
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

Speech, Language, Hearing, and Occupational 
Sciences Faculty Publications 

Speech, Language, Hearing, and Occupational 
Sciences 

2008 

Repetition Priming and Anomia: An Investigation of Stimulus Repetition Priming and Anomia: An Investigation of Stimulus 

Dosage Dosage 

Catherine A. Off 
University of Montana - Missoula, catherine.off@umontana.edu 

Follow this and additional works at: https://scholarworks.umt.edu/commsci_disorders_pubs 

 Part of the Speech and Hearing Science Commons, and the Speech Pathology and Audiology 

Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Off, Catherine A., "Repetition Priming and Anomia: An Investigation of Stimulus Dosage" (2008). Speech, 
Language, Hearing, and Occupational Sciences Faculty Publications. 2. 
https://scholarworks.umt.edu/commsci_disorders_pubs/2 

This Dissertation is brought to you for free and open access by the Speech, Language, Hearing, and Occupational 
Sciences at ScholarWorks at University of Montana. It has been accepted for inclusion in Speech, Language, Hearing, 
and Occupational Sciences Faculty Publications by an authorized administrator of ScholarWorks at University of 
Montana. For more information, please contact scholarworks@mso.umt.edu. 

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/commsci_disorders_pubs
https://scholarworks.umt.edu/commsci_disorders_pubs
https://scholarworks.umt.edu/commsci_disorders
https://scholarworks.umt.edu/commsci_disorders
https://scholarworks.umt.edu/commsci_disorders_pubs?utm_source=scholarworks.umt.edu%2Fcommsci_disorders_pubs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1033?utm_source=scholarworks.umt.edu%2Fcommsci_disorders_pubs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1035?utm_source=scholarworks.umt.edu%2Fcommsci_disorders_pubs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1035?utm_source=scholarworks.umt.edu%2Fcommsci_disorders_pubs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/commsci_disorders_pubs/2?utm_source=scholarworks.umt.edu%2Fcommsci_disorders_pubs%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


©Copyright 2008 
Catherine A. Off 





Repetition Priming and Anomia: An Investigation of Stimulus Dosage 

Catherine A. Off 

A dissertation 
submitted in partial fulfillment of the 

requirements for the degree of 

Doctor of Philosophy 

University of Washington 

2008 

Program Authorized to Offer Degree: 
Department of Speech and Hearing Sciences 



UMI Number: 3328511 

Copyright 2008 by 

Off, Catherine A. 

All rights reserved. 

INFORMATION TO USERS 

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

® 

UMI 
UMI Microform 3328511 

Copyright 2008 by ProQuest LLC. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 E. Eisenhower Parkway 

PO Box 1346 
Ann Arbor, Ml 48106-1346 



University of Washington 

Graduate School 

This is to certify that I have examined this copy of a doctoral dissertation by 

Catherine A. Off 

and have found that it is complete and satisfactory in all respects, 
and that any and all revisions required by the final 

examining committee have been made. 

Chair of the Supervisory Committee: 

Reading Committee: 

Kristie A< Spencer 

f ] Margaret A. Rogers^ ) x 

Sheri JfMizumori 

7-/0- #f Date: 



In presenting this dissertation in partial fulfillment of the requirements 
for the doctoral degree at the University of Washington, I agree that the 
Library shall make its copies freely available for inspection. I further 
agree that extensive copying of the dissertation is allowable only for 
scholarly purposes, consistent "fair use" as prescribed in the U.S. 
Copyright Law. Requests for copying or reproduction of this dissertation 
may be referred to ProQuest Information and Learning, 300 North Zeeb 
Road, Ann Arbor, Ml 48106-1346,1-800-521-0600, to whom the author 
has granted "the right to reproduce and sell (a) copies of the manuscript in 
microform and/or (b) printed copies of the manuscript made from 
microform." 

Signature^ 

Date 7-/0-00 



University of Washington 

Abstract 

Repetition Priming and Anomia; An Investigation of Stimulus Dosage 

Catherine A. Off 

Chair of the Supervisory Committee: 

Assistant Professor Kristie A. Spencer 
Department of Speech & Hearing Sciences 

In a recent review of anomia management, Maher & Raymer reported that 30% of 

aphasia intervention research from 1946 to 2001 focused on naming; however, 

"despite this proliferation of case reports and small group studies, there is still no 

clear agreement on how best to manage these deficits" (Maher & Raymer, 2004, 

p. 13). The inconsistency of acquisition, maintenance, and generalization effects 

observed across participants and types of treatment protocols is likely to stem from 

an inadequate knowledge base about how subject and treatment variables 

influence learning. 

One treatment variable that has received increasing attention over the past two or 

three years is treatment intensity. Principles of neurobiological learning across 

both animal and human research suggest that the intensity of treatment is a 

significant factor for learning. Additional research exploring experience-dependent 

neural plasticity involved in memory and learning indicates that a large number of 

trials per session are required to elicit behavioral and/or neural change. Despite a 

considerable amount of literature examining overall treatment intensity, data are 

not available regarding the frequency (i.e., stimulus dosage) of treatment at which 

individuals with aphasia will maximally benefit. 



A single-subject A-B design with replication across four individuals with aphasia 

and one healthy non-brain injured gender-matched control participant was used to 

assess the influence of repeated attempts at picture-naming, coupled with 

repeated exposure to hearing and reading target words, on the acquisition and 

maintenance of trained stimuli, and generalization to untrained stimuli. Individuals 

with chronic aphasia participated in a multi-week repetition priming protocol 

designed to investigate the influence of stimulus dosage on naming accuracy and 

latency. Results revealed positive repetition priming effects for trained items 

across both acquisition and maintenance phases; such positive effects were not 

observed for untrained stimuli or alternate exemplars. Stimulus dosage 

manipulations did not consistently influence naming performance for individuals 

with aphasia. 
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1 
CHAPTER I: LITERATURE REVIEW 

Approximately 700,000 people in the United States survive cerebral vascular 

accidents (CVA), or strokes, per year, and approximately two-thirds of these stroke 

survivors require subsequent rehabilitation for a number of impairments including 

motor deficits, cognitive deficits, and speech and/or language deficits (e.g., NIH, 

2006). Specifically, approximately 1,000,000 individuals in the United States suffer 

from aphasia, with the majority of these cases resulting from stroke (Holland, 

Fromm, DeRuyter, & Stein, 1996, ASHA, 2004). In a large prospective study 

involving over 1000 participants with a diagnosis of CVA, aphasia was observed to 

occur in 38% of the sample, with the incidence rising to 40% when only participants 

with left-hemisphere lesions were assessed (Pedersen, Jorgensen, Nakayama, 

Raaschou, & Olsen, 1995). Furthermore, Pedersen and colleagues found that of 

the participants with aphasia who survived the stroke, 44% completely recovered by 

the time they were discharged from the hospital. At a six month follow-up, 50% of 

participants with an initial diagnosis of aphasia continued to present with aphasia; 

that is after six months of recovery time, only an additional 6% of participants with 

aphasia had completely recovered their language function. 

Formally, aphasia has been defined as follows: 

Aphasia is a multimodality physiological inefficiency with [greater than loss 

of] verbal symbolic manipulations (e.g. association, storage, retrieval, and 

rule implementation). In isolated form it is caused by focal damage to 

cortical and/or subcortical structures of the hemisphere(s) dominant for such 

symbolic manipulations. It is affected by and affects other physiological 

information processes to the degree that they support, interact with, or are 

supported by the symbolic deficits (McNeil & Pratt, 2001, p.907). 

Clinically, aphasia is characterized by impairments of expressive and receptive 

language functions across some or all modalities including writing, speaking, 

drawing, and gesturing; the severity of these expressive and receptive deficits 

typically varies across modalities. Traditionally, classifications of aphasia stemmed 

from a localizationist perspective, suggesting a one-to-one mapping of neural 

structure to linguistic function. However, enough evidence has emerged to reject a 



simple one-to-one mapping of lesion and deficit, instead revealing a widely 

distributed network that is activated differentially across linguistic tasks (for a recent 

discussion of this topic, see Poeppel & Hickok, 2004). Despite this change in 

perspective, traditional classifications continue to be used by aphasiologists to 

describe the relative linguistic strengths and weaknesses presented by an individual 

with aphasia. Table 1.1 provides a brief description of the classification of aphasic 

symptoms and related neural correlates (adapted from Helm-Estabrooks & Albert, 

1991, p. 42). Naming impairments, the focus of this project, present across all 

categories of aphasia. 

Table 1.1 
Non-
Fluent 
Aphasia 
Global 
Aphasia 

Broca's 
Aphasia 

Transcor 
tical 
Motor 
Aphasia 

Classification of 
Description 

Poor auditory 
comprehension 

Good auditory 
comprehension 

Poor repetition 

Good auditory 
comprehension 

Good repetition 

Aphasic Sympl 
Anatomical 
Correlates 

Large 
perisylvian, 
extending 
into white 
matter 
Lateral 
frontal, 
suprasylvian, 
prerolandic, 
extending 
into white 
matter 
Anterior 
frontal; 
anterior and 
superior to 
Broca's 

oms 
Fluent 
Aphasia 

Wernicke's 
Aphasia 

Transcortic 
al Sensory 
Aphasia 

Conduction 
Aphasia 

Anomic 
Aphasia 

Descriptions 

Poor auditory 
comprehension; 
poor repetition 

Poor auditory 
comprehension; 
good repetition 

Good auditory 
comprehension; 
poor repetition 

Good auditory 
comprehension; 
good repetition 

Anatomical 
Correlates 

Posterior 
third of 
supramargin 
al gyrus 

Posterior 
parieto­
temporal; 
Wernicke's 
area is 
spared 

White matter 
pathways 
inferior to 
supramargin 
al gyrus 
Angular 
gyrus, 
second 
temporal 
gyrus 

Aphasia rehabilitation is considered to be efficacious and effective by 

practicing clinicians and clinical aphasiologists; however, according to the most 

recent Cochrane Review which evaluates randomized controlled trials, "speech and 

language therapy treatment for people with aphasia after a stroke has not been 

shown either to be clearly effective or clearly ineffective" (Greener, Enderby, & 

Whurr, 2004). Additionally, in a meta-analysis of aphasia treatment, Robey (1998) 

states, "the direct implication [of the lack of studies meeting criteria for a meta-



3 
analysis] is that outcome research in aphasia treatment has not been consistent 

with the conventions of controlled clinical trials as practiced in the general clinical-

outcome research community (p. 175)," and, "if the body of scientific evidence is to 

advance optimally, focused hypotheses must be tested on programmatically (e.g., 

replications on tests of dosage, specific populations, certain severities, and 

treatment protocols) (p. 183)". Individually, single-subject and small group designs 

have demonstrated very large gains as a result of aphasia treatment (for a recent 

examination of lexical retrieval evidence see Robey & Beeson, 2005); however, 

reducing and synthesizing this enormous literature base in the context of a 

systematic review often leaves practicing clinicians wondering which treatment 

approach and/or delivery option will optimize progress during the stroke recovery 

process for their own clients. Maher & Raymer concur stating, "...despite this 

proliferation of case reports and small group studies, there is still no clear 

agreement on how best to manage these deficits" (Maher & Raymer, 2004, p. 13). 

Consequently, aphasiologists are not able to (1) consistently differentiate among 

neurologicaliy divergent forms of aphasia, and/or (2) reliably treat individuals who 

present with various manifestations of aphasia. 

Past reviews that have examined the state of the evidence regarding 

aphasia treatment have necessarily focused on broad questions regarding aphasia 

treatment efficacy, without differentiating between types of treatment or what may 

ultimately be revealed as clinically divergent manifestations of aphasia (de Pedro-

Cuesta, Widen-Holmqvist, & Bach-y-Rita, 1992; Greener, Enderby, & Whurr, 2004; 

Holland, Fromm, DeRuyter, & Stein, 1996; Robey, 1998). Although these broad 

explorations have provided essential preliminary information, the questions being 

asked about aphasia need to be refined to systematically investigate basic issues in 

aphasiology including: (1) neuroplastic mechanisms underlying rehabilitation and 

processes of learning in a recovering brain that may ultimately guide treatment 

delivery decision-making; and (2) subject and treatment delivery variables that 

ostensibly influence these learning processes. The primary aim of this project is to 

examine one treatment delivery variable, stimulus dosage, in the context of recovery 

from aphasia and to outline how this variable potentially interacts with processes of 

learning during the rehabilitation of aphasia. Results stemming from this 
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investigation will be interpreted using theoretical mechanisms of learning as they 

pertain to the acquisition, maintenance, and generalization of lexical retrieval in 

individuals with anomia. 

NEUROPLASTICITY DURING RECOVERY FROM APHASIA 

".. .the brain is an organ of adaptation and the readiness for learning is intrinsic to its 

cells" ~ William Greenough 

Historically, language functions were presumed to correspond in a one-to-

one fashion with precise neural structures; that is, the lesion deficit hypothesis 

assumed a direct link between a focal lesion(s) and the ensuing impairment(s) of 

linguistic function. This hypothesis was initially based upon autopsy results 

combined with documented pre-morbid behavioral characteristics, thus leading to 

much of the currently used neuroanatomical terminology (e.g., Broca's and 

Wernicke's areas) and directing many early imaging studies using x-ray and 

computed tomography (CT) that sought to identify, locate, and verify the existence 

of language centers. Despite the advancement of imaging technologies that have 

become increasingly more sensitive to spatial features of the brain (e.g., magnetic 

resonance imaging (MRI)), the lesion deficit hypothesis is not able to provide a 

complete model of cognitive-linguistic processes for a number of reasons including: 

(1) it cannot provide information about which non-damaged structures are involved 

in the language tasks being assessed, (2) it assumes an inference between normal 

and damaged brains; that is, it assumes that a lesioned brain is simply a normal 

brain minus a region of tissue, and (3) it does not permit the development of 

theoretical neural circuits and/or networks that may be activated during language 

processes. 

With the advent of functional imaging technologies that allow researchers to 

examine the living brain during the U3e of language processes, it has become even 

more apparent that a simple one-to-one mapping of lesion to deficit is erroneous. 

Instead, amounting evidence suggests that although language is typically dominant 

in the left hemisphere for most individuals, language processes involve a wide­

spread network across both hemispheres and both cortical and subcortical tissue. 

Furthermore, this network appears to demonstrate significant variability across 
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individuals. As a result of this neural variability, in addition to other subject and 

treatment variables, understanding processes of learning in individuals with aphasia 

has proven difficult. In recent years, researchers have begun to explore this 

variability at both behavioral and neurobiological levels. Specifically, researchers 

have turned their attention to the neuroplastic mechanisms underlying recovery 

processes in order to better understand subject variability as it applies to recovery 

processes and amenability to rehabilitation protocols. 

Although neuroplasticity has been discussed in the context of development 

and learning since the early 1800's, experience-dependent plasticity (i.e., 

neurobiological changes resulting from learning) wasn't systematically investigated 

in adult animal models until the 1980's. Accordingly, theories about neuroplastic 

mechanisms in adult humans emerged and have since been viewed as a significant 

component of functional recovery subsequent to stroke (e.g., Nudo, 2004). With the 

additional technological advancement of functional neuroimaging in the 1990's, 

investigations of cortical plasticity became possible in living adult humans and have 

conclusively demonstrated that the adult human brain is capable of significant 

neural change and functional reorganization following learning experiences 

including recovery and rehabilitation from stroke (Bruno, 2004; Hallett, 2001; Nudo, 

2004). 

During the acute stage of recovery, ranging from hours to days post-CVA, 

physiologic neural and metabolic changes occur in response to the ischemic event. 

Initially, local changes occur at the site of the infarct and the surrounding (peri-

infarct) tissue (Nudo, 2004). At this stage of recovery effects of the ischemic event 

begin to resolve including a reduction of edema, a reuptake of toxins, improved or 

restored blood flow (i.e., reperfusion), a resolution of blood pressure, and possible 

repair of damaged but not destroyed cells (Bruno, 2004; Hallett, 2001; Hillis & 

Heidler, 2002; Papathanasiou & Whurr, 2000). In addition to these local physiologic 

changes, the ischemic event can also disrupt the excitability of individual neurons or 

groups of neurons both proximal and distal to the lesion (Hallett, 2001; Herholz & 

Heiss, 2000). For example, cellular degeneration or denervation supersensitivity 

may occur as a result of a loss of connections (Kean, 2005; Papathanasiou & 

Whurr, 2000). Denervation supersensitivity is defined as an enhanced or 
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exaggerated response to neurotransmitters, and occurs when a smaller than normal 

amount of neurotransmitter is available at the synapse (Kean, 2005). As a result of 

these rapid physiologic responses to the ischemic event, neurons and supporting 

cells exist in a state that is particularly predisposed for functional change in the 

context of rehabilitation and/or learning; that is, the brain exists in a state of reactive 

plasticity (Nadeau, Gonzalez Rothi, & Rosenbek, in press). These early 

mechanisms of recovery are typically referred to under the umbrella term 

spontaneous recovery, and are typically thought to be relatively independent of 

neural changes occurring as a result of rehabilitative protocols and/or language-

based experiences following stroke. Although a few authors have begun to explore 

cortical reorganization at early stages of spontaneous recovery (Hillis, 2006; Saur, 

Lange, Baumgaertner, Schraknepper, Willmes, Rijntjes, & Weiller, 2006), 

aphasiologists have yet to systematically explore the acute effects of early re­

training on neuroplastic mechanisms. A programmatic line of research is needed to 

further delineate cortical reorganization during spontaneous recovery and 

reorganization that ostensibly results from rehabilitation during the acute stage of 

recovery. 

During the sub-acute and chronic stages of recovery, lasting weeks to years 

after a CVA, functional recovery begins to occur. At this time, both behavioral 

compensation (i.e., the use of alternative strategies for use of the impaired function) 

and adaptive plasticity are thought to play a role in observable behavioral changes 

(Nudo, 2004). In terms of adaptive plasticity, functional changes appear to result 

from a complex coordination of multiple levels of neural plasticity, ranging from local 

molecular changes to system-wide reorganization (e.g., Gazzaniga, 2000, see 

chapters 9-16). Changes in synaptic potential are likely to provide relatively 

immediate functional changes; for example, connections previously inhibited may be 

unmasked as a result of ischemic events, or existing connections may be 

strengthened or weakened through processes of long-term potentiation (LTP) and 

long-term depression (LTD), respectively (Bruno, 2004; Buonomano & Merzenich, 

1998; Hallett, 2001; Johansson, 2000; Keefe, 1995; Nudo, 2004). Neuro-anatomical 

changes are likely to emerge later during the recovery process, including 

synaptogenesis in the form of increased dendritic arborization (Buonomano & 
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Merzenich, 1998; Grossman, Churchill, Bates, Kleim, & Greenough, 2002; Keefe, 

1995; Nudo, 2004). Such anatomical changes appear to be primarily experience-

dependent, and are thus more likely to occur in the context of rehabilitation or 

intensive use of the impaired function (Greenough, 2005; Grossman, Churchill, 

Bates, Kleim, & Greenough, 2002). New connections such as these may ultimately 

provide access to regions that were initially isolated from the lesion (Hillis & Heidter, 

2002). These theories of rehabilitation have emerged from animal studies; to date, 

however, systematic investigations of the effects of aphasia rehabilitation and 

associated treatment variables on neuroplastic mechanisms have yet to be 

published. 

Non-neuronai supporting cells have also been examined in animal models to 

determine their role in neuroplasticity and have subsequently shown that plasticity is 

not exclusive to neurons. For example, oligodendrocytes have been shown to 

produce more myelin, thus creating an increased number of high-speed connections 

in adult animals that have been exposed to complex or enriched environments 

relative to those not exposed to enriched environments (Greenough, 2005; 

Grossman, Churchill, Bates, Kleim, & Greenough, 2002). Animals exposed to 

enriched environments have also demonstrated an increased capillary volume, 

reflecting an improved cerebrovascular system, and an increased number of glial 

cells in general, thus providing increased nourishment for the neural system 

(Greenough, 2005; Grossman, Churchill, Bates, Kleim, & Greenough, 2002). 

Large scale, system-wide cortical plasticity observed following stroke in adult 

humans is typically referred to as functional neural reorganization, which results 

from a realignment of the relative interaction between cortical structures and 

cognitive functions (Hillis & Heidler, 2002). Such representational changes appear 

to emerge later in the recovery process (i.e., chronic stages of recovery), and 

manifest differently across recovering individuals. Cortical reorganization is thought 

to result from a coordination of the abovementioned neuroplastic mechanisms as 

well as a regression of diaschisis (Seitz, Azari, Knorr, Binkofski, Herzog, & Freund, 

1999), the repair and/or restitution of partially damaged pathways (Hillis & Heidler, 

2002), and the use of existing, undamaged, or redundant pathways. Cortical 

reorganization during stroke recovery is thought to include recruitment or use of: (1) 
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task-related regions in the ipsilatera! hemisphere, (2) perilesional undamaged 

tissue, and (3) homologous regions in the unimpaired contralateral hemisphere 

(e.g., Rijntjes, 2006). If the functional network is partially preserved, compensation 

is likely to take place for the lost function; that is, the remaining tissue of the 

functional network may take over the function that was previously assigned to the 

lost tissue (Barker & Dunnett, 1999; Gonzales Rothi, 2000). Alternatively, if the 

functional network is severely damaged, another system may adapt to take over or 

substitute the lost function (Barker & Dunnett, 1999; Gonzales Rothi, 2000; 

Grafman, 2000). 

Although the investigation of cortical reorganization in adult humans is in its 

infancy, the processes underlying reorganization are likely to be sensitive to the 

extent to which and the context in which the stroke survivor uses the impaired 

function (Bruno, 2004; Hallett, 2001). However, this theory of reorganization has yet 

to be systematically investigated in the context of aphasia rehabilitation; specifically, 

although subject variables (e.g., site/size of lesion, stage of recovery) have been 

investigated to some degree, studies examining treatment variables such as task, 

stimuli, and treatment intensity are currently absent from the literature base. 

For aphasiologists, the crucial piece of information to be gained from the 

neural plasticity literature is that experience drives neural change (Ivanco & 

Greenough, 2000). Furthermore, neuroplastic recovery mechanisms following brain 

injury appear to be sensitive to a number of intrinsic (e.g., size/site of lesion, stage 

of recovery) and extrinsic variables (e.g., treatment variables). However, little is 

understood about how either of these variables relate to neuroplastic recovery 

processes, or whether they are responsible for priming the system for some 

particular path of cortical reorganization. In theory, different combinations of 

intrinsic and extrinsic variables are likely to determine these different paths of 

reorganization and subsequent degrees of functional recovery. As such, it is 

imperative that aphasiologists systematically investigate aphasia recovery to 

determine the subject and treatment variables that can be manipulated to result in 

behavioral change. 
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MECHANISMS OF LEARNING 

An early study examining the learning abilities of individuals with aphasia 

demonstrated that patients exhibit many of the same behavioral correlates relative 

to learning as those without brain damage (Carson, Carson, & Tikofsky, 1968). 

Specifically, individuals with aphasia were able to (1) learn new tasks (as 

demonstrated by decreased response time and/or increased accuracy across trials), 

(2) retain newly learned information and/or skills over time, and (3) process complex 

stimulus material. Relative to non-brain injured controls, however, individuals with 

aphasia demonstrated generally slower response times and lower levels of 

achievement. 

The rehabilitation of language is inherently supported by mechanisms of 

learning. However, despite calls for aphasiologists to include a discussion of 

principles of learning thought to underlie their treatment protocols (Baddeley, 1993; 

Ferguson, 1999; Laine, 2000; Martin, 1996; Stark, 2005), few authors have done so 

(although, for example, see Baddeley, 1993; Breitenstein & Knecht, 2002; 

Fillingham, Sage, & Lambon-Raiph, 2006; Plaut, 1996)1. This lack of a theoretical 

framework of learning upon which to base rehabilitative protocols is particularly 

noteworthy considering the amount of evidence suggesting that cortical 

reorganization is modulated in response to a multitude of intrinsic and extrinsic 

variables, ostensibly as a result of inherent mechanisms of learning. Furthermore, 

animal, and more importantly, human studies of motor learning following stroke 

have provided a significant body of literature upon which to model language learning 

(for a recent review, see Dobkin, 2004). Although the neural correlates underlying 

language processes are significantly different from those supporting motor 

functions, the neural processes that enable and facilitate learning are likely to be 

influenced by similar variables across both motor and cognitive-linguistic functions. 

Given evidence from both neuroimaging studies of cortical reorganization 

following stroke, and behavioral or cognitive-behavioral studies of learning and 

1 Breitenstein & Knecht provide a brief model of implicit language learning (purely 
behavioral); Fillingham et al. discuss a protocol based on errorless learning, but do not 
propose a complete theory of (re)learning. Plaut proposes a cognitive neuropsychological 
theory of learning based upon connectionism. Baddeley provides a review of cognitive 
theories of learning, in general, from the standpoint that models of working memory may 
help explain learning processes in an impaired system. 
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rehabilitative processes, aphasiology, as a science, is in the optimal position to tie 

neural, neuropsychological, cognitive, and behavioral theories together to propose a 

complex theory(s) of learning during recovery from stroke2. As such, this chapter 

will explore the rehabilitation process in terms of principles inherent to learning and 

specific neurobiological mechanisms that appear essential for learning following 

stroke. Coupled with neuroplastic mechanisms of cortical reorganization, 

mechanisms of learning can provide a theoretical framework upon which the 

manipulation of treatment variables can be motivated. 

Neurobiological Principles of Rehabilitation 

The goal of any rehabilitation program is to reduce the behavioral, motor, 

and/or cognitive effects of a neurological disease or disorder such as stroke 

(Dobkin, 2004). In a review article that assessed models of rehabilitation for 

cognitive impairments subsequent to brain injury, Lillie and Mateer outlined four 

outcomes of rehabilitation: (1) restoration of damaged function, (2) optimization of 

residual function, (3) compensation for lost function, and (4) substitution of intact 

function (Lillie & Mateer, 2006, p. 119). Without question, the most desirable 

outcome is to restore the impaired function to its original state; however, complete 

repair of neural damage is unlikely in most cases. As such, a more realistic goal 

may be to activate intact neural connections and promote cortical reorganization by 

optimizing the residual function. 

In rehabilitative medicine, the past two decades or so of research shifted its 

focus from primarily impairment-based treatment approaches to those that help the 

individual compensate for their lost or impaired abilities. For example, in physical 

therapy, patients were encouraged to use the unimpaired hand to complete 

activities of daily living (for a review, see Bruno, 2004). Similarly, individuals with 

aphasia have been coached to use modalities other than spoken language such as 

gesturing, drawing, and writing to facilitate functional communication during 

conversation (Elman & Bernstein-Ellis, 1999; Kagan, 1995; Rogers, Alarcon, & 

2 Just before this paper was printed an in press book chapter was obtained from neurologist 
Dr. Steven Nadeau that provides a compelling neural model of language rehabilitation that 
incorporates a connectionist neural network model with neuropsychological phenomena and 
both neural and behavioral correlates of language and language impairments (Nadeau, 
Gonzalez Rothi, & Rosenbek, in press). 
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Olswang, 1999; Simmons-Mackie & Damico, 1995). Such rehabilitative approaches 

certainly serve their purpose to help stroke survivors interact with their environment 

in a meaningful way as soon as possible after the stroke. However, compensatory 

approaches may also be selected by practicing clinicians because of a lack of 

consistent and/or compelling evidence that supports impairment-based approaches. 

Therefore, as researchers, we are obligated to provide theoretically motivated, but 

clinically relevant evidence that details variables germane to each of these types of 

rehabilitative outcomes. Currently, the variables that may influence restoration 

and/or optimization of the residual language function(s) are poorly understood; 

however, a systematic line of research based upon principles of learning and their 

influence on cortical reorganization should ultimately shed light on the factors that 

are necessary and essential for successful rehabilitation, regardless of the desired 

outcome (i.e., restoration and/or optimization vs. compensation). 

With the relatively recent explosion of animal and human studies examining 

neuroplastic mechanisms of recovery, researchers have begun to explore how 

various rehabilitative approaches are associated with neuroplastic processes during 

recovery. Based upon a review of the motor learning literature as it applies to 

rehabilitation, Elbert and Rockstroh have proposed four guiding neurobiological 

principles necessary for successful cortical reorganization to occur3 (Elbert & 

Rockstroh, 2004, p. 132). The first principle, practice makes perfect, is based on 

studies that examine skill learning. This principle proposes that intensive, massed 

stimulation of a particular motor skill results in expanded cortical representational 

maps, indicative of an increased level of importance for that particular skill. The 

amount of practice necessary to result in learning is well studied in the motor 

learning literature and is cited by Schmidt and Lee as the "most important condition" 

when learning a new skill (Schmidt & Lee, 1999, pp. 285-286). The second 

principle, use it or lose it, is based on investigations of limb or digit amputation 

and/or loss and/or ablation of innervation subsequent to brain injury. In instances 

during which decreased or completely ablated innervation to a particular cortical 

region occurs, nearby groups of cells may be recruited during learning, thus 

3 Cortical reorganization and/or neuroplasticity, in general, are discussed in the context of 
motor learning using animal models. Elbert and Rockstroh do not discuss cortical 
reorganization in the context of cognitive-linguistic regions of interest. 
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expanding an adjacent cortical representational map or narrowing the previously 

used representational map. The third principle, fire together, wire together, is based 

on the Hebbian theory of learning, stating that the persistent stimulation of one cell 

during skill learning will eventually lead to the simultaneous stimulation of adjacent 

cells; eventually this process is thought to spread to several neighboring cells, thus 

expanding the representational map (Hebb, 1949). A basic assumption underlying 

this principle is that the initial stimulation of the cell must be associated with a 

functionally important behavior to the individual being trained and/or rehabilitated 

(Keefe, 1995, p. 91). Finally, the fourth principle, you have to dream it to achieve it, 

is based on studies that have demonstrated that not only is intensive and prolonged 

practice of the skill required to result in cortical reorganization, but the behavior 

being learned or relearned must be of such interest or importance to the individual 

that the brain continues to process the new skill during sleep (e.g., Stickgold & 

Walker, 2005). Collectively, these tenets provide a neurobiological framework that 

can be applied to the investigation of learning during stroke recovery in individuals 

with aphasia4. 

As a result of increased evidence supporting neuroplastic mechanisms 

during recovery, a significant amount of research has been conducted to better 

understand how restoration or optimization of function may be achieved. For 

example, in the context of physical rehabilitation, practitioners and researchers alike 

provide intense, repetitive treatment of the impaired limb (i.e., constraint-induced 

movement therapy), which is hypothesized to facilitate neurological and behavioral 

recovery, prevent learned non-use of the limb, and directly influence functional 

reorganization (Bruno, 2004; Kunkel, Kopp, Mulller, Villringer, Villringer, Taub, & 

Flor, 1999). The National Institute of Health (NIH) concurs, stating that "there is a 

strong consensus among rehabilitation experts that the most important element in 

any rehabilitation program is carefully directed, well-focused, repetitive practice - the 

same kind of practice used by all people when they learn a new skill, such as 

playing the piano or pitching a baseball" (NIH, 2006). This model of rehabilitation 

has gradually filtered into the field of aphasiology with researchers now beginning to 

4 See also Dobkin (2004) for a synopsis of specific intrinsic and extrinsic neuroplastic 
mechanisms likely to influence restoration of function. 
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explore ideas of constraint and intense practice that may be relevant to language 

rehabilitation following stroke (Lillie & Mateer, 2006; Pulvermuller, Neininger, Elbert, 

Mohr, Rockstroh, Koebbel, & Taub, 2001); this renewed interest in the restoration 

and optimization of function is also reflected by the type of studies currently being 

funded by NIH.5 However, until recently (Kleim & Jones, 2008; Raymer, Beeson, 

Holland, Maher, Martin, Murray, Rose, Thompson, Turkstra, Altmann, Boyle, 

Conway, Hula, Kearns, Rapp, Simmons-Mackie, & Gonzales Rothi, 2008) a 

discussion about how treatment variables are theorized to modulate the processes 

of learning to ultimately optimize neurobiological mechanisms of recovery was 

strikingly absent from the literature base. In the past, aphasiologists had recognized 

the importance of the interaction of subject and treatment variables in the context of 

rehabilitation; however, no discussion of how these variables modulate the learning 

process, relative to either cognitive-behavioral or neurobiological models of learning, 

was provided. With the recent attention to using principles of experience-dependent 

plasticity6 aphasiologists can begin to answer questions about (1) the way that 

individuals with aphasia learn and (2) the nature of neurological recovery 

(specifically, cortical reorganization) that allows for treatment variables to matter. 

Principles of Learning to Consider for Rehabilitation 

Learning can be broadly defined as the process or processes necessary to 

acquire new information or new capabilities; whereas, memory can be broadly 

defined as information or a capability that is acquired and subsequently persists to 

be retrieved or used at a time distant from the moment of acquisition (Gazzaniga, 

Ivry, & Mangun, 2002). As such, learning and memory are intimately connected, 

manifesting as different stages of the same processing mechanism. For the 

purposes of this paper, memory and learning are discussed collectively as learning, 

5 See http://clinicaltrials.qov/ct/qui/action/SearchAction?term=Aphasia for a current list of 
NIH funded clinical trials in the area of aphasiology. Currently, two out of nine clinical trials 
are recruiting participants to examine constraint-induced aphasia treatment (CIAT). 
6 Kleim & Jones (2008) propose ten principles of experience-dependent plasticity relative to 
neuro-rehabilitation: (1) use it or lose it; (2) use it and improve it; (3) specificity; (4) repetition 
matters; (5) intensity matters; (6) time matters; (7) salience matters; (8) age matters; (9) 
transference; (10) interference. Results from the current investigation presented will be 
discussed in light of both Elbert & Rockstroh's and Kleim & Jones' principles of experience-
dependent plasticity. 

http://clinicaltrials.qov/ct/qui/action/SearchAction?term=Aphasia
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and defined as a process occurring as a result of experience that results in the 

acquisition or reacquisition of a capability, as demonstrated by long-lasting 

behavioral changes (Schmidt & Lee, 1999; Stark, 2005). 

tn the broadest sense, learning has been modeled as behavioral, cognitive, 

or cognitive-behavioral in nature (Ferguson, 1999). While behavioral theories are 

based solely on how the environment affects overt behavioral responses (i.e., 

stimulus-response); cognitive and cognitive-behavioral theories of learning make 

hypotheses about internal influences (i.e., emotional, cognitive, and psychosocial 

factors) on learning. More recently, cognitive neuropsychological theories have 

provided a framework within which neurological processes and neural substrates of 

various cognitive functions can make predictions about impairments stemming from 

neurological disorders and diseases (Gazzaniga, 2000). In aphasia therapy, most 

treatment protocols appear to be based upon a cognitive neuropsychological or 

cognitive-behavioral theory of learning, whether this is directly stated or not. 

Typically, however, investigators use these cognitive-behavioral or cognitive-

neuropsychological theories to guide their model of language processing, rarely 

discussing how these theories of learning motivate the particular learning paradigm 

or treatment protocol that they have selected to investigate7 (Howard, 2006). 

