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ABSTRACT 
We investigate an inverse problem of reconstructing a timewise-dependent source for the heat equation. The 
solution of this problem is uniquely solvable, yet unstable. The inverse source problem two unknowns is 
reformulated to be a new form of forward problem one unknown. Furthermore, we propose that the finite 
integration method combined with the backward finite difference method can be used to solve the 
reformulated heat equation. The Tikhonov regularization method is employed to stabilize the noisy data. 
The proposed algorithm is not only easy to use but also can give an accurate and stable solution. Numerical 
result is presented and discussed. 
 
Keywords: Heat Equation, Inverse Problem, Tikhonov Regularization. 
 

I.  INTRODUCTION 

Inverse source problem for the heat equation 
commonly appear in mathematical modeling to identify 
the unknown source function in polution source 
intensity, melting and freezing process. Recently, the 
inverse problem has been the point of interest by many 
authors, see  [1,4,5,6,11]. The source can be determined 
as a function depending on both space and time for one 
dimension heat equation, in practical many researchers 
considered the heat source as a function of either space 
or time only. The identification of space-dependent heat 
source function can be seen in [2,7] whereas for the 
time-dependent heat source function can be seen in 
[13,14]. Furthermore, several numerical methods have 
been employed to seek out the time-dependent heat 
source function of the inverse problem  [3,13,14]. 

In this present paper, we only focus on the 
identification for the time-dependent source function for 
the heat equation under the initial and the Neuman 
boundary conditions, together with the given observed 
data considered as the over-determination condition. 
Accordingly, we propose the finite integration method 
(FIM) with the ordinary linear approximation (OLA) to 
solve the inverse source problem. This proposed method 
is based on the trapezoidal rule which is numerical 
integration of using linear function to approximate the  

 

 

integral. The FIM (OLA) was first reconstructed and 
introduced by [8] and has been improving to be able to 
solve various kinds of the differential equations. 
Therefore, this method has been extensively used for 
dealing the direct problem with both ordinary and partial 
differential equations. For example, the problem of 
nonlocal elastic bar under static [8], fractional-order of 
PDE [12] and extended to two dimensional potential 
problem [9]. However, no author has been using the FIM 
(OLA) to solve the inverse heat source problem. To deal 
with the inverse problem, there are many 
methods/procedures for obtaining the numerical solution 
such as method of fundamental solution (MFS), 
boundary element method  (BEM) and the direct 
numerical method. In [13] has used the direct numerical 
method which is a method about to reform the inverse 
problem into the direct problem by using differentiation 
and integration. Therefore, in this study, we propose to 
use the FIM (OLA) to solve the inverse problem of 
finding the time-dependent heat source function by the 
direct numerical method. 

The paper is organized as follows. In Section 2, the 
problem is clearly stated. In Section 3, the use of the 
direct method is applied mathematically to seek the time-
dependent source function. In Section 4, the FIM (OLA) 



445 
	

THE	5TH	AASIC	2017	

is employed together with the backward difference in 
order to discretize the problem obtained from Section 3. 
In the Section 5, we use the Tikhonov regularization 
method to stabilize and approximate the noisy function. 
To ilustrate a clear overview and test the accuracy of the 
proposed method, in Section 6, a benchmark numerical 
example is provided. Section 7 ends this paper with the 
conclusion. 

II. THE PROBLEM STATEMENT 

Let [ ] [ ]2 10,1 0,TD C C T= × be the solution 

domain with the final time 0T > . We consider the 
inverse problem of finding the pair solution 

( ) ( ) ( )2,1( ), ( , ) [0, ] Tf t u x t C T C D∈ × for the following 

the heat conduction equation,  

( , ) ( , ) ( ),   0 1,   0 ,t xxu x t u x t f t x t T= + < < < <  (1) 

subject to the initial data and boundary conditions 

,10      ),(),( 0 <<= xxutxu  (2) 

.0       ),(),1(       ),(),0( Tttrtutstu xx <<==  (3) 

The additional condition is considered as 

,10      ),(),( ≤≤= ff xtgtxu  (4) 

In order to ensure the existence and uniqueness of 
the solution, the given functions )( and )(),( 0 trtsxu are 
assumed to satisfy the following compatibility 
conditions: 

1) ],,0[, TCrs ∈ ],,0[1 TCg∈  and ].1,0[10 Cu ∈  

2) 0 0 0( ) (0) (0),   ( ) (1) (0),   (0) ( ).x x fu s u r g u x= = =  
One thing to note that although the inverse problem (1)-
(4) under the above compatibility conditions is uniquely 
solvable, it is still ill-posed as the small errors in the 
input data leading to gain the large errors in the solution. 

