable stars and the instability strip14.1WFeb 26Interacting binaries and Type Ia supernovae18.1, 18.5STELLAR REMNANTSSTELLAR REMNANTSFFeb 28White dwarfs16.1-16.2MMar 3Degeneracy pressure, Chandrasekhar mass16.3-16.4WMar 5Neutron stars16.6FMar 7Pulsars16.7MMar 10Gravity and the equivalence principle17.1WMar 12General relativity and spacetime curvature622-626FMar 14Schwarzschild metric626-633MMar 17Collapse to a black hole633-639WMar 21Midterm 2STAR FORMATION AND THE ISMMMar 24Gas phases in the interstellar medium398-399, 431-432WMar 26Interstellar dust and extinction399-404FMar 28Atomic gas406-411FApr 7Radio astronomy406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	W	Feb 12	Supernova observations, SN 1987A	15.2
WFeb 19Wolf-Rayet stars and gamma ray bursts521-523, 15.4FFeb 21Midterm 1MFeb 24Variable stars and the instability strip14.1WFeb 26Interacting binaries and Type Ia supernovae18.1, 18.5STELLAR REMNANTSSTELLAR REMNANTSFFeb 28White dwarfs16.1-16.2MMar 3Degeneracy pressure, Chandrasekhar mass16.3-16.4WMar 5Neutron stars16.7MMar 10Gravity and the equivalence principle17.1WMar 12General relativity and spacetime curvature622-626FMar 14Schwarzschild metric626-633MMar 17Collapse to a black hole633-639WMar 19Astrophysical black holes639-646FMar 21Midterm 2STAR FORMATION AND THE ISMMMar 24Gas phases in the interstellar medium398-399, 431-432WMar 26Interstellar dust and extinction399-404FMar 28Atomic gas404-406MApr 7Radio astronomy406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	F	Feb 14	Supernovae: collapse, explosive nucleosynthesis	15.3
FFeb 21Midterm 1MFeb 24Variable stars and the instability strip14.1WFeb 26Interacting binaries and Type Ia supernovae18.1, 18.5STELLAR REMNANTS16.1-16.2MMar 3Degeneracy pressure, Chandrasekhar mass16.3-16.4WMar 5Neutron stars16.6FMar 7Pulsars16.7MMar 10Gravity and the equivalence principle17.1WMar 12General relativity and spacetime curvature622-626FMar 14Schwarzschild metric626-633MMar 17Collapse to a black hole633-639WMar 19Astrophysical black holes639-646FMar 21Midterm 2STAR FORMATION AND THE ISMMMar 24Gas phases in the interstellar medium398-399, 431-432WMar 26Interstellar dust and extinction399-404FMar 28Atomic gas406-411FApr 7Radio astronomy406-411FApr 9Molecular clouds406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	Μ	Feb 17	Washington-Lincoln Holiday	
MFeb 24Variable stars and the instability strip14.1WFeb 26Interacting binaries and Type Ia supernovae STELLAR REMNANTS18.1, 18.5FFeb 28White dwarfs16.1-16.2MMar 3Degeneracy pressure, Chandrasekhar mass16.3-16.4WMar 5Neutron stars16.6FMar 7Pulsars16.7MMar 10Gravity and the equivalence principle17.1WMar 12General relativity and spacetime curvature622-626FMar 14Schwarzschild metric626-633MMar 17Collapse to a black hole633-639WMar 19Astrophysical black holes639-646FMar 21Midterm 2TAR FORMATION AND THE ISMMar 26MMar 26Interstellar dust and extinction398-399, 431-432WMar 26Interstellar dust and extinction399-404FMar 28Atomic gas406-411FApr 7Radio astronomy406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	W	Feb 19	Wolf-Rayet stars and gamma ray bursts	521-523, 15.4
WFeb 26Interacting binaries and Type Ia supernovae STELLAR REMNANTS18.1, 18.5FFeb 28White dwarfs16.1-16.2MMar 3Degeneracy pressure, Chandrasekhar mass16.3-16.4WMar 5Neutron stars16.6FMar 7Pulsars16.7MMar 10Gravity and the equivalence principle17.1WMar 12General relativity and spacetime curvature622-626FMar 14Schwarzschild metric626-633MMar 17Collapse to a black hole633-639WMar 19Astrophysical black holes639-646FMar 21Midterm 2VSTAR FORMATION AND THE ISM398-399, 431-432WMar 26Interstellar dust and extinction398-399, 431-432WMar 28Atomic gas406-411FApr 7Radio astronomy406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	F	Feb 21	Midterm 1	
STELLAR REMNANTSFFeb 28White dwarfs16.1-16.2MMar 3Degeneracy pressure, Chandrasekhar mass16.3-16.4WMar 5Neutron stars16.6FMar 7Pulsars16.7MMar 10Gravity and the equivalence principle17.1WMar 12General relativity and spacetime curvature622-626FMar 14Schwarzschild metric626-633MMar 17Collapse to a black hole633-639WMar 19Astrophysical black holes639-646FMar 21Midterm 2STAR FORMATION AND THE ISMMMar 24Gas phases in the interstellar medium398-399, 431-432WMar 26Interstellar dust and extinction399-404FMar 28Atomic gas404-406MApr 7Radio astronomy406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	Μ	Feb 24	Variable stars and the instability strip	14.1
FFeb 28White dwarfs16.1-16.2MMar 3Degeneracy pressure, Chandrasekhar mass16.3-16.4WMar 5Neutron stars16.6FMar 7Pulsars16.7MMar 10Gravity and the equivalence principle17.1WMar 12General relativity and spacetime curvature622-626FMar 14Schwarzschild metric626-633MMar 17Collapse to a black hole633-639WMar 19Astrophysical black holes639-646FMar 21Midterm 2STAR FORMATION AND THE ISMMMar 24Gas phases in the interstellar medium398-399, 431-432WMar 26Interstellar dust and extinction399-404FMar 28Atomic gas404-406MApr 7Radio astronomy406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	W	Feb 26	Interacting binaries and Type Ia supernovae	18.1, 18.5
MMar 3Degeneracy pressure, Chandrasekhar mass16.3-16.4WMar 5Neutron stars16.6FMar 7Pulsars16.7MMar 10Gravity and the equivalence principle17.1WMar 12General relativity and spacetime curvature622-626FMar 14Schwarzschild metric626-633MMar 17Collapse to a black hole633-639WMar 19Astrophysical black holes639-646FMar 21Midterm 2STAR FORMATION AND THE ISMMMar 24Gas phases in the interstellar medium398-399, 431-432WMar 26Interstellar dust and extinction399-404FMar 28Atomic gas404-406MApr 7Radio astronomy406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441			STELLAR REMNANTS	