Behavioral learning paradigms generally include habituation, simple 

conditioning, priming, and skill learning (Ferguson, 1999; Laine, 2000). These 

paradigms have been extensively examined in healthy participants and patients with 

various memory impairments (e.g., Knowlton, Mangels, & Squire, 1996; Squire, 

1992); yet, systematic investigations of the manner in which individuals with aphasia 

respond to various behavioral paradigms of learning have yet to be conducted. The 

goal, then, for aphasiologists, is to develop a theory of learning that considers: (1) 

neurobiological principles of learning8, (2) models of cortical reorganization during 

aphasia recovery, and (3) cognitive-behavioral or cognitive neuropsychological 

7 Although, one line of research that has explicitly asserted a cognitive neuropsychological 
theory of (re)learning includes authors who examine connectionist models of lexical retrieval 
(Dell, Schwartz, Martin, Saffran, & Gagnon, 1997; Martin, Fink, Laine, & Ayala, 2004; 
Nadeau, Gonzalez Rothi, & Rosenbek, in press; Plaut, 1996). 
8 For example, refer to Martin and colleagues for a detailed hypothesis about the nature of 
LTP/LTD and their role in learning; specifically, this hypothesis addresses associative 
processes of learning, storage capacity, and the permanence of memories (Martin, 
Grimwood, & Morris, 2000). 
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principles of learning. Within the context of such a theory, hypotheses can be made 

about how variables of interest are likely to modulate the recovery process. Before 

such a complex theory of rehabilitation can be advanced, however, behavioral 

learning paradigms need to be systematically investigated in individuals with 

aphasia. 

Repetition Priming: An implicit Learning Paradigm 

Learning can be broadly categorized as either implicit or explicit in nature. 

Explicit learning is defined as requiring conscious or controlled attention to the 

learning process and conscious recollection of prior learning experiences (Tulving & 

Schacter, 1990). Implicit learning, on the other hand, does not require intentional or 

conscious awareness of the learning process (i.e., recall and recognition). Instead, 

implicit learning is defined as an unconscious or automatic process9 that results in 

relatively abstract knowledge (Butler & Berry, 2004; Reber, 1989). Automatic 

processes of attention have been shown to be fast, effortless, and unavailable to 

conscious awareness, and are developed through practice (as discussed in Logan, 

1988). 

One type of implicit learning is priming, which results in faster and/or more 

accurate responses; priming occurs in response to a single exposure of a stimulus 

(Badgaiyan, Schacter, & Alpert, 2001; Henson, Shallice, & Dolan, 2000; Poldrack & 

Gabrieli, 2001; Tulving & Schacter, 1990). By definition, priming occurs in response 

to a single exposure of a stimulus, in the absence of explicit learning or controlled 

processes of attention (Badgaiyan, Schacter, & Alpert, 2001; Butler & Berry, 2004; 

Henson, Shallice, & Dolan, 2000; Poldrack & Gabrieli, 2001; Reber, Gitelman, 

Parrish, & Mesulam, 2004; Tulving & Schacter, 1990). This single exposure is not 

thought to contribute to expertise or automaticity of a particular skill (Reber, 

Gitelman, Parrish, & Mesulam, 2004). Repetition priming, on the other hand, refers 

to the priming effect(s) observed as a result of more than one presentation of a 

given stimulus (Reber, Gitelman, Parrish, & Mesulam, 2004; Schwartz & Hashtroudi, 

1991; Tulving & Schacter, 1990). While a single prime may initiate the learning 

process via encoding, repetition priming, also referred to as direct priming (Tulving & 

9 Shiffrin and Schneider conducted a series of studies differentiating automatic and 
controlled processes of attention (Shiffrin & Schneider, 1977). 
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Schacter, 1990), identity priming (Hutchinson, Neely, Neill, & Walker, 2004), or item-

specific priming (Mitchell & Brown, 1988), has been proposed as an elementary 

mechanism of learning leading towards the development of automaticity that 

typically accompanies expertise; that is, expertise is hypothesized to develop after 

the second stimulus response (Poldrack, Wagner, Prull, Desmond, Glover, & 

Gabrieli, 1999; Reber, Gitelman, Parrish, & Mesulam, 2004), Although repetition 

priming has been shown to be independent of skill learning (Schwartz & Hashtroudi, 

1991; van Turennout, Bielamowicz, & Martin, 2003), some believe that repetition 

priming shares the same underlying processes and neural substrates with skill 

learning (Dennis & Schmidt, 2003). The difference between repetition priming and 

skill learning appears to evince the level of learning; skill learning reflects a general 

improvement of a capability, while repetition priming is thought to reflect learning at 

the level of a stimulus item. 

An Information-Processing Model of Repetition Priming 

Spreading-activation or strength-based models (based upon the original 

PDP model by McClelland & Rumelhart, 1981) contend that priming temporarily 

increases the magnitude of activation of the item being responded to, thus allowing 

improved access to the stimulus on subsequent trials. Interactive activation models 

are usually discussed in the context of a particular cognitive process, such as lexical 

retrieval (Dell & O'Seaghdha, 1992; Martin, Fink, Laine, & Ayala, 2004; Nadeau, 

Gonzalez Rothi, & Rosenbek, in press) or facial recognition (Burton, Bruce, & 

Johnston, 1990). Burton and colleagues suggest that repetition priming reflects a 

strengthening of an excitatory connection between the stimulus node and the 

response node. Once the stimulus node has reached threshold (i.e., the correct 

response has been made), the strength of the connection between the stimulus and 

response nodes increases. Ostensibly, because residual activation of the first trial 

persists for a short time, the next trial should have a higher level of activation. 

Although the activation of the second trial will decay, the remaining residual 

activation should be stronger than when the item was first encountered. Thus, the 

connection between the stimulus and response nodes becomes increasingly 

stronger with subsequent correct trials. Essentially, the residual activation of the 
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connection increases with each trial, resulting in faster and less variable 

responses.10 

Although this model of learning has been put forth as an hypothesis about 

the cognitive representations and processes underlying repetition priming, it remains 

underspecified, and is unable to address many of the behavioral characteristics of 

repetition priming (e.g., repetition is long lasting). Furthermore, most cognitive 

theories have yet to address or incorporate neurobiological substrates of learning 

and neural processes of reorganization following stroke into their models11. 

Behavioral Characteristics of Repetition Priming 

Repetition priming experiments that investigate lexical retrieval typically use 

tasks such as picture naming or lexical decision tasks. Participants are presented 

with a stimulus item (e.g., picture, written word) and asked to do some task (e.g., 

picture-naming, lexical decision); this item is then repeated later in the experiment. 

Repetition priming experiments can be massed12 (i.e., the stimulus is repeated in 

succession with no intervening stimuli) or spaced/distributed (i.e., the stimulus is 

repeated with one or several items intervening between trials). In traditional motor 

and/or skill learning paradigms, massed practice is assumed to occur within one 

training session, while spaced or distributed practice is defined as training sessions 

with one or more stimuli intervening between repetitions or some time interval 

between repetitions (Nadeau, Gonzalez Rothi, & Rosenbek, in press). Behavioral 

changes associated with repetition priming are observed as decreased latencies, 

improved accuracy (Cornelissen, Laine, Tarkiainen, Jarvensivu, Martin, & Salmelin, 

2003; Henson & Rugg, 2003; Henson, Shallice, & Dolan, 2000; Tulving & Schacter, 

10 Other connectionist authors have suggested that repetition priming reflects a permanent 
modification (reduction) of the threshold level for activation of the lexical representations 
(e.g., Morton, 1969). More generally, Nadeau and colleagues suggest that learning 
manifests in a connectionist network as changes in the strength of connections within a 
neural network; neural networks support knowledge (represented as long term memory at 
the level of connection strengths), working memory, and processing (Nadeau, Gonzalez 
Rothi, & Rosenbek, in press). 
11 Although, the recent Nadeau et al. chapter (in press) provides a more sufficiently detailed 
account and appears to be the first to integrate neurological substrates of linguistic 
functioning with cognitive models of memory (which include processes of long term memory 
and working memory) and behavioral and rehabilitative data. 
12 Note: Many investigators claim "massed" practice for intensive treatment (i.e., many trials) 
as opposed to many repetitions of the same trial. 
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1990; Wiggs & Martin, 1998) or reduced response variability (Dennis & Schmidt, 

2003) across trials. 

Persistence of Repetition Priming Although early theorists of repetition 

priming suggested that repetition priming was the result of "transient variations in 

activation level of pre-existing memory representations" (Versace & Nevers, 2003, 

pp. 389-390) and early studies indicated that priming effects were relatively transient 

in nature (e.g., Graf, Squire, & Mandler, 1984), decreased latencies have since 

been found to persist in unimpaired subjects for up to 48 weeks with only a single 

exposure to the stimulus (Cave, 1997; Durso & Johnson, 1979; Lachman & 

Lachman, 1980; Mitchell & Brown, 1988). For example, Cave (1997) investigated 

the duration of priming effects with a total of 204 non-brain-injured subjects, using a 

picture-naming paradigm. During the first session, each subject was presented with 

130 black and white drawings (from Snodgrass & Vanderwart, 1980) and asked to 

name the pictures as quickly and accurately as possible. The subject pool was then 

divided into nine groups, each including 20-29 subjects. Each of these groups 

returned for a second session at various intervals (6, 8, 10, 12, 16, 24, 32, 40, and 

48 weeks) relative to the initial session. Subjects were not informed that they would 

be seeing the same pictures at the later date. During the second session, subjects 

were presented with 200 drawings, including 100 of the previously seen pictures 

and 100 novel pictures. For all nine delay conditions, pictures named during the first 

session were responded to significantly faster than those pictures not previously 

named. The reaction time difference between naming previously seen and novel 

targets ranged from approximately 78 ms to 25 ms, with the mean difference 

decreasing as the delay interval increased. Thus, priming effects have been 

observed up to 48 weeks, but these effects are not equivalent across delay periods; 

that is, the priming effect decreases or decays across time. 

Mitchell and Brown (1988) also investigated repetition priming by 

manipulating the duration between repetitions. The investigators conducted three 

separate experiments examining three different intervals: one week, four weeks, 

and six weeks. For all three experiments, non-brain-injured subjects (n=60) were 

presented with, and asked to name, 100 pictures during the initial session; during 

the second session participants were presented with 50 repeated pictures and 50 
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novel pictures. A recognition task was completed in addition to the naming task to 

assess explicit memory of the stimulus items. Results indicated that repetition 

priming led to facilitation of picture-naming, with priming effects ranging between 70 

and 80 ms, regardless of the interval between sessions. In this study, the priming 

effect did not decay as a result of increasing the interval between sessions. 

Additionally, repetition priming was present regardless of whether the subjects 

remembered seeing the pictures or not, thus indicating that repetition priming is 

independent of explicit memory and learning processes. 

In summary, repetition priming effects can persist up to 48 weeks13. 

However, the magnitude of the effect may be susceptible to manipulations of inter-

stimulus interval. While the abovementioned research has provided conclusive 

evidence for a persistence of repetition priming effects across time, few studies 

have systematically examined the sensitivity of the priming effect to the number of 

intervening stimuli. In a recent study examining lexical decision in older, non-brain-

injured adults and individuals with aphasia, Blumstein and colleagues found that 

repetition priming effects are relatively insensitive to the number of stimuli that 

intervene between the repeated trials, although the magnitude of change is greatest 

when no stimuli intervene between the first and second presentation (Blumstein, 

Milberg, Brown, Hutchinson, Kurowski, & Burton, 2000). 

Sensitivity to the Number of Repetitions Although a significant amount of 

research has substantiated a positive relationship between the magnitude of 

learning (i.e., the number of trials) and subsequent learning and/or retention in the 

realm of motor learning (Keefe, 1995; Schmidt & Lee, 1999), the same relationship 

has been found to be less robust and relatively inconsistent in the context of implicit 

learning tasks such as repetition priming. Brown, Jones, and Mitchell (1988) 

explain this issue as a difference between "single test priming" during which the 

target stimulus is presented only once before the subject is probed, and "multiple 

test priming" during which the subject is presented with the target stimulus more 

than once before the test probe (p. 160). The confusion surrounding this issue 

appears to stem from the myriad variables that may or may not be manipulated 

13 For lexical decision studies that demonstrate long-lasting effects of repetition priming, refer 
to (Dannenbring & Briand, 1982; Kirsner & Smith, 1974; Scarborough, Cortese, & 
Scarborough, 1977). 
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during repetition priming tasks, including, at the very least: (1) the interval or 

duration between the repetitions (i.e., massed/blocked vs. spaced), (2) the number 

of repetitions (i.e., a large number of repetitions vs. a small number of repetitions); 

(3) the task itself (e.g., word fragment completion, word stem completion, perceptual 

identification, object decision, picture naming), (4) the stimulus materials (e.g., line 

drawings, words, photographs), and (5) the manner in which the stimuli are 

presented (e.g., low tech vs. computer presentation). 

Brown, Jones & Mitchell (1988) find the discrepancies across studies to be 

noteworthy, and suggest that such inconsistencies may reveal something about the 

underlying nature of implicit learning mechanisms. As such, the authors conducted 

an investigation in which they varied the number of repetitions and the interval 

between repetitions during a picture naming task. Sixty-four non-brain-injured 

subjects were presented with 125 black-and-white line drawings (from Snodgrass & 

Vanderwart, 1980) and asked to name the pictures as quickly and accurately as 

possible. Subjects then participated in two additional sessions during which some 

pictures presented were novel and some were single repetitions of previously seen 

pictures; the number of previously seen and novel pictures was not reported. In 

total, the participants were presented with the pictures four times. Half of the 

subjects were administered the second and third session immediately after the initial 

session; the other half returned one week later for the second session and two 

weeks later for the third session. For the first repetition of the stimuli (i.e., second 

presentation), significant repetition priming effects were observed across both 

massed and spaced conditions. During the massed interval condition, additional 

significant decreases in latency were observed at the third but not forth 

presentation. Results were less clear for the spaced interval condition; although the 

priming effect remained significantly greater for multiple presentations than for a 

single presentation, repetition priming effects decayed across weeks. Thus, for 

multiple presentations in the spaced interval condition, priming effects decay to a 

lesser degree than for single presentations. The authors did not comment on 

generalization to untrained items, but reaction times for naming novel items 

remained relatively stable across the course of the experiment (i.e., three sessions). 
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That is, unpracticed items were not responded to faster across the course of the 

experiment, providing further evidence that repetition priming is item-specific. 

Reber and colleagues (Reber, Gitelman, Parrish, & Mesulam, 2004) 

investigated repetition priming in the context of object identification across 8 

repetitions. Forty-two non-brain-injured individuals were presented with 72 pictures 

of everyday objects for 750 ms, with an inter-stimulus interval of two seconds. The 

participants were asked to determine whether each picture was a picture of a 

baseball or not via button press. Those pictures that were not baseballs (i.e., non-

target stimuli) were presented 1, 2, 3, 4, 5, 6, 7 or 8 times during the session. 

Participants responded significantly faster to items that were repeated the second 

time than upon the initial repetition (an approximate 100 ms decrease in reaction 

time was observed from the first to the second presentation of the stimulus), but no 

additional significant decreases of reaction time were observed from the third to 

eight presentation. The authors proposed that eight repetitions is not enough to 

"establish behaviorally detectable expertise" during this object identification task 

because of the simplicity of the task. For an additional study using object 

identification, see also (Koutstaal, Wagner, Rotte, Maril, Buckner, & Schacter, 

2001). 

In summary, multiple test repetition priming has not been sufficiently 

examined. While a single repetition of the stimulus item has been shown to 

decrease reaction time and increase accuracy, the magnitude of continued 

behavioral priming is less clear across increasing numbers of repetitions. While 

Brown and colleagues (Brown, Jones, & Mitchell, 1996) suggest that manipulation of 

the repetition priming task itself (i.e., massed vs. spaced practice) is likely to 

influence the magnitude of priming effects observed across multiple repetitions, 

Reber and colleagues (Reber, Gitelman, Parrish, & Mesulam, 2004) recommend 

systematic investigation of multiple test repetition for greater than eight repetitions. 

The most obvious conclusion to draw from the extant literature is that the most 

significant priming effects are observed for the first and second repetitions, with 

subsequent repetitions beginning to plateau; however, priming effects may become 

significant after eight repetitions. 
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Generalization Repetition priming is assumed to be, by definition, item-

specific; that is, repetition priming effects are not expected to facilitate response 

latency and accuracy for untrained items (refer to the previous discussion by Brown, 

Jones, & Mitchell, 1996). For example, in a word-fragment completion task, 

Schwartz and Hashtroudi, distinguished repetition priming from skill learning on the 

basis of a lack of generalization to untrained items in the case of repetition priming 

(Schwartz & Hashtroudi, 1991). At the perceptual level, repetition of the target 

stimulus with minor color or texture manipulations were not shown to influence 

priming effects during a picture naming task (Cave, Bost, & Cobb, 1996); however, 

Koutstaal and colleagues found that presentations of two different exemplars of the 

same target stimulus (i.e., two different pictures of an umbrella) resulted in moderate 

priming effects relative to novel pictures (Koutstaal, Wagner, Rotte et al., 2001). 

Although repetition priming is unlikely to generalize from trained to untrained items, 

a large number of trials (i.e., greater than 8 repetitions) has yet to be conducted in 

the context of lexical access. 

Neural Substrates of Repetition Priming 

Neuropsychological research, including non-human primate single-cell 

recordings (Desimone, 1996) and human functional neuroimaging studies (Dobbins, 

Schnyer, Verfaellie, & Schacter, 2004; Henson & Rugg, 2003; Henson, Shallice, & 

Dolan, 2000; James, Humphrey, Gati, Menon, & Goodale, 1999; Kassubek, 

Schmidtke, Kimmig, Lucking, & Greenlee, 2001; Poldrack & Gabrieli, 2001; Reber, 

Gitelman, Parrish, & Mesulam, 2004; van Turennout, Ellmore, & Martin, 2000), 

strongly suggests that repetition priming results in a reduced level of cortical activity, 

referred to as repetition suppression or neural priming. Repetition suppression was 

first submitted as a hypothesis in 1987 after Brown and colleagues found decreased 

neuronal activity in the inferior-medial temporal cortex in monkeys for repeated 

exposures to a familiar stimulus relative to the initial presentation of the stimulus 

(Brown, Wilson, & Riches, 1987). Since this original documentation, numerous 

studies have examined the behavioral characteristics related to repetition 

suppression. Wiggs and Martin review this extensive literature and summarize the 

properties of repetition suppression as follows (Wiggs & Martin, 1998, p. 229): 
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(1) comparable to behavioral correlates of repetition priming, repetition 

suppression is stimulus specific; 

(2) comparable to behavioral correlates of repetition priming, repetition 

suppression is relatively insensitive to intervening stimuli; 

(3) comparable to behavioral correlates of repetition priming, repetition 

suppression is long lasting (up to 24 hours between presentations); 

and 

(4) comparable to some behavioral evidence, repetition suppression is 

graded; that is, with each repetition, neurons demonstrate additional 

reduction in firing rate (this has been demonstrated up to eight 

presentations). 

The specific cortical region demonstrating neural suppression appears to 

reflect the type of stimulus presented (e.g., pictures of objects vs. faces) and the 

modality of stimulus presentation (e.g., visual vs. auditory stimuli). For example, in 

the aforementioned study, Reber and colleagues observed repetition suppression 

while using fMRI to investigate object identification (Reber, Gitelman, Parrish, & 

Mesulam, 2004). Nine non-brain-injured participants were presented with pictures 

of everyday objects and asked to determine whether each picture was a picture of a 

baseball or not via button press. Non-target stimuli were presented 1, 2, 3, 4, 5, 6, 

7, or 8 times during the fMRI session. Cortical areas were analyzed for changes in 

hemodynamic response activity (1) between the first and second presentation, and 

(2) beyond the second presentation. The posterior fusiform cortex of the right 

hemisphere demonstrated decreased of activity across all eight presentations. A 

larger region, including both right and left fusiform cortices demonstrated a 

significant decrease from the first to second presentation. Only the right posterior 

fusiform cortex demonstrated an incremental decrease of activity across all eight 

presentations, indicating that this region may be responsible for object identification 

expertise. This study indicates that repetition priming is associated with reductions 

of cortical activity; additionally, the authors provide initial evidence that the neural 

correlates of repetition priming associated with several repetitions are significantly 

different from the neural correlates associated with a single repetition of a visual 

stimulus. 
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One theory that has been put forth to explain the relationship between 

behavioral and neural correlates of repetition priming suggests that repetition 

reflects a honing or tuning of stimulus representation in the cortex which allows 

information to be more readily available (Desimone, 1996; Schnyer, Dobbins, 

Nicholls, Schacter, & Verfaellie, 2006; Wiggs & Martin, 1998). Under this view, the 

neurons that demonstrate reduced activity are those that are no longer needed to 

identify the stimulus. That is, the neurons that continue to be activated have become 

more attuned to the stimulus as a result of repeated presentations, thus access to 

the information associated with the stimuli becomes easier. Subsequently the 

peripheral neural activity that was associated with the stimulus response is no 

longer needed for performing the task with that particular stimulus item. Desimone 

(1996) suggests that this mechanism is an inherent characteristic of neurons that 

exists to allow individuals to be able to quickly and efficiently recognize and identify 

previously encountered stimuli. 

Repetition priming, as a behavioral learning paradigm, provides an optimal 

foundation upon which to develop a theory of learning for individuals with aphasia; 

most importantly, this paradigm does not require conscious, explicit cognitive 

processes during learning, thus minimizing the number of internal cognitive factors 

that are likely to vary across individuals with aphasia. Furthermore, repetition 

priming, as a fundamental mechanism of learning, is particularly important to 

theories of rehabilitation when considering treatment intensity, or more specifically, 

stimulus dosage as a component of treatment intensity14. 

Many investigators have begun to focus on the overall intensity of aphasia 

treatment (for a recent review, see Bhogal, Teasell, Foley, & Speechley, 2003); 

however, no systematic investigations of stimulus dosage, for any treatment 

protocols, have been conducted. Animal models of motor learning, as well as 

associated models of cortical reorganization, are based on hundreds of trials per 

day over the course of several weeks (Keefe, 1995, p. 91), and yet an investigation 

of stimulus dosage remains conspicuously absent from the aphasia rehabilitation 

literature. Given the current trend towards intensive, constraint-induced aphasia 

14 Since repetition priming has been shown in healthy participants to be item-specific, it is the 
optimal paradigm upon which to investigate the number of trials required to elicit maximum 
behavioral and/or neural changes in any treatment protocol. 
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treatment (CIAT) protocols, a programmatic study of stimulus manipulation is 

warranted. Repetition priming is, therefore, an ideal tool by which to incrementally 

investigate acquisition and maintenance of trained items during spoken language 

production. 

LEXICAL RETRIEVAL DEFICITS FOLLOWING STROKE 

Speaking is one of the most complex motor skills that humans can perform. 

Ideas and intents are conceptualized, subsequently translated into linguistic 

representations, and finally converted into a motor code suitable for execution by 

the muscles of the each of the subsystems involved during speech production. In 

addition to processing that can accommodate variables such as para-linguistic 

attributes, the output is continuously monitored to ensure that we have said what we 

intended to say in the manner we intended to say it. Amazingly, we are able to 

transform this intent into action at a rate of approximately 150 words per minute, or 

2-3 words per second, with relative ease (Mcclay & Osgood, 1959). 

Spoken language production has been modeled as a series of stages, 

across which the representation, or unit of processing, may vary (Garrett, 1980; 

Levelt, 1999a; Levelt, 1989; Rogers & Spencer, 2001). Most conservatively, the 

stages thought to be required for spoken language production include: 

conceptualization, formulation, and motor planning and execution. During 

conceptual preparation, the speaker's non-linguistic intent, or lexical concept, is 

generated. Although little is understood about how this intent is represented, it 

appears that a one-to-one mapping of lexical concept to message is absent; that is, 

speakers may approach the same message from a variety of different perspectives, 

combining internal cognitive input and external, environmental stimuli to formulate 

the intent for output (Levelt, 1989). This abstract intent is then converted into a 

linguistic code during formulation, at which time words are selected, syntactic 

frames are constructed, and phonological forms are specified. Formulation can be 

further subdivided: during grammatical encoding, word meaning and syntactic form 

are processed; the unit of representation at this level is referred to as the lemma. 

During phonological encoding, the abstract representation of the word form is 

retrieved; the representational units, or lexemes, of the sound, syllable, and 
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segment are built from stored morphological and phonological information. During 

phonetic encoding the allophonic and contextual phonetic adjustments are specified 

(e.g., aspiration), accounting for the fact that words are produced in a contextually 

sensitive manner. The output of formulation is then translated into a code suitable 

for motor execution. During motor planning, motor goals for each phoneme are 

specified and sequentially organized. During motor programming, neuromuscular, 

and, perhaps, aerodynamic parameters are set to determine movement direction, 

force, velocity, range, and rate for each speech subsystem (i.e., respiration, 

phonation, resonance, articulation and prosody). Finally, motor execution takes 

place and the linguistic form is uttered. 

Although the functional characteristics of the levels or stages of processing 

necessary for spoken language production are generally agreed upon across 

researchers and to some degree across various models of spoken language 

production (Dell & O'Seaghdha, 1992), the temporal nature is less well understood. 

Additionally, the interaction between these stages, or lack thereof, remains highly 

debated. Discrete serial models propose that processing occurs one stage at a time 

(i.e., they are temporally and functionally distinct) with the absence of feedback 

loops (Fromkin, 1971; Garrett, 1975; Levelt, 1989). Such models consider the 

various stages of processing as modular in nature; for example, phonologic 

encoding is not initiated until semantic encoding has been completed, and so forth. 

In this regard, stages models necessarily assume feed forward processing15. 

Interactive spreading activation models, on the other hand, contend that 

processing occurs in an overlapping or parallel manner, and feedback mechanisms 

allow for the bidirectional flow of information between all adjacent functional stages 

(Dell, 1986; Dell, 1988; Dell & O'Seaghdha, 1992; Dell, 1991); as such, interactive 

activation models have been conceptualized as "globally modular, but locally 

interactive" (Dell & O'Seaghdha, 1992, p. 604). Interactive spreading activation 

models propose that as a conceptual item is activated from external input, it projects 

simultaneous activation both to semantic and phonological units for encoding. The 

most activated units are then selected and inserted into assembly frames which are 

then encoded for motor programming and motor execution. Subsequent to 

15 Levelt's 1989 model assumes bidirectional flow between the lexical concept and lemma 
but nowhere else during the stages of spoken language production. 



27 
selection of the most activated units, post-selection inhibition momentarily resets the 

units' activation levels to zero to prevent reselection of the same unit. 

Most studies of spoken language production in individuals with aphasia 

appear to assume either a feed-forward stage model that permits cascading 

processing (e.g., Rogers, Jones-Redmond, & Alarcon, 1999) or an interactive 

activation model that relies less on the sequential activation of the various levels of 

processing and more on the interconnectivity between levels of processing (e.g., 

Martin, Fink, Laine, & Ayala, 2004). Regardless of the nature of interaction between 

the stages, the onset of semantic encoding has been reliably shown to occur prior to 

the onset of phonologic encoding in both healthy controls and individuals withy 

aphasia (e.g., Rogers, Jones-Redmond, & Alarcon, 1999). Evidence to support this 

two-stage model stems from several lines of research including speech errors 

studies (Brown & McNeil, 1966; Fromkin, 1971; Garrett, 1980; Vitevitch, 1997), 

behavioral studies (Calkins, 2003; Levelt, 1991; Rogers, Jones-Redmond, & 

Alarcon, 1999; Rogers & Storkel, 1999; Schriefers, Meyer, & Levelt, 1990); and 

functional imaging studies (Chertkow, 1997; Demonet & Thierry, 2001; Indefrey & 

Levelt, 2000; Levelt, 1998; Savoy, 2001; Schmitt, Munte, & Kutas, 2000; Schmitt, 

Schiltz, Zaake, Kutas, & Munte, 2001; van Turennout, Hagoort, & Brown, 1997; van 

Turennout, Hagoort, & Brown, 1998). 

Methods of Investigating Lexical Retrieval 

Off-Line Methods 

Historically, psycholinguistic research relied upon offline methods to test 

hypotheses and models of lexicalization (e.g., Fromkin, 1971). By definition, offline 

methods collect data on the end products of language and cognitive processing, not 

the real-time processes. Consequently, this line of research is unable to probe the 

temporal features of processing, resulting in limited and possibly confounded 

information about the origin/locus of various processing mechanisms. The most 

prevalent offline tasks include speech error studies and examinations of the tip-of-

the-tongue phenomenon. Offline observations have generated a significant corpus 

of information about post-lexical processing, but data about the time course of 

processing is lacking. Furthermore, it has been argued that theories of normal 
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language production should not be solely based upon these occasional aberrations 

(Levelt, 1999b; Levelt, 1991; Meyer, 1992). Accordingly, offline methods do not 

provide a complete picture of the processes underlying spoken language 

production. 

On-Line Methods 

Reaction Time Studies Reaction time (RT) studies are used to approximate 

real-time processing of spoken language production across a variety of language-

related tasks. Although RT studies cannot continuously record temporal processing 

mechanisms for spoken language production from start to finish, they are instead 

used to systematically probe the stages of lexicalization at short intervals (on the 

order of milliseconds). Reaction time studies include but are not limited to 

pronunciation tasks, picture-naming tasks, word-reading tasks, lexical-decision 

tasks, repetition priming tasks, form-based priming tasks, dual-task paradigms, and 

cross-modal interference studies. 

Neuroimaging Studies Online methods afford researchers the opportunity to 

probe the process of lexicalization at systematic time intervals (on the order of 

milliseconds) during the act of spoken language production (Shapiro, Swinney, & 

Borsky, 1998). The most noteworthy examples of online methods include 

electroencephalography (EEG) and magnetoencephalography (MEG). 

Electroencephalography records the electrical currents of the brain, or event-related 

potentials (ERPs), during a cognitive task by positioning electrodes upon the scalp. 

Event related potentials directly reflect the electrical activity of the outer cortex 

(presumably from cortical pyramidal cells), thereby revealing a real-time temporal 

record of neural processing. Magnetoencephalography also provides real-time 

assessment by measuring electromagnetic energy that emanates from the cortex. 

While these methods result in detailed temporal information about neural 

processes (on the order of milliseconds), the spatial resolution and source 

information is relatively poor; that is, it is difficult to identify the exact source or 

groups of cells that produces the electrical activity. Some laboratories, however, 

continue to investigate the feasibility and accuracy of co-registration techniques 

used to merge structural imaging procedures (e.g.,, MRI, CT) with these temporally 
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resolute techniques (e.g., EEG, MEG) to gain more specific information about the 

cortical location of neural activity at specific temporal intervals (Clark, Moores, 

Weber, Fitzgibbon, Greenblatt, Brown, & Taylor, 2001). Quasi-online functional 

imaging techniques include functional magnetic imaging (fMRI) and positron 

emission tomography (PET). While fMRI is typically used to glean information 

about the neural location of various processing mechanisms, it may eventually 

prove to be somewhat sensitive to the temporal domain as well. Positron emission 

tomography, however, provides only an examination of neural mechanisms in 

respect to location; the temporal window is on the order of minutes. 

Generally, aphasiologists employ off-line methods, most frequently of which 

include error analyses (e.g., type of errors, frequency of errors, and relative 

proportion of errors). Although psycholinguistic researchers frequently use reaction 

time in addition to error analyses to assess the underlying linguistic impairment in 

individuals with aphasia (Wilshire, Keall, Stuart, & O'Donnell, 2005; Wilshire, Scott, 

& Stuart, 2006), few treatment protocols rely on reaction time data as a dependent 

measure, and even fewer clinicians are technologically equipped to collect reaction 

time data during treatment probes. More recently, neuropsychological researchers 

have begun to use fMRI, ERP, and MEG studies to examine both the underlying 

neural characteristics associated with impairment and the neural characteristics 

associated with treatment. Collectively, these offline and online methodologies 

reflect dependent measures currently used in the studies that will be reviewed in the 

forthcoming sections of this dissertation. The project discussed in forthcoming 

sections employed reaction time methodology. 

Anomia: Lexical Retrieval in Impaired Linguistic Systems 

Anomia, the most ubiquitous characteristic of aphasia (Benson, 1988; Maher 

& Raymer, 2004), is considered to be a disorder of lexical retrieval, not a loss of 

lexical representations (Avila, Lambon-Ralph, Parcet, Geffner, & Gonzalez-Darder, 

2001). Currently, stage models of spoken language production (e.g., Dell, 1986; 

Garrett, 1980; e.g., Levelt, Roelofs, & Meyer, 1999) motivate investigations 

designed to better understand the underlying nature of naming impairments 

produced by aphasic individuals. Both discrete serial and interactive-activation 
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models suggest that anomia stems from an impairment(s) of: (1) conceptual 

preparation (also referred to as a general semantic impairment), (2) semantic 

encoding (also referred to as an impairment of lexical selection), and/or (3) 

phonological encoding. Anomia is not predicted to manifest as a result of 

impairment at the levels of phonetic encoding, motor planning and/or motor 

programming (e.g., apraxia of speech) or motor execution (i.e., dysarthria). More 

recently, aphasiologists have hypothesized that processing mechanisms existing 

between semantic encoding and phonological encoding may also bring about 

naming deficits (Chiarelli, Menichelli, & Semenza, 2006; Wheeldon & Monsell, 

1992). In light of these theories of linguistic impairment in individuals with aphasia, 

anomia treatment protocols are designed, in general, to improve spoken language 

production in brain-injured individuals by increasing the likelihood that lemmas and 

lexemes within the lexicon are successfully retrieved for production purposes (e.g., 

Nickels, 1995a). 

Behavioral Characteristics of Anomia 

Historically, aphasiologists have described and investigated two primary 

manifestations of anomia: (1) general semantic anomia resulting from impairments 

at the level of conceptual preparation, and (2) output anomia resulting from 

impairment at the levels of semantic and/or phonological encoding (Benson, 1988; 

Geschwind, 1967; Hiilis, Chaudhry, Davis, Kleinman, Newhart, & Heidler-Gary, 

2006; Maher & Raymer, 2004; Wilshire & Coslett, 2000). Individuals with general 

semantic anomia produce errors across all output modalities including spoken 

language and writing, in addition to corresponding receptive (i.e., comprehension) 

deficits. 

Output anomia, on the other hand, reflects impairments at the level of lexical 

retrieval or phonological encoding, manifesting solely during spoken language 

production tasks, in the absence of accompanying comprehension deficits (Maher & 

Raymer, 2004; Nickels, 1995b; Wilshire & Coslett, 2000). That is, individuals with 

output anomia have complete access to the lexical concept and many of its 

semantic associations and connections to semantic encoding, but these patients 

demonstrate deficits at the level of the lemma or lexeme, and/or may have 
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impairments that disrupt the processes involved between retrieval of the lemma and 

retrieval of the lexeme. To narrow the scope of the anomia literature reviewed in 

this paper, and to focus solely on disorders of spoken language without 

accompanying receptive deficits, only output anomia will be explored in further 

detail. 

