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Abstract. The kinetic description of baroclinic Rossby
waves in multi-layer model ocean is analysed. Explicit an-
alytical expressions for the coupling coefficients describing
energy exchange intensity between different modes are ob-
tained and their main properties are established for the three-
layer model. It is demonstrated that several types of inter-
actions vanish in the case of simple vertical structures of the
ocean, e.g. when all layers have equal depth. These cases
correspond to a zero component of the eigenvectors of the po-
tential vorticity equations. The kinetic equation always pos-
sesses a fully barotropic solution. If energy is concentrated
in the baroclinic modes, the barotropic mode will necessarily
be generated. Motion systems consisting of a superposition
of the barotropic and a baroclinic mode always transfer en-
ergy to other baroclinic modes.

1 Introduction

In the framework of weakly non-linear wave theory, natural
motion systems are treated as random wave fields with con-
tinuous spectral density (spectrum) of energy (e.g. Reznik,
1986; Zakharov et al., 1992; Komen et al., 1994). The wave
field evolution is determined by an infinite system of equa-
tions with respect to spectral cumulants. Under some restric-
tions, this system can be reduced to a closed equation for the
most important wave field properties. The resulting kinetic
equation describes slow (as compared to the characteristic
wave period) evolution of the wave system owing to resonant
interactions between wave harmonics. Although the assump-
tions made in deriving of this equation are not perfect (Majda
et al., 1997), applications based on the kinetic equation or its
simplified versions frequently show excellent and deeply in-
teresting results (e.g. Komen et al., 1994; Zakharov et al.,
1992; Zakharov and Pushkarev, 1999).
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Rossby waves in a multi-layer ocean serve as an example
of medium where several wave classes with different disper-
sion relations but with comparable frequencies may interact.
Interactions of waves from different classes may provide an
efficient way of energy redistribution in geophysical flows
where frequency domains often are interlapping (e.g. in-
teractions of two inertial waves with a Rossby wave, Wik-
lund, 1999). The kinetic equation describing interactions of
three wave classes was already presented in (Zakharov and
Schulman, 1980). However, such systems have been stud-
ied in detail only in a particular case when frequencies of the
waves are essentially different (Zakharov et al., 1992). In
the general case of comparable frequencies and/or a larger
number of wave types, the properties of (multi-modal) ki-
netic equations have not been analysed (Piterbarg, 1998) ex-
cept for Rossby waves in two-layer medium (Kozlov et al.,
1987; Soomere, 1995, 1996).

Barotropic and two-layer models of geophysical flows
often inadequately represent the vertical structure of the
oceans. In medium latitudes, the seasonal thermocline oc-
casionally creates a three-layer structure. In some areas (e.g.
in the Baltic Sea) the barotropic mode is damped and the
wave energy is mostly concentrated in the first and the sec-
ond baroclinic modes. To resolve the vertical structure in
such situations, at least three-layer model is necessary.

Application of a model with continuous vertical density
alteration (Piterbarg, 1998) is a possibility in numerical sim-
ulations. The advantage of the multi-layer model is that the
coefficients of the kinetic equation and many basic features
of the energy transfer can be found or proved analytically.
Also, the important question – whether specific spectral mod-
els reproduce the properties of the governing equations – can
be clarified to some extent. For example, kinetic models are
irreversible and generally possess additional motion invari-
ants. Moreover, their solutions may evolve towards princi-
pally different final states as compared to those of the gov-
erning equations (cf e.g. results of Carnevale, 1982; Vallis
and Maltrud, 1993; Reznik, 1986). One might argue that
the kinetic framework is not a proper tool for describing
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evolution of multi-modal Rossby wave systems, because the
barotropic mode generally is much faster than the baroclinic
ones. This is indeed true, and the analysis below additionally
confirms that: a large number of interaction classes involving
the barotropic harmonics actually do not redistribute energy,
because the corresponding coupling coefficients vanish.

A large part of the analysis is valid for arbitrary wave
classes. The detailed derivations have been performed for
Rossby waves mostly because they form a convenient and
rich in content model system where it is possible to analyti-
cally establish many features of the kinetic equations and to
interpret the results in a simple physical framework.

The derivation of the kinetic equation in the multi-layer
case is a straightforward generalisation of its derivation for
the two-layer case (Kozlov et al., 1987). Since an analogous
equation has been found in (Piterbarg, 1998) on the basis of
Hamiltonian approach and since the interaction coefficients
for Rossby waves are well known, the details of the proce-
dure have been omitted.

In order to use the kinetic framework, the equations must
first be modified so that each linear part contains one un-
known function. Doing this (equivalent to introducing nor-
mal modes or diagonalisation of the equations) is accompa-
nied by major changes of the nonlinear parts of the equa-
tions. Finally, they consist of certain linear combinations
of nonlinear terms from various initial equations. The co-
efficients at the nonlinear terms we call coupling coefficients
because they determine how different modes (wave classes)
are coupled with each other. (Notice that, at times, inter-
action coefficients are also called coupling coefficients, e.g.
Axelsson, 1998; the distinguishing is only important in mo-
tion systems described by two or more coupled equations).
Their appearance depends on the structure of both the linear
and the nonlinear part of the governing equations. In the ki-
netic theory, they form a part of the interaction coefficients
(another part of which represents the structure of the nonlin-
ear terms). Generally, coupling coefficients are not rational
functions of the coefficients of the initial equations, and they
have not been explicitly evaluated in earlier studies (except in
the two-layer model; e.g. Kamenkovich et al., 1986; Kozlov
et al., 1987).

Since these coefficients first appear at the nonlinear ex-
pressions in the equations for the normal modes, their proper-
ties are of certain interest in studies into dynamical properties
of motions but in the kinetic theory they are particularly im-
portant. Namely, they enter into the collision integrals of the
kinetic equation and determine the relative role of triads of
various types in energy exchange. For example, in the two-
layer model of Rossby waves with a proper scaling all types
of triads have equal relative energy exchange intensity, ex-
cept triads containing three baroclinic waves. The intensity
of self-interactions of the baroclinic mode crucially depends
on the ratio of the depths of the layers and fully ceases in the
most simple and widely used case of layers of equal depth
(Kozlov et al., 1987; Soomere, 1996). As a consequence, the
baroclinic zonal flow and the following large-scale merid-
ional anisotropy do not emerge, and the motion tends to a

final state consisting of purely barotropic zonal flow and an
isotropic wave system (Soomere, 1995, 1996). Thus, an im-
proper choice of the model may result in a completely differ-
ent evolution scenario of the whole system. It will be shown
below that a number of interactions vanish in a specific case
of the three-layer model with equal depths of the topmost and
the lowest layers. Such a stratification is not typical in open
ocean but frequently occurs in the Baltic Sea (e.g. Aitsam et
al., 1984).

The present study focuses on the calculation of the cou-
pling coefficients between different modes or wave classes.
The role of the coupling coefficients in the energy exchange
as well as their dependence on the particular physical back-
ground is analysed in detail. A novel compact representation
of multi-layer potential vorticity equation in terms of a com-
bination of bilinear forms is introduced. The analytic expres-
sions for the coefficients of the three-layer model are derived
and the dependence of general features of energy exchange
on the physical background is analysed. Shown are that cer-
tain types of interactions totally vanish in several realistic
situations. A new development in the kinetic theory is that
particular Rossby wave coupling coefficients in the model in
question are shown to vanish if and only if an eigenvector of
the governing systems of equations possesses a zero compo-
nent.

