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A family A ⊂ P[n] is said to be an antichain if A �⊂ B
for all distinct A, B ∈ A. A classic result of Sperner shows 
that such families satisfy |A| ≤

(
n

�n/2�
)
, which is easily seen 

to be best possible. One can view the antichain condition 
as a restriction on the intersection sizes between sets in 
different layers of P[n]. More generally one can ask, given a 
collection of intersection restrictions between the layers, how 
large can families respecting these restrictions be? Answering 
a question of Kalai [8], we show that for most collections of 
such restrictions, layered families are asymptotically largest. 
This extends results of Leader and the author from [11].

© 2014 Published by Elsevier Inc.

1. Introduction

A family A ⊂ P[n] is said to be an antichain if A �⊂ B for all distinct A, B ∈ A. 
A classic result in extremal combinatorics is Sperner’s theorem [13], which shows that 
any such family A has size at most 

(
n

�n/2�
)
. This is easily seen to be best possible. 

This result has been hugely influential, having numerous interesting applications and 
extensions (for example, see [2] and [4] for an overview of some of these directions).
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Recently, Sperner’s theorem was applied in a new proof of Furstenberg and Katznel-
son’s density Hales–Jewett theorem by the polymath internet project ([12,6]). Here, 
roughly speaking, Sperner’s theorem (and a multi-dimensional extension of Gunderson, 
Rödl and Sidorenko [7]) form a base level of an induction hypothesis. While weaker than 
Sperner’s theorem, a crucial fact here was that any Sperner family A ⊂ P[n] satisfies 
|A| = o(2n).

Motivated by its place in the proof of the density Hales–Jewett theorem, Kalai [8]
asked whether it is possible to obtain similar results for other ‘Sperner-like conditions’. 
One example of such a condition was the tilted Sperner condition considered in [11]. 
Kalai noted that the Sperner condition can be rephrased as follows: A does not contain 
two sets A and B such that, in the unique subcube of P[n] spanned by A and B, A is 
the bottom point and B is the top point. He asked: what happens if we forbid A and B
to be at a different position in this subcube? In particular, he asked how large A ⊂ P[n]
can be if we forbid A and B to be at a ‘fixed ratio’ p : q in this subcube. That is, we 
forbid A to be p/(p + q) of the way up this subcube and B to be q/(p + q) of the way up 
this subcube. Equivalently, q|A \ B| �= p|B \ A| for all distinct A, B ∈ A. Note that the 
Sperner condition corresponds to taking p = 0 and q = 1. In [11], an asymptotically tight 
answer was given for all ratios p : q, showing that one cannot improve on the ‘obvious’ 
example, namely the q − p middle layers of P[n].

Theorem 1.1. (See [11].) Let p, q be coprime natural numbers with q ≥ p. Suppose 
A ⊂ P[n] does not contain distinct A, B with q|A \B| = p|B \A|. Then

|A| ≤
(
q − p + o(1)

)( n

n/2

)
. (1.1)

Up to the o(1) term, this is best possible. Indeed, the proof of Theorem 1.1 in [11]
also gives the exact maximum size of such A for infinitely many values of n.

Here we will view the Sperner condition from a slightly different perspective. Given 
i ∈ [0, n], let [n](i) = {A ⊂ {1, . . . , n} : |A| = i} and given a family of sets A ⊂ P[n], let 
A(i) denote the set A(i) = {A ∈ A : |A| = i}.

Definition. A family A ⊂ P[n] satisfies an xij-pairwise restriction between layers i and 
j of the cube if |A \B| �= xij for all A ∈ A(i) and B ∈ A(j).

Both the Sperner and tilted Sperner conditions can be viewed as collections of pairwise 
restrictions between layers of the cube. Indeed, A is a Sperner family if and only if 
|A \ B| �= 0 for all A ∈ A(i) and B ∈ A(j) whenever i < j. Similarly the tilted Sperner 
conditions can be viewed as collections of pairwise restrictions; for example, a small 
calculation shows that A is a 1 : 2-tilted Sperner family if and only if |A \ B| �= j − i

for all A ∈ A(i) and B ∈ A(j) for some pairs {i, j} (those i < j which satisfy j ≤ 2i
and 2j − i ≤ n). The main question we consider in this paper is the following: given 
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a collection of pairwise restrictions between layers of the cube, how large can families 
respecting these restrictions be?