Two primary types of output anomia have been proposed in the context of 

stage models of spoken language production: (1) impairment at the level of 

semantic encoding, and (2) impairment of phonological encoding (Lambon-Ralph, 

Moriarty, & Sage, 2002; Maher & Raymer, 2004; Nickels, 1995b; Wilshire & Coslett, 

2000). Furthermore, several researchers have suggested that lexical retrieval 

deficits may also stem from an impairment of the processing mechanism(s) that 

occur between lemma retrieval and lexeme retrieval. For example, although a 

patient may demonstrate intact semantic knowledge (i.e., they can describe the 

semantic features of the word in question including grammatical class, etc.) and 

may have intact phonological knowledge about the word (i.e., they can tell you what 

the word rhymes with and may be able to repeat the word when given a model) they 

cannot name the item. Authors who assume stage models of spoken language 

production have hypothesized that impairment at the level of semantic encoding 

should predict the elicitation of semantic errors, (i.e., literal or semantic 

paraphasias16), and impairment at the level of phonological encoding should predict 

phonological errors (i.e., formal or phonemic paraphasias17). However, the type of 

errors made by individuals with anomia does not appear to directly correlate with the 

underlying linguistic impairment. Abel and colleagues have suggested that the lack 

of predictable errors may result from (1) mixed impairments, (2) a potentially 

interactive nature of processing between hypothesized levels of impairment, and/or 

(3) methodological issues including incorrectly diagnosing the underlying linguistic 

impairment, or that the stimuli used may inherently contain both semantic and 

phonological aspects (Abel, Grande, Huber, Willmes, & Dell, 2005). 

Semantic paraphasias typically manifest as lexical items that relate to the target word as 
follows: (1) coordinate of the target word (e.g., "cat" for "dog"), (2) superordinate to the target 
word (e.g., "animal" for "dog"), (3) subordinate to the target word (e.g., "Labrador" for "dog"), 
or (4) some other semantic relationship (e.g., "leash" for "dog"). 
17 Phonological naming errors are typically referred to as formal or phonemic paraphasias, 
and typically manifest as an off-target form of the intended word (e.g., "dilb" for "dog"). 



32 
To better understand anomic errors in relation to the underlying linguistic 

impairment, Lambon-Ralph and colleagues conducted a well-designed case-series 

study investigating 21 individuals with mild to severe anomia (Lambon-Ralph, 

Moriarty, & Sage, 2002). Of these 21 individuals, 16 demonstrated mild semantic 

deficits, and all but one demonstrated some degree of phonological deficit, as 

demonstrated by a detailed language battery. Lambon-Ralph and colleagues coded 

naming errors, based on a 100-item picture-naming task; errors were coded as: (1) 

omissions, (2) semantic errors (i.e., coordinates, superordinates, and associates), 

(3) circumlocutions, (4) phonological errors (i.e., phonologically related words or 

nonwords), or (5) other (e.g., visually related errors or gestures). The authors found 

significant correlations between the following errors and underlying linguistic 

impairments: 

(1) omissions significantly correlated with the degree of semantic 

impairment (i.e., aphasics demonstrated an increased number of 

omissions with increased severity of the semantic impairment); 

(2) phonologically and unrelated nonword responses significantly 

correlated with the degree of phonological impairment (i.e., aphasics 

demonstrated increased number of nonword errors with increased 

severity of the phonological impairment); and 

(3) semantic errors significantly negatively correlate with phonological 

ability (i.e., as the phonological impairment becomes more severe, 

the number of semantic errors decreases).18 

Lambon-Ralph and colleagues concluded that these anomic individuals were 

primarily characterized by phonological deficits, with accompanying mild semantic 

deficits; however, others report primary deficits of semantic encoding with more 

semantic than phonological errors (Davis, Farias, & Baynes, 2005; Howard, 

Patterson, Franklin, Morton, & Orchard-Lisle, 1984). While the discrepancies 

observed across studies may result from variability of diagnostic procedures, it is 

more likely that subject variability is at the heart of the matter. 

18 The authors posit that as the phonological impairment becomes more severe, fewer 
semantic errors are observed because phonological errors become so prevalent that they 
mask the semantic errors. Phonological errors and unrelated errors were too few to analyze 
relative to underlying linguistic impairments. 
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Lexical retrieval by anomic individuals is behaviorally characterized by 

reduced accuracy and increased latency, relative to healthy participants (Moreno, 

Buchanan, & Van Orden, 2002; Wilshire, Keall, Stuart, & O'Donnell, 2005). As was 

discussed above, individuals with anomia produce a variety of errors including 

omissions, perseverations, semantic paraphasias, unrelated lexical errors, 

phonological paraphasias, and neologisms. However, individuals with anomia make 

qualitatively similar errors as compared with healthy participants (Silkes, McNeil, & 

Drton, 2004); that is, the proportion of error types made by individuals with aphasia 

is comparable to that of healthy participants19. Furthermore, anomic individuals are 

likely to produce approximately the same proportion of errors across naming tasks, 

despite the fact that they demonstrate significant individual variability across trials 

(Howard, Patterson, Franklin, Morton, & Orchard-Lisle, 1984; Moreno, Buchanan, & 

Van Orden, 2002). Howard and colleagues further detail the error performance of 

individuals with anomia: 

(1) Group data revealed that, collectively, individuals with anomia are 

highly variable in regards to proportions of error types; that is, each 

anomic individual displays his/her own pattern of error type; 

(2) Group data revealed that proportions of each error type are not 

"systematically related to the diagnostic categories or the severity of 

the naming impairment" (p.270); 

(3) Group data revealed that, collectively, individuals with anomia are 

more likely to name a picture accurately on successive trials if they 

named it correctly the first time, relative to items they failed on the 

first attempt; 

(4) Individual anomic errors are not influenced by sequences of easy or 

hard-to-name items (i.e., there is no effect of success or failure on 

one item to the one that follows); 

(5) Individual subjects demonstrate significant variability in regards to 

their naming accuracy across trials (i.e., that is, anomic individuals 

may not always name the same item correctly); and 

Silkes et al. found a higher proportion of semantic errors for both individuals with aphasia 
(55%) and healthy participants (70%). 
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(6) Individual subjects are likely to maintain the relative proportion of 

correct/incorrect responses across naming tasks. 

Collectively, these studies demonstrate that anomic errors are not particularly 

reliable indicators of the underlying linguistic impairment. Therefore, investigations 

that examine lexical retrieval of individuals with aphasia need to include a detailed 

assessment battery that includes general aphasia tests in addition to a multitude of 

lexical retrieval tasks that are designed to tease apart semantic encoding deficits 

from phonological encoding deficits. Please see table 1.2 for a sample of informal 

tasks and formal assessments that address the respective stages of processing 

(Boyle, 2004; Martin, Fink, Laine, & Ayala, 2004; Morrow & Fridriksson, in press)20. 

Table 1.2 Informal Tasks and Formal Measures of Encoding Deficits 

General Aphasia Batteries 

Western Aphasia Battery 
(WAB) (Kertesz, 1982) 

Boston Diagnostic Aphasia 
Battery (BDAE) (Qoodglass & 
Kaplan, 1972) 

Reading Comprehension 
Battery for Aphasia (RCBA) 
(LaPointe & Homer, 1979) 

Semantic Encoding 
Tasks 

Peabody Picture 
Vocabulary Test (PPVT) 
(Dunn & Dunn, 1981) 

Word-Picture Matching 
w/Semantic Distractors 
(both spoken and written 
word to picture matching) 
Synonymy Judgments 

Semantic Category 
Sorting 
Pyramids and Palm Trees 
(Howard & Patterson, 
1992) 

Phonological Encoding Tasks 

Oral Picture Naming: 
Boston Naming Test (Kaplan, 
Goodglass, & Weintraub, 2001) 
Philadelphia Naming Test (Roach, 
Schwartz, Linebarger, Martin, & 
Bochetto, 1988) 
Written Picture Naming 

Oral Word Reading 

Writing Words to Dictation 

Repetition of Single Words 

Phoneme Discrimination 
Auditory Rhyme Judgments 

Neural Substrates of Lexical Access 

Currently, aphasiologists use one of the following methodologies to identify 

the neural substrates of lexical retrieval during spoken language production: (1) 

lesion data in combination with behavioral data obtained from individuals with 

aphasia (e.g., Geschwind, 1967), (2) neuroimaging data in combination with 

Please note: many of these informal tasks have been formalized within the 
Psycholinguistic Assessments of Language Processing in aphasia (PALPA) (Kay, Lesser, & 
Coltheart, 1992). 
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descriptions of cognitive-linguistic impairments or behavioral treatment data 

obtained from individuals with aphasia, or (3) neuroimaging data in combination with 

descriptions of cognitive-linguistic behavioral from healthy participants21. 

Collectively, lesion and neuroimaging studies have provided significant detail about 

the spread of activation from more posterior regions (i.e., occipital activation) during 

perceptual and visual object recognition processes, to more anterior regions (i.e., 

left parietal and temporal lobes) during semantic encoding through motor execution 

(for a detailed review, see Whatmough & Chertkow, 2002)22. For example, in a 

MEG study, Levelt and colleagues mapped out the time course and cortical regions 

associated with processes associated with picture-naming in healthy controls 

(Levelt, 1998). The authors found occipital, parietal (both right and left) and 

infrequently, temporal activation during lemma selection. During phonological 

encoding the authors found activation near the left posterior third of the superior 

temporal gyrus and the left temporo-parietal junction (i.e., Wernicke's area). Finally, 

during phonetic encoding and motor execution, the authors found widespread 

activation with the largest magnitude of activation in the motor cortex and in the 

parietal and temporal lobes. 

Most recently, using MRI with diffusion-weighted images (DWI) and 

perfusion-weighted images (PWI), Hiflis and colleagues found that general semantic 

errors spanning both naming and comprehension were correlated with 

hypoperfusion or infarct of Wernicke's area and the anterior inferior temporal cortex, 

while output anomia was highly associated with hypoperfusion or infarct of the 

posterior middle inferior temporal and fusiform gyrus (Hillis, Chaudhry, Davis et al., 

2006). 

Recent neuroimaging studies examining the neural correlates associated 

with anomia recovery and/or rehabilitation provide yet another approach to better 

21A discussion of the strengths and limitations of these methodologies is beyond the scope 
of this paper; however it should be noted that neither offers a complete picture of the 
underlying neural networks and/or mechanisms necessary to characterize cognitive 
processes. 
12 Whatmough & Chertkow (2002) found the following areas of interest: semantic processing 
= posterior left temporal lobe (lesion date) vs. left frontal activation (imaging data); 
phonological encoding = middle gyrus of the left temporal lobe, left posterior inferior frontal 
lobe, anterior inferior parietal area. The authors provide evidence that the variability of 
activation within these stages of processing stems from slightly different types of 
impairments. 
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understanding the neural structures associated with lexical retrieval. Using a 

multiple baseline fMRI study (i.e., 3 scans pre-treatment and 3 scans post-

treatment) that examined the effects of an intense phonological naming treatment, 

Fridriksson and colleagues found increased activation in the left temporal and 

parietal lobes after treatment, whereas the left inferior frontal lobe, the right temporal 

lobe and the right motor cortex were activated prior to treatment (Fridriksson, 

Morrow-Odom, Moser, Fridriksson, & Baylis, 2006). These findings support the 

above lesion and neuroimaging data revealing left temporal and parietal activation 

during lexical retrieval tasks (see also Cornelissen, Laine, Tarkiainen et al., 2003 

who found left inferior parietal lobe activation (perilesional) following treatment). 

Variables to Consider: Investigating Individuals with Aphasia 

Subject Variables 

Subject variables thought to influence aphasia recovery have had a long 

history of investigation, with a significant amount of attention given to the 

examination of the relationship between the location and/or size of the lesion 

relative to aphasia severity and subsequent recovery from aphasia. For example, 

Kertesz and colleagues examined 70 individuals with aphasia and correlated their 

aphasia severity, language performance, and language recovery as measured by 

the Western Aphasia Battery (WAB) Aphasia Quotient (AQ), to lesion location and 

lesion size using computed tomography (CT) scans (Kertesz, Harlock, & Coates, 

1979). These authors grouped 70 stroke survivors based upon their aphasia type 

and severity, as determined by the WAB classification of aphasia and WAB AQ, 

respectively. These subgroups included: chronic global aphasia; chronic Broca's 

aphasia; acute Broca's aphasia; chronic anomic aphasia - recovered from initial 

Broca's aphasia; acute Wernicke's aphasia; chronic Wernicke's aphasia; acute 

transcortical sensory aphasia; chronic conduction aphasia; acute anomic aphasia; 

chronic anomic aphasia; non-dominant lesions with constructional apraxia; and non-

dominant lesions without constructional apraxia. Collectively across these 

subgroups, Kertesz and colleagues found a significant negative correlation (r = -

0.57), indicating that the larger the lesion, the more severe the aphasia. Of the 

participants diagnosed with acute anomic aphasia (n=8), CT scans revealed that 
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several participants had small lesions in the frontal operculum and third frontal 

convolution (i.e., Broca's area), while others had small temporal lesions. Computed 

tomography scans for the participants with chronic anomic aphasia (n=13) revealed 

both anterior and poster lesions in the left hemisphere. Collectively, individuals with 

acute and chronic anomic aphasia had the highest degree of correlation between 

the WAB AQ and lesion size. That is, for individuals with anomic aphasia, the lesion 

size appeared to be more important in regards to the severity of the impairment than 

the lesion location itself. Kertesz and colleagues also found that for individuals with 

naming impairments, larger lesions resulted in a smaller degree of recovery as 

measured by the WAB AQ 1 year after the initial CT scan. As these findings 

suggest, it is of utmost importance to adequately describe the lesion size, location, 

and severity of aphasia when investigating individuals with anomic aphasia and their 

expected recovery. 23 

Naeser and Palumbo agree that the size of the lesion is important, but also 

suggest that lesions other than very large lesions or very small lesions are difficult to 

reliably correlate to prognosis or aphasia severity (Naeser & Palumbo, 1994). 

Instead, the authors strongly suggest that aphasia studies should provide detailed 

descriptions of both the size and location of the lesion by using CT scans or 

structural magnetic resonance imaging (MRI). In addition to providing information 

about the lesion size and location for their participants, aphasiologists should 

provide an explicit description of the spared tissue surrounding the lesion in known 

left hemisphere language areas, as this intact tissue is a primary candidate for 

reorganization of function during stroke recovery (Cramer & Bastings, 2000; Herholz 

& Heiss, 2000; Naeser & Palumbo, 1994). For further examples of studies that 

correlate a large lesion to increased severity of aphasia and poor recovery see also 

(Goldenberg & Spatt, 1994; Naeser, Helm-Estabrooks, Haas, Auerbach, & 

Srinivasan, 1987; Pedersen, Jorgensen, Nakayama, Raaschou, & Olsen, 1995; 

23 Please Note: Values for lesion size were not provided in the Kertesz et al article; i.e., 
"small vs. large" lesions are not adequately defined. Goldenburg and Spatt (1994) 
determine lesion size by "...the number of pixels covered by the redrawn lesion on the 
standard template. It is expressed as the percentage of the number of pixels covered by all 
left hemisphere templates together" (Goldenberg & Spatt, 1994, p.686). Naeser and 
Palumbo (1994) define lesion size by percentage of tissue in the left-hemisphere that is 
damaged. 
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Seines, Niccum, Knopman, & Rubens, 1984). For an additional early study 

examining size and, to a greater extent, site of lesion using CT scans see 

Mazzocchi and Vignolo (Mazzocchi & Vignolo, 1979); individuals with naming 

impairments were not specifically reported in this study, thus results are not 

discussed in this paper. 

Lexical Variables 

In addition the underlying impairment and associated neuroanatomical 

deficits in individuals with anomia, lexical variables are likely to influence naming 

performance (Maher & Raymer, 2004; Nickels, 1995b). For impairments at the level 

of semantic encoding, the semantic category (e.g., animals, tools, fruits, vegetables) 

and/or grammatical class (e.g., nouns vs. verbs) may influence response time, 

accuracy, and response stability (Pashek & Tompkins, 2002). For impairments at 

the level of phonological encoding, lexical variables such as word frequency and/or 

familiarity, and word and/or syllable length may influence response time, accuracy, 

and response stability (Moreno, Buchanan, & Van Orden, 2002). Moreno and 

colleagues suggest that variability of reaction time is, in fact, a hallmark of anomic 

performance. Lexical variables including word frequency, word and/or syllable 

length, and the relative abstractness or concreteness of nameable pictures have 

been shown to differentially influence naming accuracy and reaction time for both 

healthy control subjects and individuals with anomia. Consequently, these variables 

are either controlled or actively manipulated in anomia studies, but are rarely 

considered in daily clinical practice. A discussion of how lexical variables are 

thought to influence anomic naming performance is provided in the following 

sections24. 

Word Frequency Word frequency is the most commonly manipulated 

variable for both psycholinguistic studies involving healthy participants and 

24 Repetition priming effects are thought to arise during phonological encoding. The same 
has been hypothesized for the word frequency effect and the word length effect (Barry, 
Hirsch, Johnston, & Williams, 2001; Nickels, 1995a). Furthermore, repetition priming may 
interact with word frequency. As such two lexical variables will be discussed: word 
frequency and word length. Variables such as imageability, thought to influence processing 
during semantic encoding will not be addressed in this paper. Notably, Raposo and 
colleagues did not find a differential influence of repetition priming for abstract vs. concrete 
nouns (Raposo, Moss, Stamatakis, & Tyler, 2006). 
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individuals with lexical retrieval deficits. Initially documented by Oldfield & Wingfield 

(Oldfield & Wingfield, 1965), this robust effect demonstrates that frequently used 

words or high frequency (HF) words are responded to faster and more efficiently 

than infrequently used or low frequency (LF) words (Oldfield & Wingfield, 1965), with 

measurable frequency effects ranging from three milliseconds (Levelt, 1998) to 60 

milliseconds (Jescheniak & Levelt, 1994) in spoken language production protocols 

including healthy participants25. Although the Word Frequency Effect (WFE)26 has 

been substantiated across experimental tasks including picture naming (Alario, 

Ferrand, Laganaro, New, Frauenfelder, & Segui, 2004; Dell, 1990; Vitevitch, 1997), 

lexical decision and word recognition (Andrews & Heathcote, 2QQ1; Bowers, 2000), 

and pronunciation (Grainger, 2000) for healthy participants, some debate exists 

about how robust the effect is for individuals with aphasia (Nickels & Howard, 1995). 

Low frequency words have been shown to be more susceptible to error than HF 

words for both healthy participants (Dell, 1990; Vitevitch, 1997), and individuals with 

aphasia (Nickels & Howard, 1995). Furthermore, Moreno and colleagues found that 

the variability of response times is greater for LF words than it is for HF words in 

individuals with aphasia (Moreno, Buchanan, & Van Orden, 2002). However, 

Nickels and Howard conducted two experiments (the second of which was a 

replication study with a new set of participants and a new set of stimuli) in which 

they assessed picture-naming in individuals with aphasia (n=12; n=15, respectively), 

controlling the stimuli for word frequency, familiarity, age of acquisition, and word 

length (Nickels & Howard, 1995). Surprisingly, the authors only obtained a 

significant word frequency effect for two of these 27 participants. That is, generally 

speaking, LF and HF words were responded to equally well. The same results, 

however, did not hold true for word familiarity"; that is, more familiar words were 

responded to faster than less familiar words for most participants. However, the 

25 The most common measure of word frequency comes from the Francis and Kucera 
database that obtained word counts from newspapers (Francis & Kucera, 1982). 
26 Various cognitive models have been put forth to explain the locus of the WFE, but a 
discussion of these hypotheses is beyond the scope of this paper. A common hypothesis is 
that the WFE arises during phonological encoding (Jescheniak & Levelt, 1994; Monsell, 
1991). 
27 Familiarity is a subjective measure purported to be a better reflection of true spoken word 
frequency than is the Francis and Kucera database; notably, however, familiarity was not 
found to be a significant predictor of naming speed in a recent study of 46 healthy 
participants (Alario, Ferrand, Laganaro et al., 2004). 
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authors found that when they entered age of acquisition into the statistical model, 

neither word frequency nor word familiarity were accurate predictors of naming 

success. Word length was also not predictive. The authors concluded that the age 

at which an individual acquires the target word is most predictive of naming 

accuracy for these two heterogeneous groups of individuals with aphasia. Recent 

evidence supports this claim, suggesting that age of acquisition can predict picture-

naming accuracy and latency for both individuals with aphasia and healthy 

participants (Alario, Ferrand, Laganaro et al., 2004), and many investigators argue 

that the WFE is rooted in the age at which a word is required (Hirsh & Ellis, 1994; 

Morrison, Ellis, & Quintan, 1992). At present, it appears that a significant 

interconnectivity exists between word frequency, word familiarity and age of 

acquisition; therefore each variable should be controlled for in studies of lexical 

access and retrieval. 

Word Length/Number of Syllables For both individuals with aphasia (for a 

review, see Nickels, 1997) and healthy participants (e.g., Alario, Ferrand, Laganaro 

et al., 2004), increasing word length is tightly coupled with slower response times 

and a larger number of errors. For example, Nickels asked 15 individuals with 

aphasia to name 130 pictures that varied across word frequency and syllable length 

(Nickels, 1995a; Nickels & Howard, 1995). Nickels found length effects for 

phonological errors but not semantic errors, thus supporting her hypothesis that 

word and/or syllable length influences production at the level of phonological 

encoding. Notably, the influence of word frequency on naming performance was 

inconsistent across subjects. Nickels also proposed that impairments originating 

somewhere between phonological and phonetic encoding may manifest as 

difficulties with words of increasing length and phonetic complexity (Nickels, 1995b). 

Although manipulation of these two lexical variables is undoubtedly 

important for the systematic study of lexical access and retrieval for individuals with 

anomia, individuals with aphasia appear to be extremely variable in regards to the 

influence that these lexical variables have on their own naming performance. For 

example, Howard and Gatehouse found significant variability across subjects: for 

one subject imageability and familiarity influenced naming performance, for a 

second frequency and familiarity influenced naming performance and for a third 
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subject only imageability influenced naming performance (Howard & Gatehouse, 

2006). 

Anomia Treatment Research 

Anomia treatment efficacy research is composed primarily of phase I and II 

investigations (Robey, 2004; Robey & Schultz, 1998), characterized by single-

subject studies or group designs including fewer than 20 participants, and most of 

which, by definition, lack control, blinding, and/or randomization procedures (Robey, 

1998; Robey & Beeson, 2005). Anomia efficacy studies, however, consistently 

indicate that treatment improves picture-naming abilities. Robey and Beeson's 

recent systematic review of 19 qualifying lexical retrieval treatment studies indicates 

that treatment brings about large improvements (i.e., an average effect size of 7.27), 

whereas spontaneous recovery results in an average effect size of 0.6 (Robey & 

Beeson, 2005).28 Given such large and consistent indicators of behavioral change, 

investigators are safe to assume that anomia treatments are, by and large, 

efficacious; however, many of the variables considered in Phase II research have 

yet to be systematically investigated. These treatment variables must be detailed 

before the field can move forward into Phase III clinical trials. 

Anomia treatment can be classified as restitutive, substitutive, or 

compensatory in nature (Maher & Raymer, 2004). Restitutive approaches attempt 

to restore the process of lexicalization, as close as possible, to its original state by 

using (re)learning techniques. Substitutive approaches attempt to train the 

individual with anomia to use an alternative process(s) to gain access to, and 

subsequent retrieval of, lexical items. Finally, compensatory approaches train 

individuals with anomia to use alternative communication modalities (e.g., writing, 

drawing, gesturing) to express themselves when they experience word-finding 

difficulties. As one of the goals of this paper is to better understand the 

mechanisms underlying (re)learning in individuals with anomia, only restitutive 

approaches will be considered. 

28 Based on this systematic review, Robey and Beeson provide reference standard effect 
sizes for future lexical retrieval treatment protocols: small (4.0), medium (7.0), and large 
(10.0). 
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Many clinicians and researchers involved in restitutive anomia rehabilitation 

assume a stage model of spoken language production and hypothesize that 

targeting the appropriate level of impairment will result in faster, more accurate, and 

less variable production of inconsistently produced or unused lexical items (Best, 

Howard, Bruce, & Gatehouse, 1997; Boyle & Coelho, 1995; Martin, Fink, Laine, & 

Ayala, 2004). As discussed above, linguistic impairments resulting from anomia are 

thought to vary depending on the stage or stages of processing that are disrupted. 

As such, anomia treatments have largely focused on various protocols to improve 

semantic processing, phonological processing, or to or improve the efficiency of the 

processes that occur between lemma and lexeme retrieval, ostensibly by initiating 

the automatic spread of feed-forward activation to the level or levels of processing 

that are thought to be impaired (e.g., Wible, Han, Spencer, Kubicki, Niznikiewicz, 

Jolesz, McCarley, & Nestor, 2006). 

Numerous treatment approaches have been proposed to improve output 

anomia.29 Treatment approaches that hope to improve semantic encoding are more 

widely varied than those that seek to improve phonological encoding. Collectively, 

across both semantic and phonological treatment paradigms, the single most 

common method of facilitating improved naming performance involves some form of 

cuing, which is thought to prime the target word and subsequently increase access 

to and subsequent retrieval of the hypothesized level of impairment or encoding 

mechanism. Specifically, these include semantic cuing (Boyle & Coelho, 1995; 

Drew & Thompson, 1999; Kiran & Thompson, 2003; Nickels & Best, 1996), and 

phonologic cuing (Best, Howard, Bruce, & Gatehouse, 1997) (Best, Howard, Bruce, 

& Gatehouse, 1997; Hickin, Best, Herbert, Howard, & Osborne, 2002). 

Although these semantic and phonological cueing methodologies were 

originally developed to prime the stage of processing thought to be impaired, recent 

evidence indicates that both semantic and phonologically-based treatments elicit 

positive change, regardless of the hypothesized level of impairment (Hillis & 

Caramazza, 1994; Howard, 2000; Howard, Patterson, Franklin, Orchard-Lisle, & 

29 To further narrow the focus of the review of the anomia literature, treatment approaches 
given by non-professionals or paraprofessionals have been excluded from this review, as 
were computer-based treatments. Only treatment studies that reported reaction time, and/or 
response accuracy (or error type) during spoken language production tasks have been 
included in this review of anomia treatments. 
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Morton, 1985b; Nickels, 2002; Rochon, Leonard, Laird, Burianova, Soros, Graham, 

& Grady, 2006; Wambaugh, 2003; Wambaugh, Linebaugh, Doyle, Martinez, 

Kalinyak-Fliszar, & Spencer, 2001 )30. Consequently, many clinicians and clinical 

researchers have approached the treatment of lexical retrieval deficits by employing 

a combination of semantic and phonologic cuing (Cameron, Wambaugh, Wright, & 

Nessler, 2006; Linebaugh & Lehner, 1977; Martin, Fink, Laine, & Ayala, 2004; 

McNeil, Doyle, Spencer, Jackson Goda, Flores, & Small, 1998; Nettleton & Lesser, 

1991; Wambaugh, 2003). To date, aphasiologists remain unclear as to why 

semantic and phonological cuing/priming paradigms both lead to improved naming. 

Abel and colleagues provide three possible accounts to explain this phenomenon: 

(1) the patient may have a mixed as opposed to pure deficit; (2) both types of cuing 

may inherently contain aspects of semantic and phonological processing; and (3) 

lexical retrieval may be inherently interactive, thus predicting that both semantic and 

phonological cuing methodologies will improve lexical retrieval as a result of the 

bidirectional flow of spreading activation between lemma and lexeme (Abel, Grande, 

Huber, Willmes, & Dell, 2005). 

To better understand how these cuing paradigms influence lexical retrieval in 

an impaired system, the following sections will relate behavioral outcomes during 

anomia priming protocols with the behavioral correlates of priming for healthy 

participants. As discussed in the previous chapter, priming has been shown to be 

persistent, sensitive to the number of stimulus repetitions, and item-specific (i.e., 

priming is unlikely to generalize to untrained items) in healthy participants. Such 

comparisons may elucidate the characteristics of learning that are similar across 

healthy participants and individuals with aphasia to help develop a theory of learning 

for individuals with aphasia. 

Is Priming Persistent for Individuals with Anomia? 

While repetition priming has been shown to be very long lasting in healthy 

participants (i.e., up to 48 weeks), the literature examining individuals with anomia is 

Although participants often demonstrate greater and more stable gains with semantic 
cuing paradigms (Howard, Patterson, Franklin, Orchard-Lisle, & Morton, 1985a; Wambaugh, 
2003). The issue of stability/maintenance will be discussed in the following section, with 
specific emphasis on repetition priming effects. 
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less consistent; that is, some investigators have found long lasting effects of priming 

(Rochon, Leonard, Laird et al., 2006; Wambaugh, 2003) while others have only 

found immediate priming effects for picture naming (Howard, Patterson, Franklin, 

Orchard-Lisle, & Morton, 1985a, , 1985b)31. The earliest repetition priming study 

with individuals with aphasia was conducted by Patterson and colleagues in 1983 

(Patterson, Purell, & Morton, 1983). In this seminal study, 14 individuals with 

anomia underwent repetition priming and phonological priming protocols. Based on 

the naming performance of 265 black and white drawings, ten items were selected 

for the repetition priming experiment. Items that were named correctly within five 

seconds became fillers or untrained items. Those that were not named correctly 

were used as targets; five items were selected to be repeated and five were 

selected for naming purposes only. The subjects participated in three experimental 

sessions during which the subject either named the picture or was asked to repeat 

the name of the picture after the experimenter. The trials were designed so that 0, 

10, 20, 30, or 40 items intervened between the repetition trials and the naming trials. 

The authors found strong immediate repetition priming effects, but did not find 

delayed priming effects. 

Best and colleagues investigated what they consider immediate and delayed 

priming effects using both semantic and phonological primes (Best, Herbert, Hickin, 

Osborne, & Howard, 2002). Eleven individuals with anomia were asked to name 

164 black and white line drawings of single syllable words. Those pictures that were 

named correctly within five seconds became filler items, while those that were 

named incorrectly were distributed into one of three experimental naming 

conditions: (1) extra time to name the picture; (2) a single prime, or (3) a choice of 

two primes where one of the primes is correctly associated with the target word. 

Primes were randomly selected from one of four types (1) whole word repetition, (2) 

a rhyme prime, (3) a phonological prime including the onset and nucleus, or (4) a 

written prime including the initial consonant and vowel of the target word. After the 

prime condition, the participant was asked to name the picture. The picture was then 

presented again after a ten minute delay. The number of intervening stimuli 

between the first and second presentation ranged from 36-134 items. 

31 For a recent review, please refer to Best and colleagues (Best, Herbert, Hickin, Osborne, 
& Howard, 2002). 
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Best and colleagues found that all four types of primes resulted in significant 

immediate and delayed priming effects, with repetition primes eliciting the largest 

priming effects. Furthermore, the authors found that the long-lasting priming effects 

were greatest for participants who demonstrated impairments involving mapping 

from semantic to phonological processing. Best and colleagues did not provide 

concrete conclusions about why they found persistent priming effects, but 

hypothesized that the delayed priming resulted from longer exposure to the picture 

during the initial presentation; the picture remained in front of the participant during 

the period of time when the cue was given. This procedural difference is unlike 

traditional priming studies with healthy participants and the 1983 Patterson study. 

Although Best et al. found delayed priming effects (i.e., 10 minutes delay), they did 

not demonstrate that the individuals with anomia maintained these priming effects 

after the training protocol had ended; that is, the authors did not conduct a follow-up 

probe to assess long-lasting maintenance effects. 

In summary, although priming effects have been conclusively demonstrated 

to be long-lasting in healthy participants, both short-lived and long-lasting priming 

effects have been found in individuals with aphasia. Further investigation of 

maintenance effects in the context of repetition priming protocols for individuals with 

aphasia is thus warranted. 

Is Priming Sensitive to Stimulus Dosage for Individuals with Anomia? 

To the best of my knowledge, the repetition priming experiment conducted 

by Patterson and colleagues remains the single repetition priming study using 

picture naming (as opposed to a paradigm like lexical retrieval that does not require 

overt production) that has explicitly compared repetition priming effects across 

multiple repetitions in individuals with anomia (Patterson, Purell, & Morton, 1983)32. 

That is, while all semantic and phonological priming studies necessarily require the 

participants to repeatedly name or repeatedly repeat the names of multiple pictures, 

investigators have not systematically manipulated or controlled for these repetition 

effects. Patterson and colleagues manipulated the number of repetitions (i.e., 

32 Martin and colleagues employed a repetition priming paradigm with many repetitions; 
however, the authors did not report results on incremental priming effects for each 
successive repetition (Martin, Fink, Laine, & Ayala, 2004). 
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repeated 1-5 times) and found that participants were no more likely to name a target 

correctly after five repetitions that they were with only one repetition of the item. 

This lack of sensitivity to the number of repetitions may stem from the lack of 

relevance to the participant; simply repeating after a clinician may not make the task 

meaningful enough for the participant. Furthermore, response accuracy may not be 

a sensitive enough measure for priming protocols. A repeated theme discussed by 

many authors presenting at the recent Academy of Aphasia conference (October 

14-17, 2006), was that for those patients who are at or near ceiling on picture-

naming tasks in regards to accuracy, reaction time measures can be used to reveal 

continuing improvements. As such, a systematic reaction time investigation of 

picture naming with incremental repetitions is warranted. 

Is Priming Item-Specific for Individuals with Anomia? 

The question asked here is whether or not trained targets generalize to 

untrained items during picture-naming priming protocols. Repetition priming 

experiments examining healthy control participants have indicated that repetition 

priming is item-specific; that is, priming effects do not generalize to untrained items. 

For clinical aphasiologists, generalization is potentially one of the most frustrating 

components of anomia treatment. Although clinicians and aphasiologists regularly 

document significant treatment effects in regards to acquisition and quite often for 

maintenance as well, very few find that their approach resulted in coinciding 

improvements of untrained items. For example, despite successfully training 

participants to name six sets of word lists composed of multiple classes of single 

words (e.g., nouns, verbs, adjectives, and preposition), little generalization to 

untrained items, regardless of word class, was found (McNeil, Doyle, Spencer et al., 

1998)33. 

The study discussed relative to repetition priming (Best, Herbert, Hickin, 

Osborne, & Howard, 2002; Patterson, Purell, & Morton, 1983; Wambaugh, 2003) did 

not report data for untrained items. In an anomia treatment protocol (i.e., not a 

33 A small generalization effect was found for one of six sets of stimuli in the antonym 
condition. The authors were unable to provide an explanation for this occurrence given that 
the stimuli were randomly divided across sets. The authors dismiss the possibility of an 
accumulation effect as coinciding generalization effects were not observed for the synonyms 
condition. 
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traditional psycholinguists repetition priming protocol), Howard found a small (i.e., 

not statistically significant) generalization effect from untrained to trained items, with 

slightly more generalization observed for semantic cuing than phonological cueing 

(Howard, Patterson, Franklin, Orchard-Lisle, & Morton, 1985b). Using a semantic-

based anomic treatment protocol, Kiran and colleagues have also found significant 

generalization from trained to untrained items when the trained targets include 

atypical members of a category; that is, training "emu" in the category of birds is 

more likely to result in generalization to untrained items than training "robin" is (Kiran 

& Thompson, 2003). Additionally, Nadeau and Kendall found generalization effects 

for three out ten participants after a semantic treatment similar to the Semantic 

Features Analysis protocol developed by Boyle and colleagues (Nadeau & Kendall, 

2006). In a single-subject multiple baseline study of four individuals with severe 

anomia (resulting from various levels of impairment), Raymer and colleagues (1993) 

administered a phonological treatment protocol during which the participants 

attempted to name pictures (see description provided in table 5). Results based on 

response accuracy demonstrate significant acquisition and maintenance effects 

during training and at two months post-treatment. Even more noteworthy was the 

consistent generalization from trained to untrained items for all four subjects. 