The paper is organised as follows. Section 2 describes de-
coupling of dynamical equations of large-scale motions in a
multi-layer ocean. General expressions for the coupling co-
efficients are found in Sect. 3. A part of the derivation is
fairly general and can be applied for other multi-modal wave
systems. The detailed expressions for the coupling coeffi-
cients of the Rossby-wave kinetic equation in the three-layer
model and analysis of several their properties that directly
affect the kinetic equation and its solutions, are presented in
Sect. 4. Section 5 contains discussion and Appendix A – the
mathematical details of the derivations.

2 Three-layer model of geostrophic motions and the ki-
netic equation

2.1 The basic equations

Dynamics of large-scale motions in the multi-layer ocean
with a flat bottom on theβ-plane is described by the potential
vorticity equation (Kamenkovich et al., 1986):

∂ξ (j)

∂t
+

1

f0ρ0
J (p′

j , ξ
(j)) = 0; j = 1...N, (1)

whereN is the number of layers,p′

j is the deviation of the
pressure from its equilibrium state in thej -th layer,

ξ (j) =
1

f0ρ0
1p′

j + βy +
f0

ghj

p′

j−1 − p′

j

δρj
+

f0

ghj

p′

j+1 − p′

j

δρj+1

is the potential vorticity in thej -th layer,f0 - the mean value
of the Coriolis parameterf = f0 + βy, ρ0 - the mean
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Fig. 1. Three-layer model ocean.

density,hj , ρj - the mean thickness and density of thej -
th layer, J (f, g) = ∂f/∂x∂g/∂y − ∂f/∂y∂g/∂x, δρj =

ρj − ρj−1; 2 ≤ j ≤ N; δρ1 = δρN+1 = ∞ andδij is the
Kronecker delta. Thex- andy-axes are directed to the North
and the East, respectively and only small deviations from the
geostrophic balance are considered. Figure 1 shows vertical
structure of the ocean in the three-layer case. In terms of
stream functionsψj = p′

j (f0ρ0)
−1 Eq. (1) reduces to

∂

∂t

[
1ψj + cj (ψj−1 − ψj )+ dj (ψj+1 − ψj )

]
+ β

∂ψj

∂x
+

+J (ψj , 1ψj )+ cjJ (ψj , ψj−1 − ψj )+

+djJ (ψj , ψj+1 − ψj ) = 0, j = 1...N, (2)

where

f 2
0 ρ0

ghj δρj
= cj ,

f 2
0 ρ0

ghj δρj+1
= dj , j = 1...N. (3)

It is convenient to write Eq. (2) in the matrix representation[
∂

∂t
(1+ A)+ β

∂

∂x

]
ψ =

= −ψTBJ (·,1)ψ − ψTBAJ (·, ·)ψ, (4)

whereψT = (ψ1, ..., ψN ), symbol (·)T means the trans-
posed vector or matrix,A is the three-diagonal matrix with
nonzero elementscj , −cj −dj , dj on thej -th line, 2≤ j ≤

N ; −d1, d1 on the first line andcN , −cN on theN -th line,
B = (B(1), ...,B(N)) is interpreted as a vector, thej -th com-
ponent of which is theN ×N -matrixB(j) =‖ δjmδjn ‖ with

the only nonzero elementbjmn = 1. The right-hand side of
each equation from Eq. (4) can be interpreted as the sum of
bilinear formsψTB(j)J (·,1)ψ andψTB(j)AJ (·, ·)ψ with
N × N-matricesB(j) andB(j)A, where the Jacobi operator
J (·, ·) or the composed operatorJ (·,1) stands for the mul-
tiplication operator.

2.2 The normal modes

In order to derive the kinetic equation for wave systems de-
scribed by Eq. (4), it is necessary to decouple the equations
so that the linear part of each equation contains only one un-
known function. Formally, doing this is equivalent to intro-
ducing normal modes(R1, ...., RN ) = R through the substi-
tution

ψ = SR, ψT = RTST , (5)

followed by multiplying the resulting equation from left by
S−1. HereS is aN ×N -matrix hereafter called transfer ma-
trix. The procedure (also called the diagonalisation problem)
is classical but in systems containing three or more layers
the coefficients of the resulting equation generally are not ra-
tional functions of the coefficients of Eq. (4) (cf. Piterbarg,
1998).

Substituting Eq. (5) into Eq. (4) results[
∂

∂t
(1+ A)+ β

∂

∂x

]
SR =

= −RTSTB[j (·,1)+ AJ (·, ·)]SR. (6)

The matricesB(j) andB(j)A of the bilinear forms have been
multiplied by the transfer matrixS from the right and by its
transposed matrix form the left. Eliminating from thej -
th equation all theRi; j 6= i, is equivalent to multiplying
Eq. (6) from left byS−1 and yields[
∂

∂t
(1+ S−1AS)+ β

∂

∂x

]
R = −S−1

×

×[RTSTBSJ (·,1)R +RTSTBS(S−1AS)J (·, ·)R]. (7)

The expression in square brackets at the right-hand side of
Eq. (7) is a vector,j -th component of which is a sum of two
bilinear forms. Notice that the matrix multiplication byS−1

does not commute with other operators and consists in sum-
mation of the elements of the right-hand side of Eq. (7).

Equation (7) is a solution of the decoupling problem pro-
videdS−1AS is a diagonal matrix. For any finiteN , the ma-
trix A hasN different eigenvaluesλj ≤ 0 (Kamenkovich et
al., 1986) andS−1AS = diag ‖ λj ‖ indeed is a diagonal
matrix provided the column vectors ofS are eigenvectors of
A (equivalently, ifS is the transfer matrix ofA to the normal
form). It is convenient to introduce nondimensional variables
R∗

j , t
∗, (x∗, y∗) : Rj = R∗

jR0; t = t∗t0; (x, y) = (x∗, y∗)L,

wheret0 = (βL)−1, R0, L, are the typical scales of time,
the stream function and the horizontal scale, respectively. In
terms of the new variables, in Eq. (7)λj are replaced by
λ∗

jL
−2, the factorβ at the term∂R/∂x disappears and at the

right-hand side of Eq. (7) the factorε = R0/(βL
3) arises.

After skipping the star index, we reach:

∂

∂t
(1Rj − a2

jRj )+
∂Rj

∂x
=

= −ε

N∑
m,n=1

γ
j
mnJ (Rm,1Rn − a2

jRn), j = 1...N, (8)
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whereaj =
√

−λj are the nondimensional Rossby radii.