We represent a collection of pairwise restrictions by a pair (G, x), where G is a graph 
with vertex set {0, . . . , n} and x = (xij) is a vector whose coordinates are indexed by 
the edges of G. An edge ij of G indicates that there is a pairwise restriction between 
sets in [n](i) and those in [n](j). The entry xij of x corresponding to this edge ij then 
tells us what this restriction is:

|A \B| �= xij

for sets A ∈ [n](i) and B ∈ [n](j). Note that since |A \B| ≤ min(|A|, |Bc|), this condition 
is vacuous unless xij ∈ [0, min(i, n − j)].

Definition. Let G be a graph on {0, . . . n} and let xij ∈ [0, min(i, n − j)] for all ij ∈ E(G)
with i < j. A family A ⊂ P[n] is a (G, x)-Sperner family if for every edge ij ∈ E(G), 
|A \B| �= xij for all sets A ∈ A(i) and B ∈ A(j).

We will be mainly concerned with the cases where i, j ≈ n/2 which gives min(i, n −j) ≈
n/2, as by Chernoff’s inequality ([3]) most elements of P[n] lie in this range.

In this language a Sperner family is just a (Kn+1, 0)-Sperner family. Similarly, 
a 1 : 2-tilted Sperner family is a (G, x)-Sperner family where ij ∈ E(G) ⇔ 2i ≥
j and 2j − i ≤ n and xij = j − i for all edges ij ∈ E(G). Our main question can 
now be rephrased as follows: given G and x, how large can the (G, x)-Sperner families 
be?

One easy way to construct a large (G, x)-Sperner family is to take A to be a union of 
layers with no pairwise restrictions between them. Equivalently,

A =
⋃
i∈I

[n](i) (1.2)

for an independent set I of G. This shows that we can always find a (G, x)-Sperner 
family of size at least

w(G) = max
I

∑
i∈I

(
n

i

)

where here the maximum is taken over all independent sets I in G. We call w(G) the 
weight of G. Furthermore, for the Sperner and tilted Sperner conditions, w(G) actually 
gives the maximal size of Sperner and tilted Sperner families. Indeed, G = Kn+1 for 
the Sperner condition so w(G) =

(
n

n/2
)
. Similarly the extremal family B0 for the tilted 

Sperner conditions described in [11] have size exactly equal to the weight of the tilted 
Sperner graph. It is natural to ask whether w(G) always determines the size of all 
maximal (G, x)-Sperner families?
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In general this is not true (an example is given at the end of Section 2). However 
our main result here shows that, with some small control on the values of xij , all 
(G, x)-Sperner families A satisfy |A| ≤ (1 + o(1))w(G).

Theorem 1.2. Let G be a graph on vertex set {0, . . . , n}. Suppose that for all edges ij
of G with i < j, xij ∈ {0, . . . , n/2 − 9(n logn)1/2}. Then all (G, x)-Sperner families A
satisfy

|A| ≤ w(G) + C

n2/3 2n =
(
1 + o(1)

)
w(G). (1.3)

Remark. While the condition on the values of xij in Theorem 1.2 may seem artificial, 
an example will be given in the next section to show that in general, in order for the 
conclusion of the theorem to hold, it is necessary that xij ∈ [0, n/2 − c(n log n)1/2] for 
some c > 0.

We draw attention to the fact that with x as in Theorem 1.2, the maximum size of 
a (G, x)-Sperner family does not depend on what the pairwise restrictions are between 
different layers (the values of xij) but just whether there is one (i.e. whether ij ∈ E(G)), 
which we feel is quite surprising.

Now note that it is easy to see that x satisfies the conditions of Theorem 1.2 for both 
the Sperner and tilted Sperner conditions. Theorem 1.2 therefore shows that Sperner 
and tilted Sperner families A satisfy |A| ≤ (1 + o(1))w(G) for the appropriate G. Thus 
Theorem 1.2 includes Theorem 1.1 as a special case.

Another natural question to ask is what happens if instead of restricting the size of 
A\B between sets A and B in different layers of the cube, we restrict ‘patterns’ between 
such sets. For example, how large can A ⊂ P[n] be if A does not contain two sets A and 
B with |B\A| = 2|A\B| in which a < b for every a ∈ A\B and b ∈ B\A? This condition 
is a substantial restriction of the 1 : 2-tilted Sperner condition from [11]. Does this still 
force |A| = o(2n)?

Our second result gives a positive answer to this question. It shows that this much 
weaker condition gives almost the same upper bound on |A| as given by the 1 : 2-tilted 
Sperner condition.