As such, the results are mixed and investigators have yet to systematically 

study the myriad subject and treatment variables that may influence the potential for 

generalization. More importantly, the traditional psycholinguistic repetition priming 

paradigm has not been systematically and incrementally employed for individuals 

with anomia; therefore, details about the effects of repetition priming, including 

generalization to untrained items, are absent from the anomia literature base. A 

significant variable that has not been studied in any of these treatment protocols is 

the number of times the patient named the target (i.e., the number of repetitions). It 

is possible that the variability in regards to acquisition, maintenance and 

generalization reflects the amount of practice, regardless of the underlying 

impairment34. However, given that repetition priming is item-specific for healthy 

For example, both Raymer and colleagues (Raymer, Thompson, Jacobs, & Le Grand, 
1993)and Martin and colleagues (Martin, Fink, Laine, & Ayala, 2004) require the participant 
to repeat the target more times than most treatments. In fact, Martin et al. suggest that 
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control participants, generalization from trained to untrained items is not expected in 

anomia protocols that simply employ a repetition priming paradigm35. 

Is Repetition Priming Reflected as Neural Repetition Suppression for Individuals 

with Anomia? 

In healthy participants, repetition priming is reflected at the neural level 

primarily as repetition suppression. That is, relative to the initial picture-naming trial, 

neuroimaging results have revealed decreased neural activity in healthy participants 

after repetition. To date, no aphasiologists have investigated the effect of repetition 

priming at the neural level for individuals with anomia. Recently, a few studies have 

begun to investigate changes in the hemodynamic response via fMRI as a result of 

intensive treatment protocols (for a recent MEG study, see Meinzer, Elbert, 

Wienbruch, Djundja, Barthel, & Rockstroh, 2004). One can infer that repetition has 

taken place in these treatment protocols; however, it is impossible to tease apart the 

treatment effects to specifically analyze repetition suppression or enhancement. 

The continuously expanding body of literature examining the laterality of aphasia 

recovery often finds activation in some cortical regions and deactivation in others; 

however, these changes in hemodynamic response have been correlated only to 

language function, not repetition priming. 

A comparison of repetition priming effects across anomia studies remains 

nearly impossible as a result of the heterogeneity of subject and training variables. 

For example, although the studies conducted by Patterson and colleagues 

(Patterson, Purell, & Morton, 1983) and Best and colleagues (Best, Herbert, Hickin, 

Osborne, & Howard, 2002) more closely adhere to traditional psycholinguistic 

priming paradigms, those conducted by Wambaugh and colleagues and Rochon 

and colleagues more closely adhere to traditional anomia treatment protocols. The 

studies reported here have investigated the underlying impairment, or the effect of a 

repetition priming was responsible for the large immediate (and unexpected) facilitation 
effects that they documented. 
35 However, in a repetition priming protocol used to improve oral reading for an individual 
with phonological text alexia, Sperling and colleagues found generalization from trained to 
untrained sets of sentences (Sperling, Lott, Watson, & Friedman, 2006). It is noteworthy that 
successful acquisition and generalization were observed, given that the subjects only 
repeated the sentences once. 
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type of prime on naming, but few have systematically addressed priming as a 

learning paradigm. To date, no repetition priming studies have been conducted that 

reflect traditional psycholinguistic repetition priming paradigms that (i.e., healthy 

controls typically name the picture once, and then name it again at some later time); 

instead, individuals with aphasia are cued to repeat the word after clinician and then 

attempt to name the picture. That is, few studies have attempted to systematically 

describe the nature of priming effects for individuals with aphasia. Furthermore, 

most of the studies discussed here employed a variety of primes, in addition to 

repetition, but none of them have examined the cumulative effects of multiple prime 

types. 

Nearly all anomia treatment protocols used in research and by clinicians 

require the individual to name pictures repeatedly. As such, a systematic 

investigation of how repetition alone (i.e., in the absence of other components of 

traditional treatment protocols) influences the acquisition, maintenance and 

generalization of trained to untrained target stimuli can provide information about the 

nature and persistence of repetition priming in an impaired linguistic system36. The 

following variables are likely to influence both the acquisition and the maintenance 

of repetition priming effects and should be considered in future repetition priming 

paradigms: 

• total number of target items (i.e., set size); 

• the number of intervening stimuli between repeated presentations37; 

• the duration between the repeated presentations; 

Repetition priming is likely to differentially influence lexical retrieval based upon the 
linguistic impairment (i.e., semantic vs. phonological encoding). Ferrand and colleagues 
have suggested that repetition priming is more attributable to phonological encoding as 
opposed to semantic encoding (Ferrand, Grainger, & Segui, 1994). To the contrary, 
Wheeldon and Monsell found evidence to indicate that repetition priming stems from the 
connection between semantic and phonological encoding (Wheeldon & Monsell, 1992). 
Based upon these two studies it is likely that repetition priming is more likely to influence 
deficits of phonological encoding or some processes immediately preceding phonological 
encoding. 
37 Although see Blumstein et al. for a repetition priming study in the context of lexical 
decision tasks (Blumstein, Milberg, Brown et al., 2000). The authors found that individuals 
with Broca's and Wernicke's aphasia demonstrated significant repetition priming effects for 
words (as opposed to nonwords) only for the 0 lag condition (i.e., no intervening stimuli). 
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• the type of repetition (i.e., anomia studies require the participant to repeat 

after the clinician; traditional repetition priming studies simply require the 

participant to rename the picture at a later time); and 

• the type of outcome measure (i.e., response accuracy vs. reaction time). 

ANOMIA TREATMENT DOSAGE AND INTENSITY 

In a recent review of anomia management, Maher & Raymer state that 30% 

of aphasia intervention research from 1946 to 2001 focused on naming (the most of 

any type of aphasia intervention); however, "despite this proliferation of case reports 

and small group studies, there is still no clear agreement on how best to manage 

these deficits" (Maher & Raymer, 2004, p. 13). As was mentioned in earlier 

chapters, the inconsistency of acquisition, maintenance, and generalization effects 

observed across participants and types of treatment protocols is likely to stem from 

an inadequate knowledge base about how subject and treatment variables influence 

(re)learning. One treatment variable that has received intermittent attention is 

dosage or treatment intensity (Basso, 2005; Basso, Capitani, & Vignolo, 1979; 

Bhogal, Teasell, & Speechley, 2003; Bhogal, Teasell, Foley, & Speechley, 2003; 

Brindley, Copeland, Demain, & Martyn, 1989; de Pedro-Cuesta, Widen-Holmqvist, & 

Bach-y-Rita, 1992; Denes, Perazzolo, Piani, & Piccione, 1996; Hinckley & Craig, 

1998; Pulvermuller, Neininger, Elbert et al., 2001; Robey, 1998). Specifically, 

Bhogal, Teasell & Speechley (2003) suggest that intensity of treatment is likely to 

emerge as the variable that contributes most to the inconsistency of acquisition, 

maintenance and generalization effects across studies. As such, this section will 

further explore the learning affects stemming from treatment variables including 

treatment intensity (i.e., the number of sessions per week and number of total 

sessions), and stimulus dosage (i.e., the number of repetitions of individual lexical 

items). 

Treatment Intensity 

In the motor rehabilitation literature, treatment intensity broadly refers to the 

amount of time that is dedicated to practice (Kwakkel, 2006). More specifically, 

treatment intensity or duration is defined as the length of treatment for one session 
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or the total amount of time dedicated to treatment across sessions. This concept of 

duration includes aspects of intensity including the number of minutes or hours per 

session, the number of sessions per day or week, and the number of weeks or 

months of total treatment. 

For aphasia rehabilitation, participants who receive a greater number of 

treatment sessions improve to a larger degree than those who receive fewer 

treatment sessions (Basso, 2005; Bhogal, Teasell, & Speechley, 2003; Bhogal, 

Teasell, Foley, & Speechley, 2003; Robey, 1998). Specifically, Robey's (1998) 

meta-analysis indicated that treatment should include a minimum of two hours of 

training per week, with five or more hours per week resulting in the greatest degree 

of change. More recently, in a review of the aphasia literature, Bhogal and 

colleagues demonstrated that treatment studies that elicited improved linguistic 

performance required participants to engage in therapy for an average of eight 

hours per week, while those that did not result in improved linguistic performance 

required participants to engage in an average of two hours per week. Finally, both 

Pulvermuller and colleagues (2001), and Meinzer et al. (2005) demonstrated that 

three to four hours per day of treatment for ten consecutive days resulted in 

significant and stable linguistic improvement for individuals with chronic aphasia. 

For a summary of the aphasia literature that has directly or indirectly provided 

evidence about treatment intensity38, please refer to table 1.3. 

Table 1.3 Summary of Intensity Literature for General Aphasia Rehabilitation 

Reference 

(Basso, Capitani, & Vignolo, 
1979) 
(Bhogal, Teasell, & Speechley, 
2003; Bhogal, Teasell, Foley, & 
Speechley, 2003) 
(Brindley, Copeland, Demain, & 
Martyn, 1989) 

(David, Enderby, & Bain ton, 
1982) 

Number of 
Aphasic 
Subjects 
162 

10 studies 
reviewed (n=864 
across studies) 
10 

96 

Conclusions about Intensity 

No less than 3 individual sessions/wk for no 
less than 6 months 
Positive intervention results were found in 
shorter treatment protocols with greater 
intensity (more hours/week) 
Improvement of speech and syntax 
w/intensive tx (25 hours per week for 12 
weeks) 
2 hours/wk shows improvement 

Please note: the studies reported in table 1.3 investigated or reported on intensity for 
general aphasia treatment, not lexical retrieval in particular. Review articles examining 
intensity have also been included. 
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Reference 

(Denes, Perazzolo, Piani, & 
Piccione, 1996) 
(de Pedro-Cuesta, Widen-
Holmqvist, & Bach-y-Rita, 1992) 
(Hartman & Landau, 1987) 
(Hinckley & Craig, 1998) 

(Lincoln, McGuirk, Mulley, 
Lendrem, Jones, & Mitchell, 
1984) 
(Marshall, Wertz, Weiss, Aten, 
Brookshire, Garcia-Bunuel, 
Holland, Kurzke, LaPointe, & 
Milianti, 1989) 
(Pulvermuller, Neininger, Elbert 
et al., 2001) 

(Robey, 1998) 

(Shewan & Kertesz, 1984) 

(Wertz, Weiss, Aten, Brookshire, 
Garcia-Bunuel, Holland, Kurtzke, 
LaPointe, Milianti, Brannegan, & 
etal.,1986) 

Number of 
Aphasic 
Subjects 
17 

20 studies 
reviewed 
60 
40 across three 
studies 

327 

121 

17 

55 studies 
reviewed 

100 

121 

Conclusions about Intensity 

Intensive tx is better than regular tx in global 
aphasics (5 sessions/wk vs. 2.5 sessions/wk) 
2hrs/wk (of any tx or counseling) not effective; 
8-10 hrs/wk of tx show sig improvements 
Cannot comment on efficacy of intensive tx 
No experimental control - unable to draw 
conclusions - authors conclude that intensive 
tx is better than no tx or little tx 
Cannot comment on efficacy of intensive tx; 
2hrs/wk does not show efficacy 

8-10 hrs of tx shows improvement; unable to 
compare to less intense tx 

Intensive treatment (3-4 hours per day for 10 
consecutive days) can lead to improvement in 
chronic aphasics 
The more intense the tx, the greater the 
change; Tx length in excess of 2 hrs/wk brings 
about gains exceeding those that result from 
shorter durations. Two hrs/wk should 
constitute a minimum length for patients who 
can withstand the rigors of receiving treatment 
(PP. 184). 
3hrs/wk shows sig gains; no comparison to 
less intense txs 
8-10 hrs of tx shows improvement; unable to 
compare to less intense tx 

Stimulus Dosage 

Principles of neurobiological learning across both animal (Squire, 1992) and 

human research (Poldrack & Gabrieli, 2001) suggest that the intensity of treatment 

is a significant factor for learning; further research addressing neural plasticity 

involved in memory and learning indicates that a large number of trials are required 

to elicit change (Squire, 1992). The number of trials per session refers to the 

concepts of treatment frequency or stimulus dosage (Kwakkel, 2006). Although a 

renewed interest in treatment intensity has emerged in aphasia research, and a 

considerable number of researchers are currently exploring the effects of constraint-

induced aphasia treatment (CIAT), no studies have systematically investigated the 

incremental effects of treatment intensity separate from other subject and/or 

treatment variables and no studies to date have manipulated stimulus dosage to 

determine a dose-response curve in individuals with aphasia. 
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Specifically, the number of repetitions of a given stimulus required to yield 

consistent improvement of naming accuracy and latency has not been investigated, 

despite the fact that repeated verbal practice of picture-naming is inherent to nearly 

all anomia treatment protocols. Lexical retrieval studies typically report the 

characteristics of their participants, details of the treatment approach, and the 

overall intensity (i.e., duration) the protocol. Rarely do investigators provide the 

exact number of times the picture was presented to the participant39. For example, 

using a treatment protocol that purported to use principles of massed practice, 

spaced retrieval, and errorless learning, Fridriksson and colleagues attempted to 

train three words per day for three individuals with anomia (Fridriksson, Morrow-

Odom, Moser, Fridriksson, & Baylis, 2006). Although the authors provide a detailed 

description of the hierarchy of training procedures they used, the criteria for the 

participant to move on to the next level in the hierarchy of cuing was based upon 

three consecutive errorless productions of the target picture. The authors do not 

report the details for each participant in regards to how many times they required 

each level of cuing before being able to name the picture three times in a row. As 

such, the exact number of times that the participant attempted production or actually 

produced the target's name correctly cannot be determined. For a review of anomia 

treatment protocols that have purported to be intensive, please refer to table 1.4. 

39 The only exception is a repetition priming study conducted by Martin and colleagues in 
which an exact number of repetitions was provided (Martin, Fink, Laine, & Ayala, 2004). 
However, the authors were not able to report on the isolated effects of repetition priming as 
the protocol also employed contextual priming. Additionally, the authors did not provide data 
about the incremental effects of each repetition on naming. 
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Table 1.4 Summary of Stimulus Dosage in Anomia Studies 

Reference 

(Fridriksson, 
Morrow-
Odom, Moser, 
Fridriksson, & 
Baylis, 2006) 

(Breitenstein, 
Kamping, 
Jansen, 
Schomacher, 
& Knecht, 
2004) 

(Martin, Fink, 
Laine, & 
Ayala, 2004) 

(Meinzer, 
Elbert, 
Wienbruch et 
al., 2004) 
(Cornelissen, 
Laine, 
Tarkiainen et 
al., 2003) 

(Pulvermuller, 
Neininger, 
Elbert et al., 
2001) 

(Patterson, 
Purell, & 
Morton, 1983) 

Number 
of 
Aphasic 
Subjects 

3 

2 

11 

28 

3 

17 

14 

Treatment 
Description 

Spaced 
retrieval, 
massed 
practice, 
errorless 
learning 

Implicit 
associative 
learning 

Contextual 
priming: 
semantic, 
phonological, 
or unrelated 
primes 

CIAT or 
model-based 

Contextual 
priming 
technique 

CIAT vs. 
"conventional 
treatment" 

Repetition 
Priming 

Type and 
Number of 
Stimuli 

15 nouns 
selected by 
patient 

50 
drawings 
and 50 
pseudo-
words 

10 pictures 

Not 
reported 

50 trained 
black and 
white 
drawings 

16 pictures 

10 pictures 
that 
participants 
had 
difficulty 
naming 

Number of 
Repetitions 

3 items/day 
(at least 27 
repetitions 
per day) -
no way of 
determining 
how many 
attempts 
were made 

Correct 
pairings: 
20/session; 
incorrect: 
2/session 

At least 32 
repetitions at 
least per 
session 

Not reported 

5 repetitions 
of each 
picture 

Not reported 

1 vs. 5 
repetitions 

Duration 
of Each 
Session 

4 hr/day 

Not 
reported 

Not 
reported 

3 hrs/day 

1 
hr/session 

CIAT: 3-4 
hours/day 

Not 
reported 

Total Length 
of Treatment 

2 weeks 

1 day 

3 days 

10 
consecutive 
days 

3 times/week 
for approx. 3 
weeks (until 
70% correct) 
Conventional: 
3-5 weeks 
(20-54 hours) 

CIAT: 10 
days (23-33 
hours) 

One day 

As additional motivation for understanding the relationship between 

repetition and naming performance, a brief examination of those who are 

investigating CIAT (e.g., Meinzer, Elbert, Wienbruch et al., 2004; e.g., Pulvermuller, 

Neininger, Elbert et al., 2001) is warranted. These researchers have adapted their 

protocol from the motor learning literature (Kunkel, Kopp, Mulller et al., 1999), which 
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necessarily requires intensive or massed practice (i.e., repetition) as one of its three 

primary components of the therapy protocol40. Although studies that have 

investigated the effects of CIAT have shown promising and significant effects on the 

acquisition and maintenance of naming performance for individuals with chronic 

aphasia, the three components of CIAT (i.e., intensive practice, constraint, and 

shaping) have yet to be investigated in isolation, and more importantly, 

aphasiologists do not have data that illustrates the influence of repetition (i.e., one 

component of intensive practice) on naming performance. Without incremental 

repetition priming data, investigators will be unable to parse the accumulative effects 

of treatment type, treatment variables, and overall treatment intensity. 

CIAT is based upon three fundamental principles of learning: (1) intensive practice; (2) 
shaping, and (3) constraint of the unimpaired function to forced use of the impaired function 
(Meinzer, Elbert, Wienbruch etal., 2004; Pulvermuller, Neininger, Elbert etal., 2001). 
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CHAPTER II: GOALS AND RESEARCH QUESTIONS 

Picture-naming tasks are inherent to nearly all anomia treatments and 

closely approximate the linguistic processes used during spontaneous language 

production (Indefrey & Levelt, 2004). Pictures are named, or attempts are made to 

name them, multiple times within and/or across sessions. Although anomia 

treatments have been demonstrated to be largely effective regardless of the 

targeted level of impairment, many treatment variables including stimulus dosage 

have not been systematically manipulated to document their influence on the 

acquisition and maintenance of trained items or generalization to untrained items 

(response generalization) or alternate exemplars (stimulus generalization). Despite 

the considerable amount of literature examining the overall intensity of (i.e., the total 

length of treatment in hours, days, or weeks), data are not available regarding the 

duration (i.e., the number of minutes or hours per session) or frequency (i.e., the 

number of repetitions of each stimulus item per session) of treatment at which 

stroke survivors will maximally benefit. Thus, systematic dosage manipulations are 

necessary to provide evidence for optimal intervention rates for patients with 

anomia. Additionally, although repeated picture-naming is built into most anomia 

treatments, and repetition priming as a learning process is likely to provide a 

foundation for any other type of impairment-based lexical retrieval treatment 

procedure applied during the course of stroke recovery, a systematic investigation of 

stimulus dosage has been unexamined in individuals with anomia. 

Finally, repetition is also likely to interact with lexical variables associated 

with the items that are being trained. For example, the word frequency effect (WFE) 

has been shown to be susceptible to repetition for healthy participants41. That is, 

the relative magnitude of the WFE (i.e., the difference between response times for 

high frequency (HF) and low frequency (LF) words) has been shown to change over 

the course of multiple repetitions. The most frequently observed phenomenon in 

healthy adults is what is known as a frequency attenuation effect during which LF 

Repetition effects have been proposed to arise during retrieval of the phonological word 
form (La Heij, Puerta-Melguizo, van Oostrum, & Starreveld, 1999), as are effects of word 
frequency (Balota, 1984; Hino & Lupker, 1996; Humphreys, 1988; Huttenlocher & Kubicek, 
1983; Jescheniak & Levelt, 1994). Data also suggests that the word frequency effect arises 
during phonological encoding. Not surprisingly, repetition priming has been observed to 
interact with word frequency (La Heij, Puerta-Melguizo, van Oostrum, & Starreveld, 1999). 
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words benefit to a greater extent than do HF words (Scarborough, Cortese, & 

Scarborough, 1977; Versace & Nevers, 2003)42. As such, repetition priming may 

allow infrequently used words to be processed more like frequently used words (La 

Heij, Puerta-Melguizo, van Oostrum, & Starreveld, 1999; Whiteside & Varley, 1998). 

Assuming that the WFE does in fact interact with repetition for healthy participants, 

individuals with aphasia may demonstrate differential learning (i.e., repetition 

priming) effects across lexical items. 

Repetition priming is a learning paradigm that can be used to investigate 

behavioral changes associated with manipulations of stimulus dosage during 

picture-naming for individuals with anomia. Dosage and intensity manipulations can 

be made easily, detailing the stimulus set size, the number of presentations, the 

duration between stimulus presentations, the duration between training sessions, 

and the overall duration of treatment. Understanding repetition priming effects in 

isolation of other training variables (i.e., treatment intensity, type of treatment, etc.) 

is important if we want to examine multiple conditions using the same target stimuli. 

Furthermore, because the repetition priming paradigm is relatively implicit in nature 

and requires no controlled attentional processes, it is an ideal tool by which to 

incrementally investigate acquisition, generalization, and maintenance of trained 

items during spoken language production. 

The following two experiments were designed to document the behavioral 

effects of repetition priming on naming performance (response accuracy and 

response time) among individuals with aphasia who have lexical retrieval 

impairments (i.e., anomia). The first experiment is a pilot study developed to assess 

inclusionary criteria, protocol procedures, and feasibility of this type of protocol with 

individuals with aphasia. The second experiment applies these refined procedures 

to document the influence of repetition priming on picture naming for individuals with 

aphasia. Manipulation of various independent variables have been made in order to 

compare the influence of repetition priming on learning in individuals with aphasia 

with those processes associated with repetition priming in healthy non-brain injured 

participants. 

Although, Forster and Davis found equal effects of repetition on LF and HF words when 
the prime was masked (Forster & Davis, 1984). 
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Please refer to table 2.1 for a summary of the specific questions pertaining to 

repetition priming that are addressed, hypotheses stemming from these questions, 

and the independent variables that have been selected to be manipulated to explore 

these questions. 

Table 2.1 Experimental Questions and Independent Variables 

Experimental Question 

Is repetition priming persistent across time for 

individuals with aphasia? 

HO: Repetition priming is not persistent across time for 

individuals with aphasia. During the acquisition phase, 

decreased response time and increased response 

accuracy will be observed for immediate but not delayed 

probes. Furthermore, decreased response time and/or 

increased response accuracy observed during the 

acquisition phase of the protocol will not be observed after 

training has been terminated. 

H1: Repetition priming is persistent across time for 

individuals with aphasia. During the acquisition phase, 

decreased response time and increased response 

accuracy will be observed across immediate and delayed 

probes. Furthermore, decreased response time and 

increased response accuracy will be observed during all 

maintenance probe sessions. 

Is repetition priming sensitive to the number of 

trials/session? 

HO: Stimulus dosage will not influence response time or 

response accuracy. That is, no difference in response time 

or response accuracy for 1 vs. 4 trials per session will be 

observed during acquisition or maintenance phases. 

H1: Larger number of trials per session (i.e., 4 trials per 

session vs. 1 trial per session) will result in larger 

decreases in response time and increases in response 

accuracy across both acquisition and maintenance phases. 

Is repetition priming item specific? 

HO: Repetition priming is item specific. That is, trained, but 

not untrained items will be responded to more quickly and 

more accurately as a result of the repetition priming 

independent Variables Manipulated 

Immediate vs. Delayed Probes 

Training Phase vs. Maintenance Phase 

1 vs. 4 Trials per Session 

Trained vs. Untrained Items 

Alternate Exemplars 
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Experimental Question 

protocol. Alternate exemplars will not demonstrate 

decreased response time or increased accuracy as a result 

of the repetition priming protocol. 

H1: Repetition priming is item specific; however, alternate 

exemplars will be responded to more quickly and more 

accurately as a result of the repetition priming protocol. 

Independent Variables Manipulated 
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CHAPTER III: PILOT STUDY 

The pilot study was designed to explore the feasibility of a picture-naming 

repetition priming protocol with individuals with aphasia. Specifically, this pilot 

investigation sought to initially explore the influence of repetition on picture-naming 

in individuals with aphasia. Secondary goals included the refinement of inclusionary 

criteria, technical procedures and stimuli. A brief summary of the pilot study will be 

provided below. For more detailed information about this study, please refer to the 

Master's theses written by Abigail Potts (Potts, 2006) and Ann Kenny (Kenny, 

2006). 

RESEARCH DESIGN AND METHODS 

A single-subject A-B design was used to investigate the influence of 

repetition priming on the acquisition, maintenance and generalization of lexical 

retrieval for individuals with aphasia. Dependent measures included response 

accuracy and response time; independent variables included word frequency and 

syllable length. 

Participants 

One individual with aphasia and two non-brain injured healthy controls 

participated in the pilot study. Individuals with chronic aphasia (i.e., greater than six 

months post CVA) were recruited to participate in this study. For inclusion into this 

study, individuals with aphasia had normal to corrected hearing and vision, were 

pre-morbidly right-handed, did not demonstrate visual agnosia, and met a variety of 

specific language modality criteria as determined by an extensive cognitive-linguistic 

battery (refer to table 3.1 for a summary of language modality-specific criteria). 

Participants with abnormal structural-functional abilities, severe dysarthria, severe 

dementia, and/or a prior history of speech, language and/or neurological deficits 

were excluded from this study. Two measures administered during the cognitive-

linguistic battery were re-administered following completion of the training protocol 

including the portions of the Western Aphasia Battery (WAB) required to compute 
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the Aphasia Quotient (AQ) and the Picture Naming by Frequency subtest of the 

Psycholinguistic Assessment of Language Processes in Aphasia (PALPA). 

Table 3.1 Pilot Study Inclusionary Criteria/Cognitive-Linguistic Battery 

Test 

Vision Screening 

Hearing Screening 

Edinburgh Handedness Test 
Oldfleld(1971) 
Beck Depression inventory 
(BDI-II) 
Beck (1978) 

Structural/Functional Exam 

Informal Assessment of 
Visual Agnosia 
Western Aphasia Battery 
(WAB) 
Kertesz (1982) 

Boston Naming Test (BNT) 
Goodglass & Kaplan (1983) 
Raven's Coloured 
Progressive Matrices 
Raven (1976) 
Apraxia Battery for Adults 
(ABA) 
Dabul(1979) 

Subtests 1-3 of the Reading 
Comprehension Battery for 
Aphasia (RCBA) 
LaPoint & Homer (1979) 
Pyramids and Palm Trees 
Test 
Howard & Patterson (1992) 

Subtests of the 
Psycholinguistic Assessment 
of Language Processes in 
Aphasia (PALPA) 
Kay, Lesser, & Coltheart (1992) 

Revised Token Test (RTT) 
McNeil & Prescott (1978) 

Description/Purpose 

Snellen chart. 

Portable audiometer. 
Tested best ear at 500,1000, 
2000, & 4000 Hz. 
To determine hand dominance 
for future fMRI studies. 
To rule out significant 
depression that may influence 
response time or participation 
in the protocol. 
To examine oral structures and 
their functions. 
To rule out visual/perceptual 
deficits. 
To assess language across 
modalities. Administered only 
those subtests needed to 
calculate Aphasia Quotient(AQ) 
To assess word-finding 
abilities. 
To assess non-verbal problem 
solving (non-linguistic cognitive 
abilities). 
To assess motor 
planning/programming. 

To assess single word reading 
ability. 

A test of semantic access. To 
assess the participant's ability 
to access detailed semantic 
representations from words and 
pictures. 
To assess confrontational 
picture naming with high and 
low frequency stimuli; written 
synonym judgment; rhyme 
judgment. 

To assess auditory 
comprehension with increasing 
length and complexity. 

Inclusionary/Exclusionary 
criteria 
Pass = 20/30 at 2.3 feet with or 
without glasses/contacts 
Fail = referral to optometrist 
Pass = 35 dB 
Fail = referral to audiologist 

Right-hand dominance 

Pass = 0-20 

Descriptive only 

Pass = raw score > 8/10 
Fail = excluded from study 
Pass = AQ 25-75/100; fluency 
4-8 
Fail = excluded from study 

Descriptive only 
Raw score = /60 
Pass = >12/36 
Fail = excluded from study 

Pass = no scores in "Severe to 
Profound" range on "Profile 
Score Sheef. No more than 3 
items on "Checklist of Apraxic 
Features" 
Fail = excluded from study 
Descriptive only 
Raw score = /30 

Descriptive only 
Raw score = /52 

Pass = 10-40/60 Naming 
Pass = >36/60 Synonym 
Judgment 
Pass = >5/16 Rhyme Judgment 

Pass = no worse than moderate 
auditory comprehension 
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For inclusion into this study, healthy non-brain injured control participants were 

required to pass a vision screening with or without glasses and/or contacts; 

demonstrate a score of 34/60 on the Picture Naming by Frequency subtest of the 

PALPA or 50/60 on the Boston Naming Test; achieve a raw score greater than 23 

on the Raven's Coloured Progressive Matrices; score within the normal range for 

auditory comprehension on the Revised Token Test; and be right-handed as 

demonstrated by positive values for right handedness on the Ediburgh Handedness 

Inventory. Control participants were excluded from the study if they had a history of 

current or past speech, language, hearing or neurological impairments, or were not 

native speakers of American English. Refer to table 3.2 for a summary of the 

participants' profiles. 

Table 3.2 Pilot Study Participant Profiles 

Age 

Gender 
Cognitive-
Linguistic Battery 
WABAQ 
PALPA (Naming) 

BNT 

PALPA (Synonym 
Judgment) 
PALPA (Rhyme 
Judgment) 
RTT 

ABA 

RCBA 

Visual Agnosia 

Raven's 

BDI-II 

Edinburgh 
Handedness 
Inventory 

Individual with 
Aphasia 

80 

Female 
Pre 

29.7 
23/60 

Post 

33.1 
30/60 

DNT 

10/60 

44/60 

11.5/36 

Minimal Verbal 
Apraxia; 
Moderate Limb 
Apraxia; Mild-
Moderate Oral 
Apraxia 
24/30 

9/10 

24/36 

4/60 

Left Hand: 0/10 
Right Hand: 
10/10 

Control 1 

74 

Male 

DNT 
DNT 

54/60 

DNT 

DNT 

30/36 

DNT 

DNT 

DNT 

34/36 

DNT 

Left Hand: 2/10 
Right Hand: 10/10 

Control 2 

50 

Female 

DNT 
59/60 

DNT 

DNT 

DNT 

33/36 

DNT 

DNT 

DNT 

36/36 

DNT 

Left Hand: 1/10 
Right Hand: 9/10 

DNT = Did Not Test 
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Procedures 

Stimuli 

Stimulus items were drawn from a previously collected corpus of 220 

picturable, concrete nouns depicted by colored photographs. Half of these words 

were high frequency (i.e., greater than 100 instances per million) and half were low 

frequency (i.e., less than seven instances/million) based upon frequency counts 

made by Francis & Kucera (Francis & Kucera, 1982). These stimulus items were 

also evenly balanced for one- and two-syllables. 

Of these 220 words, 40 items were selected as trained items and 180 were 

selected as untrained items. Audio files of the verbally-produced names for all of 

these items were previously recorded with wavelength durations between 400 and 

600 ms. 

Protocol - Individual with Aphasia 

Following enrollment, the individual with aphasia was administered five 

baseline probes to asses pre-training picture-naming performance. Each baseline 

probe session consisted of the complete set of all 40 trained items and 20 untrained 

items. The participant was exposed to the picture and the verbally-produced name 

of the picture prior to each baseline probe session. During the probe session, the 

participant was asked to name the picture. 

Following completion of the baseline phase, the participant began the 

training sessions. Training sessions consisted of the participant seeing a picture, 

hearing its name through the speakers, and then naming the picture. This sequence 

occurred twice for each of the 40 trained items during each training session. 

Training probes were administered after every two training sessions. Training 

probes consisted of the 40 trained items and 20 novel/untrained items. Participant 

A002 completed 16 training sessions, with each session lasting approximately one 

hour. 

Following completion of the training phase, the participant returned to 

complete three maintenance probes. The target stimuli lists from baseline sessions 

1-3 were repeated during the three maintenance probes. 
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Protocol - Healthy Control Participants 

Similar to the individuals with aphasia, two healthy control participants 

completed five baseline probe sessions and four training probe sessions (after every 

two training sessions). Three maintenance probes were completed after the last 

training session was completed. 

The first control participant completed an "extended" 12 week protocol. 

Baseline and probe sessions were held twice per week over and eight week period. 

Maintenance probes were administered one week, two weeks, and one month after 

completion of the last training session. The second control participant completed a 

"compressed" two-week protocol. Baseline line probes 1-2 were administered on 

one day. Baseline probes 3-5 and training probes 1-4. The two sessions were 

spaced one week a part. This participant did not complete training sessions or the 

maintenance probes. 

SUMMARY OF RESULTS 

Average response accuracy and response time were calculated for baseline, 

training, and maintenance phases of the protocol. Response accuracy increased for 

both trained and untrained items from baseline to training phases, with trained items 

(54% increase) increasing more than untrained items (32% increase). From training 

to maintenance, trained items increased an additional 3% while untrained items 

decreased in response accuracy 16%. No increase in response accuracy was 

observed during the baseline phase, despite the fact that each baseline probe 

included the 40 trained items. Response time also increased (i.e., participants 

named items more slowly) during the training phase for both trained (72 ms) and 

untrained (94 ms) items. Response times returned to baseline levels during the 

maintenance phase. Collectively, these data suggest a response time for response 

accuracy trade-off. That is, as participants became more accurate during the 

training phases of the protocol their response times increased. However, once these 

items had been acquired (as demonstrated by a persistent increase in response 

accuracy during the maintenance phase), response times returned to baseline 

levels during the maintenance phase. 
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The effects of word frequency as they interacted with repetition priming were 

also assessed in this pilot study. During baseline, high frequency words were 

responded to 20 ms faster than low frequency words although high frequency words 

were responded to less accurately than low frequency words. No systematic effects 

of word frequency on response time were observed during the training; however, 

high frequency words were more accurately responded to during training than low 

frequency words. Although no systematic effects of word frequency on response 

time were observed during the maintenance phase of the investigation, high 

frequency words were responded to more accurately during the maintenance phase 

than low frequency words. These initial findings suggest that more practice may be 

required for low frequency words in order to achieve long lasting improvement. That 

is, maintenance appears to be superior for high frequency words. No systematic 

effects of word frequency were observed in regards to generalization of trained to 

untrained words. 