The coefficientsλjmn we call coupling coefficients because
they describe the intensity of coupling between different
modes (wave classes). As different from (Kozlov et al., 1987)
where an analogous equation has been derived for two-layer
ocean, it turns out that interactions between modes can be
described with the use of one set of coefficientsλjmn. Be-
low it will be demonstrated that, from totalN3 coefficients,
several are identically zero and several always nonzero, but
some of them may vanish depending on the vertical structure
of the ocean. However, for each modej there exist nonzero
λ
j
mn, m 6= j, n 6= j , thus, decoupling of Eq. (8) into inde-

pendent subsets in the case of Rossby waves does not occur
and vanishing of certain coefficientsλjmn only leads to minor
simplifications of Eq. (8).

2.3 The multi-wave kinetic equation

If the parameterε in Eq. (8) is small (i.e. the motions are
weakly non-linear), it is possible to derive an equation that
describes slow temporal evolution of the spectral density
(spectrum) of energy of the motions. The derivation proce-
dure is well known (e.g. Benney and Newell, 1969; Reznik,
1984; Kozlov et al., 1987) and we only shortly recall its main
points. It is convenient to use Fourier transformφj (κ, t) of
the functionsRj defined as

Rj (x, y, t) =

∫
φj (κ, t)e

i(kx+ly)dκ, (9)

whereκ = (k, l) is the wave vector anddκ = dkdl. Substi-
tuting Eq. (9) into Eq. (8) yields

∂φj

∂t
− iωjφj = ε

∫
D
jmn
κκ1κ2φm(κ1)φn(κ2)×

×δ(κ1 + κ2 − κ)δκ12, j = 1...N, (10)

whereωj = −βk/(κ2
+ a2

j ) is the dispersion relation for the
j -th mode,κ =| κ |, δ(κ) = δ(k)δ(l), dκ12 = dκ1dκ2 and

D
jmn
κκ1κ2 = γ

j
mn

(k1l2 − k2l1)(κ
2
2 + a2

n − κ2
1 − a2

m)

2(κ2 + a2
j )

(11)

are the interaction coefficients. For the particular casej =

m = n the coupling coefficientγ jjj = 1 is trivial and the

coefficientsDjmnκκ1κ2 were found already in (Kenyon, 1964;
Longuet-Higgins and Gill, 1967). Casej 6= m = nwas anal-
ysed by Jones (1979). The expression forD

jmn
κκ1κ2 in Eq. (11)

differs from that used in (Reznik, 1984; Kozlov et al., 1987)
only in that the indexesj,m, n may now vary from 1 toN .

Assume that the functionsRj represent homogeneous
statistically stationary random fields. Then it is possi-
ble to introduce the spectral cumulants (semi-invariants)
Fjm(κ), 0

012
jmn(κ, κ1), Q

0123
jmnv(κ, κ1, κ2) etc.:

< φj (κ)φm(κ1) >= Fjm(κ)δ(κ + κ1), (12.1)

< φj (κ)φm(κ1)φn(κ2) >= 0012
jmn(κ, κ1)δ(κ + κ1 + κ2), (12.2)

< φj (κ)φm(κ1)φn(κ2)φv(κ3) >=

= Q0123
jmnv(κ, κ1, κ2)δ(κ + κ1 + κ2 + κ3)+

+Fjm(κ)δ(κ + κ1)Fnv(κ2)δ(κ2 + κ3)+

+Fjn(κ)δ(κ + κ2)Fmv(κ1)δ(κ1 + κ3)+

+Fjv(κ)δ(κ + κ3)Fmn(κ1)δ(κ1 + κ2) etc. (12.3)

The semiinvariantFjj (κ) has the meaning of spectral den-
sity of energy of thej -th mode. With the use of Eq. (10),
it is straightforward to obtain a coupled infinite system of
equations for the sequence of semi-invariants (12.1–3). The
simplest way to close this system consists in neglecting the
fourth-order and the higher order cumulants (Hasselmann,
1962; later on Reznik, 1984; showed that much weaker clo-
sure hypothesis may be used). Asymptotic analysis of the
system of equations for the cumulantsFjm, 0012

jmn(κ, κ1),
is described in detail e.g. in (Kenyon 1964; Benney and
Newell, 1969; Reznik, 1984). Analysis of the main points
of the derivation and the validity of the underlying approx-
imations is presented in (Majda et al., 1997). The quite te-
dious analysis is omitted here, because it contains nothing
instructive. The following system of equations (multi-modal
or multi-wave kinetic equation) with respect to the spectral
density of energy (spectrum) of thej -th modeFj = Fj (κ, τ )

(the double index′jj ′ has been replaced by the single one)
can be obtained:

∂Fj

∂τ
= 4π

N∑
m,n=1

Ijmn, j = 1...N;

Ijmn =

∫
D
jmn
κκ1κ2Kjmnδ(ω

012
jmn)δ(κ012)dκ12. (13)

Here τ = ε2t is slow time, Ipmn are the collision inte-
grals describing energy exchange between harmonics be-
longing to the modes with numbersj,m, n, the integrals
are taken over the four-dimensional spaceR2(κ1)×R

2(κ2),
ω012
jmn = ωj (κ)+ωm(κ1)+ωn(κ2), κ012 = κ+κ1 +κ2 and

Kjmn = D
jmn
κκ1κ2Fm(κ1)Fn(κ2)+

+D
mnj
κ1κ2κFn(κ2)Fj (κ)+D

njm
κ2κκ1Fj (κ)Fm(κ1). (14)

The derivation is valid for any set of wave classes possess-
ing triad interactions provided the double resonance does
not occur (Reznik, 1984). The sign indices in Eqs. (13, 14)
are avoided through allowing negative frequencies of Rossby
waves withk > 0. Equation (13) is equivalent to the analog-
ical equation with respect to wave action derived on the basis
of the Hamiltonian approach (Piterbarg, 1998). The proof of
basic properties of the Eq. (13) such as conservation of en-
ergy and wave momentum, and theH -theorem, is straight-
forward.

3 The coupling coefficients

The coupling coefficientsγ jmn form a part of dynamical equa-
tions (8) for the normal modes. They explicitly depend on the
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vertical structure of the model (but are independent of prop-
erties of particular wave harmonics) and control general en-
ergy exchange intensity between and within the modes. The
remainder of the coefficientsDjmnκκ1κ2 represents the structure
of nonlinear terms of Eq. (8) and describes energy exchange
details in particular triads. Obviously, in wave systems con-
taining one type of waves only, distinguishing of coupling
coefficients is unessential.

The coupling coefficients can be found a straightforward
manner from Eq. (7). Let us use the traditional notation
for line sTi =‖ sin ‖, 1 ≤ n ≤ N , and column vectors
sj =‖ smj ‖, 1 ≤ m ≤ N , for the transfer matrixS =‖ sij ‖.
The vectorssj are defined as(A − λj I)sj = 0, 1 ≤ j ≤ N ,
whereI is the unity matrix. The productB(i)S is a matrix in
which thei-th line vector issTi and all other entries are zeros.
Multiplying B(i)S from left byST gives

STB(i)S =

∥∥∥∥∥∥
si1sTi
...

siNsTi

∥∥∥∥∥∥ =‖ si1si ... siNsi ‖ .