Theorem 1.3. Suppose that A ⊂ P[n] does not contain sets A and B with |B\A| = 2|A\B|
in which a < b for every a ∈ A\B and b ∈ B\A. Then |A| ≤ Ce120(log n)1/22n/n1/2 where 
C > 0 is an absolute constant.

Note that the bound in Theorem 1.3 shows that |A| ≤ 2n/n1/2+o(1), which up to the 
o(1) term is the size of the largest tilted Sperner family. It would be interesting to know 
whether the e120(log n)1/2 factor above can also be removed.

We will give two proofs of this result. The first gives a short proof using the density 
Hales–Jewett theorem but consequently gives an extremely weak upper bound on |A|. 
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The second proof is more involved but improves this to give the bound stated in Theo-
rem 1.3.

The proof of Theorem 1.2 is given in Section 2, followed by the proofs of Theorem 1.3 in 
Section 3. We conclude with some open problems. Throughout we omit floor and ceiling 
signs whenever they are not crucial for the sake of clarity. Our notation is standard. We 
write [n] for the set {1, . . . , n} and [a, b] for the interval {a, a + 1, . . . , b}. For a set S, 
P(S) denotes the power set of S and S(k) = {A ⊂ S : |A| = k} denotes the k-sets of S.

2. (GGG, xxx)-Sperner families

Let T be a set of size t. Two sets A1, A2 ∈ T (t/2) are said to be neighbours if |A1	A2| =
2. Note that any set A ∈ T (t/2) has t2/4 neighbours in T (t/2). Our first lemma shows 
that if B ⊂ T (t/2) is large then B contains a large subset E such that all elements of E
contain many neighbours in E .

Lemma 2.1. Let T be a set of size t. Suppose that B ⊂ T (t/2). Then, given any α ∈ [4/t, 1], 
there exists a set E ⊂ B with |E| > |B| − α

(
t

t/2
)

so that all E ∈ E have at least αt2/25

neighbours in E.

Proof. Let E be a maximal subset of B with the property that every E ∈ E has at least 
αt2/25 neighbours in E and set D = B\E . Let |D| = γ

(
t

t/2
)

and for contradiction suppose 
that γ ≥ α.

Given a set A ∈ T (t/2+1), let yA denote the number of sets D ∈ D contained in A. 
Double counting we have∑

A∈T (t/2+1)

yA =
∑

A∈T (t/2+1)

∑
D∈D:D⊂A

1 =
∑
D∈D

∑
A∈T (t/2+1):D⊂A

1

= t

2 |D| = γt

2

(
t

t/2

)
>

γt

2

(
t

t/2 + 1

)
.

Now note that for each pair {B, B′} of neighbours in D there exists a unique element 
A ∈ T (t/2+1) containing B and B′. This shows that∣∣{{B,B′} : B,B′ are neighbours in D

}∣∣ =
∑

A∈T (t/2+1)

(
yA
2

)
.

By the convexity of 
(
x
2
)

we therefore have∣∣{{B,B′} : B,B′ are neighbours in D
}∣∣

≥
(
γt/2

2

)(
t

t/2 + 1

)
≥ (γt/2)(γt/2 − 1)

22

(
t

t/2

)
≥ γt2

25 |D|. (2.1)

The final inequality here holds since γt/2 − 1 ≥ γt/4 for γ ≥ 4/t.
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Now view D as the vertices of a graph in which elements are joined if they are neigh-
bours. By (2.1) we see that the average degree of this graphs is at least γt2/24. But any 
graph with average degree d contains a subgraph with minimum degree at least d/2 (ob-
tained by repeatedly removing vertices of degree less than d/2). This gives a non-empty 
subset S of D in which every element has at least γt2/25 ≥ αt2/25 neighbours. However 
E ∪S is a subset of B in which all elements have at least αt2/25 neighbours, contradicting 
the maximality of E . Therefore γ < α, as claimed. �

We now give an overview of the proof of Theorem 1.2. Let G and x be as in the 
statement of Theorem 1.2 and let A ⊂ P[n] with |A| > w(G) + C2n/n2/3. We wish to 
show that there is some edge ij of G with i < j, and sets Ai ∈ A(i), Aj ∈ A(j) such 
that |Ai \ Aj | = xij . To do this we will proceed in two steps. In the first step we find a 
maximal chain C = {Ci : i ∈ [0, n]} ⊂ P[n], with |Ci| = i for all i, with two properties. 
The first is that there is a ‘large’ subset {Ci : i ∈ I} with I ⊂ [0, n] of elements in A ∩C. 
Here ‘large’ will not mean with respect to the size of I, but with respect to a certain 
weighted measure of I. This property will be used to find an edge ij of G with i < j

such that i, j ∈ I. The second property we will need from C is that each element Ci with 
i ∈ I satisfies certain local density conditions in A(i). The second step of the argument 
then uses these local density conditions to find a set Ai ∈ A(i) which is close to Ci with 
|Ai \ Cj | = xij .