III. THE DIRECT METHOD 

In [13] Xiangtuan et al. have established a direct 
numerical method which is an algorithm for seeking the 
time-dependent and space-dependent heat source of the 
inverse problems. In this present study, we would like to 
apply the algorithm of this method to the time-wise 
inverse heat source problem as following explaination. 
The purpose of method is not to determine the source 
directly but rather to construct the forward problem as an 

access for obtaining the heat source eventualy. In order 
to employ the direct numerical method suggested by [13] 
for solving the inverse problem (1)-(4), we firstly take 
the derivative with respect to x  over the heat equation 
(1), this yields 

).,(),( txutxu xxxtx =  (5) 

Let ),(),( txutxw x= for ( , ) Tw x t D∈  and taking the 

integration with respect to x over ],[ xx f  gives 

.)(),(),( ∫ +=
x

x f

tgdytywtxu  (6) 

Since ( , ) Tw x t D∈ , then the differential equation (5) 
and the initial and boundary conditions (2)-(3) become  

),,(),( txwtxw xxt =  (7) 

with the reformed initial and boundary conditions 

0( ,0) ( ) ( ),   (0, ) ( ),  (1, ) ( ).xw x u x w t s t w t r t= = =
 

(8
) 

Taking the integration with respect to x  on ],[ xx f  over 

the equation (5) gives 

.),(),(∫ ∫=
x

x

x

x
xxxtx

f f

dxtxudxtxu  (9) 

Then, we have 

).,(),(),(),( txutxutxutxu fxxxxftt −=−  

Consider the over-determination condition (4), i.e. 
)(),( tgtxu f =  and since ),,(),( txutxw fxxfx = then 

we obtain 

).,()('),(),( txwtgtxutxu fxxxt −+=  (10) 

Here, the above heat equation (10) is now written as the 
heat equation (1) with the source function defined as 

).,()(')( txwtgtf fx−=  (11) 

In general, the given data )(tg normally consists some 
measurement errors unavoidably, we therefore use the 
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Tikhonov regularization method to stabilize the noisy 
function denoted as )(tg δ .  Now let us summarize the 
systematic step for determining )(tf as follows 

• Step 1. Solve numerically the following problem to 
get :),( txw f  

    
( , ) ( , ),              0 1,   0 ,t xxw x t w x t x t T= < < < <

  0( ,0) ( ) ( ),                0 1,xw x u x x= < <  

(0, ) ( ),   (1, ) ( ),   0 1,w t s t w t r t x= = < <  

(12
) 

• Step 2. Find ),( txw fx by using the central finite 
difference method. 

• Step 3. Use the Tikhonov to stabilize noisy function 
)(tg . 

• Step 4. Approximate the first-order derivative )(' tg
by the central finite  difference method. 

• Step 5. Compute )(tf by ).,()(')( txwtgtf fx−=   

IV. THE USE OF FIM (OLA) 
The FIM (OLA) is a renew numerical method for solving 

the differential equation (the direct problem) suggested by Li et 
al [8]. In this section, we propose to use the FIM (OLA), [12], 
to discretize the space-wise and employ the backward finite 
difference method to discretize the time-wise of the 
reformulated problem in step 1 of (12). 