The remaining multiplication in Eq. (7) from left byS−1

leads finally to

‖γ
j
mn‖ =

N∑
i=1

ŝjiSTB(i)S, (15)

whereŝmn are the elements of the matrixS−1. From Eq. (15)
it follows that a coefficientγ jmn is the scalar product of the
column vectorssTm and sTn under the metric defined by the
j -th line vectorŝj of the matrixS−1:

γ
j
mn =

N∑
i=1

ŝjisimsin, j,m, n = 1...N. (16)

Direct evaluation of the coupling coefficients is quite tedious
even in the simplest case of the two-layer model. However,
there exist several general properties of these coefficients.
First notice that(STB(i)S)T = STB(i)S, consequently, all
the resulting matrices in Eq. (15) are symmetric and

γ
j
mn = γ

j
nm, j,m, n = 1...N. (17)

A specific property of the coefficientsγ jmn in the case of
wave systems possessing a zero eigenvalueλ1 = 0 allows
to simply evaluate several coupling coefficients between the
first and the higher modes. It is easy to establish that the co-
ordinates of the eigenvectors1 corresponding toλ1 = 0 are
equal, e.g.si1 = a. Denoting the cofactor ofsij asAij , we
have:

γ
j

1j =

N∑
i=1

ŝj1si1sij = a

N∑
i=1

ŝj1sij =

= a|S|
−1

N∑
i=1

Aj1sij = a, j = 1...N (18)

since
N∑
i=1

Aj1sij is the determinant|S|, expressed in terms

of the elements of thej -th line of S and the corresponding
cofactors.

A specific property of Rossby waves is that the eigenvec-
tors of A (columns of the transfer matrixS) are orthogonal
with respect to the vectorh = (h1, h2, ..., hN ), wherehi is
the thickness of thei-th layer (Kamenkovich et al., 1986).
This property yields

γ 1
12 = γ 1

13 = γ 1
23 = 0. (19)

The Hamiltonian structure of baroclinic Rossby wave sys-
tems yields that the (Jacobi) identities

D
jmn
κκ1κ2

γ
j
mnωj (κ)

=
D
mnj
κ1κ2κ

γmnjωm(κ1)
=

D
njm
κ2κκ1

γ njmωn(κ2)
=

= V
jmn
κκ1κ2, j,m, n = 1...N, (20)

are satisfied at the resonance curvesω012
jmn = 0, κ012 = 0.

The quantityV jmnκκ1κ2 is called the matrix element of the wave
system. (Studies of the kinetic equation based on Hamilto-
nian approach (e.g. Balk et al., 1990; Zakharov et al., 1992,
among others) ascertain these features proceeding from the
conservation laws of the corresponding weakly non-linear
systems. For Rossby wave systems it is traditional to ob-
tain them in a straightforward way; Piterbarg, 1998). Equa-
tions (20) yield that the coupling coefficients are invariant
with respect to cyclic permutationsj → m → n → j of the
mode numbers, i.e. that

γ
j
mn = γmnj = γ njm, j,m, n = 1...N.

(Notice that this property for nonzero coefficients only holds
if lengths of the eigenvectors ofA are chosen properly; see
below.). In particular, this property together with Eq. (17)
results thatγ 2

11 = γ 3
11 = γ 3

12 = 0. Physically, it means that
in the three-layer ocean model only two classes of interac-
tions involving the barotropic mode are energetically impor-
tant: triads of barotropic waves and triads consisting of one
barotropic and two baroclinic waves from a fixed mode. All
other interactions involving barotropic components vanish.
Therefore, within the three-layer model there is no energy
exchange within triplets representing three different modes.
The physical reason is that all such interactions are of the
order of the vertical density alteration (Kozlov et al., 1987).

4 The analytical expressions for the coupling coeffi-
cients

4.1 The coupling coefficients for the two-layer and the
three-layer models

In the two-layer case the eigenvaluesλ1 = 0, λ2 = −h−1
1 −

h−1
2 can be explicitly calculated (Appendix A) and the cou-

pling coefficients are

‖γ 1
mn‖ =

∥∥∥∥∥a 0

0 b2h1h2
a

∥∥∥∥∥ , ‖γ 2
mn‖ =

∥∥∥∥0 a

a b(h2 − h1)

∥∥∥∥ , (21)
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wherea, b are arbitrary nonzero coefficients. (Notice that a
particular scaling does not change general interaction proper-
ties and basically reduces to changes of the slow time scale.)
The coefficientsγ jmn coincide with those used in (Kozlov et
al., 1987, Soomere, 1996) if

a =
h1 + h2

h1
, b =

h1 + h2

h2
1

.

The most convenient scaling is

a = 1, b = 1/
√
h1h2, (22)

that yieldsγ 1
11 = γ 1

22 = γ 2
12 = γ 2

21 = 1, γ 2
22 =

√
h2/h1 −

√
h1/h2. The advantage of this scaling is that it explicitly ex-

presses the invariance of the dynamics of the two-layer model
with respect to the numbering of the layers. Indeed, the ki-
netic equation does not change if the transpositionh1 ↔ h2
is made because only products of coupling coefficients enter
into each collision integral.

The expressions for coupling coefficients are much more
complex in the case of the three-layer model because gener-
ally they cannot be expressed as rational functions of the co-
efficients of the governing Eqs. (4). The matrixA in Eq. (5)
has a zero eigenvalueλ1 = 0 whereas other eigenvalues sat-
isfy the characteristic equation

λ2
+ λ(d1 + d2 + c2 + c3)+ d1d2 + d1c3 + c2c3 = 0. (23)

Equation (23) generally does not have rational eigenvalues
except in the casec1 = d3 (including the simplest case when
all the layers have equal depths) when

λ2 = −d1, λ3 = −d2 − c2 − c3 = λ2 − d2 − c2. (24)

The solutions of Eq. (23) are invariant with respect to the
transposition(d1, d2) ↔ (c2, c3) that causes onlyλ2 ↔ λ3
and is equivalent to reversing of the counting order of the
layers. Thus, the coupling coefficients are independent on
the direction of counting the layers. This property is a gen-
eralisation of the fact that the two-layer kinetic equation is
invariant with respect to the transpositionh1 ↔ h2.

In the general case, the transfer matrix and its inverse are
given by Eq. (A7) and the nontrivial coupling coefficients are
(see Appendix A for details):

γ 1
11 = a, γ 1

22 =
b2(λ2 − λ3)(λ2 + d1)c3

aλ3(λ2 + c3)d1
,

γ 1
33 =

c2(λ3 − λ2)(λ3 + d1)c3

aλ2(λ3 + c3)d1
(25)

γ 2
12 = γ 2

21 = a,

γ 2
22 = b

[
c3(λ2 + d1)

d1(λ2 + c3)
+ 1 −

λ2(λ2 + d1)

(λ3 − λ2)d1

]
,

γ 2
23 = γ 2

32 = c
λ2(λ3 + d1)

(λ2 − λ3)d1
,

γ 2
33 =

c2λ2
3(λ3 + d1)(λ2 + c3)

bλ2(λ3 − λ2)(λ3 + c3)d1
, (26)

γ 3
13 = γ 3

31 = a, γ 3
22 =

b2λ2
2(λ2 + d1)(λ3 + c3)

cλ3(λ3 − λ2)d1(λ2 + c3)
,

γ 3
23 = γ 3

32 = b
λ3(λ2 + d1)

(λ3 − λ2)d1
,

γ 3
33 = c

[
λ3(λ3 + d1)

(λ2 − λ3)d1
−
c3(λ3 + d1)

d1(λ3 + c3)
− 1

]
. (27)

Equations (25)–(27) explicitly demonstrate that the property
γ
j
mn = γmnj = γ njm requires a specific adjustment of the

lengths of the eigenvectors ofA.