The first step of the argument will be carried out in the following lemma which locates 
the chain C mentioned above. In the statement of the lemma (i) and (ii) correspond to 
the property that I is ‘large’ mentioned above. The slightly technical (iii), (iv) and (v)
then correspond to the local density property mentioned above. Each of these will be 
used to deal with a different range of xij. The reader may find it helpful to skip the 
proof of the lemma on first reading to see how conditions (i)–(v) are used in the proof 
of Theorem 1.2.

Below we make the convention that given a set A ⊂ [n] and a permutation σ ∈ Sn, 
σ(A) denotes the set {σ(a) : a ∈ A}.

Lemma 2.2. Given any family A ⊂ P[n] there exist

• sets S ⊂ T ⊂ [n] with |S| = s = 4n3/5, |T | = t = n − 2(n logn)1/2;
• a maximal chain C = {Ci : i ∈ [0, n]} ⊂ P[n] with |Ci| = i for all i;
• a set I ⊂ [0, n];

with the following properties.

(i) Ci ∈ A for all i ∈ I.
(ii)

∑
i∈I

(
n
)
≥ |A| − 210

2/3 2n.
i n
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(iii) There is F0 ∈ S(s/2) such that Ci ∩ S = F0 for all i ∈ I (we will have i ≥ s/2 for 
i ∈ I). Furthermore, for each such i there is a family Fi ⊂ S(s/2) with |Fi| ≥ 1

n

(
s

s/2
)

such that (Ci \ F0) ∪ F ∈ A for all F ∈ Fi.
(iv) There is D0 ∈ T (t/2) such that Ci ∩ T = D0 for all i ∈ I (we will have i ≥ t/2 for 

i ∈ I). Furthermore, for each such i there is a family Di ⊂ T (t/2) with |Di| ≥ 1
n

(
t

t/2
)

such that (Ci \D0) ∪D ∈ A for all D ∈ Di.
(v) For all i ∈ I, every element of Di has at least n4/3 neighbours in Di.

Proof. We may assume that n > 215 as otherwise, taking I = ∅ the statement of the 
lemma is vacuous. Let us set n1 = 2(n log n)1/2 so that n = t + n1 and let I0 = [n/2 −
(n log n)1/2, n/2 + (n log n)1/2] = [t/2, t/2 + n1] ⊂ [n]. We will restrict to those elements 
Ã ⊂ A with Ã = {A ∈ A : |A| ∈ I0}. We have |Ã| ≥ |A| − 2n/n by Chernoff’s inequality 
(see Appendix A, [1]). We let |Ã(i)| = αi

(
n
i

)
.

To begin, choose a permutation σ ∈ Sn uniformly at random. Note that for B ∈
[1, t](t/2) and i ∈ I0 we have |σ(B ∪ [t + 1, i + t/2])| = i (here we take [t + 1, t] = ∅ when 
i = t/2). Let Bi ⊂ [1, t](t/2) denote those sets B ∈ [1, t](t/2) with σ(B ∪ [t + 1, i + t/2]) ∈
Ã(i) and write |Bi| = βi

(
t

t/2
)
. Also let Xi denote the random variable given by

Xi =
{
|Bi| if βi >

27

n2/3 ;

0 otherwise.

We claim that E(Xi) ≥ (αi − 27/n2/3)
(

t
t/2

)
. Indeed, as σ is chosen uniformly at 

random, σ(B ∪ [t + 1, t/2 + i]) is equally likely to be any set in [n](i), giving

P
(
σ
(
B ∪ [t + 1, t/2 + i]

)
∈ Ã(i)) = |Ã(i)|(

n
i

) = αi.