A. Finite difference method 

This subsection is devoted to describe the numerical 
method for approximating the timewise first order 
derivative of the unknown function ),( txw  with respect 

to t . Let ),( jj txww = for ,tjt j Δ=

{ }Mj  ,,2 ,1 , 0 !∈  and .
M
Tt =Δ  Consider the 

uniform grid partitions 

{ }0 ,   0 ,  1,  2, ,  j Mw w w j M< < < < ∈! ! ! , 

we can approximate the first order derivative of 
unknown function ),( txw  by using the backward FDM 
which can be expressed as 

t
txwtxw

txw jj
t Δ

−
= − ),(),(
),( 1 . (13) 

B. Finite integration method 
For dealing with the FIM, we start with approximating a 
definite integral of a smooth function from a  to b , 

( ) ,
b

j
a

w x dx∫  by using the trapezoidal rule as the 

following formula 

0 1 1( ) ( ) 2 ( ) 2 ( ) ( )
2

b

j j j j N j N
a

x
w x dx w x w x w x w x−

Δ
⎡ ⎤= + + + +⎣ ⎦∫ !  

where
N
ab

x
−

=Δ and xiaxi Δ+= for 

{ }Ni  ,,2 ,1 ,0 !∈ . Define the (single-layer) definite 
integration function as 

(1) (1)

0
( ) ( ) ( ),

kx k

k j ki j i
ia

W x w x dx a w x
=

= ≈∑∫  

Where (1)
01 0a =  and (1)

1 , 0, ,
2
1 1,2, , k 1.

ki

i k
a x

i

⎧ =⎪
= Δ ⎨

⎪ = −⎩ !
 

And also the matrix form of integration is expressed as 
follow: 

(1) (1)
j jW A w= , 

where  

0 1
(1) ( ) , ( ) , , ( ) , ,

N
Tx xx

j j j j
a a a

W w x dx w x dx w x dx
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦
∫ ∫ ∫!  

0 1( ), ( ), , ( ) ,
T

j j j j Nw w x w x w x⎡ ⎤= ⎣ ⎦!  

 

 

 

 

(1) ( )A x= Δ                 . 
    . 
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We then consider a double-layer definite integral as 

1
(2) (1) (1)

1
0 0

( ) ( ) ( )
kx y k i

k j ki ij j i
i ja a

W x w y dydy a a w x
= =

= =∑∑∫ ∫ . 

Here, we reform the double-layer integral above as 

(2) (2)

0
( ) ( , )

k

k ki j i
i

W x a w x t
=

=∑  

where  

(2) (2)
01

1 2( 2) ,  0,  
4

0 and ,    1,2, , 1,
1 ,   .
4

ki

k
i

a a x k i i k

i k

+ −⎧ =⎪
⎪

= = Δ − = −⎨
⎪
⎪ =
⎩

!
 

Again, we can write this in matrix form as 

(2) (2) ,j jW A w=  

where 
0 1 1 1 1

(2)
1 1 1( ) , ( ) , , ( ) ,

N
Tx xy x y y

j j j j
a a a a a a

W w y dydy w y dydy w y dydy
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦
∫ ∫ ∫ ∫ ∫ ∫!

0 1( ), ( ), , ( ) ,
T

j j j j Nw w x w x w x⎡ ⎤= ⎣ ⎦!  

 

 

 

 

( )2(2)A x= Δ  

 

One thing to note that )1()1()2( AAA = . Therefore if we 
denote ,)1(AA = we can get .)2(2 AA =  To use the FIM 
(OLA) for solving the differentiation equation as in 
problem (12) we can perform by taking the integration 
with respect x  twice over the heat equation and 
combining with (13). Therefore, the PDE in (12) 
becomes 

2 2
1 0 1j j jA w tw A w c x c i−−Δ = + + , 

in discrete sense. Where 0c  and 1c are integral constants, 

[ ]0 1, , , T
Nx x x x= !  and [ ]1,1, ,1 Ti = ! . For more detail 

on how to solve the system, we will describe in the section of 
numerical example. 

V. THE TIKHONOV REGULARIZATION 

As along the previous section, the equation (11) 
holds the first-order derivative )(' tg . Since the measured 
data )(tg is normally obtained from the experiment and 
there exist measurement errors unavoidably. We denote 

δg as a noisy observed data. This brings us to involve an 
ill-posed problem of the first-order numerical 
differentiation.  