Results from the healthy control pilot data indicated that trained items were 

responded to faster than untrained items by the final probe session (approximately 

109-279 ms decrease). Session by session analysis revealed that repetition priming 

effects on reaction time occurred during the first three probe sessions. A plateau 

was observed from that point on. The small amount of data stemming from only two 

participants did not provide clear patterns for word frequency or syllable length as 

they related to repetition priming influences on reaction time. However, a non­

significant trend was observed for low frequency words being responded to faster 

with additional repetitions relative to high frequency words. 

This pilot study demonstrated that a repetition priming experiment is feasible 

for individuals with aphasia. Individuals with aphasia are able to tolerate multiple 

lengthy sessions per week over the course of several weeks. These initial results 

indicate that repetition priming does occur in individuals with aphasia; however, it 

appears that individuals with aphasia require significantly more repetitions than 

healthy control participants to demonstrate priming effects that are present after only 

one exposure in healthy adults. As a result of these findings, several modifications 

were made prior to initiating the dissertation project. 
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MODIFICATIONS STEMMING FROM PILOT DATA 

As a result of some difficulties encountered during the pilot study, several 

technical adjustments were made to instrumentation and stimulus delivery: (1) the 

throat microphone used during the pilot study was found to provide inconsistent 

response times for the individual participant. For this reason, a head-mounted 

microphone was used for the dissertation project; and (2) ambient noise within and 

outside of the lab created auditory distractions. For this reason, high quality sound-

canceling headphones were used in the dissertation project to deliver the auditory 

stimuli. 

The lack of word-frequency related effects on picture naming in the pilot 

study was worrisome. For this reason, the corpus of pictures was reassessed for 

name agreement and to pull out words that neared the cutoff for the word frequency 

count. New pictures were developed for items that appeared to result in naming 

agreement confusion. Several targets for which reliable names could not be 

assigned were thrown out. 

The inclusionary criteria for enrollment into the study was also revised. In 

general, inclusionary criteria were made more permissible to increase enrollment by 

making many of the tests descriptive in nature rather than have an inclusionary 

criteria cut-off. The Edinburgh Handedness Inventory was dropped as no imaging 

studies were planned for the future. The Revised Token Test was also dropped as 

the WAB sections assessing comprehension provided enough information about the 

participants' comprehension abilities in regards to participating in the study. The 

Boston Naming Test and Pyramids and Palm Trees test were added to the protocol 

as a pre/post measure of naming performance in order to be able to compare our 

results with those of others publishing in the field. Two of the subtests of the PALPA 

were dropped as they did not provide information that proved to be useful for 

inclusion into the study. Finally, a Trial Run Probe was added to the inclusionary 

criteria to ensure that participants could successfully participate in the computer-

based naming protocol. During the pilot study some participants who met all our 

other criteria were not able to adapt to the computer-based task. 

The pilot study also indicated that the individual with aphasia required 

significantly more repetitions before priming effects were observed, despite the fact 
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that she had five baseline probes during which the 40 trained items were named. 

For this reason, an additional manipulation was constructed for the dissertation 

project: the number of trials per session (1 vs. 4) was added as an independent 

variable. As a result of this added manipulation, the delivery of the stimuli was also 

modified. During the pilot study stimuli were pseudo-randomized; that is, attention 

was paid to minimize successive words with similar initial consonants or similar 

semantic categories. With the added variable of number of trials pseudo-

randomization was no longer possible. As such, stimuli in the dissertation project 

were delivered randomly with no control over initial consonant, semantic category, 

or number of trials intervening between repetitions. 
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CHAPTER IV: METHODOLOGY 

RESERCH DESIGN 

A single subject A-B design with replication across four participants with 

chronic aphasia and 1 healthy, non-brain injured control participant was used to 

investigate the acquisition and maintenance of trained stimuli and generalization to 

untrained stimuli using a repetition priming protocol. This experiment followed the 

participants through a training protocol that involved repeated exposure to pictures 

and their names, along with repeated attempts to name those pictures, to determine 

the effect of repetition priming on picture naming performance (response accuracy 

and response time). 

Independent variables included stimulus dosage (1 vs. 4 trials per sessions-

generalization variables (trained vs. untrained stimuli; alternate exemplars of trained 

stimuli), and lexical variables (word frequency; syllable length). Dependent variables 

included response/reaction time and response accuracy. 

PARTICIPANTS 

Four individuals with chronic aphasia and one gender-matched healthy non-

brain injured control participated in the investigation. 

Recruitment 

Participants with aphasia and the healthy non-brain injured control 

participant were recruited from eleven medical facilities located throughout the 

greater Seattle-Tacoma Metropolitan area. Once a letter of cooperation was 

obtained from the participating facility, flyers were sent to and circulated by the 

contact person associated with the facility. The participants were not directly 

contacted by the PI; instead, potential participants contacted the PI after reading the 

flyer. Additionally, the investigator was invited to speak about the study at Northwest 

Hospital's Young Survivor's Stroke Group. Flyers provided general 

inclusionary/exclusionary criteria, general experimental procedures and information 

about compensation. Participants were reimbursed for travel expenses including 

parking and/or bus fare. 
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Demographics 

Persons under the age of 18 were excluded as the experiment was designed 

to investigate spoken language production of adults with neurological disorders 

resulting from stroke. No exclusions were made according to gender. No exclusions 

were made according to race and/or ethnicity. Ethnic and minority populations were 

recruited according to Seattle, WA demographics obtained from the 2000 US 

Census. Despite efforts to provide a balanced gender and race/ethnicity distribution, 

no participants from diverse families chose to participate in the investigation. All of 

the participants were female and all of the participants were of Northern European 

descent. Attempts were also made to recruit age- and gender-matched healthy non-

brain injured control participants for each of the individuals with aphasia. Despite 

these efforts, only one healthy age- and gender-matched non-brain injured control 

was recruited. The primary difficulty with enrollment appeared to stem from the time 

commitments associated with the protocol. 

Consent 

Consent documents were sent to the home of the potential participant with 

aphasia prior to their initial cognitive-linguistic assessment session so that they had 

sufficient time to review the documents and could ask their caregiver/spouse to 

assist them with reading if needed. On the first day of cognitive-linguistic evaluation, 

the principle investigator (PI) presented the consent forms (see appendices A and 

B). Informed consent procedures were followed in accordance with the approved 

guidelines of the Human Subjects Division (HSD) at the University of Washington 

(#05-7338-B03; new 2008 HSD code #28283). Approved consent forms were 

reviewed with the participants prior to any research activities. The PI explained the 

purpose and procedures of the study; no deception procedures were conducted. 

The consent forms emphasized that participation in the study was completely 

voluntary. Exceptional care was taken by the PI to ensure that participants with 

aphasia completely understood all components of the study's purpose and 

procedures; multimodality support was used as needed to ensure complete 

understanding. In addition to the consent documents, participants reviewed and 
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signed an audio/video-recording release, medical release of information, and HIPPA 

agreement forms (see appendices C-E). 

Recordings 

All cognitive-linguistic evaluation sessions involving participants with aphasia 

were video-recorded to ensure accurate scoring of the cognitive-linguistic tests and 

for procedural reliability purposes. The brief cognitive-linguistic battery administered 

to the healthy non-brain injured control was not video-recorded. 

All experimental sessions involving both participants with aphasia and 

healthy non-brain injured control participants were audio-recorded using an 

Olympus Digital Voice Recorder (VN-24-PC). Audio recordings were used to verify 

accuracy and response/reaction time data and to evaluate inter-judge reliability for 

response accuracy. All transcriptions and accuracy judgments were made using the 

audio recordings. 

Individuals with aphasia 

Subject Selection/Enrollment 

For enrollment into the study, individuals with aphasia met the following 

inclusionary criteria: 

• native speaker of American English, 

• between the age of 21-95, 

• demonstrated a medically-documented, single cardiovascular accident to the 

left hemisphere of the brain (previous transient ischemic attacks were 

permitted), 

• presented as medically stable and at least six months post-cerebral vascular 

accident (CVA) prior to enrolling in the study, with no subsequent decline, 

• mild-to-moderate symptoms of expressive language impairment (with 

evidence of anomia), 

• no other previous or concomitant neurological, psychiatric, or substance 

abuse disorders, per self report and medical records, 

• corrected to normal hearing and vision 
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Individuals with chronic aphasia were selected for this study because of their stable 

neurological status. 

An initial telephone interview was conducted with either the individual with 

aphasia or their caregiver to screen for stroke history, time post onset, age, and 

native language (see appendix F). If these inclusionary criteria were met, 

individuals with aphasia were scheduled to undergo a comprehensive cognitive-

linguistic evaluation. At this time participants were sent a welcome letter, directions 

to the clinic, and a copy of the consent documents for review. 

Subsequent to obtaining consent, personal, medical, and social history was 

collected from participants (see appendix G). For participants who met the 

cognitive-linguistic inclusionary criteria listed below, medical records were obtained 

to confirm medical history pertaining to their CVAs including neurology exam 

reports, computed tomography (CT) and/or magnetic resonance imaging (MRI) 

reports and/or scans, speech and language diagnostic reports. Medical information 

pertinent to the study was recorded on a data entry sheet (see appendix H); medical 

records were then destroyed. 

Cognitive-linguistic evaluations took place in the University of Washington 

Speech and Hearing Clinic and were conducted by, or under the direct supervision 

(minimum 50%) of the primary investigator, a certified speech-language pathologist. 

If the participant had been administered any of the tests within three months of the 

evaluation (and reports were obtainable) those scores were used in lieu of re-

administering the particular test. Refer to table 4.1 for a summary of the tests 

administered. A sub-set of the cognitive-linguistic battery was re-administered to 

participants with aphasia at the completion of the study to assess general language 

change across modalities. This subset included the portions of the WAB required to 

calculate the Aphasia Quotient, the BNT, and subtest 54 of the PALPA. 
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Table 4.1 Cognitive-Linguistic Battery and Inclusionary ( 

Test 

Vision Screening 

Hearing Screening 

Structural/Functional 
Exam 

informal Assessment of 
Visual Agnosia 

Western Aphasia 
Battery (WAB) 
Kertesz (1982) 

Boston Naming Test 
(BNT) 
Goodglass & Kaplan 
(1983) 
Raven's Coloured 
Progressive Matrices 
Raven (1976) 
Apraxia Battery for 
Adults (ABA) 
Dabul (1979) 

Subtests 1-3 of the 
Reading 
Comprehension Battery 
for Aphasia (RCBA) 
LaPoint & Homer (1979) 
Pyramids and Palm 
Trees Test 
Howard & Patterson 
(1992) 

Subtest 54 of the 
Psycholinguistic 
Assessment of 
Language Processes in 
Aphasia (PALPA) 
Kay, Lesser, & Coltheart 
(1992) 
Trial Run of Training 
Protocol 

Description/Purpose 

Snellen chart. 

Portable audiometer. 
Tested best ear at 500,1000, 2000, 
& 4000 Hz. 
To examine oral structures and their 
functions. To document possible 
peripheral contributors of dysarthria. 
To rule out visual/perceptual 
deficits. Participant presented with 
10 common objects and asked to 
demonstrate use of objects using 
hands. 
To assess language across 
modalities. Administered only those 
subtests needed to calculate 
Aphasia Quotient (AQ). 
To assess word-finding abilities. 

To assess non-verbal problem 
solving (non-linguistic cognitive 
abilities). 
To assess motor 
planning/programming. 

To assess single word reading 
ability. 

A test of semantic access. To 
assess the participant's ability to 
access detailed semantic 
representations from words and 
pictures. 
To assess confrontational picture 
naming with high and low frequency 
stimuli. 

To assess the participant's ability to 
participate in the experimental 
protocol (computer-based). 
Twenty-five pictures presented. 
Participants asked to name 
pictures. 

Criteria 
Inclusionary/Exclusionary 
criteria 
Pass = 20/30 at 2.3 feet with or 
without glasses/contacts 
Fail = referral to optometrist prior 
to enrollment 
Pass = 35 dB 
Fail = referral to audiologist prior 
to enrollment 
Descriptive only 

Pass = raw score > 8/10 

Fail = excluded from study 

Pass = AQ> 25/100 

Fail = excluded from study 

Descriptive only 

Raw score = /60 

Pass = >12/36 

Fail = excluded from study 
Pass = no scores in "Severe to 
Profound" range on "Profile 
Score Sheet". No more than 3 
items on "Checklist of Apraxic 
Features-
Fail = excluded from study 
Descriptive only 

Raw score = /30 

Descriptive only 

Raw score = ___/52 

Descriptive only 

Raw score = /60 

Pass = >5/25 

Fail = re-test to see if participant 
can learn task; multiple failures 
results in exclusion from study 
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Exclusionary Criteria 

Individuals with aphasia were excluded if they demonstrated: (1) a severe-to-

profound expressive language impairment that precluded them from participating in 

the training protocol (e.g., unable to produce single words), (2) a severe-to-profound 

receptive language impairment that interfered with protocol completion, (3) a 

severe-to-profound concomitant apraxia of speech, (4) a moderate-to-profound 

concomitant dysarthria, (5) a pronounced cognitive and/or memory impairment. 

Individuals with aphasia who could not repeat single words to some degree when 

given an auditory presentation of a word were also excluded. 

Case#1:A102 

Participant A102 is a 90 year-old female who presented with a left middle 

cerebral artery (MCA) embolic CVA that had occurred six months prior to the initial 

cognitive-linguistic testing session. According to the speech-language pathology 

assessment conducted while the participant was hospitalized, A102 demonstrated 

moderate-severe fluent aphasia impacting all modalities. At the time of enrollment 

into this study, A102 presented with moderately severe expressive aphasia and a 

minimal to mild receptive language impairment. She was able to repeat single 

words and short sentences with no errors; her ability to repeat broke down with 

more difficult sentences, containing less familiar words (e.g., "The pastry cook was 

elated"). Confrontational picture-naming was moderately to severely impaired, 

typically characterized by non responses and phonemic paraphasias. A102's 

spontaneous expressive language was characterized by short grammatically correct 

sentences composed of occasional correct concrete noun production accompanied 

by multiple phonemic paraphasias most frequently resulting in nonwords (e.g.,/klig/ 

for "shrimp") and infrequent semantic paraphasias (e.g., "rat" for "mouse"). 

Case #2: A103 

Participant A103 is a 47 year-old female who presented with a hemorrhagic 

left temporal lobe CVA that had occurred three and a half years prior to the initial 

cognitive-linguistic testing session. She presented with moderate expressive 

aphasia and severe receptive aphasia (in the absence of written cues). As a result 
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of her severe receptive aphasia, A103's ability to repeat was severely impaired. 

A103's confrontational picture-naming was also severely impaired, most frequently 

characterized by non-responses. Her spontaneous expressive language was 

characterized by complete, grammatically correct, sentences composed of a 

minimal to moderate number of naming errors characterized by semantic 

paraphasias (e.g., "broom" for "mop"), circumlocutions or picture descriptions (e.g., 

"I say law" for "judge"), and non-responses (e.g., "I forgot what it's called"). 

Case #3: A104 

Participant A104 is a 76 year-old female who presented with a left basal 

ganglia CVA that had occurred approximately one and a half years prior to the initial 

cognitive-linguistic testing session. She presented with moderate to severe 

expressive aphasia, minimal receptive aphasia, and minimal dysarthria. A minimal 

right droop of A104's lips was observed during a structural-functional exam. No 

other structural-functional abnormalities were observed at the time of enrollment. 

A104's ability to repeat was intact, with only occasional errors during repetition of 

longer, more syntactically complex sentences. Her confrontational picture-naming 

varied from minimal to moderately-severe depending on the familiarity of the target; 

she performed at ceiling levels for naming items presented during completion of the 

WAB, but performed at chance for naming items presented during completion of the 

Boston Naming Test, which is composed of increasingly less familiar target items. 

A104's spontaneous expressive language was characterized by medium length 

grammatically correct sentences composed of a minimal to moderate number of 

naming errors characterized by semantic paraphasias (e.g., "ant" for "cricket") and 

non-responses (e.g., "urn, oh gosh"). 

Case#4: A106 

Participant A106 is a 78 year-old female who presented with an 

embolic/thrombolic (exact nature not reported in medical records) left MCA CVA that 

had occurred eight months prior to the initial cognitive-linguistic testing session. The 

participant's CT report indicated a large left hemisphere lesion occurring in the left 
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frontal lobe including the anterior insular region and left frontal operculum. A106 

presented with severe expressive aphasia and minimal receptive aphasia. A106 

was able to repeat single words and portions of short phrases and sentences. Her 

confrontational picture naming was at chance levels across all assessments 

administered. Her spontaneous expressive language was characterized by single 

words and short phrases (approximately 2-3 words per phrase) attempts, 

characterized by a multiple phonemic paraphasias resulting in non-words (e.g., 

/pnmp/ for "shrimp"). Although A106 often used written language (single words or 

short phrases) as a compensatory strategy during conversational speech, the same 

phonemic paraphasias observed during verbal production were observed during 

written dictation tasks as well. She was also able to produce short sentences with a 

written model (e.g., "Turn up the heat"). Please refer to table 4.2 for a summary of 

the participants' profiles and scores on the cognitive-linguistic batteries. 



76 
Table 4.2 Profiles of Individuals with Aphasia 

Age 

Gender 

Time Post CVA 

TypeofCVA 

Lesion Location 

Cognitive-
Linguistic Battery 
WABAQ 

WAB Aphasia 
Classification 
BNT 

PALPA 

Cognitive-
Linguistic Battery 

Pyramids & Palms 

ABA 

RCBA 

Visual Agnosia 

Raven's 

BDI-II 

A102 

90 

Female 

6 months 

Embolic 

LMCA 

Pre 

73.9 

Post 

61.4 

Anomic 

10/60 

25/60 

14/60 

43/60 

A103 

47 

Female 

3.5 yrs 

Hemorrhagic 

L Temporal lobe 

Pre 

60.2 

Post 

70.8 

Wernicke's/ 
Anomic 

5/60 

26/60 

10/60 

38/60 

A104 

76 

Female 

1.5 yrs 

Hemorrhagic 

L Basal Ganglia 

Pre 

82.8 

Post 

81 

Anomic 

27/60 

50/60 

24/60 

52/60 

A106 

78 

Female 

8 months 

Embolic/Thrombolic 

L MCA; L frontal lobe, 
anterior insular region, L 

frontal operculum 
Pre 

54.1 

Post 

Pending 

Conduction 

12/60 

35/60 

14/60 

37/60 

Administered only once at study onset Data used for 
inclusionary & descriptive purposes. 

38/52 

No apraxia 

29/30 

10/10 

18/36 

3/63 

48/52 

No apraxia 

30/30 

10/10 

36/36 

10/63 

48/52 

No apraxia 

30/30 

10/10 

20/36 

18/63 

49/52 

DNT - Complicated by 
Conduction 

Aphasia/possible AOS 
30/30 

10/10 

18/36 

7/63 

Non-brain injured, healthy control participant 

Subject Selection/Enrollment 

A single non-brain injured, healthy control participant was recruited to match 

the gender and race/ethnicity of the individuals with aphasia. For enrollment into the 

study, the control participant met the following inclusionary criteria: 

• native speaker of American English, 

• no known history of neurologic, speech, or language deficits (per self-report), 
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• no known psychiatric condition or substance abuse condition that might 

interfere with protocol completion (per self report), 

• corrected to normal hearing and vision 

An initial phone interview (see appendix I) was conducted with the potential 

participant to screen for age, ethnic background, and native language. If these 

inclusionary criteria were met, the non-brain injured healthy control participant was 

scheduled to undergo a brief cognitive-linguistic evaluation. Subsequent to 

obtaining consent, a brief personal, medical, and social history was collected from 

the participant (see appendix J). 

The cognitive-linguistic evaluation took place in the University of Washington 

Speech and Hearing Clinic and was conducted by, or under the direct supervision 

(minimum 50%) of the researcher, a certified speech-language pathologist. Refer to 

table 4.3 for a summary of the tests administered. The non-brain injured healthy 

control participant did not undergo post-experimental re-assessment. 

Table 4.3 Summary of Assessments Administered to Control Participant 
Test 

Vision Screening 

Hearing Screening 

Edinburgh 
Handedness Test 
Oldfield (1971) 

Raven's Coloured 
Progressive Matrices 
Raven (1971) 

Description/Purpose 

Snellen chart. 

Portable audiometer. 
Tested best ear at 500,1000, 
2000, & 4000 Hz 

To assess handedness 
(language lateralization) 

To assess non-verbal problem 
solving (non-linguistic cognitive 
abilities) 

Inclusionary/Exclusionary Criteria 

Pass = 20/30 at 2.3 feet with or without 
glasses/contacts 
Fail = referral to optometrist prior to 
enrollment 
Pass = 35 dB 
Fail = referral to audiologist prior to 
enrollment 

Descriptive only 

Pass = >12/36 

Fail = excluded from study 

Participant C102 is a 53 year-old female with Northern European 

(Norwegian) ancestry who was selected as a gender-matched control for the 

participants with aphasia. She has no history of neurological, speech, language, or 

hearing disorders or substance abuse. Her hearing and vision were within normal 

limits. C102 scored within normal limits on the Raven's Coloured Progressive 
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Matrices (35/36) and scored as right-hand dominant on the Edinburgh Handedness 

Test. 

PROCEDURES 

Stimuli & instrumentation 

Stimuli 

Target stimuli were randomly selected from a previously developed corpus of 

240 color photographs depicting 1- and 2-syllable concrete nouns. This corpus was 

developed and refined across three studies including the pilot study described in 

detail in the previous chapter (Kenny, 2006; Krohn, 2005; Potts, 2006). Digitized 

color photographs, assessed for easy recognition, depict the target word on a yellow 

background (see figure 4.1 for a sample item). The corpus is composed of 130 

high- frequency words and 110 low-frequency words. High-frequency words are 

defined as greater than or equal to 150 instances per million words; low-frequency 

words are defined as less than or equal to 20 instances per million words (Francis & 

Kucera, 1982). 

Figure 4.1 Sample Stimulus Item and Alternate Exemplar, "Coffee" 

From this corpus, 40 words were randomly selected as trained stimuli and 

100 pictures were randomly selected as untrained stimuli. Trained and untrained 

stimuli were balanced across word frequency and syllable length. Additionally, in 

order to assess participants' responses to alternate exemplars of trained stimuli (i.e., 

stimulus generalization), different photographs were selected for each of the 40 

trained items (refer to figure 4.1 for a sample alternate exemplar). Refer to appendix 

K for a list of trained and untrained items. During training sessions visual target 

stimuli were accompanied by the spoken and written name of the picture. Auditory 
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stimuli were previously recorded and edited for duration using Computerized 

Speech Lab 410. 

Instrumentation 

Cognitive-linguistic batteries for individuals with aphasia were video-

recorded in the University of Washington Speech and Hearing Clinic using video 

cameras that are built into the ceiling and mounted on the walls of the clinic room 

and a Panasonic DVD Recorder, Model DMR-T6070 that is located in the 

observation room adjacent to the clinical treatment room. 

Experimental sessions were carried out using E-Prime (Schneider, Eschman 

& Zuccolotto, 2002) on a Micron Millennia computer. Participants were seated 

comfortably in front of the computer monitor. A head-mounted microphone (AKG 

Acoustics, MicroMic Series III, model C 420'" PP) was used to record 

response/reaction time. The microphone was routed through a TubeMP Project 

Series pre-amplifier to allow for individually-based calibration of voice onset 

detection. Microphone calibration took place immediately prior to every probe and 

training session. The pre-amplifier was then connected to a serial response box 

(Psychology Software Tools, Pittsburgh, PA) which was then interfaced with the 

computer. Response/reaction time, in milliseconds, was collected by E-Prime based 

on the time between the onset of the visual stimulus and the initiation of voicing of 

the response. 

Audio files containing the names of the pictures were imported into the 

delivery software (E-Prime) and were presented through Bose QuietComfort 2 

Acoustic Noise-Canceling headphones. These files were presented at a level 

audible to each participant. Calibration of the headphone volume delivery occurred 

immediately prior to each probe and/or training session. 

To verify accuracy and reaction time data, participants' responses were 

recorded using an Olympus Digital Voice Recorder (VN-24-PC). These audio files 

were also used to evaluate reliability for response accuracy, as discussed below. 
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Delivery Schedule & Protocol Details 

Baseline Probe Sessions 

Following completion of cognitive-linguistic testing and subsequent 

enrollment into the study, participants were administered four baseline probes to 

assess pre-training picture-naming performance. For participants with aphasia, each 

of the four baseline probe sessions took place on a separate day within a two-week 

period. For the control participant, the baseline probes were administered at the 

convenience of the participant as long as all four were completed within a two-week 

period. Multiple baseline probes were permitted to occur within single day for control 

participants. Please refer to figure 4.2 for a visual depiction of a sample delivery 

schedule. 

SESSION # 
Baseline 

1 

Phase i l l 
Training 
Sessions 
Training 
Probes 
Stimulus 
Generalization 
Maintenance 

2 3 4 5 6 7 8 9 10 

1111111 WM 
•B I HI I • 

11 

• m H • 

12 13 14 15 16 17 

Figure 4.2 Delivery Schedule 

During each baseline probe session, participants were instructed to name 60 

target pictures (40 "trained" pictures and 20 randomly selected "untrained" pictures) 

aloud once as quickly as possible while maintaining accuracy; participants were 

discouraged from self-correcting errors, coughing, and/or clearing their throats 

during probe sessions. Target pictures were presented randomly. Each trial 

proceeded as follows: a black fixation mark (*) appeared at the center of a white 

computer screen; the target picture then appeared at the center of the computer 

screen during which time the participant attempted to name the picture. A red "X" 

then appeared in the middle of a white screen to indicate that the participant must 

stop attempting to name the picture. The black fixation point then reappeared to 

prepare the participant for the subsequent target. A completion message was 

presented on the computer screen to indicate the end of the session. Please refer to 
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appendix L for a list of the timing parameters associated with the delivery of the 

fixation marks, targets, and red "Xs" for all probe and training sessions. 

Training Sessions 

Training sessions were initiated no more than two weeks following baseline 

testing. Participants with aphasia attended training sessions 2-3 times per week until 

they reached 80% accuracy, or for a maximum of 15 training sessions. The control 

participant was administered a total of nine training sessions within a two-week 

period. Multiple training sessions were permitted within a single day. As such, the 

training delivery schedule varied from participant to participant. Participant-specific 

delivery schedules are discussed in detail in the results section. 

Forty target pictures were randomly selected as trained stimuli; these forty 

items were balanced across word frequency and syllable length. Furthermore, 

trained target stimuli were repeated either 1 time or 4 times during each training 

session to assess differential effects of stimulus dosage. These 100 target pictures 

(20 1-trial/session targets; 20 4-trials/session targets) were presented randomly; 

intervals between repetitions were not controlled. 

During each training session, participants were instructed to name pictures 

aloud as quickly as possible while maintaining accuracy; they were discouraged 

from self-correcting errors, coughing and/or clearing their throat. Each trial 

proceeded as follows: a black fixation mark (*) appeared at the center of a white 

computer screen; the target picture appeared at the center of the computer screen, 

during which time the participant attempted to name the picture. A red "X" then 

appeared in the middle of a white screen to indicate to the participant that they must 

stop attempting to name the picture. The picture then reappeared, accompanied by 

both the auditory presentation of the name of the target and the orthographic form. 

A red "X" then appeared in the middle of the white screen to indicate to the 

participant that they must stop attempting to repeat the name of the picture. The 

black fixation mark then reappeared to prepare the participants for the next target. 

The 100 target pictures were divided equally into five runs (20 targets per run) with 

breaks provided as needed between runs. A completion message was presented on 
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the computer screen to indicate the end of each run. Refer to figure 4.3 for a visual 

depiction of this protocol. 

* WmSm 

Figure 4.3 Training Session Depiction 

Training Probe Sessions 

Training probes were administered immediately after every third training 

session and immediately prior to every fourth training session to assess both 

immediate and delayed effects of training on response accuracy and response time. 

Each training probe assessed response accuracy and response/reaction time of all 

40 trained items in addition to 20 randomly selected untrained pictures to assess 

generalization to untrained stimuli. 

During each training probe session, participants were instructed to name the 

60 target pictures aloud once as quickly as possible while maintaining accuracy; 

participants were discouraged from self-correcting errors, coughing, and/or clearing 

their throats during probe sessions. Target pictures were presented randomly. Each 

trial proceeded as follows: a black fixation mark (*) appeared at the center of a white 

computer screen; the target picture then appeared at the center of the computer 

screen during which time the participant attempted to name the picture. A red "X" 

then appeared in the middle of a white screen to indicate that the participant must 

stop attempting to name the picture. The black fixation point then reappeared to 

prepare the participant for the subsequent target. A completion message was 

presented on the computer screen to indicate the end of the session. 

Generalization Probe Sessions 

Stimulus generalization probes, during which participants were asked to 

name alternate exemplars of the trained stimuli, were administered immediately 

after every third training session and immediately prior to every fourth training 

* 

coffee 

Jl X 
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session to assess both immediate and delayed effects of training on response 

accuracy and response time. Each stimulus generalization probe assessed 

response accuracy and response/reaction time of 20 randomly selected alternate 

exemplars of the trained items. 

During each stimulus generalization probe session, participants were 

instructed to name the 20 target pictures aloud once as quickly as possible while 

maintaining accuracy; participants were discouraged from self-correcting errors, 

coughing, and/or clearing their throats during probe sessions. Target pictures were 

presented randomly. Each trial proceeded as follows: a black fixation mark (*) 

appeared at the center of a white computer screen; the target picture then appeared 

at the center of the computer screen during which time the participant attempted to 

name the picture. A red "X" then appeared in the middle of a white screen to 

indicate that the participant must stop attempting to name the picture. The black 

fixation point then reappeared to prepare the participant for the subsequent target. A 

completion message was presented on the computer screen to indicate the end of 

the session. 

Maintenance Probe Sessions 

Participants returned three times beginning six weeks following the last 

training session to assess behavioral performance after training had been 

withdrawn. Each maintenance probe assessed response accuracy and 

response/reaction time of all 40 trained items in addition to 20 randomly selected 

untrained pictures to assess generalization to untrained stimuli. 

During each maintenance probe session, participants were instructed to 

name the 60 target pictures aloud once as quickly as possible while maintaining 

accuracy; participants were discouraged from self-correcting errors, coughing, 

and/or clearing their throats during probe sessions. Target pictures were presented 

randomly. Each trial proceeded as follows: a black fixation mark (*) appeared at the 

center of a white computer screen; the target picture then appeared at the center of 

the computer screen during which time the participant attempted to name the 

picture. A red "X" then appeared in the middle of a white screen to indicate that the 

participant must stop attempting to name the picture. The black fixation point then 
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reappeared to prepare the participant for the subsequent target. A completion 

message was presented on the computer screen to indicate the end of the session. 

Data Collection and Analysis 

Response Accuracy Data 

The experimenter transcribed all responses verbatim during all training and 

probe sessions. The experimenter subsequently reviewed 100% of the recorded 

data of probes sessions to ensure accurate transcription of participants' responses. 

The experimenter then coded the transcribed responses. Initially, responses were 

coded using a binary +/- coding system. Accurate (+) responses reserved for 

analysis included: (1) the exact production of the target (e.g., "coffee"); (2) the target 

plus a filler (e.g., "um/the/a coffee"); (3) multiple correct productions (e.g., 

"coffee...coffee"); or (4) multiple productions/production attempts with the first 

attempt being correct (e.g., "coffee...croffee"). Erred responses were subsequently 

assigned an error code according to an error code taxonomy adapted from the 

Philadelphia Naming Test (Roach, Schwartz, Linebarger, Martin, & Bochetto, 1988). 

The error code taxonomy can be found in appendix M. Error data was used for 

analysis in a separate investigation (Kavalier, 2008) and will not be discussed in this 

paper. 

Descriptive statistics including means, ranges, and standard deviations for 

response accuracy were calculated for each participant, for each phase of the 

experimental protocol relative to independent variables. Line graphs were produced 

for each participant depicting performance across phases of the experimental 

protocol (i.e., baseline phase, training phase, and maintenance phase) for trained 

vs. untrained items, 1-trial vs. 4-trials/session items, and for the stimulus 

generalization probes. Visual analysis of the line graphs was used to interpret level, 

trend, variability, onset of training effects, and the magnitude of change relative to 

baseline performance. 
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Response Time/Reaction Time Data 

Response times43 for individuals with aphasia and reaction times for the 

control participant were detected and recorded by E-Prime during all sessions; the 

digital voice recorder also tracked time by millisecond for those responses not 

detected by E-Prime. Response times from all erred responses were removed prior 

to data analysis. Response times less than 250 ms were removed from the data set 

for each participant. Furthermore, as latencies for individuals with aphasia are 

characterized by variability, outliers four standard deviations or greater from the 

individual's mean performance were removed from the data set for each probe 

session (Moreno, Buchanan, & Van Orden, 2002). 

Descriptive statistics including means, ranges, and standard deviations of 

response/reaction time were calculated for the remaining latencies for each 

participant for each phase of the experimental protocol relative to independent 

variables. Line graphs were produced for each participant depicting performance 

across phases of the experimental protocol (i.e., baseline phase, training phase, 

and maintenance phase) for trained vs. untrained items, 1-trial vs. 4-trials/session 

items, and for the stimulus generalization probes. Visual analysis of the line graphs 

was used to interpret level, trend, variability, onset of training effects, and the 

magnitude of change relative to baseline performance. 

Reliability Procedures 

One judge, uninvolved in data collection, transcribed (i.e., glossed) 100% of 

the audio-recorded probe data for all individuals with aphasia and the healthy 

control participant. When phonemic errors were made by the participant, resulting in 

nonwords, the reliability judge transcribed the utterance using the International 

Phonetic Alphabet (IPA). After transcribing and recording the participants' 

responses, the reliability judge made a binary +/- accuracy judgment for each trial, 

following the accuracy rules described above. A second judge, also uninvolved in 

data collection, reviewed the first reliability judge's transcriptions and assigned error 

Response times differ from reaction times in that individuals with aphasia were not 
encouraged to respond as quickly as possible. Instead, they were simply asked to name the 
picture. The term "reaction time" was reserved for the control participant, who was asked to 
name the picture as quickly as possible without making an error. 
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codes according to the error coding taxonomy presented in appendix M. Both 

judges were blind to the original transcriber's transcriptions and accuracy 

judgments. Judges were trained to transcribe and assign error codes prior to the 

onset of examining data. Judges completed all necessary HIPPA and Human 

Subject's training prior to viewing participant data. Cohen's Kappa was used to 

calculate inter-judge reliability for the binary accuracy judgment between the 

experimenter and reliability judge for each subject (see table 4.4); collectively, 

across all subjects, inter-judge reliability was 0.88. Error code reliability will not be 

presented in this paper. 

Table 4.4 Inter-Judge Reliability (Cohen's Kappa) 

Participant 

A102 

A103 

A104 

A106 

Overall 

Kappa 
Statistic 

0.89 

0.86 

0.95 

0.67 

0.88 

Some difficulties were encountered during transcription from the digital audio 

recorder for participants whose errors largely consisted of phonemic paraphasias. 