This gives that E(|Bi|) =
∑

B∈[1,t](t/2) P(σ(B ∪ [t + 1, t/2 + i]) ∈ Ã(i)) = αi

(
t

t/2
)
. Using 

that Xi ≥ |Bi| − 27

n2/3

(
t

t/2
)

for all i then gives

E(Xi) ≥ αi

(
t

t/2

)
− 27

n2/3

(
t

t/2

)
, (2.2)

proving the claim.
In order to guarantee (ii) we will make a choice of σ according to a certain weighted 

function. Let Z denote the random variable Z =
∑

i∈I0

(n
i

)( t
t/2

)Xi. Using linearity of expec-
tation and (2.2) we have

E(Z) =
∑ (

n
i

)(
t
)E(Xi) ≥

∑(
αi −

27

n2/3

)(
n

i

)

i∈I0 t/2 i∈I0
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=
∑
i∈I0

|Ãi| −
27

n2/3

(
n

i

)
≥ |Ã| − 2n+7

n2/3 ≥ |A| − 2n+8

n2/3 . (2.3)

Now fix a choice of σ ∈ Sn so that Z(σ) ≥ E(Z). Take I1 ⊂ I0 to consist of those i ∈ I0
with Xi �= 0. By (2.3) this gives

∑
i∈I1

βi

(
n

i

)
=

∑
i∈I0

(
n
i

)(
t

t/2
)Xi(σ) = Z(σ) ≥ E(Z) ≥ |A| − 2n+8

n2/3 . (2.4)

Furthermore, by definition of Xi we have βi >
27

n2/3 for i ∈ I1.
We now use Lemma 2.1, taking α = 26/n2/3, to find a set Ei ⊂ Bi such that all 

elements of Ei have many neighbours in Ei. This gives a family Ei ⊂ Bi ⊂ [1, t](t/2) with 
|Ei| = δi

(
t

t/2
)

satisfying

|Ei| = δi

(
t

t/2

)
≥ |Bi| −

26

n2/3

(
t

t/2

)
=

(
βi −

26

n2/3

)(
t

t/2

)
≥ 26

n2/3

(
t

t/2

)
, (2.5)

as βi > 27/n2/3 for all i ∈ I1 and so that each E ∈ Ei has at least αt2/25 ≥ 2(n −
2(n log n)1/2)2/n2/3 ≥ n4/3 neighbours in Ei.

Now let n2 be such that t = s + 2n2. Choose a permutation π ∈ St of the elements of 
[1, t] uniformly at random. For each i ∈ I1, we write Gi ⊂ [1, s](s/2) for the collection of 
sets G ∈ [1, s](s/2) such that π(G ∪ [s + 1, s + n2]) ∈ Ei – note again that |π(G ∪ [s + 1,
s + n2])| = t/2 for all G ∈ [1, s](s/2). As π is chosen uniformly at random we have

E
(
|Gi|

)
= |Ei|(

t
t/2

)( s

s/2

)
= δi

(
s

s/2

)
.

For each set G ∈ [1, s](s/2) let Yi,G denote the indicator random variable given by

Yi,G =
{

1 if G ∈ Gi and |Gi| ≥ 1
n

(
s

s/2
)
;

0 otherwise.

We claim that E(Yi,[1,s/2]) ≥ δi − 1
n . Indeed, as π ∈ St is chosen uniformly at random 

we have E(Yi,[1,s/2]) = E(Yi,G) for all G ∈ [1, s](s/2). Therefore

(
s

s/2

)
E(Yi,[1,s/2]) =

∑
G∈[1,s](s/2)

E(Yi,G) ≥ E
(
|Gi|

)
− 1

n

(
s

s/2

)
≥

(
δi −

1
n

)(
s

s/2

)
,

which after dividing by 
(

s
s/2

)
gives the claim.

Now consider the random variable W =
∑

i∈I1

(
n
i

)
Yi,[1,s/2]. By the previous claim, we 

have
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E(W ) =
∑
i∈I1

(
n

i

)
E(Yi,[1,s/2]) ≥

∑
i∈I1

(
δi −

1
n

)(
n

i

)

≥
∑
i∈I1

(
βi −

26

n2/3 − 1
n

)(
n

i

)
≥ |A| − 210

n2/3 2n. (2.6)

The second inequality here follows since δi ≥ βi−26/n2/3 by (2.5) and the third inequality 
follows by (2.4). Fix a choice of π ∈ St such that W (π) ≥ |A| − 210

n2/3 2n.
We now define the sets in the statement. Let S = σ(π([1, s])) and T = σ([1, t]). Since 

π ∈ St we have π([1, s]) ⊂ [1, t] and so S ⊂ T . Let I = {i ∈ I1 : Yi,[1,s/2](π) = 1} and set 
F0 = σ(π([1, s/2])) and D0 = F0 ∪ σ(π([s + 1, s + n2])). For all i ∈ I let

Ci = F0 ∪ σ
(
π
(
[s + 1, s + n2]

))
∪ σ

(
[t + 1, t/2 + i]

)
= D0 ∪ σ

(
[t + 1, t/2 + i]

)
.