4.2 Equal reduced depth of the topmost and the lowest lay-
ers

The coupling coefficients of the two-layer model in Eq. (21)
are always well defined. The transfer matrix in the case of
the three-layer model is regular in the physically meaningful
cases when all the layer depths are finite and nonzero. The
expressions for the coupling coefficients in Eqs. (25)–(27)
may be improper if and only if the product(λ2 + d1)(λ3 +

d1)××(λ2+c3)(λ3+c3) = 0. Sinceλ3 6= λ2, this may hap-
pen if and only if one of the components of the eigenvectors
s2 or s3 is zero.

If λ2 + d1 = 0 or λ2 + c3 = 0, Eq. (A3) yields2 = 0.
From the characteristic equation (23) it follows thatλ3 =

−c2−c3−d2 orλ3 = −d1−d2−c2. Sincec2 6= 0, this is pos-
sible only ifd1 = c3 andλ3+d1 = λ3+c3 = −d2−c2 6= 0.
The case(λ3 + d1)(λ3 + c3) = 0 also yieldsd1 = c3 but
givesλ2 = −d1 − d2 − c2 < λ3 and is implicitly excluded in
the traditional approach, because it is assumed thatλi < λj
provided i > j . Thus, expressions (25)–(27) may fail if
and only ifd1 = c3, or in models where the reduced depths
h1δρ2 andh3δρ3 of the uppermost and the lowermost layers
are equal. This case includes the simplest three-layer model
with equal depths and equal density differences between lay-
ers. In realistic problems, such situation may occur either in
atmospheric dynamics or in studies into motions in relatively
shallow strongly stratified basins like the Baltic Sea.

As for the coupling coefficients, notice first that Eqs. (16)–
(19) are valid for any combination of the parameters of the
original Eqs. (2) and (4). The expressions for the remain-
ing coefficients simplify greatly and can be obtained from
Eqs. (16) and (A18) in a straightforward manner:

γ 1
11 = a, γ 1

22 =
b2(d2 + c2)c2

a(d1 + d2 + c2)d2
,

γ 1
33 =

c2(d2 + c2)

ad1
,

γ 2
12 = γ 2

21 = a, γ 2
22 = b

d2 − c2

d2
,

γ 2
23 = γ 2

32 = c, γ 2
33 = 0,

γ 3
13 = γ 3

31 = a, γ 3
22 =

b2d1c2

c(d1 + d2 + c2)d2
,

γ 3
23 = γ 3

32 = 0, γ 3
33 = c

d1 − d2 − c2

d1
.
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Fig. 2. Vertical density profiles in the Gotland Basin, Baltic
Sea, 26.–28.08.1986:(a) 57◦31,6′N, 20◦34,2′E; (b) 57◦37,0′N,
20◦32,4′E; (c) 57◦38,5′N, 20◦36,1′E; (d) 57◦38,0′N, 20◦42,5′E.
The distance from the end of a profile to the bottom is about 10 m.
The total density alteration about 0.5% is typical for the Baltic Sea.
The profiles (b), (c), (d) are shifted to the right by 1, 2 or 3 density
units, respectively.

The performed analysis reveals that there are no other cases
when the derived expressions for the coupling coefficients
might fail.

4.3 Vanishing coupling coefficients and eigenvector com-
ponents

In the case of two-layer model the energy transfer within the
baroclinic mode ceases in the frequently used particular case
h1 = h2 (Kozlov et al., 1987; Soomere, 1996). This happens
exclusively owing to the fact that the corresponding coupling
coefficient vanishes and leads to a specific situation where
energy redistribution within the baroclinic mode is governed
exclusively by intermodal interactions that do not support
baroclinic zonal flow (Soomere, 1995, 1996).

Within the three-layer model the conditions for vanishing
certain coupling coefficients are more complex. The analysis
in Sect. 3 demonstrates that the coefficientsγ 1

11, γ
2
12 andγ 3

13
are always nonzero. From Eq. (25) it follows thatγ 1

22 and
γ 1

33 might vanish providedλj + d1 = 0 but Eq. (28) confirm
that they are always nonzero. This is not surprising because
otherwise the evolution of the barotropic mode would be not
coupled with the other modes.

The coefficientsγ 2
23, γ

2
33 andγ 3

23 also may vanish only if
λj + d1 = 0, j = 2,3. The above has shown that indeed
the coefficientsγ 2

33 = γ 3
23 = 0 providedd1 = c3, i.e. in the

models with equal reduced depths of the uppermost and the
lowest layers. In such models, there is no energy exchange
in triplets containing one wave from the first baroclinic mode
and two waves from the second baroclinic mode. There still
exists energy exchange between the baroclinic modes in tri-
ads containing two waves from the first baroclinic mode and
one from the second mode, becauseγ 2

23 = c and the coef-
ficient γ 2

23 never vanishes. The coefficientγ 3
22 may vanish

provided(λ3 + d2 + c3)(λ3 + c3) = 0. The caseλ3 + c3 = 0
yieldsd1 = c3 whenγ 3

22 is definitely nonzero. The other con-
dition λ3 +d2 + c3 = 0 is equivalent toλ2 +d1 + c2 = 0 and
yieldsd2c2 = 0 that is impossible. Thus,γ 3

22 never vanishes.
The modal structure of the flow can be found from Eq. (5)

asR = S−1ψ ; in the particular cased1 = c3 it can be ex-
pressed with the use of Eq. (A18) asR1 ∼ c2ψ1 + d1ψ2 +

d2ψ3, R2 ∼ ψ1−ψ3, R3 ∼ c2ψ1−(c2+d2)ψ2+d2ψ3. No-
tice that motions in the intermediate layer do not enter into
the equation for the first baroclinic mode whereas its struc-
ture does not depend on the depth of this layer. This equation
is perfectly symmetric with respect to motions in the topmost
and the lowest layers.

The coefficientsγ 2
22 andγ 2

33 may vanish for certain com-
binations of the parameters of Eq. (2). However, we were
not able to find a simple and exhaustive analytic criterion for
these coefficients to vanish. With the use of the characteristic
Eq. (23) it is possible to exclude from the conditionsγ 2

22 = 0
andγ 2

33 = 0 all cubic and quadratic terms with respect to
the eigenvaluesλ2 andλ3, and to reduce these conditions to
λ2 = G(d1, d2, c2, c3), whereG is a rational function with
respect to all its arguments. Therefore, the coefficientsγ 2

22
andγ 2

33 only may vanish provided Eq. (23) has rational solu-
tions. It has been shown in Sect. 4.1 that the solutions indeed
are rational in the cased1 = c3 but there may exist other
solutions.