The sensitivity of the microphone was not ideal for detailed transcription. This poor 

sensitivity, however, did not influence the binary +/- judgment for either the 

experimenter or the reliability judge; as such, calculating inter-judge reliability was 

not influenced by this technical difficulty. Reliability difficulties for error coding 

analysis stemming from this reduced audibility are discussed in detail in the 

investigation being completed by Kavalier (2008). 
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CHAPTER V: RESULTS 

PARTICIPANT DELIVERY SCHEDULES & STIMULUS DOSAGE 

A102 participated in 2-3 training sessions per week, as her schedule 

permitted, for a total of 15 training sessions. Over the course of the training protocol, 

A102 was exposed to the trained items a total of 600 times; she attempted to name 

the trained 1-trial/session pictures 600 times and the 4-trials/session pictures 2400 

times across the training protocol. She returned for three maintenance probes at six 

weeks, seven weeks and eight weeks following her last training session. Please 

refer to table 5.1 for a summary of the participants' stimulus dosage. 

A103 participated in two training sessions per week for a total of six training 

sessions. Over the course of the training protocol, A103 was exposed to the trained 

items a total of 240 times; she attempted to name the trained 1-trial/session pictures 

240 times and the 4-trials/session pictures 960 times across the training protocol. 

She returned for the first of three maintenance probes beginning six weeks following 

her last training probe. The second two maintenance probes were completed during 

the seventh week following her last training probe. 

A104 participated in two training sessions per week for a total of 12 training 

sessions. Over the course of the training protocol, A104 was exposed to the trained 

items a total of 480 times; she attempted to name the trained 1-trial/session pictures 

480 times and the 4-trials/session pictures 1920 times across the training protocol. 

She returned for three maintenance probes, ail of which occurred during the sixth 

week following her last training probe. 

A106 participated in two training sessions per week for a total of 15 training 

sessions. Over the course of the training protocol, A106 was exposed to the trained 

items a total of 600 times; she attempted to name the trained 1-trial/session pictures 

600 times and the 4-trials/session pictures 2400 times across the training protocol. 

Maintenance probes are pending. A106 returned for three maintenance probes, the 

first of which occurred during the sixth week following her last training probe; the 

second and third maintenance probes occurred during the seventh week following 

her last training probe. 
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C102 participated in two training sessions per day for three days for a total of 

nine training sessions. Breaks lasting between ten minutes and two hours were 

given between the training sessions that occurred on the same day. Over the course 

of the training protocol, C102 was exposed to the trained items a total of 160 times; 

she named the 1-trial/session pictures 360 times and the 4-trials/sessiorc pictures 

1440 times across the training protocol. C102 returned for three maintenance 

probes, the first of which occurred during the sixth week following her last training 

probe; the second and third maintenance probes occurred during the seventh week 

following her last training probe. 

Table 5.1 Stimulus Dosage by Participant 

Total Training 
Sessions 
Total Exposures 

Total Naming Attempts 
Without support 
Total Naming Attempts 
With Support 

Total Naming Attempts 

A102 

15 

600 

300; 1200 

300;1200 

600,2400 

A103 

6 

240 

120;480 

120;480 

240,960 

A104 

12 

480 

240;960 

240:960 

480:1920 

A106 

15 

600 

300;1200 

300;1200 

600:2400 

CONTROL 

9 

160 

180;720 

180;720 

360;1440 

ACCURACY DATA 

Trained vs. Untrained Items 

Descriptive Statistics 

Descriptive statistics including means and standard deviations were 

calculated for each participant across each phase of the experimental protocol for 

trained and untrained items relative to response accuracy. Refer to table 5.2 for a 

summary of means and standard deviations. 
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Table 5.2. Mean Response Accuracy for Trained vs. Untrained Items 

Baseline 

Phase 

Training 

Phase 

Maintenance 

Phase 

Untrained 

Trained 

Untrained 

Trained 

Untrained 

Trained 

A102 

35% (11) 

41% (5) 

34% (5) 

70% (8) 

32% (12) 

78% (1) 

A103 

46% (13) 

60% (8) 

35% (21) 

93% (10) 

43% (13) 

94% (4) 

A104 

83% (12) 

90% (5) 

79% (8) 

95% (4) 

70% (8) 

90% (5) 

A106 

38% (4) 

47% (6) 

34% (14) 

54% (9) 

40% (13) 

60% (3) 

CONTROL 

98% (3) 

99% (1) 

94% (5) 

99% (1) 

93% (0.06) 

100% (0) 

()=standard deviation 

Visual Analysis 

Line graphs were produced for each participant to depict percent response 

accuracy across phases of the experimental protocol for trained and untrained item 

(see figures 5.1-5.4). A line graph was not produced for the control participant as 

she was at near-ceiling performance in terms of response accuracy for the entire 

protocol. However, trained items were consistently named more accurately than 

untrained items for the control participant across all probe sessions44. 

A102. Across the four baseline probes, A102 averaged 38% accuracy 

(range=20-45%; SD=8.4); no visual differences between trained (mean=41%; 

range=38-45%; SD=5.2) and untrained (mean=33%; range= 20-45%; SD=10.8) 

items were observed during the baseline phase except for the first probe at which 

time trained items (38%) were responded to more accurately than untrained items 

(20%). During the training phase, a large split between trained and untrained items 

is observable by visual inspection, with trained items being responded to more 

accurately than untrained items. A102 demonstrated a 22% increase, relative to 

baseline, for response accuracy of trained items at the time of the first training probe 

(onset). A positive but low magnitude slope for was observed for trained items 

(y=1.75x+61.25; R2=0.35) relative to untrained items (y=0.33x+32.22; R2=0.0353) 

throughout the training phase. Occasional dips in accuracy were observed for the 

44 The items missed by the control participant were consistent across phases of the protocol. 
That is, the items responded to inaccurately during baseline were also responded to 
inaccurately during the training and maintenance phases of the protocol. No changes in 
accuracy were observed as a result of training. 
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delayed training probes relative to the immediate training probes. Towards the end 

of the training protocol, however, response accuracy was no longer influenced by 

the length of time between training sessions and probes (i.e., immediate vs. 

delayed). By the end of the training phase (i.e., the last two training probes), A102 

averaged 79% accuracy on trained items, reflecting a 38% increase in response 

accuracy relative to baseline performance. This increase in response accuracy for 

trained items persisted throughout the maintenance phase; she averaged 78% for 

trained items (range= 78-80%; SD=1) and 32% for untrained items (range=25-45%; 

SD=12) across the three maintenance probes. Response accuracy for untrained 

items during the training and maintenance phases remained within the participant's 

baseline performance rate. Refer to figure 5.1 for A102's naming performance for 

trained vs. untrained items across experimental phases. 

A103. Across the four baseline probes, A103 averaged 53% accuracy 

(range=35-65%; SD= 12). Trained items (mean=60%; range=48-65%; SD=8) were 

responded to slightly more accurately than untrained items (mean=46%; range=35-

65%; SD=13) during the baseline phase. With the onset of the training phase, 

however, an immediate and marked split occurred between trained and untrained 

items. Relative to the baseline phase mean response accuracy, A103 demonstrated 

a 38% increase in response accuracy for trained items at the time of the first training 

probe; however, her response accuracy for trained items did not continue increase 

as a result of further training (y=2x+87.5; R2=0.0667). Untrained items were 

characterized by a moderate negative slope (y=-12x+65; R2=0.5442). By the end of 

the training phase (i.e., the last two training probes), A103 averaged 98% accuracy 

for the trained items and 18% accuracy for the untrained items. A dip in response 

accuracy for trained items was observed for the first delayed probe during the 

training phase. A103's response accuracy was not influenced by the time from 

training session to training probe (i.e., immediate vs. delayed probe) for the rest of 

the training phase. A103's increased accuracy for trained items relative to untrained 

items persisted throughout the maintenance phase; she averaged 94% for trained 

items (range=90-98%; SD=4) and 43% for untrained items (range=30-55%; SD= 13) 

across the maintenance probes. A103 demonstrated an observable dip in response 

accuracy for the untrained items during the training phase of the experiment (15-
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20%); however, her response accuracy for untrained items returned to baseline 

performance range (35-65%) during the maintenance phase. Refer to figure 5.2 for 

A103's naming performance (response accuracy) for trained vs. untrained items 

across experimental phases. 

A104. Across the four baseline probes, A104 averaged 86% accuracy 

(range=75-100%; SD=9). No consistent visual differences were observed between 

trained (mean=90%; range=85-95%; SD=5) and untrained (mean=83%; range=75-

100%; SD= 12) items during the baseline phase. During the first half of the training 

phase a split can be observed between trained and untrained items as trained items 

are characterized by a minimally positive slope (y=0.2381x+93.93; R2=0.0238) as 

they reach near ceiling to ceiling levels; however, this gap narrows as untrained 

items become more reliably produced by the end of the repetition priming protocol 

(y=2.381x+68.036; R2=0.5442). This gap appears to represent a decrease in 

response accuracy for untrained items as opposed to an increase in accuracy for 

trained items. The onset of this split, however, was immediate. By the end of 

training (i.e., the last two training probes), A104 averaged 98% accuracy for trained 

items and 83% accuracy for untrained items. The split between trained items 

relative to untrained items persisted through the maintenance phase; she averaged 

90% for trained items (range=85-95%; SD= 5) and 70% for untrained items (range= 

65-80%; SD=8). Refer to figure 5.3 for A104's naming performance (response 

accuracy) for trained vs. untrained items across experimental phases. 

A106. Across the four baseline probes, A106 averaged 42% accuracy 

(range=30-53%; SD= 7). Trained items were responded to ten percent more 

accurately (mean=47%, range=43-53%; SD=4) than untrained items (mean= 38%; 

range=30-45%; SD=7) during the baseline phase; this difference appears to be a 

result of less stable production of untrained items relative to trained items. During 

the training phase, a steady increase in response accuracy was observed for trained 

items (y=3.006x+38.661; R2=0.7698), while untrained items were responded to 

much less consistently with no observable change in response accuracy 

(y=1.7857x+26.964; R2=0.103). Approximately five percent drops in response 

accuracy were observed for delayed vs. immediate probes for the first half of the 

training phase. The influence time of probe following training disappears by the 
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fourth probe session. By the end of the training phase (i.e., the last two training 

probes), A106 averaged 63% accuracy for trained items and 30% accuracy for 

untrained items. Although A106 demonstrated and steady increase in response 

accuracy for trained relative to untrained items, improvement relative to baseline did 

not occur until the third training probe (i.e., after nine training sessions). A106 

demonstrated an increase in response accuracy for untrained items at the third 

probe session (both immediate and delayed); however, her performance returned to 

within baseline performance rate at the final probes (both immediate and delayed). 

The split between trained items relative to untrained items persisted through the 

maintenance phase; she averaged 60% for trained items (range=58-63%; SD= 3) 

and 40% for untrained items (range= 30-55%; SD=13). Refer to figure 5.4 for A106's 

naming performance (response accuracy) for trained vs. untrained items across 

experimental phases. 

C102. Participant C102 performed at near-ceiling levels for response 

accuracy (93-100%) for all phases of the experimental protocol. As such, her data 

will not be presented in this section of results. 
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Figure 5.1 A102 Response Accuracy for Trained vs. Untrained Items 
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1-Trial vs. 4-Trials per Session 

Descriptive Statistics 

Descriptive statistics including means and standard deviations were 

calculated for each participant across each phase of the experimental protocol for 1-

trial/session and 4-trials/session items relative to response accuracy. Please refer to 

table 5.3 for a summary of these means and standard deviations. The control 

participant responded to 100% of the pictures accurately. As such, standard 

deviations are not provided for her data. 

Table 5.3 Mean Response Accuracy for 1- vs. 4-Trials/Session Items 

Baseline 

Phase 

Training 

Phase 

Maintenance 

Phase 

Untrained 

Trained 

1 Trial 

4 Trials 

1 Trial 

4 Trials 

A102 

35% (11) 

41% (5) 

66% (13) 

74% (10) 

70% (10) 

86.7% (8) 

A103 

46% (13) 

60% (8) 

94% (6) 

91% (14) 

92.7% (8) 

96.7% (3) 

A104 

83% (12) 

90% (5) 

96% (4) 

94% (6) 

90% (0) 

90% (10) 

A106 

38% (4) 

47% (6) 

61% (14) 

46%(9) 

65% (0) 

55% (5) 

CONTROL 

98% (3) 

99% (1) 

99% (0.02) 

100% (0) 

100% (0) 

100% (0) 

Visual Analysis 

Line graphs were produced for each participant to depict response accuracy 

across phases of the experimental protocol for 1-trial and 4-trials/session items (see 

figures 5.1-5.4). A line graph was not produced for the control participant as she 

was at ceiling performance in terms of response accuracy for the entire protocol. 

A102. Across the four baseline probes, A102 averaged 4 1 % response 

accuracy for trained items (range=30-50%). Items selected to be 1 -trial/session 

(mean=43%; range=30-50%; SD=10) appeared to be less stable than 4-

trials/session (mean=39%; range=35-40%; SD=3) during the baseline phase. During 

the training phase, both 1- and 4-trials/session items demonstrated an immediate 

increase in response accuracy. However, 4-trials/session items demonstrated a 

steady increase in response accuracy (y=3.1667x+58.056; R2=0.8143) while 1-

trial/session items were responded to much less reliably, with no noticeable change 

in response accuracy during the course of the training phase (y=0.333x+64.4; 

R2=0.0048). By the end of training (i.e., the last two training probes), A102 averaged 
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70% accuracy for 1-trial/session items and 88% accuracy for 4-trials/session items. 

However, both 1- and 4-trials/session items were responded to with 85% accuracy 

at the time of the final training probe. This overall 33% increase of response 

accuracy for 4-trials/session items and 25% increase in response accuracy for 1-

trial/session items (relative to baseline) persisted through the maintenance phase of 

the protocol; A102 averaged 70% accuracy for 1-trial/session items (range=60-80%; 

SD=10) and 87% accuracy for 4-trials/session items (range=80-95%; SD=8) during 

the maintenance phase. Refer to figure 5.5 for A102's response accuracy for 1 vs. 

4 trials per session across experimental phases. 

A103. Across the four baseline probes, A103 averaged 60% response 

accuracy for trained items (range=45-70%). No differences were observed between 

items selected to be 1-trial/session (mean=61%; range=50-70%; SD=9) vs. 4-

trials/session (mean=58%; range=45-65%; SD=9) during the baseline phase. During 

the training phase, no noticeable changes in response accuracy were observed for 

either items selected to be 1-trial/session (y=2.5x+85; R2=0.051) or 4-trials/session 

items (y=1.5x+90; R2=0.0947). By the end of the training phase (i.e., the last two 

training probes), A103 averaged 98% accuracy for both 1-trial/session items and 4-

trials/session items. A slight difference was observed between 1- and 4-

trials/session items during the maintenance phase; 1-trial/session items were 

responded to with 93% accuracy (range=85-100%; SD=8) and 4-trials/session items 

were responded to with 97% accuracy (range=95-100%; SD=3). Refer to figure 5.6 

for A103's naming performance for 1 vs. 4 trials per session across experimental 

phases. 

A104. Across the four baseline probes, A104 averaged 90% response 

accuracy for trained items (range=75-95%). During the baseline phase, items 

selected to be 1-trial/session (mean=94%; range=90-95%; SD=3) were responded 

to more accurately and more consistently than those selected to be 4-trials/session 

(mean=85%; range= 75-95%; SD=9). No observable changes were observed for 

response accuracy during the course of the training phase for either 1 -trial/session 

items (y=5357x+93.214; R2=0.0989) or 4-trial/session items (y=-0.0595x+94.64; 

R2=0.007). As a result of the apparent instability of 4-trials/ession items, 4-

trials/session items appeared more susceptible to immediate vs. delayed probes 
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than the 1-trial/session items until the fourth training probe. By the end of the 

training phase (i.e., the last two training probes), A104 averaged 100% accuracy for 

1-trial/session items and 95% accuracy for 4-trials/session items. During the 

maintenance phase, A104 averaged 90% response accuracy for both 1 -trial/session 

items (range=90-90%; SD=0) and 4-trials/session items (range=90-100%; SD=10). 

Her performance across the three maintenance probes was completely stable for 

the 1-trial/ session items, while her performance for the 4-trials/session items 

fluctuated across the three maintenance probes. Refer to figure 5.7 for A104's 

naming performance for 1 vs. 4 trials per session across experimental phases. 

A106. Across the four baseline probes, A106 averaged 47% response 

accuracy for trained items (range=40-55%). During the baseline phase, a 10 

percent difference in mean performance was observed between items selected to 

be 1-trial/session (mean=50%; range=45-55%; SD=6) and items selected to be 4-

trials/session (mean=41%; range=40-50%; SD=45). This difference, however, 

appears to stem from a single 15 percent difference between 1-trial and 4-

trials/session items at the second baseline probe. All other baseline probes range 

between a zero and five percent difference between 1-trial and 4-trials/session 

items. During the training phase, both 1-trial/session items (y=3.4524x+43.214; 

R2=0.4216) and 4-trials/session (y=2.5595x+34.107; R2=0.4095) items demonstrate 

a slight increase in response accuracy. By the end of the training phase (i.e., the 

last two training probes), A106 averaged 68% accuracy for 1-trial/session items and 

53% accuracy for 4-trials/session items. During the maintenance phase, A106 

averaged 65% response accuracy for 1-trial/session items (range=65-65%; SD=0) 

and 55% response accuracy for 4-trials/session items (range=50-60%; SD=5). Her 

performance across the three maintenance probes was completely stable for the 1-

trial/ session items, while her performance for the 4-trials/session items fluctuated 

across the three maintenance probes. Refer to figure 5.8 for A106's naming 

performance for 1-trial/session vs. 4-trials/session items across experimental 

phases. 

C102. As anticipated, C102 performed at ceiling levels for response 

accuracy (100%) for all phases of the experimental protocol. As such, her data will 

not be presented in this section of results. 
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Effect Sizes for Response Accuracy 

To determine the amount of change in response accuracy observed as a 

result of the repetition priming protocol, effect sizes were calculated for trained and 

untrained items, and 1 -trial/session and 4-trials/session for each participant. Busk 

and Serlin's d45 was used, which compares mean performance during the 

maintenance phase to the mean performance during the baseline phase, relative to 

the variance observed during the baseline phase. This effect size calculation 

assumes that the variance observed during baseline is the variance inherent to each 

participant prior to treatment (Beeson & Robey, 2008). Busk and Serlin's d does not 

take into consideration performance during the training phase. Traditional 

benchmarks for effect sizes in the sciences have been provided by Jacob Cohen 

(Cohen, 1969) as follows: small (0.20), medium (0.50), and large (0.80). Recently, 

aphasiologists Beeson and Robey synthesized data from treatment studies involving 

individuals with aphasia to provide benchmarks for effect sizes relative to single 

subject design studies investigating lexical retrieval (see table 5.4). 

Table 5.4 Benchmarks for Effect Sizes Relative to Aphasia Research 

Lexical Retrieval 

Small 

6.5 

Medium 

8.0 

Large 

9.5 

These benchmarks will be used as a reference point for upcoming discussions 

about the effect sizes calculated for the current investigation. In an earlier study, 

Robey found that spontaneous recovery produces an average effect size of 0.6 

(Robey, 1998). From a theoretical standpoint, however, repetition priming is not 

expected to produce effect sizes as large as those produced by impairment-based, 

linguistically-motivated treatments designed to improve spoken language production 

for individuals with aphasia. That is, this repetition priming protocol was not 

designed to be a treatment study; instead, the current investigation sought to 

observe the learning behavior of individuals with aphasia in the context of repetition 

priming and to determine how stimulus dosage influences such priming in 

individuals with aphasia. Refer to tables 5.5-5.8 for a summary of the effect sizes 

45 Busk & Serlin's d = mean(post-treatment) - mean(pre-treatment)/standard deviation (pre-
treatment) 
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calculated for each participant in regards to response accuracy as influenced by 

stimulus dosage (i.e., trained, untrained, 1 -trial/session, 4-trials/session). 

Table 5.5 Effect Sizes for Response Accuracy of Trained Items 

Trained 
Direction of Effect Size 
Size Relative to Benchmark 

A102 
7.30 
Positive 
Small-
Medium 

A103 
4.19 
Positive 
Small 

A104 
0.12 
Positive 
No change 

A106 
2.31 
Positive 
Small 

Table 5.6 Effect Sizes for Response Accuracy of Untrained Items 

Untrained 
Direction of Effect Size 
Size Relative to Benchmark 

A102 
-0.13 
Negative 
No change 

A103 
-0.22 
Negative 
No change 

A104 
-0.92 
Negative 
No change 

A106 
0.38 
Positive 
No change 

Table 5.7 Effect Sizes for Response Accuracy of 1-Trial/Session Items 

1 Trial/Session 
Direction of Effect Size 
Size Relative to Benchmark 

A102 
2.89 
Positive 
Small 

A103 
3.54 
Positive 
Small 

A104 
-1.5 
Negative 
Small 

A106 
1.83 
Positive 
Small 

Table 5.8 Effect Sizes for Response Accuracy of 4-1 

4 Trials/Session 
Direction of Effect Size 
Size Relative to Benchmark 

A102 
19.1 
Positive 
Large 

A103 
4.53 
Positive 
Small 

rrials/Session Items 
A104 
0.56 
Positive 
No Change 

A106 
2.34 
Positive 
Small 

Stimulus Generalization 

Descriptive Statistics 

Stimulus generalization probes were administered immediately following 

each training and maintenance probe to document the effects of repetition priming 

on naming response accuracy of alternate exemplars of the trained items. 

Descriptive statistics including means and standard deviations for each stimulus 

generalization probe were calculated for each participant across the training and 

maintenance phases of the experimental protocol for 1-trial/session and 4-

trials/session items relative to response accuracy. Alternate exemplars were not 

probed during the baseline phase of the protocol. Please refer to table 5.9 for a 

summary of these means and standard deviations. The control participant 

responded to 95-100% of the alternate exemplars accurately. As such, standard 

deviations are not provided for her data. 



100 
Table 5.9. Mean Response Accuracy for Stimulus Generalization Probes 

Training 

Phase 

Maintenance 

Phase 

1 Trial 

4 Trials 

1 Trial 

4 Trials 

A102 

60%(19) 

50%(17) 

56%(9) 

59%(16) 

A103 

88%(18) 

84%(4) 

93%(6) 

87%(11) 

A104 

95%(6) 

91%(7) 

83%(8) 

90%(17) 

A106 

47% (17) 

41% (15) 

59% (10) 

51% (12) 

CONTROL 

100% (0) 

93% (3) 

100% (0) 

97% (3) 

Visual Analysis 

Line graphs were produced for each participant to depict response accuracy 

across training and maintenance phases of the experimental protocol for 1-trial and 

4-trials/session items (see figures 5.9-5.12). A line graph was not produced for the 

control participant as she was at near-ceiling performance in terms of response 

accuracy for the entire protocol. Consistent effects of repetition priming on 

generalization to alternate exemplars were not observed for any of the participants. 
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RESPONSE TIME/REACTION TIME DATA 

Response time data for individuals with aphasia is provided below, with 

some caveats. With the exception of A104, who began the protocol with at a near-

ceiling level, a significant amount of data was trimmed prior to calculating 

descriptive statistics for each probe session. For each participant, erred responses 

were removed from the data set, along with outliers as described in earlier sections. 

As such, the response time data presented below often depicts only a handful of 

response time data points. Please see table 5.10 for a description of the amount of 

data trimmed for each participant for each probe. Reaction time data for the control 

participant is also presented below. Data reduction for the control participant was 

minimal, resulting from occasional technical difficulties; this data reduction is also 

presented in table 5.10. 

Table 5.10 Response/Reaction Time Data Trimmed by Participant 

A102 

A103 

A104 

A106 

C102 

Baseline Probe 

Data Trimmed 

# 

177 

120 

42 

138 

3 

% 

74% 

50% 

18% 

58% 

1% 

Training Probe 

Data Trimmed 

# 

213 

72 

59 

287 

11 

% 

44% 

30% 

13% 

53% 

3% 

Maintenance 

Probe 

Data Trimmed 

# 

75 

44 

33 

85 

4 

% 

42% 

24% 

18% 

47% 

2% 

Stimulus 

Generalization 

Probe Data 

Trimmed 

# 

74 

18 

17 

83 

3 

% 

46% 

18% 

12% 

52% 

0.8% 

Total Data 

Trimmed 

# 

539 

254 

151 

593 

21 

% 

51% 

33% 

15% 

53% 

2% 

Trained vs. Untrained Items 

Descriptive Statistics 

Descriptive statistics including means and standard deviations were 

calculated for each participant across each phase of the experimental protocol for 

trained and untrained items relative to response/reaction time. Please refer to table 

5.11 for a summary of means and standard deviations. 
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Table 5.11 Mean Response/Reaction Time (ms) for Trained vs. Untrained Items 

Baseline 

Phase 

Training 

Phase 

Maintenance 

Phase 

Untrained 

Trained 

Untrained 

Trained 

Untrained 

Trained 

A102 

1080(143) 

1134(70) 

1451 (193) 

1159(127) 

1092(175) 

1585(77) 

A103 

1996(881) 

1797(151) 

1888(990) 

1878(577) 

1800(68) 

1887(470) 

A104 

1240(200) 

1061 (65) 

1077(145) 

1023 (64) 

1144 (48) 

1042 (43) 

A106 

734 (191) 

719(180) 

909 (430) 

804 (289) 

1184(516) 

883 (404) 

CONTROL 

731 (197) 

672 (148) 

777 (200) 

613(142) 

749(174) 

619(169) 

()=standard deviation 

Visual Analysis 

Line graphs were produced for each participant to depict response/reaction 

time across phases of the experimental protocol for trained and untrained item (see 

figures 5.13-5.17). 

A102. Across the four baseline probes, A102 averaged 1107 ms (range= 

986-1244 ms; SD=105 ms). Upon visual inspection, small differences between 

trained (mean=1134 ms; range= 1053-1178 ms; SD=70 ms) and untrained items 

(mean=1080; range=986-1244; SD=143 ms) were observed during the baseline 

phase. During the training phase, A102 responded to trained items somewhat faster 

than untrained items. A102 demonstrated a moderate, but consistent decrease in 

response time for trained items (y=-38.23x+1330.6; R2=0.5469) compared to 

untrained items (y=-6.7077x+1481.3; R2=0.0072) as the training protocol 

progressed. By the end of the training protocol (i.e., the last two training probes), 

she responded to trained items approximately 116 ms faster than she did during the 

baseline phase. Untrained items were responded to much less consistently and no 

visual decrease was observed as the training protocol progressed. By the end of 

the training protocol she responded to untrained items 339 ms slower than she did 

during the baseline phase. During the maintenance phase, A102 responded to 

trained items (mean=1092 ms; range=1026-1176 ms; SD=77 ms) faster and more 

consistently than to untrained items (mean=1585 ms; range=1401-1749 ms; 

SD=175 ms). Furthermore, during the maintenance phase, she responded to trained 

items 42 ms faster than during the baseline phase; she responded to untrained 
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items 505 ms slower during the maintenance phase than she did during the baseline 

phase. Refer to figure 5.13 for a visual depiction of A102's response time across 

phases of the protocol. Note: response time probe data from the second baseline 

probe and first training probe were lost as a result of technical difficulties. Response 

time logging did not occur within E-Prime as a result of undetermined technical 

difficulties. 

A103. Across the four baseline probes, A103 averaged 1897 ms (range= 

1350-3304 ms; SD=304 ms). Upon visual inspection, small differences between 

trained (mean=1797 ms; range=1690-2021 ms; SD=151 ms) and untrained items 

(mean=1996; range=1350-3304; SD=889 ms) were observed during the baseline 

phase. During the training phase, A103 responded similarly to both trained and 

untrained items. A large, consistent decrease of response time occurred for both 

trained items (y=-422.66x+2934.5; R2=0.8935) and untrained items (y=-

759.97x+3787.4; R2=0.9813) as the training protocol progressed. By the end of the 

training protocol she responded to trained items 388 ms faster than during the 

baseline phase; she responded to untrained items 904 ms faster than during the 

baseline phase. By the end of the training phase (i.e., the last two training probes), 

A103 responded to untrained items (mean=1092 ms) faster than to trained items 

(mean=1409 ms). During the maintenance phase, A103 responded to trained items 

(mean=1800 ms; range=1386-2311) ms; SD=470 ms) faster but less consistently 

than she did to untrained items (mean=1887 ms; range=1815-1951 ms; SD=175 

ms). Furthermore, during the maintenance phase, she responded to trained items 3 

ms slower than during the baseline phase; she responded to untrained items 109 

ms faster during the maintenance phase than she did during the baseline phase. 

Refer to figure 5.14 for a visual depiction of A103's response time across phases of 

the protocol. 

A104. Across the four baseline probes, A104 averaged 1151 ms (range= 

982-1459 ms; SD=156 ms). Upon visual inspection, large differences between 

trained (mean=1061 ms; range=982-1140 ms; SD=65 ms) and untrained items 

(mean=1240; range=987-1459; SD=200 ms) were observed during the baseline 

phase beginning with the second baseline probe. During the training phase, A104 

responded more consistently and somewhat faster for trained items than she did for 
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untrained items. Neither trained (y=3.3302x+1008.1; R2=0.0164) nor untrained items 

(y=-6.6996x+1107.3; R2=0.0128) demonstrated a trend in terms of a decrease or 

increase in response time as the training protocol progressed. By the end of the 

training protocol A104 responded to trained items 76 ms faster than during the 

baseline phase; she responded to untrained items 141 ms faster than during the 

baseline phase. By the end of the training phase (i.e., the last two training probes), 

A104 responded to trained items (mean=1041 ms) faster than to untrained items 

(mean=1118 ms). During the maintenance phase, A104 responded to trained items 

(mean=1042 ms; range=1010-1090) ms; SD=43 ms) faster than she did to 

untrained items (mean=1145 ms; range=1102-1196 ms; SD=48 ms). Furthermore, 

during the maintenance phase, she responded to trained items 19 ms faster than 

during the baseline phase; she responded to untrained items 95 ms faster during 

the maintenance phase than she did during the baseline phase. Refer to figure 5.15 

for a visual depiction of A104's response time across phases of the protocol. 

A106. Across the four baseline probes, A106 averaged 727 ms (range=660-

840 ms; SD=59 ms). Visual inspection indicates a very stable baseline phase with 

no observable differences between trained items (mean=719 ms; range=664-759 

ms; SD=43 ms) and untrained items (mean=734 ms; range=664-840 ms; SD=75 

ms). During the training phase, A106 responded more consistently and much faster 

for trained items than she did for untrained items. Both trained (y=-24.702x+888.43; 

R2=0.3972) and untrained items (y=-51.188x+1373.4; R2=0.4028) demonstrated a 

small decrease in response time as the training protocol progressed; however, 

untrained items were responded to much slower than baseline performance at the 

start of the training phase. By the end of the training protocol A106 responded to 

trained items 26 ms faster than during the baseline phase; she responded to 

untrained items 222 ms slower by the end of the training phase than during the 

baseline phase. By the end of the training phase (i.e., the last two training probes), 

A106 responded to trained items (mean=912 ms) faster than to untrained items 

(mean=1902 ms). A106 responded to trained items 164 ms slower during the 

maintenance phase than during the baseline phase; she responded to untrained 

items 450 ms slower during the maintenance phase than she did during the baseline 
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phase. Refer to figure 5.16 for a visual depiction of A104's response time across 

phases of the protocol. 

C102. Across the four baseline probes, the control averaged 702 ms 

(range=637-795 ms; SD=173 ms). Visual inspection indicates a stable baseline 

phase with observable differences between trained items (mean=672 ms; 

range=637-719 ms; SD=148 ms) and untrained items (mean=731 ms; range=683-

795 ms; SD=197 ms). Both trained items (y=-13.677x+660.04; R2=0.4908) and 

untrained items (y=-31.349x+874.92; R2=0.6209) demonstrated a small to moderate 

decrease in reaction time over the course of the four baseline probes. During the 

training phase, C102 responded more consistently and much faster for trained items 

than she did for untrained items. Both trained and untrained items demonstrated a 

decrease in reaction time as the training protocol progressed, although untrained 

items were responded to much slower than baseline performance at the start of the 

training phase. By the end of the training protocol C102 responded to trained items 

59 ms faster than during the baseline phase; she responded to untrained items 46 

ms faster by the end of the training phase than during the baseline phase. C102 

responded to trained items 53 ms faster during the maintenance phase than during 

the baseline phase; she responded to untrained items 18 ms faster during the 

maintenance phase than she did during the baseline phase. Refer to figure 5.17 for 

a visual depiction of C102's response time across phases of the protocol. 
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Descriptive Statistics 

Descriptive statistics including means and standard deviations were 

calculated for each participant across each phase of the experimental protocol for 1-

and 4-trials/session items relative to response/reaction time. Please refer to table 

5.12 for a summary of these means and standard deviations. 

Table 5.12 Mean Response/Reaction Time (ms) for 1- vs. 4-Trials/Session Items 

Baseline 

Phase 

Training 

Phase 

Maintenance 

Phase 

1 Trial 

4 Trials 

1 Trial 

4 Trials 

1 Trial 

4 Trials 

A102 

1136(45) 

1102(229) 

1194(161) 

1124(132) 

1106(122) 

1086(53) 

A103 

1850(282) 

1735(268) 

1860(692) 

1902 (509) 

1765(413) 

1806 (534) 

A104 

1050(111) 

1077 (35) 

996 (97) 

1056(101) 

1021 (38) 

1065(62) 

A106 

698 (179) 

746 (189) 

812 (240) 

784 (309) 

926 (340) 

815(289) 

CONTROL 

698 (161) 

648 (122) 

632 (177) 

595 (125) 

640(197) 

598(131) 

()=standard deviation 

Visual Analysis 

Line graphs were produced for each participant to depict response/reaction 

time across phases of the experimental protocol for 1-trial and 4-trials/session items 

(see figures 5.18-5.22). 

A102. Across the four baseline probes, A102 averaged 1118 ms response 

time for trained items (range=838-1239 ms). Items selected to be 1-trial/session 
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(mean=1136; range=1111-1188 ms; SD=45 ms) appeared to be responded to more 

consistently than 4-trials/session (mean=1102 ms; range=838-1239; SD=229 ms) 

during the baseline phase. During the first part of the training phase, 4-trial/session 

items were responded to more quickly than 1-trial/session items; however, by the 

end of the training phase (i.e., the last two training probes), 1 -trial (mean=1014 ms) 

and 4-trials/session (mean=1017 ms) items were responded to with nearly identical 

response times. Over the course of the training phase, 1 -trial/session items 

demonstrated a slight decrease in response time (y=-21.712x+1221.6; R2=0.1637) 

while 4-trials/session items demonstrated a moderate decrease in response time 

(y=-54.696x+1440.7; R2=0.6921). During the maintenance phase, 4-trial/session 

items (mean=1086 ms; range=1048-1146 ms; SD=53 ms) were responded to 

slightly faster and more consistently than 1-trial/session items (mean=1106 ms; 

range=996-1237 ms; SD=122 ms). Refer to figure 5.18 for A102's response times 

for 1- vs. 4-trials/session across experimental phases. NOTE: response time data 

for the second baseline probe and the first training probe are missing as a result of 

undetermined technical difficulties. 

