University of Montana ScholarWorks at University of Montana

Syllabi

Course Syllabi

6-2013

CHMY 101.01: Chemistry for the Consumer

Earle Adams University of Montana - Missoula, earle.adams@umontana.edu

Let us know how access to this document benefits you.

Follow this and additional works at: https://scholarworks.umt.edu/syllabi

Recommended Citation

Adams, Earle, "CHMY 101.01: Chemistry for the Consumer" (2013). *Syllabi*. 793. https://scholarworks.umt.edu/syllabi/793

This Syllabus is brought to you for free and open access by the Course Syllabi at ScholarWorks at University of Montana. It has been accepted for inclusion in Syllabi by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

CHEMISTRY 101 'Chemistry for the Consumer'

Instructor: Earle R. Adams: <u>earle.adams@umontana.edu</u> office CP117 first floor of the chemistry building: phone: 243-4196

Office Hours: I am often around the chemistry building or working in the instrument room, you can come by or set up and appointment or me email as well.

Prerequisite: There are none for this class.

Course Purpose: An introductory survey of chemistry principles and concepts and how chemistry relates to our everyday life.

Required/Recommended: Textbook: 'Conceptual Chemistry' by John Suchocki (publisher Addison-Wesley Benjamin Cummings). Any edition will work and there are used copies on campus as well as paperbacks on amazon.com. You will also need a pair of goggles for the lab portion of the class. Handouts will be given during class for labs. *Please bring paper, pen/pencil, and calculator to class.*

Format: The course consists of a two component lecture and laboratory format. In every class there will be group work, in class exercises and discussions in order to solidify student understanding of chemical concepts and principles. There will be weekly quizzes and four cumulative exams to assess student's comprehension of fundamental chemical principles.

Course Policy: Students will be expected to attend every class since class participation is important and integral to the class. A student will be allowed to miss three classes with explained excused absences before 10% of their grade is subtracted and a mandatory meeting with the student takes place.

Grading:

	Quizzes	100 points
	Homework	100 points
	Subtotal	500 points
	Regular labs	300 points
	Special Project 200 poi	
	Subtotal	500 points
	Total	1000 points
	A 930-1000	A- 900-929
B+870-799	B 830-869	B-800-829
C+ 770-799	C 730-769	C-700-729

D+ 670-699 D 630-669 D- 600-629 F 0-599

Grade Summary: Keep a record of your grades (exams, quizzes, homework and lab) until the final grade is issued. If there is a grading error, you are responsible for resubmitting the item(s) in dispute.

Learning Outcomes:

- Students will attain a level of competency in basic understanding of chemical principles and concepts.
- ii. Strengthening of reasoning skills through inquiry based exercises and laboratory experiences.
- iii. A fundamental understanding of the scientific process by experiencing real 'hands on' research problem based on an environmentally relevant problem in

Lecture: The lecture component of the course will be MTWR Forestry 106 Time: 10:10-11:35

Laboratory: The laboratory component of the course will be in CP409 (the fourth floor lab in the Chemistry Building). Time: TR 1:30-4:30.

Safety: This is an official laboratory course and thereby subjected to a lab safety component. Each student will go through a lab safety protocol and will sign a safety agreement which they will abide to over the semester. There will be a pre-lab component to every lab to discuss any safety concerns and specifics for each and every lab over the entire course. There will also be specific lab safety questions and scenarios on course quizzes and exams. While this lab never uses open flames or dangerous materials, ALL students are required to wear proper lab safety glasses and close end shoes for ALL labs. Students who do not abide by these safety rules will not be allowed in the lab.

Make-ups: Students who miss exams for a legitimate emergency or illness may be allowed be allowed to replace one exam score with the final exam score.

Drops: July 6th is the last day to register by CyberBear. Dropping on or before this date results in "NO RECORD" of taking this course on your transcript. This is also the last day to change your grade option to AUDIT.

Academic Honesty: All students must practice academic honesty. Academic misconduct is subject to an academic penalty by the course instructor and/or disciplinary sanction by the University. All students need to be familiar with the Student Conduct Code. The Code is available for review online at http://life.umt.edu/vpsa/student_conduct.php'.