From Eq. (26) it follows that the coefficientγ 2
22 vanishes

exactly and energy exchange within the first barotropic mode
is idle if alsod2 = c2. This condition means thatδρ2 = δρ3
(the changes in density are equal and, consequently,h1 = h3)
whereas the spectral evolution of the first baroclinic mode is
fully governed by interactions with the other modes. The
structure of the first baroclinic mode does not change but the
barotropicR1 ∼ ψ1 + h2ψ2/h1 + ψ3 and the second baro-
clinic modeR3 ∼ ψ1 − 2ψ2 + ψ3 contain an equal portion
of the motions in the topmost and the lowest layers.

Energy exchange within the second baroclinic mode is idle
(equivalently,γ 3

33 = 0) on condition thatd1 = d2 + c2 or, in
the case in question,h2 = h1 + h3. The barotropicR1 ∼

δρ3ψ1 + (δρ2 + δρ3)ψ2 + δρ2ψ3 and the second baroclinic
modeR3 ∼ δρ3ψ1 − (δρ2 + δρ3)ψ2 + δρ2ψ3 again contain
an equal portion of the motions in the topmost and the lowest
layers.

Further, in the particular caseδρ2 = δρ3, h1 = h3, h2 =

2h1, interactions within both the baroclinic modes do not
cause actual energy redistribution. The modal structure is
particularly simple:R1 ∼ ψ1+2ψ2+ψ3, R3 ∼ ψ1−2ψ2+

ψ3. Thus, the rather realistic case when the density changes
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between layers are equal, depths of the lower and the upper
layers are equal, and the intermediate layer is twice as thick
as the other layers, serves as “generalisation” of the classical
two-layer model with equal depths where self-interactions
of the baroclinic mode are idle. Such a vertical stratifica-
tion seldom occurs in the open ocean (where typically the
depth of the lowest layer greatly exceeds that of the other
ones) but frequently appears in the Baltic Sea. The density
structure of its the central part often consists of a mixed up-
per layer, well-defined seasonal thermocline at a depth about
20–40 m, an intermediate layer and main halocline at a depth
about 80–100 m whereas the total depth is about 120–140 m
(Fig. 2) and density changes between the layers are more or
less equal.

From Eqs. (A5), (A18) it follows that in the particular case
λj + d1 = 0 (i.e. when several coupling coefficients vanish
from those that normally are nonzero, see Table 1) the eigen-
vector(s) possess zero components. Further, it can be shown
that maximally one of the eigenvector components (equiva-
lently, only one of the entries of matrixS or its inverseS−1)
may vanish, and that exactly one component vanishes if an
additional coupling coefficient is zero. This observation in-
dicates that vanishing coupling may occur solely if eigen-
vectors ofA have a zero entry. This property allows to detect
specific flow regimes (that correspond to vanishing of certain
types of interactions) directly from the analysis of eigenvec-
tors of the governing Eqs. (2) or (4).

4.4 The convenient scalings

In the derivations above there are three “free” parameters (the
lengths of the eigenvectors) that can be chosen in many dif-
ferent ways. Traditionally, transfer to the normal modes in
Eq. (4) is given in the formRj = ψ1 + ..., i.e. through
the matrixS, the first column of the inverse matrix of which
is a unity vector (Kozlov et al., 1987; Kamenkovich, 1986).
From the analysis above it becomes clear that it is always
possible to choose the lengths of the eigenvectors ofS

(equivalently, the parametersa, b, c) so that this represen-
tation can be used. However, this scaling leads to many non-
trivial (i.e. other than zero or unity) coupling coefficients at
the collision integrals and requests the baroclinic mode to be
rescaled in the energy conservation law (Kozlov et al., 1987).

The most convenient scaling apparently is the one that
leads to maximally simple form of the coupling coefficients.
A possibility is to choose the parametersa, b, c so that as
many as possible coefficientsγ jmn = 1. The analysis of the
two-layer model and Eq. (22) suggests the scaling

a = 1, b2
=

λ3(λ2 + c3)d1

(λ2 − λ3)(λ2 + d1)c3
,

c2
=

λ2(λ3 + c3)d1

(λ3 − λ2)(λ3 + d1)c3
(28)

that results in‖γ 1
mn‖ = I and

γ 2
23 = γ 3

22 =
λ3

λ3 − λ2

√
λ3(λ3 + c3)(λ3 + d1)

(λ3 − λ2)c3d1
,

γ 2
33 = γ 4

23 =
λ3

λ2 − λ3

√
λ3(λ2 + c3)(λ2 + d1)

(λ2 − λ3)c3d1
. (29)

The expressions forγ 2
22 andγ 3

33 remain quite tedious. The
advantage of this scaling is that the coupling coefficients
γ
j
mn are explicitly invariant with respect to cyclic permuta-

tion j → m → n → j of the mode numbers. Its another
important benefit is that simply the sum of energies of the
modes enters into the energy conservation law.

4.5 Specific flow regimes

Several interesting properties of the multi-modal kinetic
equation (13) become evident directly from the analysis of
the coupling coefficients. The fact thatγ 1

22 and γ 1
33 are

nonzero means that the barotropic mode, if not present ini-
tially, will always be generated. Indeed, if at some time mo-
mentτ = τ0 the barotropic energyF1 = 0, then

∂F1(τ0)

∂τ
= π

∑
j=2,3

∫
(γ 1
jjC

1jj
κκ1κ2)

2Fj (κ1)Fj (κ2)×

×δ(ω012
1jj )δ(κ012)dκ12 ≥ 0,

where

C
jmn
κκ1κ2 = (k1l2 − k2l1)(κ

2
2 + a2

n − κ2
1 − a2

m)(κ
2
+ a2

j )
−1.

From the analysis in (Kozlov et al., 1987; Soomere, 1996)
it follows that the two-layer model may contain a purely
barotropic flow (that exists only owing to specific form of
Eq. (2) and is unstable with respect to small baroclinic dis-
turbances). It is also easy to show that, formally, a purely
barotropic flow may exist in the three-layer model. Indeed,
if at some time moment the energy of the first and the second
baroclinic mode is zero, then

∂Fj (τ0)

∂τ
= 4πIj1j =

= 4π
∫
D
j1j
κκ1κ2Kj1j δ(ω

012
j1j )δ(κ012)dκ12 = 0, j = 2, 3,

and there is no energy flow into baroclinic modes although
the coupling coefficientsγ 2

12 andγ 3
13 are nonzero. The ab-

sence of the energy flow results from the structure of the ker-
nel of the collision integralsIj1j that are proportional to the
energy of the baroclinic mode. However, in a certain sense
this asymmetry results from the fact that the coupling coeffi-
cientsγ 2

11 andγ 3
11 vanish. Notice that analogical coefficients

γ
j

11 vanish in the model with an arbitrary number of layers;
thus, the asymmetry of the energy flow from the barotropic
mode to the baroclinic modes is a general property of models
of this type.