A103. Across the four baseline probes, A103 averaged 1792 ms response 

time for trained items (range=1362-2082 ms; SD=262 ms). Items selected to be 1-

trial/session (mean=1850; range=1487-2082 ms; SD=282 ms) were not responded 

to differently than items selected to be 4-trials/session (mean=1735 ms; 

range=1362-1960; SD=266 ms) during the baseline phase. After an initial increase 

in response time during the first part of the training phase, relative to baseline, both 

1-trial/session items (y=-484.76x+3071.6; R2=0.8189) and 4-trials/session items (y=-

359.37x+2800.4; R2=0.8304) demonstrated a large decrease in response time 

during the course of the training phase. By the end of the training phase (i.e., the 

last two training probes), 1-trial/session items (mean=1360 ms) were responded to 

slightly faster than 4-trials/session (mean=1462 ms); collapsing 1- and 4-

trials/session items, a 381 ms decrease in response time was observed by the end 

of the training session relative to baseline. During the maintenance phase, both 1-

trial/session items (mean=1786 ms; range= 1375-2201 ms; SD=413 ms) and 4-

trials/session items (mean=1806 ms; range=1396-2410 ms; SD=534 ms) were 

responded to in nearly identical manner a similar fashion; both 1- and 4-
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trials/session items returned to baseline mean performance. Refer to figure 5.19 for 

A103's response times for 1- vs. 4-trials/session across experimental phases. 

A104. Across the four baseline probes, A104 averaged 1063 ms response 

time for trained items (range=924-1173 ms; SD=73 ms). Items selected to be 1-

trial/session (mean=1050; range=924-1173 ms; SD=111 ms) were responded to 

much less consistently than items selected to be 4-trials/session (mean=1077 ms; 

range=1038-1113; SD=35 ms) during the baseline phase. During the first half of the 

training phase, both 1-trial and 4-trials/session items were responded to similarly, 

with no observable change in response time relative to baseline. During the second 

half of the training phase, however, A104 responded much more quickly to 1-

trial/session items relative to 4-trials/session items, and somewhat faster than 4-

trials/session items during baseline. Overall, neither 1-trial/session items (y=-

2.8889x+1008.7; R2=0.0054) nor 4-trials/session items (y=10.732x+1007.4; 

R2=0.0685) demonstrated an observable change in response time during the course 

of the training phase. By the end of the training phase (i.e., the last two training 

probes), 1-trial/session items (mean=1029 ms) and 4-trials/session (mean=1055 

ms) were responded to in a similar fashion; collapsing 1- and 4-trials/session items, 

a 22 ms decrease in response time was observed by the end of the training session 

relative to baseline. During the maintenance phase, both 1-trial/session items 

(mean=1021 ms; range=983-1058 ms; SD=38 ms) and 4-trials/session items 

(mean=1065 ms; range=1001-1125 ms; SD=62 ms) were responded to in nearly 

identical manner a similar fashion; both 1- and 4-trials/session items returned to 

baseline mean performance during the maintenance phase. Refer to figure 5.20 for 

A104's response times for 1- vs. 4-trials/session across experimental phases. 

A106. Across the four baseline probes, A106 averaged 722 ms response 

time for trained items (range=656-774 ms; SD=50 ms). Items selected to be 1-

trial/session (mean=698; range=656-744 ms; SD=39 ms) were responded to slightly 

faster and more consistently than items selected to be 4-trials/session (mean=746 

ms; range=664-774; SD=53 ms) during the baseline phase. A downward trend (i.e., 

decreased response time) was observed for the last baseline probe for both 1- and 

4-trials/session items. During the first half of the training phase, both 1-trial and 4-

trials/session items were responded to more slowly than they were during the 
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baseline phase, with 4-trials/session items demonstrating this effect to a greater 

degree. During the second half of the training phase, both 1- and 4-trials/session 

items returned to baseline mean response times, with 4-trials/session items 

(mean=784 ms) being responded to slightly faster than 1-trial/session items 

(mean=812 ms). Overall, both 1-trial/session items (y=-25.455x+872.04; R2=0.326) 

and 4-trials/session items (y=-21.942x+893.83; R2=0.2063) demonstrated a minimal 

decrease in response time over the course of the training phase. By the end of the 

training phase (i.e., the last two training probes), 1-trial/session items (mean=758 

ms) and 4-trials/session (mean=749 ms) were responded to in a similar fashion; 

collapsing 1- and 4-trials/session items for these last two probe sessions, a 32 ms 

increase in response time was observed by the end of the training session relative 

to baseline. A106's response time increased well above baseline performance for 

both 1 -trial/session items (mean=926 ms; SD=340 ms) and 4-trials/session items 

(mean=815 ms; SD=289 ms) during the maintenance phase. Refer to figure 5.21 for 

A106's response times for 1- vs. 4-trials/session across experimental phases. 

C102. Across the four baseline probes, the control participant averaged 673 

ms for trained items (range=615-766 ms; SD=49 ms). Baseline performance was 

relatively stable, with an observable difference in reaction time between 1-

trial/session items (mean=698 ms; range=631-766 ms; SD=161 ms) and 4-

trials/session items (mean=648 ms; range=615-658 ms; SD=122 ms); 4-

trials/session items were responded to more quickly and more consistently than 1-

trial/session items during the baseline phase. During the training phase, C102 

demonstrated a small decrease in reaction time for both 1 -trial/session items (y=-

19.356x+699.31; R2=0.4572) and 4-trials/session items (y=-8.1x+621.18; 

R2=0.3605) relative to the baseline phase. By the end of the training phase, C102 

responded to 4-trials/session items 37 milliseconds faster than 1-trial/session items 

trained items. Participant C102 named 1-trial/session pictures 66 ms faster during 

training than during the baseline phase; she named 4-trials/session pictures 53 ms 

faster during training than during the baseline phase. These same decreases in 

reaction time persisted during the maintenance phase; C102 named 1-trial/session 

items 58 ms faster than during baseline and named 4-trials/session items 50 ms 
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faster during maintenance than during baseline. Refer to figure 5.22 for C102's 

reaction time for 1- vs. 4-trials/session across experimental phases. 
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Effect Sizes for Response/Reaction Time 

To determine the amount of change in response latency observed as a result 

of the repetition priming protocol, effect sizes were calculated for trained and 

untrained items, and 1 -trial/session and 4-trials/session for individuals with aphasia 

and the age- and gender-matched control participant. Busk and Serlin's d46 was 

used to calculate the effect sizes. Refer to tables 5.13-5.16 for effect sizes 

calculated for each participant relative to response/reaction time for trained items, 

untrained items, 1-trial/session items, and 4-trials/session items. 

Table 5.13 Effect Sizes for Response/Reaction of Trained Items 

Trained 

Direction of Effect Size 
Size Relative to Benchmark 

* Note: negative values ind 

A102 

-0.596 

Positive 
No change 

icate decrea 

A103 

0.02 
Negative 
No change 

sed respons 

A104 

-0.29 

Positive 
No change 

e time; posit 

A106 

4.02 

Negative 
Small 

Control 

-1.55 

Positive 
Small 

ive values indicate 
increased response time 

Table 5.14 Effect Sizes for 

Untrained 
Direction of Effect Size 
Size Relative to Benchmark 

Response/Reaction Time of Untrained Items 
A102 
3.537 
Negative 
Small 

A103 
-0.12 
Positive 
No change 

A104 
-0.48 
Positive 
No change 

A106 
5.50 
Negative 
Small 

Control 
0.36 
Neqative 
No 
change 

46 Busk & Serlin's d = mean(post-treatment) - mean(pre-treatment)/standard deviation (pre-
treatment) 
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Table 5.15 Effect Sizes for 

1 Trial/Session 
Direction of Effect Size 
Size Relative to Benchmark 

Response/Reaction Time of 1 -Trial/Session Items 
A102 
-0.65 
Positive 
No change 

A103 
-0.22 
Positive 
No change 

A104 
-0.26 
Positive 
No change 

A106 
6.28 
Negative 
Small 

Control 
-0.99 
Positive 
No 
change 

Table 5.16 Effect Sizes for Response/Reaction Time of 4-Trials/Session Items 

4 Trials/Session 
Direction of Effect Size 
Size Relative to Benchmark 

A102 
-0.070 
Positive 
No change 

A103 
0.25 
Negative 
No change 

A104 
-0.34 
Positive 
No 
change 

A106 
1.44 
Negative 
Small 

Control 
-1.95 
Positive 
Small 

Stimulus Generalization 

Descriptive Statistics 

Stimulus generalization probes were administered immediately following 

each training and maintenance probe to observe the effects of repetition priming on 

response/reaction time of alternate exemplars of the trained items. Descriptive 

statistics including means and standard deviations for each stimulus generalization 

probe were calculated for each participant across the training and maintenance 

phases of the experimental protocol for 1-trial/session and 4-trials/session items 

relative to response/reaction time. Alternate exemplars were not probed during the 

baseline phase of the protocol. Please refer to table 5.17 for a summary of these 

means. 

Table 5.17 Mean Response/Reaction Time (ms) for Stimulus Generalization 

Training 

Phase 

Maintenance 

Phase 

1 Trial 

4 Trials 

1 Trial 

4 Trials 

A102 

1784 

1680 

1613 

1254 

A103 

1763 

1945 

2353 

2005 

A104 

1130 

1212 

1202 

1235 

A106 

1140 

1162 

1085 

980 

CONTROL 

676 

655 

615 

602 

Visual Analysis 

Line graphs were produced for each participant to depict response/reaction 

time for alternate exemplars across training and maintenance phases of the 

experimental protocol for 1-trial and 4-trials/session items (see figures 5.23-5.27). 
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Consistent effects of repetition priming on generalization to alternate exemplars 

were not observed for individuals with aphasia in terms of response time. The 

control participant demonstrated a nearly 200 ms decrease in reaction time from the 

first alternate exemplar probe to the second probe. A plateau was then observed 

from the second to the fourth probe. An additional 56 ms decrease in reaction time 

was observed for 4-trials/session times at the last maintenance probe for the control 

participant. This decrease was not observed for the 1-trial/session items. 
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LEXICAL VARIABLES 

As anticipated, high frequency words were generally responded to more 

accurately and faster than low frequency words and 1-syllable words were generally 

responded to more accurately and faster than 2-syllable words across participants. 

No systematic interactions were observed between repetition priming/stimulus 

dosage and word frequency or syllable length. Meaningful information about word 

frequency and syllable length is likely to emerge as data are collapsed across 

participants and analyzed as group data. 
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CHAPTER VI: DISCUSSION & FUTURE STUDIES 

The primary goal of this study was to document the nature of repetition 

priming in individuals with aphasia with respect to response accuracy and response 

time of picture-naming. Results of this single-subject study indicate that repetition 

priming positively influences response accuracy and, less consistently, response 

time during picture-naming in individuals with aphasia. Consistent with the literature 

base, repetition priming was shown to positively influence reaction time for the 

gender-matched non-brain-injured control participant. 

Specifically, this study addressed the following questions about the nature of 

repetition priming in individuals with aphasia: 

(1) Is repetition priming persistent across time? 

(2) Is repetition priming sensitive to the number of trials/session? 

(3) Is repetition priming item specific? 

Prior to answering these questions directly, a brief summary of the results will be 

provided. 

SUMMARY OF RESULTS - RESPONSE ACCURACY 

Training Phase Relative to Baseline Phase 

Based upon results presented in the previous section, three of the four 

individuals with aphasia (A102, A103, and A106) demonstrated an increased ability 

to accurately name pictures trained in the context of a repetition priming protocol 

relative to baseline naming performance. Participant A104's baseline performance 

was at near ceiling to ceiling levels; as such, there was little room for improvement. 

The control participant performed at ceiling to near-ceiling levels throughout the 

protocol. The three individuals with aphasia who improved relative to baseline did 

not share similar underlying linguistic impairments. Participant A102's anomia was 

characterized primarily by a phonological encoding impairment; A103's anomia was 

characterized primarily by a semantic encoding impairment; and A106's anomia was 

characterized primarily by a severe phonological encoding impairment likely to stem 

from conduction aphasia. Dell and colleagues have proposed that repetition priming 

influences phonological encoding, not semantic encoding (Dell, Schwartz, Martin, 

Saffran, & Gagnon* 1997); yet, participant A103 did not demonstrate phonological 
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errors and was known to have aphasia stemming from a large left temporal lobe 

lesion, not a left frontal lesion. Given that this observation only stems from one 

participant, additional research is needed to replicate the influence of repetition 

priming on response accuracy in individuals with semantic encoding impairments. 

One possibility for the improvement observed with A103 is that during the training 

phase of the repetition priming protocol, participants are provided the orthographic 

name in conjunction with the picture. It is likely that A103 used the repetition 

priming protocol to learn the association between the orthographic name and the 

picture name; she likely used the learned orthographic representation as an 

alternate route for phonological encoding required for production purposes. 

Although there was little room for participant A104 to improve, her response 

accuracy for trained items was much more consistent during the training phase than 

untrained items, reflecting a positive influence of repetition priming on response 

variability. 

Training Phase - Acquisition 

Although three of the four individuals with aphasia demonstrated improved 

response accuracy during the training phase relative to the baseline phase for 

trained items, the onset and rate of improved response accuracy varied from 

participant to participant. Two of the three individuals with aphasia who 

demonstrated increased response accuracy as a result of repetition priming (A102, 

A103) did so after the first set of three training sessions; that is, for these two 

participants, the onset of increased response accuracy was observed at the first 

training probe (i.e., immediate acquisition). Participant A106, however, required 

significantly more training (9 training sessions) to elicit response accuracy above 

baseline performance. This lag in response to repetition priming may stem from the 

participant's underlying impairment; participant A106 was the only participant with 

conduction aphasia. Anecdotally, she demonstrated the largest number of errors 

during the training sessions and experienced more difficulty with perseveration than 

any of the other participants. Despite her inherent difficulties with repetition tasks, 

the repetition priming protocol eventually lead to an increased ability to name trained 
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items, suggesting that thresholds for the onset of repetition priming may differ as a 

result of underlying impairment. 

The magnitude and consistency of improved response accuracy also varied 

across participants. Participant A102 demonstrated a steady and relatively 

consistent increase in response accuracy across the entire training phase. It is likely 

that she would have continued toward ceiling levels with additional training 

sessions. Participant A103, on the other hand, demonstrated an initial near-ceiling 

improvement of response accuracy (98% correct) after the first set of three training 

sessions and then her performance reached what appears to be a plateau. She 

only attended a total of six training sessions; as such further evidence of a plateau is 

not available. As mentioned in the previous paragraph, A106 did not demonstrate 

any noticeable gains until the third training probe session. At this time, she 

experienced a 10-15% increase in response accuracy. This rate of performance was 

stable for the following probe session and then she experienced another small gain 

of approximately five percent. Unlike healthy adults, repetition priming appears to 

continue to influence response accuracy across many sessions and many trials for 

individuals with aphasia. 

SUMMARY OF RESULTS - RESPONSE TIME/REACTION TIME 

Production tasks are inherently difficult for individuals with anomia, thus 

leading to frequent naming errors that must be removed from the data set before 

calculating descriptive statistics for response time. Furthermore, individuals with 

anomia frequently produce multiple false starts during naming tasks, leading to 

additional tokens that must be removed from the data set before analyzing response 

time. The result of so much data trimming is that few data points remain for 

calculating summary statistics. One possible methodological way around this 

unfortunate loss of data would be to use a software package that would allow 

tracking and tagging of response time continuously through naming attempts. Such 

a method will be investigated for future studies examining response time in 

individuals with aphasia. 
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Training Phase Relative to Baseline Phase 

Based upon the results presented in the previous section, all four individuals 

with aphasia and the single gender-matched healthy control participant responded 

positively in terms of response/reaction time to the repetition priming protocol 

relative to baseline performance. That is, all participants demonstrated an 

observable decrease in response/reaction time in response to the repetition priming 

protocol. This decreased response time was observed even for the participant 

(A104) who did not demonstrate observable differences in response accuracy as a 

result of her near-ceiling performance during the baseline phase. As mentioned in 

the previous section, the fact that repetition priming has been demonstrated to occur 

across a variety of underlying impairments is interesting given Dell and colleagues' 

hypothesis that repetition priming effects stem from the stage of phonological 

encoding (Dell, Schwartz, Martin, Saffran, & Gagnon, 1997). 

Training Phase - Acquisition 

Although all participants demonstrated a decrease in response/reaction time 

relative to baseline performance for trained items, the onset and rate of repetition 

priming varied across participants. Research involving repetition priming of control 

participants has documented noticeable decreases in reaction time after the first 

repetition (Poldrack, Wagner, Prull et al., 1999; Reber, Gitelman, Parrish, & 

Mesulam, 2004). This pattern was replicated in this study for the age-matched 

control; initial decreases in reaction time were observed during the baseline probe 

as a result of repeated instances of the "to-be-trained" items. Such early repetition 

priming effects on reaction time for the healthy control participant were expected; 

the methodological decision to have participants attempt to name the same items 

multiple times during the baseline phase stemmed from the desire to document the 

variability that is inherent within individuals with aphasia. Individuals with aphasia, 

as expected and previously demonstrated in the pilot study, did not demonstrate 

reliable early repetition priming effects on response time. Participant A102 did not 

demonstrate an onset of repetition priming in terms of response time until the fourth 

training probe (i.e., after 12 training sessions). Participant A103 demonstrated an 

onset of repetition priming in terms of response time after the second training probe 
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(i.e., after six training sessions). Participant A104 demonstrated an onset of 

repetition priming in terms of response time (albeit a very slight positive response) 

after the first training probe (i.e., after three training sessions). Finally, participant 

A106 did not demonstrate an onset of repetition priming until the third training probe 

(i.e., after nine training sessions). 

The magnitude and consistency of repetition priming effects on 

response/reaction time also varied across participants. The healthy control 

participant demonstrated an early decrease of approximately 30 ms for trained items 

and then reached a plateau until the third training probe (i.e., after nine training 

sessions). At this time, participant C102 responded an additional 50 ms faster for 

trained items relative to baseline performance. Participant A102 demonstrated 

observable repetition priming effects (i.e., a 100 ms decrease in response time) by 

the fourth training probe and then she reached a plateau. Participant A103 

demonstrated observable repetition priming effects (i.e., a 300 ms decrease in 

response time) by the second training probe. Further evaluation of her performance 

is impossible as she terminated the training protocol at this time. Participant A104's 

response to repetition priming in terms of response time was small and occurred 

after the initial set of training sessions. She demonstrated further decreases in 

response time at the third training probe, and then her response times returned to 

baseline performance. Finally, participant A106 demonstrated only one instance of 

decreased response time after the ninth training session. Her response time then 

returned to baseline performance. Response times for individuals with aphasia are 

highly variable; this inconsistent data is likely to stem from this variability, although it 

is possible that some of the larger fluctuations in response time may stem from an 

accuracy-for-response time trade-off. 

PERSISTENCE OF REPTITION PRIMING 

All individuals with aphasia demonstrated persistence of repetition priming in 

terms of response accuracy for trained items after training had been withdrawn for 

six weeks. Although this persistence is observable by visual inspection on line 

graphs for each individual with aphasia, the most compelling data are the effect 

sizes that directly compare maintenance performance to baseline performance while 
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adjusting for the variance inherent to each participant. Effect sizes for response 

accuracy ranged from 0.12 (no change) to 7.30 (medium change). Participant A102 

demonstrated the largest effect size for trained items (c*=7.30) which, according to 

Beeson and Robey's benchmarks reflects a small to medium effect of repetition 

priming. Participant A103 demonstrated a small effect size (d=4.19). Participant 

A104, who was at near ceiling levels in regards to response accuracy during 

baseline, did not demonstrate a significant effect size (d=0.12). Participant A106 

demonstrated a small effect size (cf=2.31). Untrained items did not follow this 

pattern. Three participants (A102, A103, A104) demonstrated decreased response 

accuracy for untrained items during the maintenance phase relative to the baseline 

phase. A106 demonstrated a very slight (d=0.38) increase in response accuracy for 

trained items during the maintenance phase relative to baseline. These positive 

effect sizes for trained items are relatively surprising given that the benchmark for 

effect sizes is based upon treatment studies addressing lexical retrieval in 

individuals with aphasia (Beeson & Robey, 2008); repetition priming alone (i.e., in 

the absence of a treatment protocol that is designed to target the underlying 

impairment) was not expected to lead to effect sizes as large as those observed in 

treatment studies. 

Individuals with aphasia did not demonstrate persistent effects of repetition 

priming relative to the dependent measure of response time. The control participant 

demonstrated a persistent but small effect size for trained items during maintenance 

relative to baseline (oN-1.55); this decrease in response time was not observed for 

untrained items (of=0.36). 

In order to meet current concerns in the field of aphasiology about the long-

term persistence of treatment effects, future repetition priming protocols should 

follow-up with individuals with aphasia at intervals greater than six weeks (e.g., six 

months, one year, two years) to determine how long priming effects persist. 

In addition to long-lasting persistence, short term persistence of priming 

effects was assessed by comparing immediate training probes (i.e., immediately 

following a training session) to delayed training probes (i.e., immediately preceding 

the subsequent training session). Consistent patterns of immediacy were not 

observed across participants. However, all participants did, at some point during the 
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training phase, demonstrate sensitivity to the immediacy of the training probe for 

both response accuracy (ranging from 5-20%) and response time (ranging from 

100-200 ms for individuals with aphasia). The control participant demonstrated 

sensitivity to immediacy on the order of 10-15 ms. 

SENSITIVITY TO THE NUMBER OF TRIALS PER SESSION 

Upon visual inspection, the number of trials per session (i.e., stimulus 

dosage) did not consistently influence naming response accuracy during the training 

phase of the repetition priming protocol. Four-trials/session items revealed small to 

large positive changes in response time for two of the individuals with aphasia 

(A102 and A106). One-trial/session items produced a small positive change in 

response time for one participant, A106. However, a more consistent pattern 

emerged when the maintenance phase of the protocol was taken into consideration. 

All four of the individuals with aphasia demonstrated positive changes in terms of 

response accuracy for 4-trials/session items during the maintenance phase relative 

to the baseline phase. Three individuals with aphasia demonstrated positive 

changes in terms of response accuracy for 1-trial/session items. These 

observations were mirrored in the effect sizes: 4-trials/session items produced an 

extremely large change in response accuracy for A102 (d=19.1), a small change for 

A103 (cf=4.53); nearly no change for A104 (d=0.56), and small change for A106 

(2.34). One-trial/session items produced much smaller effect sizes in terms of 

response accuracy (ranging from -1.5 to 3.54). 

Individuals with aphasia did not demonstrate consistent effects of stimulus 

dosage relative to the dependent measure of response time with the exception of 

participant A103. Based on visual analysis of the trend line, participant A103 

demonstrated large decreases in response time during the training phase. Effect 

sizes revealed no change for response time for any of the participants for the 

maintenance phase relative to the baseline phase. The control participant 

demonstrated a small effect size (d=-1.95) for 4-trials/session items and no change 

for 1-trial/session items (d=-0.99). 

Overall, the number of repetitions within a session appears to elicit 

inconsistent responses in individuals with aphasia for both response accuracy and 
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response time. Patterson et al. (1983) did not find any differences between the one 

and five repetitions within a single session. Two explanations were suggested in 

response to this early finding: (1) repetition priming protocols are not 

salient/meaningful enough to the individual with aphasia; (2) response accuracy is 

not a sensitive enough measure of repetition priming. Both of these explanations 

have been ruled out in the present study. Response/reaction time was actually a 

less sensitive to repetition priming for individuals with aphasia than response 

accuracy. As will be discussed below, all four participants reported that they enjoyed 

the protocol and found that it was a significant contributor to improved spontaneous 

spoken language production outside of the research environment. One possible 

explanation for the lack of observable difference between 1-trial/session and 4-

trials/session items in the current study may be the large number of repetitions 

attempted by the participants by the time the first probe session occurred. Three 

training sessions occurred prior to the first probe session, in addition to the four 

baseline probes during which trained items were probed. Collectively, by the time 

the first training probe was administered participants had attempted to name 1-

trial/session items a total of 10 times and each of the 4-trials/session items at total of 

28 times. Future investigations will need to examine single repeated attempts at 

naming in contrast to 2, 3, 4, 5, etc. attempts at naming to better understand the 

influence of stimulus dosage on repetition priming. 

GENERALIZATION OF REPTITION PRIMING 

For all individuals with aphasia during acquisition and maintenance phases, 

trained items were responded to more accurately than untrained items, reflecting a 

lack of generalization to the skill of picture naming. This finding was expected given 

the nature of repetition priming documented in the literature; repetition priming is, by 

definition, item specific and is not theorized to elicit skill learning. In healthy 

participants; however, repetition priming has been shown to generalize to alternate 

exemplars of items previously named. That is, repetition of one example of "coffee" 

is expected to elicit faster and more accurate future productions of other pictures of 

"coffee". For individuals with aphasia, however, this was not the case. No 

consistent patterns were observed relative to alternate exemplars. Interestingly, 
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however, is the observation that all four individuals with aphasia were able to name 

some of items depicted by black and white line drawings in subtest 54 of the PALPA 

that happened to be trained in the repetition priming protocol using color 

photographs. That is, all four individuals with aphasia demonstrated post-training 

PALPA scores that were higher than prior to the repetition priming protocol and 

some of the items that contributed to their improved scores happened to be trained 

items in the repetition priming protocol. Frequent users of the PALPA may also 

suggest that test-retest reliability has not been properly investigated. 

Two additional linguistically-based outcome measures were also 

administered following the repetition priming protocol to further examine 

generalization to picture naming (BNT) and generalization to language production 

across modalities (WAB). Three of the four individuals with aphasia demonstrated 

improvement of naming abilities as assessed by the BNT (A102, A103, A106); 

improvement ranged from 2-5 items. The Western Aphasia Battery AQ scores did 

not reflect any generalization to improved language production across modalities. 

SUMMARY & CONCLUSIONS 

The results of this investigation demonstrate that individuals with aphasia 

respond positively to repetition priming for both response accuracy and response 

time. This is an important finding when applying the principles of neuroplasticity and 

learning to rehabilitative medicine. Four tenets of learning have been widely 

discussed: (1) practice makes perfect, (2) use it or lose it, (3) fire together, wire 

together, and (4) you have to dream it to achieve it (Elbert & Rockstroh, 2004). 

Kleim and Jones (2008) have further specified the "practice makes perfect" tenet to 

include such principles as: (a) specificity of the task influences the nature of 

plasticity, (b) sufficient repetition is necessary, (c) sufficient training intensity is 

necessary, (d) time of delivery of treatment influences performance, and (e) the type 

of training must be salient to the learner. Results of this investigation contribute to 

this notion of "practice makes perfect": 

1. Specificity: repetition priming, by definition, reflects item-specific learning. 

This type of learning was observed for both the individuals with aphasia and 

the control: trained items were responded to positively while untrained items 
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demonstrated no change or negative influences on response accuracy 

and/or response time. Generalization to the skill of naming was not 

observed. 

2. Repetition: this investigation provided a starting point for future investigations 

of stimulus dosage. The amount of repetition in this study was sufficient to 

produce improvements across response accuracy and response time for 

individuals with a variety of underlying linguistic impairments. More detailed 

investigation of stimulus dosage, however, is warranted. 

3. Treatment Intensity: This study cannot contribute reliable data about the total 

number of training sessions (i.e., treatment intensity). Although the largest 

effect size observed in this study stemmed from one of the participants who 

participated for all 15 training sessions (A102), the other participant who 

participated for 15 training sessions (A106) did not demonstrated such large 

gains. Subject variables including underlying linguistic impairment, time to 

fatigue, time post onset, and motivation are likely to contribute to the 

influence of treatment intensity on performance. 

4. Time of Delivery: The protocol was not designed to directly examine time 

post onset relative to performance. However, the largest gains were 

observed for A102 whose stroke occurred the most recently relative to the 

onset of the repetition priming protocol (six months). Interestingly, however, 

the participant whose stroke was 3.5 years prior to enrollment in the study 

(A103) demonstrated the second highest effect sizes for changes in 

response accuracy. Based on this limited sample of individuals with 

aphasia, repetition priming does not appear to be particularly sensitive to the 

time of delivery relative to the time post onset of aphasia. 

5. Saliency: All individuals with aphasia who enrolled in this study listed anomia 

as their most troublesome symptom of aphasia. As such a protocol that was 

designed to address picture naming was particularly salient to all four of the 

participants in this study. Anecdotally, all participants with aphasia reported 

some at-home practice of the items presented during the training phase. At 

the completion of the experimental protocol, all of the participants asked for 

complete lists of the items practiced so that they could continue work at 
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home. Reports of word-finding difficulties at time of enrollment coupled with 

anecdotal reports of at-home practice indicate that this repetition priming 

protocol was salient to these participants with aphasia. From a clinical 

perspective, it was very interesting that the participants found this protocol to 

be interesting - they received no immediate feedback about their 

performance and had minimal interactions with the experimenter during each 

session. 

The current investigation has demonstrated that these principles of neuroplasticity 

are important to consider when designing future anomia treatment protocols. The 

underlying linguistic impairment may contribute a fair amount to the response to 

various treatment protocols; however, it is likely that if these principles of 

learning/neuroplasticity are implemented in a systematic fashion, aphasiologists will 

observe much greater change in a much shorter time. Not only did this intensive 

repetition priming protocol demonstrate improved response accuracy, these 

improvements persisted after six weeks of no practice. Mechanisms of learning 

known to be intact in healthy non-brain injured participants appear to be intact in 

individuals with aphasia as well. Therefore, it is our obligation as aphasiologists to 

apply these principles known to influence behavioral and neural plasticity in healthy 

individuals to individuals with aphasia. 

FUTURE DIRECTIONS 

Several additional analyses should be conducted on the current data: 

1. Token analysis for probe data 

2. Analyze training data to look at the pattern of errors within and across 

sessions. 

3. Assess the influence of perseveration on probe data. 

4. Collect a conversational sample of spontaneous speech pre and post 

repetition priming protocol. 

Future protocols should address the following: 

1. Assess the influence of stimulus dosage systematically (i.e., single 

repetitions vs. two, three, four repetitions). 
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2. Assess the effects of massed versus spaced (i.e., distributed) delivery 

schedules. 

3. Systematically add on components typically used during anomia treatment 

protocols (e.g., item-by-item feedback for response accuracy, cuing 

hierarchies, etc). 

4. Assess time of delivery (i.e., acute vs. chronic) 
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APPENDIX A: CONSENT FORM - CONTROL PARTICIPANTS 

UNIVERSITY OF WASHINGTON 

INFORMATION AND CONSENT FORM 
TITLE: Investigations of Spoken Language Production in 

Individuals with Aphasia 
Principle Investigator 
Catherine A. Off, Ph.C. Co-Investigator 
Doctoral Candidate - Researcher JoAnn Silkes, Ph.C. 

Doctoral Candidate - Researcher 
Department of Speech and Hearing 
Sciences Department of Speech and 
University of Washington Hearing Sciences 
1417 NE 42nd Street 
Seattle, WA 98105 University of Washington 
206-685-2576 1417 NE 42nd Street 

Seattle, WA 98105 
Faculty Sponsor: 206-295-3245 
Kristie Spencer, Ph.D. 
Assistant Professor 

Department of Speech and Hearing Sciences 
University of Washington 
1417 NE 42nd Street 
Seattle, WA 98105 
206-543-7980 

Researcher's Statement 
We want you to be in a research study. 

This form will help you decide if you want to do this. 

Please read this form carefully. 

You may ask questions. 

You can decide yes or no to be in the study. 

We will give you a copy of this form to take home. 
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PURPOSE OF THE STUDY 

We want to know more about the processes that occur in our brains. We are 
hopeful that this knowledge will provide insight into the speech problems that occur 
in people following a brain injury. 

PROCEDURES 
We want to videotape and audiotape you during the sessions so that we can have 
an accurate record of your responses. Only the researchers will have access to the 
tapes, which will be kept in a locked file cabinet. Your name will not appear on the 
tape. We will keep the tapes for 2 years, and then we will destroy them. You will 
have an opportunity to review and edit the recordings prior to our storing them. We 
may want to use the recordings for future studies. If you agree to be contacted 
about using your recordings for future studies, we will ask you for a separate written 
consent to use your recordings for this purpose. If you agree to be contacted for 
future studies, we will keep the video and audiotapes for 5 years prior to destroying 
them. 

If you agree to be in this study, you will: 
(1) Fill out a questionnaire about personal and medical history; 
(2) Have your hearing and vision checked; 
(3) Have your speech, language, and thinking skills tested; 

a. 1-2 hours total for testing 
b. 1 session 
c. No payment, but we can give you test results 

(4) Complete the experiment which will include a maximum of 26 
sessions within a 11 week period: 
a. Sessions 1-5 (BASELINE TESTING): 

i. About 60 minutes (1 hour) each session 
ii. May take place on the same day or separate days within a 

2 week period, at your preference 
iii. Your job: 

1. See pictures on a computer, and try to name them. 
2. We will measure how long it takes you, using a 

microphone on your neck. 
b. Sessions 6-12 (TRAINING SESSIONS): 

i. About 60-90 minutes per session 
ii. Ideally, you will complete these 7 sessions within 4 days. 

You may participate in multiple sessions in one day. You 
will be asked to complete all 7 of the training sessions 
within a 2-week period. 

iii. Your job: 
1. Try to name pictures on a computer. 
2. We will measure how long it takes you, using a 

microphone on your neck. 
c. Sessions 13-15 (FOLLOW-UP SESSIONS): 

i. Three sessions will be scheduled between 3 and 6 weeks 
AFTER you have finished the training 

ii. About 60-90 minutes per session 
iii. Your job: 
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1. Try to name pictures on a computer as you have 

done before. 
d. You will be asked to participate in the 7 training sessions and 

then come back for the 3 follow-up sessions several weeks later. 
e. You will be compensated for transportation or parking costs. 

RISKS, STRESS OR DISCOMFORT 
Some people do not like to be audio- or video-taped. 
Some people feel uncomfortable when they are being tested. 

All information we have about you will be confidential. 
We will not share it with anyone. 
But if you tell us about plans to hurt yourself, we will protect you by telling the 
appropriate people (like your doctor or family). If so, you will not be able to be in the 
study. 

BENEFITS OF THE STUDY 
We hope the results of this study will lead to important changes in how we diagnose 
and provide treatment for persons with neurological communication disorders. 

Although we hope the findings from this study will benefit society, you may not 
directly benefit from taking part in the study. 

OTHER INFORMATION 

1) Taking part in this study is your choice. 
a. You can stop at any time. 

2) All of our information will have code numbers, not names. 
a. The link between the code and your name will be kept in a locked 

location, separate from the study information. 
3) We want to videotape your speech and language testing, and audiotape 

your responses in the experiment. 
a. This will give us a record of what happens, so we can go back to it 

later. 
b. The tapes will also be kept in a locked file cabinet. 
c. Your name will not be on the tape. 
d. We will keep your tapes and the link between your code and your 

name for 2 years, and then we will destroy them. 
e. If you tell us that we can contact you for more research later, we will 

keep this information for 5 years, or until you tell us that you do not 
want to be contacted. 