Hence, we should tackle the first-order numerical 
differentiation stable approximation method. In this 
section, we wish to employ the Tikhonov regularization 
method to stabilize the noisy data δg by the following 
Tikhonov functional, 

222

2( ) ( ) ( ) ( )d gH g g t g t t
dt

δ
δ δ δ α

α α α α= − + , (14) 

where gδα  is the selected data obtained from the 
minimation (14) with the appropriate regularization 
parameter .α  Evantualy in the numerical process, we 
can obtain a stabilize data )(tgδα  by minimizing the 
functional (14) as 

( ) ( ),1 δδ

α
α gRRIg T −

+=  (15) 

where R is the regularization matrix to be used as the 
second order derivative as 

 

2R =      . 
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Here, we are using the scaling technique to avoid the 

large value by omitting the step size term 
( )2
1
tΔ

. Thus 

stabilized data gδα  is now used to approximate the first-

order derivative ( ) 'gδα  by using the finite difference 

method as following formula: 

For 0=i , 

( ) 1( ) ( )'( ) i i
i

g t g tg t
t

δ δ
δ α α
α

+ −
=

Δ
, 

for 1,,2,1 −= Mi ! , 

( ) 1 1( ) ( )'( )
2

i i
i

g t g tg t
t

δ δ
δ α α
α

+ −−
=

Δ
, 

For Mi = , 

( ) 1( ) ( )'( ) i i
i

g t g tg t
t

δ δ
δ α α
α

−−
=

Δ
, 

Therefore,  the source function ( )f t  can be calculated 
as the formula in step 5 of (12) as

).,()()'()( txwtgtf fx−= δ
α  

VI. NUMERICAL EXAMPLE 

In this section, we present a benchmark test 
example to illustrate the accuracy of the method 
presented in the previous section. In order to review the 
accuracy of the numerical result, we introduce the root 
mean square error (RMSE) defined as  

( )∑
=

−
+

=
M

i
ii tftf

M
Ttf

0

2
numericalexact .)()(

1
))((RMSE  

In this example, we consider the inverse problem 
(1)-(4), with 1=T , the input data are given as 

[ ]1,0for    )(),( 2
0 ∈== xxxutxu  

[ ],1,0      ),(2),1(   and   ),(0),0( ∈==== ttltutstu xx

and the additional condition is given by 

( )1 1, ( ) 2 sin 2 ,
2 4

u t g t t tπ⎛ ⎞ = = + +⎜ ⎟
⎝ ⎠

[ ]1,0  ∈t . 

The number of discretization of space x  and time t  are 
10=N  and 30=M , respectively. We investigate the 

solution )(tf along the noisy data )(tg δ , contamined as 

(' ',0, ,1, ),g g random Normal Mδ σ= +  

where the ),1,,0,'(' MNormalrandom σ is a command 
in MATLAB generating randomly the variable from 
normal distribution with zero mean and standard 
deviationσ which is taken to be 

ptgp
Tt

25.2)(max
0

=×=
≤≤

σ , and p is the percentage of 

the error. A regularization formula holds regularization 
parameter ,α basically, a regularization parameter 

0>α controls the neighborhood properties of the 
auxiliary problem. Larger values of α indicates higher 
stability of the approximate solution but this makes the 
auxiliary problem being far from the original one. While 
values of α near zero expresses the auxiliary problem 
close to the original one, but this leads to become still 
unstable as 0→α . Hence, the suitable regularization 
parameter has to be chosen carefully with consideration 
between the conflicting purpose of stability and 
approximating, [15]. Actually, there are many methods 
to choose the regularization parameter α  such as the 
discrepancy principle criterion, the generalized cross-
validation (GCV) or the L-curve method. Nevertheless 
in this study, the regularization parameter α is chosen 
according to the trial and error. This means that we 
consider the error in each value cases and then select the 
regularization parameter which yields the smallest error. 
In order to illustrute the accuracy of the method, the 
analytical solution of this inverse problem is given as 

( )( ) 2 cos 2 ,f t tπ π= [ ]1,0  ∈t . 

For the forward problem (1)-(3), ( )f t  is known 
function,  we have tried to solve the forward problem by 
using the FIM (OLA) together with the FDM, we first 
discretize the first derivative of u  with respect to t  by 
FDM, then take the integration twice over its discretized 
equation and yield 

22 2
1 0 1 ,2j j j j

t
A u tu A u f x c x c i−

Δ
−Δ = + + +  
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where 0c  and 1c are integral constants, 

[ ]0 1, , , T
Nx x x x= !  and [ ]1,1, ,1 Ti = ! . Although we do 

not present the temperature result ),( txu graphicaly yet, 
we can even know how good the method for solving the 
forward problem as  its mean average error is less than 
1%. 