It is also interesting to notice that solely the barotropic
mode may evolve uncoupled with other modes whereas a su-
perposition of the barotropic and the first baroclinic mode
may not. If at some time moment the barotropic and the first
barotropic motions are present and only the second baroclinic
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Table 1. Conditions of vanishing of the coupling coefficients. Symbol “+” means that the corresponding coefficient never vanishes and “0”
means that it is identically zero

Mode Interaction with Barotropic mode 1st baroclinic mode 2nd baroclinic mode

Barotropic Barotropic mode + 0 0
1st baroclinic mode 0 + 0
2nd baroclinic mode 0 0 +

1st baroclinic Barotropic mode 0 + 0
1st baroclinic mode + h1δρ2 = h3δρ3 & h1 = h3 +
2nd baroclinic mode 0 + h1δρ2 = h3δρ3

2nd baroclinic Barotropic mode 0 0 +
1st baroclinic mode 0 + h1δρ2 = h3δρ3
2nd baroclinic mode + h1δρ2 = h3δρ3 h1δρ2 = h3δρ3 & h2 = h1 + h3

mode is void of energy, then

∂F3

∂τ
= π

∫
(γ 3

22C
322
κκ1κ2

)2F2(κ1)F2(κ2)×

×δ(ω012
322)δ(κ012)dκ12 ≥ 0

because the coefficientγ 3
22 never vanishes.

5 Discussion

Although the kinetic equation has been derived for the par-
ticular system of Rossby waves in a multi-layer ocean, most
of the analysis remains valid for any set of wave systems
possessing mutual interaction described by the matrixA in
Eq. (4). The basic properties of kinetic equations in the three-
layer model are mostly direct generalisations of those of
two-layer model. This equation possesses a fully barotropic
solution in consistence with the possibility of the purely
barotropic flow to exist in the framework of the govern-
ing equations. If energy is concentrated in the baroclinic
modes, the barotropic mode will necessarily be generated.
An important feature is that motions initially consisting of
the barotropic and one baroclinic mode always transfer en-
ergy to the other baroclinic mode. Thus, a solution consisting
of a superposition of the barotropic and the first baroclinic
mode does not exist in the three-layer model.

Although a number of external parameters enter into
Eq. (1), basic properties of a particular three-layer model
only depend on four external parameters: density changes
between the layers and the ratios of the depths of the layers.
The structure of Eqs. (3) and (4) confirms the well-known
fact that only changes of the vertical structure of the motion
may alter the modal structure. Changes of other external pa-
rameters only lead to multiplication of all the entries of the
matrixA in Eq. (4), its eigenvalues and eigenvectors by a cer-
tain factor. The above has shown that degeneration of certain
coefficients only occurs, as it may be expected, in partially
symmetric situations whereh1δρ2 = h3δρ3 (i.e. the reduced
depths of the topmost and the lowest layers are equal). Addi-

tional symmetriesh1 = h3 or h2 = h1 + h3 cause vanishing
of some other coefficients.

An interesting property is that the largest possible num-
ber of coupling coefficients vanish in the fairly realistic case
when the density changes between layers are equal, depths of
the topmost and the lowest layers are equal, and the interme-
diate layer is twice as thick as the other layers. This leads to
a delicate situation where energy redistribution is governed
by a few classes of interacting waves. The absence of a part
of interactions may lead to basically different evolution sce-
narios of the whole system as suggested in (Soomere, 1995,
1996).

The analysis reveals that in the three-layer ocean model
one class of interactions is implicitly neglected. Indeed, en-
ergy exchange within triplets consisting of waves from three
different modes is idle since the corresponding coupling co-
efficient is zero. This property reflects the fact that the eigen-
vectors corresponding to the nonzero eigenvalues are orthog-
onal with respect to the remaining eigenvector. The physical
reason is that the intensity of such interactions is of the order
of the vertical density alteration (Kozlov et al., 1987). Thus,
the three-layer model implicitly excludes a whole class of in-
teractions and at least four-layer model should be introduced
to obtain a comprehensive picture of energy exchange pat-
terns due to various types of resonant interactions of Rossby
waves.

Appendix A The analytical expressions for coupling co-
efficients

In the simplest baroclinic two-layer case the matrixA in
Eq. (4) is

A(2) =
f 2

0 ρ0

gδρ2

∥∥∥∥∥−
1
h1

1
h1

1
h2

−
1
h2

∥∥∥∥∥ .
Its eigenvalues, eigenvectors, and matricesS,S−1 can be ex-
plicitly calculated:

λ1 = 0, λ2 = −
1

h1
−

1

h2
,
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S =

∥∥∥∥a bh2
a − bh1

∥∥∥∥ , S−1
=

1

h1 + h2

∥∥∥∥ h1
a

h2
a

−1
b

1
b

∥∥∥∥ .
Here a, b are arbitrary nonzero constants. The above has
shown thatγ 1

11 = γ 2
12 = a, γ 1

12 = γ 1
21 = 0 andγ 2

12 = γ 2
21. It

is straightforward to evaluate the remaining coefficients:

γ 1
22 =

b2h1h2

a
, γ 2

22 = b(h2 − h1). (A1)

From Eqs. (16)–(19) it follows that only 8 of total 27 cou-
pling coefficients in the three-layer model have to be evalu-
ated. The matrixA obviously has a zero eigenvalueλ1 = 0
because the sum of elements of each line is zero. Other
eigenvalues satisfy the following relations

λ2λ3 = d1d2 + d1c3 + c2c3,

λ2 + λ3 = −(d1 + d2 + c2 + c3). (A2)

The componentss1, s2, s3 of the eigenvectors can be found
from equationsA − λj I = 0, j = 1, 2, 3:

−s1(λ+ d1)+ d1s2 = 0,

c2s1 − c2s2 − d2s2 − λs2 + d2s3 = 0,

c3s2 − (λ+ c3)s3 = 0. (A3)

The eigenvector corresponding toλ1 = 0 consists of equal
elementss1 = s2 = s3 = a (herea is an arbitrary constant)
whereas the second equation of Eqs. (A3) is identically sat-
isfied. In the caseλj 6= 0 (i.e. j = 2,3) Eq. (A3) yield

s1h1 + s2h2 + s3h3 = 0 (A4)

Equation (A4) is a particular form of a general result say-
ing that the eigenvectors of the matrix are orthogonal with
respect to the weightsh1, ..., hN (Kamenkovich, 1986).

It is convenient to represent the eigenvectorss2 ands3 in
terms ofλj , j = 2,3. The resulting transfer matrixS and its
inverse are

S =

∥∥∥∥∥∥∥
a b c

a b
λ2+d1
d1

c
λ3+d1
d1

a b
(λ2+d1)c3
(λ2+c3)d1

c
(λ3+d1)c3
(λ3+c3)d1

∥∥∥∥∥∥∥ ,

S−1
=

∥∥∥∥∥∥∥∥∥
d1d2
aλ2λ3

(
c2c3
d1d2

,
c3
d2
, 1

)
d1d2

bλ2(λ3−λ2)

(
λ3+d1
λ3+c3

,
c3−d1
λ3+c3

, −1
)

d1d2
cλ3(λ3−λ2)

(
−
λ2+d1
λ2+c3

, −
c3−d1
λ2+c3

, 1
)

∥∥∥∥∥∥∥∥∥ , (A5)

whereb, c are arbitrary nonzero constants. In the particu-
lar case of Rossby waves, the expression forŝ1 reduces to
ŝ1 = (h1, h2, h3)/[a(h1 +h2 +h3)] that is just a variation of
Eq. (A4).