WMar 5Neutron stars16.6FMar 7Pulsars16.7MMar 10Gravity and the equivalence principle17.1WMar 12General relativity and spacetime curvature622-626FMar 14Schwarzschild metric626-633MMar 17Collapse to a black hole633-639WMar 19Astrophysical black holes639-646FMar 21Midterm 2STAR FORMATION AND THE ISMMMar 24Gas phases in the interstellar medium398-399, 431-432WMar 26Interstellar dust and extinction399-404FMar 28Atomic gas404-406MApr 7Radio astronomy406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	F	Feb 28	White dwarfs	16.1-16.2
FMar 7Pulsars16.7MMar 10Gravity and the equivalence principle17.1WMar 12General relativity and spacetime curvature622-626FMar 14Schwarzschild metric626-633MMar 17Collapse to a black hole633-639WMar 19Astrophysical black holes639-646FMar 21Midterm 2STAR FORMATION AND THE ISMMMar 24Gas phases in the interstellar medium398-399, 431-432WMar 26Interstellar dust and extinction399-404FMar 28Atomic gas404-406MApr 7Radio astronomy406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	Μ	Mar 3	Degeneracy pressure, Chandrasekhar mass	16.3-16.4
MMar 10Gravity and the equivalence principle17.1WMar 12General relativity and spacetime curvature622-626FMar 14Schwarzschild metric626-633MMar 17Collapse to a black hole633-639WMar 19Astrophysical black holes639-646FMar 21Midterm 2STAR FORMATION AND THE ISMMMar 24Gas phases in the interstellar medium398-399, 431-432WMar 26Interstellar dust and extinction399-404FMar 28Atomic gas404-406MApr 7Radio astronomy406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	W	Mar 5	Neutron stars	16.6
WMar 12General relativity and spacetime curvature622-626FMar 14Schwarzschild metric626-633MMar 17Collapse to a black hole633-639WMar 19Astrophysical black holes639-646FMar 21Midterm 2STAR FORMATION AND THE ISMMMar 24Gas phases in the interstellar medium398-399, 431-432WMar 26Interstellar dust and extinction399-404FMar 28Atomic gas404-406MApr 7Radio astronomy406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	F	Mar 7	Pulsars	16.7
FMar 14Schwarzschild metric626-633MMar 17Collapse to a black hole633-639WMar 19Astrophysical black holes639-646FMar 21Midterm 2STAR FORMATION AND THE ISMMMar 24Gas phases in the interstellar medium398-399, 431-432WMar 26Interstellar dust and extinction399-404FMar 28Atomic gas404-406MApr 7Radio astronomy406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	Μ	Mar 10	Gravity and the equivalence principle	17.1
MMar 17Collapse to a black hole633-639WMar 19Astrophysical black holes639-646FMar 21Midterm 2STAR FORMATION AND THE ISMMMar 24Gas phases in the interstellar medium398-399, 431-432WMar 26Interstellar dust and extinction399-404FMar 28Atomic gas404-406MApr 7Radio astronomy406-411FApr 9Molecular clouds406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	W	Mar 12	General relativity and spacetime curvature	622-626
WMar 19Astrophysical black holes639-646FMar 21Midterm 2STAR FORMATION AND THE ISMMMar 24Gas phases in the interstellar medium398-399, 431-432WMar 26Interstellar dust and extinction399-404FMar 28Atomic gas404-406MApr 7Radio astronomy406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	F	Mar 14	Schwarzschild metric	626-633
FMar 21Midterm 2MSTAR FORMATION AND THE ISMMMar 24Gas phases in the interstellar medium398-399, 431-432WMar 26Interstellar dust and extinction399-404FMar 28Atomic gas404-406MApr 7Radio astronomy406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	Μ	Mar 17	Collapse to a black hole	633-639
MMar 24Gas phases in the interstellar medium398-399, 431-432WMar 26Interstellar dust and extinction399-404FMar 28Atomic gas404-406MApr 7Radio astronomy406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	W	Mar 19	Astrophysical black holes	639-646
MMar 24Gas phases in the interstellar medium398-399, 431-432WMar 26Interstellar dust and extinction399-404FMar 28Atomic gas404-406MApr 7Radio astronomy406-411WApr 9Molecular clouds406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	F	Mar 21	Midterm 2	
WMar 26Interstellar dust and extinction399-404FMar 28Atomic gas404-406MApr 7Radio astronomy406-411WApr 9Molecular clouds406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441			STAR FORMATION AND THE ISM	
FMar 28Atomic gas404-406MApr 7Radio astronomy406-411WApr 9Molecular clouds406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	Μ	Mar 24	Gas phases in the interstellar medium	398-399, 431-432
MApr 7Radio astronomyWApr 9Molecular clouds406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	W	Mar 26	Interstellar dust and extinction	399-404
WApr 9Molecular clouds406-411FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	F	Mar 28	Atomic gas	404-406
FApr 11Pre-MS evolution: protostars and disks12.2MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	Μ	Apr 7	Radio astronomy	
MApr 14Pre-MS evolution: the Hayashi track and birthline425-429WApr 16T Tauri stars and Herbig Ae/Be stars434-441	W	Apr 9	Molecular clouds	406-411
W Apr 16 T Tauri stars and Herbig Ae/Be stars 434-441	F	Apr 11	Pre-MS evolution: protostars and disks	12.2
	Μ	Apr 14	Pre-MS evolution: the Hayashi track and birthline	425-429
	W	Apr 16	T Tauri stars and Herbig Ae/Be stars	434-441
	F	Apr 18	Star clusters and the initial mass function	430, 474-477