Other: If you are a student with a disability and wish to discuss reasonable modifications for this course, contact me privately to discuss the specific modifications you wish to request. Please be advised I may request that you provide a letter from Disability Services

for Students verifying your right to reasonable modifications. If you have not yet contacted Disability Services, located in Lommasson Center 154, please do so in order to verify your disability and to coordinate your reasonable modifications. For more information, visit the Disability Services website at http://www.umt.edu/disability.

Legal Notice: This course syllabus is not a contract; it is a tentative outline of course policies. Change may be made before, during, or after the semester at my discretion.

Learning Unit:	Assessment Methods
What is Matter: overview of matter and it	Discussion on board and special in class
components from atom to molecule,	lab unit using paperclip models to
physical and chemical properties. The	distinguish different types of matter.
particulate: microscopic and macroscopic	Lab: model building allowing students to
worlds: What is a scientific model?	develop the concept of atom, molecule,
	pure substance, and mixtures.
	Lab: physical properties and inquiry based
	lab on density via graphing and
	extrapolating the formula for density.
The Atomic Nucleus: overview of the	Discussion on board with participation with
particles comprising an atom and its	weekly quiz. Continuation of in class lab
relation to matter: Nuclear energy versus	and demo with paperclip models and its
conventional energies: coal, wind, oil.	connectivity to atoms and molecules.
What is Light? How do we use and harness	Discussion on board with weekly quiz.
<i>light?</i> Understanding the dual nature of	
light, its history, its importance in all the	Lab: demo with hand spectrometers.
biological and physical sciences.	Guided inquiry in formulating the concept
	of light and its nature.
Chemical Bonding and 3D shape of	Discussion on board along with worksheets
<i>molecules:</i> Nature of the chemical bond	and quizzes.
and how 3D structure dictates chemical	Integrated Lab: in silico computer graphics
reactivity.	and simulations of molecules.
Water the Most Important Chemical: A	Discussion on board along with in class
close look at water with all its chemical and	worksheets. Vignettes and leading
physical properties, importance to life,	discussions in class along with weekly
natural resource preservation and its	quizzes.
connection to energy. The connection of	Lab: Inquiry based lab exercise looking at
water as the great 'solvent' and chemical of	the simple proportionality of temperature
life. The connection of a water molecule	(C vs F) and boiling points. Designed for
from the particulate world all the way to	students to formulate their own graphs and
macro world and our everyday life. The	measuring results from their graphs.
road to clean water with its scientific,	Continuation of proportionality and
sociological and political implications.	graphing.
Chemistry of Air: What is air and what is	Discussion on board along with worksheets
air pollution? Growing implications of	and quizzes. Discussion leading into

Course Schedule (lecture and lab):

polluted air in human centers and scientific	independent inquiry based research project
implications in global warming and climate	on indoor air pollution (carbon monoxide
change.	and radon).
Acids and Bases: What are acids and bases	Discussion on board along with worksheets
and how do these two generic terms dictate	and quizzes in class.
the bulk description of most chemical	Lab: measuring pH of common consumer
-	
species.	goods.
<i>Energy:</i> What is energy and how does	Discussion on board along with worksheets
energy permeate everything in science and	and quizzes in class.
why chemical reactions occur all the way	Lab: Measure the calorimetric energy in
to our need for raw energy in our consumer	food products and relate this to our
economy.	calorimetric output in energy on the human
	scale.
What is a Chemical Reaction? Underlying	Discussion on board along with worksheets
concept of energy and its role in why	and weekly quizzes.
chemical reactions occur or not occur. The	Lab: Perform a chemical reaction,
understanding of a chemical reaction and	measuring energy produced or used and
the making of a product from reactants.	products formed.
SPECIAL PROJECT: Research project	Special Project: Will include research
based on real community research projects	question, hypothesis, data gathering, data
from the University of Montana. This is an	analysis and conclusion.
inquiry based project looking at indoor and	
outdoor air quality in private homes in	
Missoula County.	
	1