The powerful method extends to the inverse 
problem. Firstly, we consider the case of exact data, i.e. 
no noise is added to the additional condition. The 
analytical and numerical solutions of )(tf  are displayed 
in Figure 1. This can be clearly seen that the proposed 
method in this study can capture the heat source term 
)(tf in very good agreement with RMSE 0324.0=  as 

shown in table 1. 
 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

Figure 12.  The analytical  and numerical result of )(tf  for the exact data. 

 

 

TABLE IV.  THE VALUE OF λ  AND RMSE FOR )(tf  AND g( )t  

p  λ  
RMSE of )(tg  RMSE of )(tf  

0%  0=λ  0 0.0324 

3%  0=λ  0.093977 1.9807 

3%  0.6λ =  0.062605 1.1078 

3%  3.1λ =  0.066401 1.3482 

 
In the case of noisy data, as we have mentioned earlier, 

we add noise to the over-determination condition (4) with 
3% noisy input. Then now the specific temperature is 

purtubed as δg . Figure 2(a) displays the numerical result of 

)(tf  obtained by using the algorithm introduced in Section 3 
with 3%p = noisy input and with no regularzation, i.e. 

0=λ . This can be seen that the numerical solution is 
inaccurate unstable since a 3%  small pertubution causes 
significant error in the solution. In order to retrieve this issues, 
we then employ the Tikhonov regularization method that we 
have mentioned in the Section 4. By the trial and error of 
selecting the regularization parameter among 610− to 1, we 
found that 0.6λ =  is the most suitable regularization 
parameter for this problem. 

Figure 2 illustrates the numerical results obtained when 
applying the second-order Tikhonov regularization. From 
Figure 2(b) we can observe that the numerical results are 
alleviated, compare to Figure 2(a). In addition, the smoothest 
result for this example can be obtained when setting 3.1λ =
and that is shown in Figure 3. This can be seen that the interior 
point of numerical solution, i.e. [ ]0.1,0.9t∈  approximately, 

is more accurate and stable, whereas the starting and end point 
on { }0,1t∈ are getting far away from the exact one. 

 

 

 

 

 

 

 

 

(a) RMSE=1.9807, 3%p = , 0λ =  

 
 

 

 

 

 

 

 

(b) RMSE=1.1078, 3%p = , 0.6λ =  

Figure 13.  The analytical  and numerical result of )(tf  with { }0,0.6λ =  
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  The inaccuracy at both starting and end points is 
frequently found elsewhere when using stabilizing 
technique such as the Tikhonov regularization method. 
Accordingly, this is obviously seen that the FIM (OLA) 
and Tikhonov regularization can be used to deal with the 
inverse problem. In [13] Xiangtuan et. al. combined the 
direct numerical method with the finite difference 
method for solving this kind of problems. The method 
really works well with appropriate step length but this 
has one drawback: This algorithm always  needs 

requirement of step length i.e. 
( )2

1
2

t
x
Δ

≤
Δ

. This can be 

noted that with 10N = and 30M = , which is not 
satisfied the above requirement. As a long to the 
requirement of step lenght, to set up 10N = we need to 
put 300M = which is a large number of time 
discretization and it also makes long computational time. 
Then we can conclude here that the FIM is a success 
method to deal with time-dependent inverse heat source, 
without any requirement of step lenght.  

 

 

 

 

 

 

 

 

Figure 14.  The analytical  and numerical result of )(tf  with 3.1λ =  

VII. CONCLUSION 

The inverse problem of finding the time-dependent 
source function has been discussed. The inverse heat 
source problem, with two unknown, has been 
transformed to be a forward problem, with an unknown 
by employing the direct numerical method suggested by 
[13]. The numerical discretization of the forward 
problem was based on the finite integration method 
combined with the backward finite difference. Since to 
obtain the unknown source function )(tf holds the first-
order derivative )(tg which is an observed data 

containing measurement errors. Furthermore, the 
Tikhonov regularization method has been employed 
together with the trial and error for selecting the suitable 
regularization parameter. The numerical result was 
found to be accurate and stable at interior points, yet not 
at both starting and end points. 
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