Μ	Apr 21	Brown dwarfs	Supplement
W	Apr 23	Midterm 3	
		STELLAR ATMOSPHERES	
F	Apr 25	Radiative transfer and the source function	255-258
Μ	Apr 28	Plane parallel atmosphere	258-263
W	Apr 30	Detailed balance and Einstein coefficients	Supplement
F	May 2	Line broadening and equivalent width	267-271
Μ	Apr 30	Theory of spectral line formation	271-273
W	May 2	Curve of growth	273-276
F	May 4	Review	
F	May 16	Final Exam, 10:10am – 12:10pm	

Additional Reading

There are many excellent texts on the subjects of stellar astrophysics and the interstellar medium, many of which will be used to prepare course material. The texts marked with stars are classics in the field.

The Physics of Stars, 2nd Ed., A.C. Phillips, 1999

Principles of Stellar Evolution and Nucleosynthesis, D. C. Clayton, 1983 🖈

Stellar Structure and Evolution, R. Kippenhahn & A. Weigert, 1990

Supernovae and Nucleosynthesis, D. Arnett, 1996

Black Holes and Time Warps, K.S. Thorne, 1995

Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects, S.L. Shapiro and S.A. Teukolsky, 1983 ★

Gravitation, C.W. Misner, K.S. Thorne and J.A. Wheeler, 1970 *

Gravity: An Introduction to Einstein's General Relativity, 2003

The Formation of Stars, S.W. Stahler and F. Palla, 2004

Physics and Chemistry of the Interstellar Medium, S. Kwok, 2007

The Observation and Analysis of Stellar Photospheres, D.F. Gray, 1983 🖈

Introduction to Stellar Astrophysics, Vol. 2: Stellar Atmospheres, E. Böhm-Vitense, 1989

Astronomical Masers, M. Elitzur, 1992