Among the coupling coefficients of the barotropic mode,
only expressions forγ 1

22 andγ 1
33 have not been found yet.

From Eqs. (16) and (A5) it follows that

γ 1
22 =

b2

a
G1(λ2), γ

1
33 =

c2

a
G1(λ3),

where

G1(λ2) =
d2c3

λ2λ3

[
c2

d2
+
(λ2 + d1)

2

d1d2
+
c3(λ2 + d1)

2

d1(λ2 + c3)2

]
. (A6)

It is convenient to subsequently simplify the expression for
G1(λ2). From Eq. (A2) it follows that

(λ2 + c3)(λ3 + c3) = d2(d1 − c3),

(λ2 + d1)(λ3 + c3) = (λ2 + d1 + c2)(c3 − d1). (A7)

With the use of Eq. (A7), the ratio in the third additive of
G1(λ2) can be evaluated as

λ2 + d1

λ2 + c3
= −

λ2 + d1 + c2

d2
. (A8)

Substituting Eq. (A8) into Eq. (A6) and rearranging the ad-
ditives yields

G1(λ2) =
c2c3

λ2λ3

[
1 −

c3(λ2 + d1)

d1(λ2 + c3)

]
+

+
c3(λ2 + d1)

2

d1λ2λ3

(
1 −

c3

λ2 + c3

)
. (A9)

Simplification of the expressions in brackets of Eq. (A9)
yields thatG1(λ2) contains the factorλ2 and can be ex-
pressed as

G1(λ2) =
c3

d1λ3(λ2 + c3)

[
c2(d1 − c3)+ (λ2 + d1)

2
]
.

Substituting the equality

(λ2 + d1)(λ3 + d1) = c2(c3 − d1) (A10)

into Eq. (A9) reveals that

G1(λ2) =
c3(λ2 − λ3)(λ2 + d1)

λ3d1(λ2 + c3)
,

γ 1
22 =

b2(λ2 − λ3)(λ2 + d1)c3

aλ2(λ3 + c3)d1
.

γ 1
33 =

c2(λ3 − λ2)(λ3 + d1)c3

aλ2(λ3 + c3)d1
. (A11)

The coefficientsγ 2
23, γ

2
33, γ

3
22 andγ 3

23 are:

γ 2
23 =

cd1d2(λ3 + d1)

λ2(λ3 − λ2)(λ3 + c3)
G2(λ2),

γ 2
33 =

c2d1d2(λ3 + d1)

bλ2(λ3 − λ2)(λ3 + c3)
G2(λ3),

γ 3
22 = −

b2d1d2(λ2 + d1)

cλ3(λ3 − λ2)(λ2 + c3)
G2(λ2),

γ 3
23 = −

bd1d2(λ2 + d1)

λ3(λ3 − λ2)(λ2 + c3)
G2(λ3),

where

G2(λ2) = 1 +
(λ2 + d1)(c3 − d1)

d2
1

−
(λ2 + d1)c

2
3

(λ2 + c3)d
2
1

. (A12)
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Splitting the second additive in Eq. (A12) and regrouping the
terms gives

G2(λ2) = 1 −
(λ2 + d1)

d1
+
c3(λ2 + d1)

d2
1

(
1 −

c3

λ2 + c3

)
=

=
λ2

d1

[
c3(λ2 + d1)

d1(λ2 + c3)
− 1

]
.

Making use of Eq. (A7) yields

G2(λ2) =
λ2

2(c3 − d1)

d2
1(λ2 + c3)

=
λ2

2(λ3 + c3)

d2
1d2

,

γ 2
23 =

cλ2(λ3 + d1)

(λ3 − λ2)d1
, γ 3

23 = −
bλ3(λ2 + d1)

(λ3 − λ2)d1
,

γ 2
33 =

c2λ2
3(λ3 + d1)(λ2 + c3)

bλ2(λ3 − λ2)(λ3 + c3)d1
,

γ 3
22 = −

b2λ2
2(λ2 + d1)(λ3 + c3)

cλ3(λ3 − λ2)(λ2 + c3)d1
. (A13)

The remaining coefficientsγ 2
22 andγ 3

33 do not have such a
simple multiplicative form as other coefficients. They can be
expressed as

γ 2
22 =

bd1d2

λ2(λ3 − λ2)
G3(λ2, λ3),

γ 3
33 = −

cd1d2

λ3(λ3 − λ2)
G3(λ3, λ2), (A14)

where

G3(λ2, λ3) =

=
λ3 + d1

λ3 + c3
+
(c3 − d1)(λ2 + d1)

2

d2
1(λ3 + c3)

−
(λ2 + d1)

2c2
3

d2
1(λ2 + c3)2

. (A15)

It is convenient to split the second additive in Eq. (A15) into
two parts. After regrouping the additives, Eq. (A14) can be
reduced to

G3(λ2, λ3) =
1

(λ3 + c3)

[
(λ3 + d1)−

(λ2 + d1)
2

d1

]
+

+
(λ2 + d1)

2c3

d1d1

[
1

(λ3 + c3)
−

c3

(λ2 + c3)

]
.

Simplification of the expressions in the square brackets
yields

G3(λ2, λ3) =
λ2 − λ3

λ3 + c3

[
c2

3(λ2 + d1)
2

d2
1(λ2 + c3)2

− 1

]
+

+
λ2(λ2 + d1)

(λ3 + c3)d1

[
c3(λ2 + d1)

d1(λ2 + c3)
− 1

]
. (A16)

From Eq. (A16) it follows thatG3(λ2, λ3) contains the
explicit factor λ2(c3 − d1). With the use of Eq. (A10),
Eqs. (A14) and (A16) can be reduced to

G3(λ2, λ3) =

=
λ2

d1d2

{
(λ3 − λ2)

[
c3(λ2 + d1)

d1(λ2 + c3)
+ 1

]
−
λ2(λ2 + d1)

d1

}
,

γ 2
22 = b

[
c3(λ2 + d1)

d1(λ2 + c3)
+ 1 −

λ2(λ2 + d1)

(λ3 − λ2)d1

]
,

γ 3
33 = c

[
c3(λ3 + d1)

d1(λ3 + c3)
+ 1 +

λ3(λ3 + d1)

(λ3 − λ2)d1

]
. (A17)

The expressions for the coupling coefficients are much
simpler in the particular casec1 = d3 and can be obtained
in a straightforward way from the following representation
of the transfer matrixS and its inverse:

S =

∥∥∥∥∥∥∥
a b c

a 0 −
c(d2+c2)

d1

a −
bc2
d2

c

∥∥∥∥∥∥∥ ,

S−1
=

∥∥∥∥∥∥∥
1

a(d1+d2+c2)
(c2, d1, d2)

d2
b(d2+c2)

(1, 0,−1)
d1

c(d1+d2+c2)

(
c2

d2+c2
,−1, d2

d2+c2

)
∥∥∥∥∥∥∥ . (A18)
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