4) If we publish the results of this study, we will not use your name. 
5) UW oversight review offices or federal regulators might need to see our 

study records about you. 
a. This is to be sure we are being ethical and doing the research that 

we said we would. 
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Subject's statement 

This study has been explained to me. 

I have had a chance to ask questions. 

I volunteer to take part in this research. 

If I have questions later, I can ask one of the researchers listed above. 

If I have questions about my rights as a research subject, I can call the Human 
Subjects Division at (206) 543-0098. 

I give the researcher permission to audio- and/or video-tape record my sessions. 

I will receive a copy of this consent form. 

Printed name of participant Signature of participant 

Date 

Participation in Future Research Protocols: 

We may want to re-contact you about future related research. We will not share your 
name or contact information with any other research teams. You may contact us 
and have your name removed from our list of potential study participants at any 
time. Giving your permission for me to re-contact you does not obligate you in any 
way. 

Can we contact you for future studies? 

YES. You may contact me in the future for research studies. 

Signature of Subject 

NO. Thank you, but I am not interested. 
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APPENDIX B: CONSENT FORM - INDIVIDUALS WITH APHASIA 

UNIVERSITY OF WASHINGTON 

INFORMATION AND CONSENT FORM 
TITLE: Investigations of Spoken Language Production in 

Individuals with Aphasia 
Principle Investigator 
Catherine A. Off, Ph.C. Co-Investigator 
Doctoral Candidate - Researcher JoAnn Silkes, Ph.C. 

Doctoral Candidate - Researcher 
Department of Speech and Hearing 
Sciences Department of Speech and 
University of Washington Hearing Sciences 
1417 NE 42nd Street 
Seattle, WA 98105 University of Washington 
206-685-2576 1417 NE 42nd Street 

Seattle, WA 98105 
Faculty Sponsor: 206-295-3245 
Kristie Spencer, Ph.D. 
Assistant Professor 

Department of Speech and Hearing Sciences 
University of Washington 
1417 NE 42nd Street 
Seattle, WA 98105 
206-543-7980 

Researcher's Statement 

We want you to be in a research study. 

This form will help you decide if you want to do this. 

Please read this form carefully. 

You may ask questions. 

You can decide yes or no to be in the study. 

We will give you a copy of this form to take home. 

PURPOSE OF THE STUDY 

We want to learn about what happens when people with aphasia talk. This will help 
us understand aphasia better and possibly understand how the brain works when 
speaking. 
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PROCEDURES 

If you agree to be in this study, you will: 
(1) Fill out a questionnaire about personal and medical history; 
(2) Have your hearing and vision checked; 
(3) Have your speech, language, and thinking skills tested; 

f. 4-6 hours total for testing 
g. 2-3 sessions 
h. No payment, but we can give you test results 

(4) You will be video-taped during the testing sessions so that we have 
an accurate record of your responses so we can ensure accurate 
scoring of your responses; you will be audio-taped during the 
experiment itself so that we have an accurate record of your 
responses. 

(5) Complete the experiment which will include a maximum of 26 
sessions within a 11 week period: 
i. Experimental Sessions 1-5 (BASELINE TESTING): 

i. About 60 minutes (1 hour) each session 
ii. Must take place on separate days within a 2 week period 
iii. Your job: 

1. See pictures on a computer, and try to name them. 
2. We will measure how long it takes you, using a 

microphone on your neck. 
3. You will also be asked to describe a complex 

picture scene - this is not timed. 
j . Experimental Sessions 6-20 (TRAINING SESSIONS): 

i. About 60-90 minutes per session 
ii. Three times per week until you can name 80% of our 

pictures OR for a maximum of 15 training sessions 
iii. Your job: 

1. Try to name pictures on a computer. 
2. We will measure how long it takes you, using a 

microphone on your neck. 
iv. On the day of your last training session, we will re-test 

your language, speech and thinking skills. Some of these 
tests will be the same as those done in the first two 
sessions. 

k. Experimental Sessions 21-23 (FOLLOW-UP SESSIONS): 
i. Three sessions will be scheduled between 3 and 6 weeks 

AFTER you have finished the training 
ii. Your job: 

1. Try to name pictures on a computer as you have 
done before. 

2. Try to describe a complex picture scene that 
contains many of the pictures you have been 
learning. 

I. You MUST be able to participate for 5 weeks in a row and then 
come back for the 3 follow-up sessions several weeks later. 
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m. You will be compensated for transportation or parking costs. 

If you participate, we would like to get your medical records. This will help us know: 
- When your stroke was. 
- What part of your brain was affected. We will get this from any reports of 

MRI or CT scans. 
- What your symptoms have been since your stroke. 
- Whether you have any history of substance abuse or psychiatric 

disorders. If you do, we might not be able to use you in the study. 
- Your current medications. 
- Current speech, language or audiology reports (if any). 

RISKS, STRESS OR DISCOMFORT 

Some people do not like to be audio- or video-taped. 
Some people feel uncomfortable when they are being tested. 

All information we have about you will be confidential. 
We will not share it with anyone. 
But if you tell us about plans to hurt yourself, we will protect you by telling the 
appropriate people (like your doctor or family). If so, you will not be able to be in the 
study. 

BENEFITS OF THE STUDY 
It might help us learn how to do better therapy for aphasia. 
This study will not help you directly, but the results might help other people in the 

future. 

OTHER INFORMATION 
2) Taking part in this study is your choice. 

a. You can stop at any time. 
3) All of our information will have code numbers, not names. 

a. The link between the code and your name will be kept in a locked 
location, separate from the study information. 

6) We want to videotape your speech and language testing, and audiotape 
your responses in the experiment. 

a. This will give us a record of what happens, so we can go back to it 
later. 

b. The tapes will also be kept in a locked file cabinet. 
c. Your name will not be on the tape. 
d. We will keep your tapes and the link between your code and your 

name for 2 years, and then we will destroy them. 
e. If you tell us that we can contact you for more research later, we will 

keep this information for 5 years, or until you tell us that you do not 
want to be contacted. 

7) If we publish the results of this study, we will not use your name. 
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8) UW oversight review offices or federal regulators might need to see our 

study records about you. 
a. This is to be sure we are being ethical and doing the research that 

we said we would. 

Subject's statement 

This study has been explained to me. 

I have had a chance to ask questions. 

I volunteer to take part in this research. 

If I have questions later, I can ask one of the researchers listed above. 

If I have questions about my rights as a research subject, I can call the Human 
Subjects Division at (206) 543-0098. 

I give the researcher permission to audio- and/or video-tape record my sessions. 

I will receive a copy of this consent form. 

Printed name of participant Signature of participant 

Date 



Participation in Future Research Protocols: 

We are planning more studies to understand aphasia. 
Can we contact you for future studies? 

There would be no obligation. 
You can tell us any time to take your name off of our list. 
We will not give your name or contact information to any other research team. 

YES. You may contact me in the future for research studies. 

Signature of Subject 

NO. Thank you, but I am not interested. 
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APPENDIX C: AUDIO RECORDING PUBLICATION CONSENT FORM 

UNIVERSITY OF WASHINGTON 
AUDIO RECORDING PUBLICATION CONSENT FORM 

TITLE: Investigations of Spoken Language Production in Individuals with Aphasia 
Principal Investiaator: 
Catherine A. Off, Ph.C, CCC-SLP 

Doctoral Candidate - Researcher 
Department of Speech & Hearing Sciences 
University of Washington 
1417 NE 42nd Street 
Seattle, WA 98105 
206.685.2576 

Faculty Sponsor 
Kristie Spencer, Ph.D. 
Assistant Professor 
Department of Speech & Hearing Sciences 
University of Washington 
1417 NE 42nd Streeet 
Seattle, WA 98105 
206-543-7980 

Co-lnvestiaators: 
JoAnn P. Silkes, Ph.C, CCC-SLP 

Doctoral Student Researcher 
Department of Speech & Hearing Sciences 

University of Washington 
1417 NE 42nd Street 
Seattle, WA 98105 
206-295-3245 

Researchers' Statement 

USES OF THE AUDIO RECORDINGS 

We want to know more about the language processes that occur in our brains. We are hopeful that 
this knowledge will provide insight into the speech problems that occur in people following a brain 
injury. We videotaped your participation during the assessment batteries and audio-taped your 

responses during naming tasks so that we can review the tapes for scoring accuracy. We would like to 
keep the audio and videotapes to use for our research for 5 years. 

It is possible for someone who knows you to recognize your voice from the audiotape. 

You have been given an opportunity to review the above audiotape(s) and we request your permission 

to keep the audio and videotapes until . 

Only the researchers) listed on this consent form will have access to the audiotapes. The audiotapes 
will only be used for research purposes. 

Printed name of researcher Signature of researcher Date 

Subject's statement 

I have had an opportunity to review the recordings referenced above. I give my permission to the 
researchers to use the items as I have indicated above in this consent form. I understand that my 
name will not be published in connection with any publication. I will not receive any compensation for 
the use of the audio recordings. I will receive a copy of this consent form. 

Printed name of subject Signature of subject Date 
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APPENDIX D: MEDICAL RELEASE OF INFORMATION FORM 

UNIVERSITY OF WASHINGTON 
MEDICAL RELEASE OF INFORMATION FORM 

Name of Study: Investigations of spoken language production in individuals with 
aphasia. 

Catherine A. Off, Ph.C. would like to obtain the following information from your 
medical records: 

1. Reports of any CT or MRI scans of your brain 
Purpose: To document the specific areas of your brain that have 
been affected by your stroke. 

2. Reports from your neurologist that provide information about 
the neurologically-based symptoms that have resulted from 
your neurologic condition 

Purpose: To be able to best describe the neurological deficits 
resulting from your stroke. Your neurologically-based symptoms 
may influence your performance in this study, so it is important for 
us to be aware of those symptoms. 

3. Medical information pertaining to past neurological events, 
disorders or diseases, psychiatric conditions, and/or substance 
abuse. 

Purpose: To ensure that you have not had any past 
cerebrovascular accidents (strokes) or other neurological 
disorders or diseases and to ensure that you do not have any 
psychiatric or substance abuse conditions that may affect your 
ability to participate in our study. 

4. Speech-language pathology or audiology reports (if applicable) 
Purpose: To add to the information we will obtain during our 
testing of your speech, language, and hearing. 

5. A list of your current medications 
Purpose: To identify any medications that may influence your 
performance during this study. For example, some medications 
may slow your reaction time. It would be important for us to know 
if your reaction times are different because of your medications. 

This information may be obtained from the following medical center: 
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This information will be used for research purposes only, and will be received and 
reviewed only by the following investigators: Catherine A. Off (primary investigator), 
Kristie Spencer (faculty sponsor), and JoAnn Silkes (doctoral student). Your 
medical information will remain confidential. Your name will not be on the form to 
collect your medical information. Your study code number will be the only identifier 
associated with your medical information, and this information will be kept until 

. Any medical records we receive that contain identifying 
information will be destroyed within 5 days after the relevant information is recorded 
on your Medical Records Data Collection Form. 

You have the right to change your decision about our access to your medical 
records at any time. If you wish to withdraw your approval, please contact 
Catherine A. Off, Ph.C, at 206-685-2576. You have the right to refuse to sign this 
form. 

Subject's Statement 
I give permission to the researchers to use my medical records as described in this 
form. 

Printed name of subject Signature of subject Date 
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APPENDIX E: HIPPA PRIVACY FORM 

UNIVERSITY OF WASHINGTON 

AUTHORIZATION TO USE, CREATE AND SHARE HEALTH INFORMATION FOR 
RESEARCH FOR PROJECT ENTITLED 

INVESTIGATIONS OF SPOKEN LANGUAGE PRODUCTION IN INDIVIDUALS 

WITH APHASIA 

Principal Investigator: Catherine A. Off, Ph.C, CCC-SLP 

Faculty advisor: Kristie A. Spencer, Ph.D., CCC-SLP 

University of Washington 

Department of Speech and Hearing Sciences 

Neurogenic Communication Disorders Laboratory 

1417 NE 42nd St. 

Seattle, WA 98105 

206-685-2140 

By law, researchers must protect the privacy of health information about you. In this form the 
word "you" means both the person who takes part in the research and the person who gives 
permission for another person to be in the research. Researchers may use, create, or share 
your health information for research only if you let them. This form describes what 
researchers will do with information about you. Please read it carefully. If you agree with it, 
please sign your name at the bottom. You will get a copy of this form after you have signed 
it. 

If you sign this form, health information about you will be shared with the people who 
conduct the research. In this form, all these people together are called "researchers." Their 
names will appear on the research consent form that you sign. 

The researchers will use the health information only as described in the research consent 
form that you sign. 

1. What "health information" includes 

• Information about you that is created during the research study. This might include 
the results of tests or exams that become part of the study records, diaries and 
questionnaires that you might fill out as part of the study, and other records from the 
study. 

• Information in your medical record that is needed for this research study. This might 
include the results of physical exams, blood tests, x-rays, diagnostic and medical 
procedures and your medical history. 

2. What the researchers may do with health information 
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The researchers may use and create health information about you for the study. They 
may also share your health information with certain people and groups. These may 
include: 

• Government agencies, regulators, review boards, and others who watch over the 
safety, effectiveness, and conduct of the research. These may include such groups 
in the US and in other countries. 

• Other researchers when a review board approves the sharing of the health 
information. 

• Your health insurer if they are paying for care provided as part of the research study. 

• Others, if the law requires. 

3. Removing your name from health information 

The researchers may remove your name (and other information that could identify you) 
from your health information. No one would know the information was about you. 

If the identifiers are removed, the information may be used, created, and shared by the 
researchers and sponsor as the law allows. (This includes other research purposes.) 
This form would no longer limit the way the researchers use, create, and share the 
information. 

4. How the researchers protect health information 

The researchers will follow the limits in this form. If they publish the research, they will 
not identify you unless you allow it in writing. These limitations continue even if you take 
back this permission. 

5. After the researchers learn health information 

The limits in this form come from a federal law called the Health Insurance Portability 
and Accountability Act. This law applies to your doctors and other health care providers. 

Once the researchers and others who are not your doctors and health care providers get 
your health information, this law may no longer apply. But other privacy protections will 
still apply. 

6. Storing your health information 

Your health information may be added to a database or data repository. This permission 
will end when the database or data repository is destroyed. 

7. Please note 

You do not have to sign this permission ("authorization") form. If you do not, you may not 
be allowed to join the study. You may change your mind and take back your permission 
at any time. To take back your permission, write to: Catherine Off, Department of 
Speech and Hearing Sciences, 1417 NE 42nd St., Seattle, WA, 98105. If you do this, you 
may no longer be allowed to be in the study. The researchers will keep any information 
about you they have already collected. 

8. Expiration 

This permission will expire when the purposes of the study have been met. This will 
happen no later than March 1, 2008. 

9. Your signature 

I agree to the use, creation, and sharing of my health information for purposes of this 
research study 
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Signature of research subject or subject's legal Date 
representative 

Printed name of research subject or subject's Representative's 
legal representative relationship to subject 
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APPENDIX F: TELEPHONE SCREENING FORM - INDIVIDUAL WITH APHASIA 

UNIVERSITY OF WASHINGTON 
Telephone Contact Protocol 

Thank you for calling! How did you find our about our study? Were you given a 
flyer? 

If YES: Then you may already know that we are doing research at the 
University of Washington to learn more about what happens in the brain 
when we speak. 
The study involves three parts: preliminary screening; testing of speech, 
language, and cognition; and experimental sessions. Would you like me to 
review with you what these three parts involve? IF YES...The experimental 
screening should last approximately 1 hour. The testing should last 2-6 
hours - you can do this all at once or split across 2 or 3 sessions. The 
experiment itself involves quickly naming pictures from a computer screen. 
Most importantly, our study tracks your progress over several weeks. The 
study involves coming in for 5 baseline sessions and then 3 experimental 
sessions per week until you are able to name pictures at 80% accuracy or 
for a maximum of 5 weeks/15 sessions. Each session will last between 1 
and 2 hours. You will also be asked to participate in three follow up sessions 
between 3 and 6 weeks after your last experimental session. 

If NO: Then let me tell you a little bit about our study. We are researchers 
in the Speech and Hearing Sciences department at the University of 
Washington. We are doing a study to learn more about what happens in the 
brain when we speak. The study involves three parts: preliminary screening; 
testing of speech, language, and cognition; and experimental sessions. The 
experimental screening should last approximately 1 hour. The testing should 
last 2-6 hours - you can do this all at once or split across 2 or 3 sessions. 
The experiment itself involves quickly naming pictures from a computer 
screen. Most importantly, our study tracks your progress over several 
weeks. The study involves coming in for 5 baseline sessions and then 3 
experimental sessions per week until you are able to name pictures at 80% 
accuracy or for a maximum of 5 weeks/15 sessions. Each session will last 
between 1 and 2 hours. You will also be asked to participate in three follow 
up sessions between 3 and 6 weeks after your last experimental session. 

We are particularly interested in people who have had a stroke and an onset of 
aphasia at least 6 months ago. Does this apply to you? 

If YES: 
• Can you tell me about the stroke? When did it occur? Do you 

know where, in the brain, the stroke happened? 
• Can you tell me about the problems you have had as a result of 

the stroke? 
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• Can you tell me about the types of speech and language 

problems you have had as a results of the stroke? 

If NO: 
• What is the nature of your problem? 

o EITHER: Yes, that is the sort of problem we are doing 
research on now... 

o OR: I'm sorry to hear of your difficulties. At this point, 
we're not doing research on the types of problems 
you're having. Perhaps in the future our research will 
cover more areas. Are there any questions I can 
answer for you? Thank you so much for calling... 

IF STILL A POTENTIAL SUBJECT: May I ask you a few more questions to see if 
you meet our criteria for this particular study? 

• (If NOT ALREADY STA TED): Are you between the ages of 21 -
85? 

• What language did you first speak? 
• Do you speak more than one language? 

o IF YES: What other language or languages do you 
speak in addition to English? 

• Do you have problems with hearing or vision? 
• Are you right handed or left handed? 
• Have you had previous strokes or other neurological problems? 
• Do you now or have you ever had any severe psychological 

conditions or substance abuse problems? 
• Are you available to attend 3 1-2 hours sessions every week for 

approximately 5 consecutive weeks? 

IF NOT APPROPRIATE BASED ON SCREENING QUESTIONS: 
Thank you so much for your interest and for all of the information you've just given 
me. At this time, our study is not a good fit with you. Do you have any questions? 
Thank you so much for calling; we greatly appreciate your time and interest in this 
study. 

IF STILL A POTENTIAL SUBJECT BASED ON SCREENING QUESTIONS: 
At this point, it sounds as though you are a good fit for our study. If you agree to 
participate, you will be asked to fill out a short questionnaire regarding your basic 
medical history, complete a hearing and vision screening, and complete the testing 
and experiment I mentioned earlier. We will also need to access your recent 
medical history from your medical records. Is this okay with you? All we really need 
to know is where your stroke occurred, medications you are taking at this time, and 
any history of past neurological or psychological disorders, or substance abuse 
problems. You can stop participating in the study at any point in time, for any 
reason. 

Are you still interested in participating? 
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IF YES: Great! Then let's get you scheduled to come in...Can you tell us where you 
were treated for the stroke? Thank you. Do you have contact information for this 
facility, including the doctor that treated you? I can get that from you now or you 
can bring it in with you on your first appointment. 

IF NO: That's fine. Thank you so much for calling to find out about our study. 

Should you have any additional questions about this study, please feel free to 
contact: 
Catherine Off, doctoral candidate, at (206) 685-2576; cattalk@u.washinqton.edu 
Please note that we cannot guarantee the confidentiality of information sent via 
email. 

mailto:cattalk@u.washinqton.edu
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APPENDIX G: PRELIMINARAY SCREENING QUESTIONNAIRE 

BASIC PERSONAL INFORMATION 

Last Name: First Name: 

Telephone #: Email: 

Street Address: 

City: State: Zip Code:_ 

Date of Birth: Age: 

Place of Birth: 

***new page*** 

SOCIOECONOMIC INFORMATION (for descriptive purposes only) 

Race/Ethnicity: 

Native Language (First Language Spoken): 
If native language is not English, stop interview here, as participant does not qualify for 
study inclusion. 

Other Languages Spoken: 

Marital/Relationship Status 
(CIRCLE ONE) 

Single Married Living with Domestic 

Partner 

Living with Significant Other Divorced Widowed 

Other: 

Number of Children: Number of Children Currently in Household: 

Education: 
(CIRCLE ONE) 

Less than High School High school/Vocational/Some College College 
Grad 



Total Years of Education: 
Highest Degree Obtained: 

169 

Employment History: 
(CIRCLE ONE) 

Full Time Part Time Not Working Full Time Part Time 
Not Working 

Occupation: 
Current Employment: 
Retired from: 
Year Retired: 
Do you Receive Aid? (e.g., welfare, 
etc): 

MEDICAL INFORMATION 

(PLEASE CIRCLE ANSWERS) 
Which hand do you use to do most things (e.g., write)? LEFT RIGHT 

Do you have any problems with your hearing? 
If yes, do you wear a hearing aid? 

Do you have any problems with your vision? 
If yes, is your corrected vision adequate enough 
to see most things? 

When did your stroke occur? 
What are your current symptoms/problems related to the stroke? 
What medication(s) are you taking? And when do you usually take them? 
Describe any problems with your speech/language. 

YES 
YES 

YES 

YES 

NO 
NO 

NO 

NO 
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APPENDIX H: MEDICAL RECORDS DATA COLLECTION FORM 

Medical Records Data Collection Form 

Participant Code: Age: Year of birth: 

Results of head CT, MRI, PET scans: 

Notes from Neurology Reports: 
Cerebrovascular accidentfs): 

• Most recent CVA: 
• Date of stroke: 
• Type of stroke: 
• Anoxia at time of stroke? YES NO 
• Lesion site(s): 
• Language Symptoms: 
• Cognitive Symptoms: 
• Motor Symptoms: 

• Past CVA(s): 
• Date(s) of stroke(s): 

Other neurological events, diseases, or disorders: 
• Present: 
• Past: 

Medical information pertaining to psychiatric conditions or substance abuse: 
Psychiatric Conditions: 

• Present: 
• Past: 

Substance Abuse Conditions: 
• Present: 
• Past: 

Results of speech-language pathology, audiology, or neuropsychological testing: 
Speech-language therapy (past or ongoing): 
List of current medications and dosage: 
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APPENDIX I: TELEPHONE CONTACT SCREENING FORM -

CONTROL PARTICIPANTS 

UNIVERSITY OF WASHINGTON 
Telephone Contact Protocol 

Thank you for calling! How did you find our about our study? Were you given a flyer? 
If YES: Then you may already know that we are doing research at the University of 
Washington to learn more about what happens in the brain when we speak. The 
study involves three parts: preliminary screening; testing of speech, language, and 
cognition; and experimental sessions. Would you like me to review with you what 
these three parts involve? IF YES...The experimental screening and speech, 
language, and cognitive testing should last approximately 1-2 hours. You should be 
able to complete all of this in one session. The experiment itself involves quickly 
naming pictures from a computer screen. Most importantly, our study tracks your 
progress over 5 baseline sessions and 6 training sessions. The study involves 
coming in as often as is acceptable to you for a maximum of 3 weeks. You may 
participate in multiple sessions each day if you prefer this option. Each session will 
last between 1 and 2 hours. You will also be asked to come in for 3 follow-up 
sessions between 3 and 6 weeks after your final experimental session. Each of these 
sessions will last between 1 and 2 hours. 

If NO: Then let me tell you a little bit about our study. We are researchers in the 
Speech and Hearing Sciences department at the University of Washington. We are 
doing a study to learn more about what happens in the brain when we speak. The 
study involves three parts: preliminary screening; testing of speech, language, and 
cognition; and experimental sessions. The experimental screening and speech, 
language, and cognitive testing should last approximately 1-2 hours. You should be 
able to complete all of this in one session. The experiment itself involves quickly 
naming pictures from a computer screen. Most importantly, our study tracks your 
progress over 5 baseline sessions and 6 training sessions. The study involves 
coming in as often as is acceptable to you for a maximum of 3 weeks. You may 
participate in multiple sessions each day if you prefer this option. Each session will 
last between 1 and 2 hours. You will also be asked to come in for 3 follow-up 
sessions between 3 and 6 weeks after your final experimental session. Each of these 
sessions will last between 1 and 2 hours. 

IF STILL A POTENTIAL SUBJECT: May I ask you a few more questions to see if you 
meet our criteria for this particular study? 

• (IfNOT ALREADY STATED): Are you between the ages of 21-85? 
• What language did you first speak? 
• Do you speak more than one language? 

o IF YES: What other language or languages do you speak in 
addition to English? 

• Do you have problems with hearing or vision? 
• Are you right handed or left handed? 
• Have you had strokes or other neurological problems? 
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• Do you now or have you ever had any severe psychological conditions 

or substance abuse problems? 
• Are you available to attend several 1-2 hours sessions within a 3 week 

period until you have completed 5 baseline sessions and 6 training 
sessions? 

IF NOT APPROPRIATE BASED ON SCREENING QUESTIONS: 
Thank you so much for your interest and for all of the information you've just given me. At 
this time our study is not a good fit with you. Do you have any questions? 

IF STILL A POTENTIAL SUBJECT BASED ON SCREENING QUESTIONS: 
At this point, it sounds as though you are appropriate for our study. If you agree to 
participate, you will be asked to fill out a short questionnaire regarding your basic medical 
history, complete a hearing and vision screening, and complete the testing and experiment I 
mentioned earlier. You can stop participating in the study at any point in time, for any 
reason. 

Are you interested in participating? 

IF YES: Great! Then let's get you scheduled to come in... 

IF NO: That's fine. Thank you so much for calling to find out about our study. 

Should you have any additional questions about this study, please feel free to contact: 
Catherine Off, doctoral student, at (206) 579-6877; cattalk@u.washington.edu 
Please note that we cannot guarantee the confidentiality of information sent via email. 

mailto:cattalk@u.washington.edu


APPENDIX J: PRELIMINARY SCREENING PROTOCOL 

BASIC PERSONAL INFORMATION 
Last Name: 
Telephone #: 
Street Address: 
City: 
Date of Birth: 
Place of Birth: 

***new page*** 

First Name: 
Email: 

State: 
Age: 

Zip Code: 

SOCIOECONOMIC INFORMATION (for descriptive purposes only) 
Race/Ethnicity: 
Native Language (First Language Spoken): 
If English is not the native language, stop interview here as participant does not qualify 
for study inclusion. 
Other Languages Spoken: 

Marital/Relationship Status 
(CIRCLE ONE) 
Single 
Living with Domestic Partner 
Living with Significant Other 
Other: 
Number of Children: 

Married 

Divorced Widowed 

Number of Children Currently in Household: 

Education: 
(CIRCLE ONE) 
Less than High School 
College Grad 
Total Years of Education: 
Highest Degree Obtained: 

High school/Vocational/Some College 

Employment History: 
(CIRCLE ONE) 
Full Time Part Time 
Working 
Occupation: 

Not Working Full Time Part Time Not 

Current Employment: 
Retired from: Year Retired: 
Do you Receive Aid? (e.g., welfare, etc): 
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YES 
YES 
YES 

NO 
NO 
NO 

MEDICAL INFORMATION 
(PLEASE CIRCLE ANSWERS) 
Which hand do you use to do most things (e.g., write)? 
Do you have any problems with your hearing? 

If yes, do you wear a hearing aid? 
Do you have any problems with your vision? 

If yes, is your corrected vision adequate enough 
to see most things? YES NO 

Do you have any history of speech, language, or neurological deficits or disorders? 
Please Describe (if any). 
Do you have any history of psychiatric conditions or substance abuse problems? 
Please Describe (if any). 
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APPENDIX K: TRAINED AND UNTRAINED ITEMS 

Trained I 
ltem# 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

terns 
Stimulus 

ant 
bacon 
book 
bottle 
bracelet 
candle 
car 
chair 
coffee 
cricket 
door 
drawer 
dryer 
eyes 
farmer 
flashlight 
football 
frog 
glass 
hanger 
harp 
heart 
island 
key 
leg 
lemon 
money 
mouse 
paintbrush 
paper 
pliers 
plunger 
rose 
rug 
shrimp 
stool 
stove 
syrup 
vase 
vest 

# 
Syllable 
1 
2 
1 
2 
2 
2 
1 
1 
2 
2 
1 
2 
2 
1 
2 
2 
2 
1 
1 
2 
1 
1 
2 
1 
1 
2 
2 
1 
2 
2 
2 
2 
1 
1 
1 
1 
1 
2 
1 
1 

Freq 

LF 
HF 
HF 
HF 
LF 
HF 
HF 
HF 
HF 
LF 
HF 
LF 
LF 
HF 
HF 
LF 
HF 
LF 
HF 
LF 
LF 
HF 
HF 
HF 
HF 
HF 
HF 
LF 
LF 
HF 
LF 
LF 
HF 
LF 
LF 
LF 
LF 
LF 
LF 
LF 

# 
Presentations 

4 

4 
4 

4 
4 
4 
4 
4 
4 
1 
4 
4 
4 
4 
4 
1 
4 
4 
4 
4 
4 
4 
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Untrained Items 
# 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

Stimulus 
arm 
baby 
ball 
barrel 
bed 
bra 
bridge 
broom 
bubble 
bucket 
bush 
canoe 
cans 
castle 
cheese 
church 
cigar 
clown 
comb 
corner 
crackers 
desk 
dime 
dog 
donkey 
dresser 
dustpan 
eagle 
earrings 
elbow 
faucet 
feet 
fire 
floor 
girl 
grapes 
hand 
hose 
hot dog 
iron 
judge 
kitchen 
kite 
knife 
ladle 
leaf 

#Syllables 
1 
2 
1 
2 
1 
1 
1 
1 
2 
2 
1 
2 
1 
2 
1 
1 
2 
1 
1 
2 
2 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
1 
2 
1 
1 
1 
1 
1 
2 
2 
1 
2 
1 
1 
2 
1 

Freq 
HF 
HF 
HF 
HF 
HF 
LF 
HF 
LF 
HF 
LF 
LF 
HF 
LF 
HF 
LF 
HF 
HF 
LF 
LF 
HF 
LF 
HF 
LF 
HF 
LF 
LF 
LF 
HF 
LF 
HF 
LF 
HF 
HF 
HF 
HF 
LF 
HF 
LF 
LF 
HF 
HF 
HF 
LF 
HF 
LF 
LF 



47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 

leopard 
level 
lipstick 
mail 
man 
mattress 
menu 
mop 
moth 
mouth 
mushroom 
nails 
neck 
necklace 
nickel 
pants 
parrot 
peach 
pear 

pig 
pigeon 
pillow 
pizza 
plant 
popcorn 
present 
pumpkin 
record 
river 
robe 
rooster 
salad 
sandwich 
saw 
shears 
shoulder 
skunk 
spider 
steps 
teacher 
toe 
toothbrush 
top 
train 
vet 
waffles 
wall 
wallet 

2 
2 
2 
1 
1 
2 
2 
1 
1 
1 
2 
1 
1 
2 
2 
1 
2 
1 
1 
1 
2 
2 
2 
1 
2 
2 
2 
2 
2 
1 
2 
2 
2 
1 
1 
2 
1 
2 
1 
2 
1 
2 
1 
1 
1 
2 
1 
2 

LF 
HF 
LF 
HF 
HF 
HF 
LF 
LF 
LF 
HF 
HF 
LF 
HF 
LF 
LF 
LF 
LF 
LF 
LF 
LF 
LF 
LF 
LF 
HF 
LF 
HF 
HF 
HF 
HF 
LF 
LF 
HF 
LF 
HF 
LF 
HF 
LF 
LF 
HF 
HF 
LF 
LF 
HF 
HF 
LF 
LF 
HF 
LF 



95 water 2 HF 
96 well 1 HF 
97 wheel 1 HF 
98 window 2 HF 
99 wolf 1 LF 

100 woman 2 HF 
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APPENDIX L: TIMING PARAMETERS 

Trial Run 
Instruction Screen 
Warning Dot 
Picture 
RedX 
Goodbye Screen 

Baseline Probes 
Instruction Screen 
Warning Dot 
Picture 
RedX 
Goodbye Screen 

Traininq Session 
Instruction Screen 
Warning Dot 
Picture 
RedX 
Picture+audio+ortho 
RedX 
Goodbye Screen 

Trainina Probes 
Instruction Screen 
Warning Dot 
Picture 
RedX 
Goodbye Screen 

Stimulus 
Generalization Probes 
Instruction Screen 
Warning Dot 
Picture 
RedX 
Goodbye Screen 

Maintenance Probes 
Instruction Screen 
Warning Dot 
Picture 
RedX 
Goodbye Screen 

Aohasics 
Infinite 
2000 ms 
17000 ms 
4000 ms 
5000 ms 

Infinite 
2000 ms 
17000 ms 
4000 ms 
5000 ms 

Infinite 
2000 ms 
10000 ms 
2000 ms 
12000 ms 
4000 ms 
5000 ms 

Infinite 
2000 ms 
17000 ms 
4000 ms 
5000 ms 

Infinite 
2000 ms 
17000 ms 
4000 ms 
5000 ms 

Infinite 
2000 ms 
17000 ms 
4000 ms 
5000 ms 

(100 prerelease) 

(100 prerelease) 

(100 prerelease) 

(100 Prerelease) 

(100 prerelease) 

(100 prerelease) 

(100 prerelease) 

Controls 
Infinite 
1000 ms 
2000 ms (100 prerelease) 
1000 ms 
5000 ms 

Infinite 
1000 ms 
2000 ms (100 prerelease) 
1000 ms 
5000 ms 

Infinite 
2000 ms 
2000 ms (100 prerelease) 
1000 ms 
2000 ms 
1000 ms 
5000 ms 

Infinite 
1000 ms 
2000 ms (100 prerelease) 
1000 ms 
5000 ms 

Infinite 
1000 ms 
2000 ms 
1000 ms 
5000 ms 

infinite 
1000 ms 
2000 ms 
1000 ms 
5000 ms 



APPENDIX M: ERROR CODE TAXONOMY 
Error Description 

1. Accurate 

II. Errored 

Error Code 

A. Target only 
B. Filler + target 
C. Multiple correct 
productions 
D. Multiple productions the 
first correct 

A. No response or "1 don't 
know" "I'm sorry" 
B. Mixed 

i. Phonological + 
semantic 

ii. Phonological + 
unrelated word 
C. Semantic 

i. Unrelated 
ii. Supraordinate 
iii. Coordinate 
iv. Subordinate 
v. Related adjective 
vi. Related verb 

D. Perseveration 
E. Phonological 

i. Omission 
ii. Substitution 
iii. Addition 
iv. Nonword 

F. Picture description 

Example 

um, uh, a, the 

"mattress mattresses" 

"bra bravere" 

/dan/ for /kaet/ 

/flon/ for /kaet/ 

"shoe" for "cat" 
"mammal" for "cat" 
"dog" for "cat" 
"Siamese" for "cat" 
"white" for "milk" 
"drink" for "milk" 
Produces any previously 
produced item 

/aet/for/kaet/ 
/kit/for/kaet/ 
/kraet/for/kaet/ 

"a woman washing 
dishes" 
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