Take C to be any maximal chain extending this partial chain. Lastly, set Fi = σ(π(Gi)) =
{σ(π(G)) : G ∈ Gi} and Di = σ(Ei) = {σ(E) : E ∈ Ei}.

All that now remains is to verify that (i)–(v) are satisfied for these sets. To see (i), note 
that by definition of Yi,[1,s/2], [1, s/2] ∈ Gi for i ∈ I and therefore π([1, s/2]) ∪ π([s + 1,
s + n2]) ∈ Ei ⊂ Bi, giving (by definition of Bi) that Ci ∈ Ã(i) ⊂ A(i). Furthermore, 
(ii) follows from (2.6) and our choice of π since

∑
i∈I

(
n

i

)
=

∑
i∈I1

(
n

i

)
Yi,[1,s/2](π) = W (π) ≥ E(W ) ≥ |A| − 210

n2/3 2n.

To see (iii), first note that Ci ∩ S = Ci ∩ σ(π([1, s])) = σ(π([1, s/2])) = F0. Also, for 
F ∈ Fi we have F = σ(π(G)) for some G ∈ Gi and

(Ci \ F0) ∪ F = σ
(
π
(
G ∪ [s + 1, s + n2]

))
∪ σ

(
[t + 1, t/2 + i]

)
.

By definition of Gi we have π(G ∪[s +1, s +n2]) ∈ Ei ⊂ Bi and by definition of Bi this gives 
(Ci \F0) ∪F ∈ A(i). As Yi,[1,s/2] = 1 for all i ∈ I, we also have |Fi| = |σ(π(Gi))| = |Gi| ≥
1
n

(
s

s/2
)
, which gives (iii). To see (iv) note that Ci∩T = σ(π([1, s/2] ∪[s +1, s +n2])) = D0

and if D ∈ Di with D = σ(E) for some E ∈ Ei we have (Ci \D0) ∪D = σ(E) ∪ σ([t +
1, t/2 + i]) ∈ A(i). We also have |Di| = |σ(Ei)| = δi

(
t

t/2
)
≥ 26/n2/3( t

t/2
)
> 1/n

(
t

t/2
)

completing (iv). Lastly, by construction (v) holds for the family Ei and therefore also 
holds for σ(Ei) = Di. This completes the proof of the lemma. �

The proof of Theorem 1.2 will also make use of the following powerful theorem of 
Frankl and Rödl from [5] (see Theorem 1.4 in [5], or [10] for an alternative proof).

Theorem 2.3 (Frankl and Rödl). Let 0 < η < 1/4 and let l be an integer with ηn ≤ l ≤
(1/2 − η)n. Suppose that A, B ⊂ P[n] with |A ∩ B| �= l for all A ∈ A, B ∈ B. Then 
|A||B| ≤ (4 − ε)n, where ε = ε(η) > 0.
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Remark 1. In particular, the proof of Theorem 2.3 in [5] gives that for η = 1/10 we can 
take ε = 1/400 above. Frankl and Rödl also showed that if l = ρn with ρ ∈ [0, 1], then 
|A||B| ≤ (4 − ρ2 + O(ρ3))n (see Corollary 2.4 in [5]). In particular, for ρ ∈ [0, 1/10], 
|A||B| ≤ e−ρ2n/164n = e−l2/16n4n. Combining these two ranges shows that if l ∈ [0, n/3]
and A, B ⊂ P[n] with |A ∩B| �= l for all A ∈ A, B ∈ B then

|A||B| ≤ max
{
(4 − 1/400)n, e−l2/16n4n

}
= max

{
(1 − 1/1600)n, e−l2/16n}4n. (2.7)

We are now ready to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. We will prove the theorem with C = 2200. We may assume that 
n ≥ 2300 since otherwise C

n2/3 2n > 2n and the conclusion is trivial. Let G and x be as in 
the statement of the theorem and suppose for contradiction that A is a (G,x)-Sperner
family with |A| > w(G) + C

n2/3 2n.
To begin, apply Lemma 2.2 to A to find sets S and T , a chain C and a set I ⊂ [0, n]

as in the lemma. Now by Lemma 2.2(ii)
∑

i∈I

(
n
i

)
≥ |A| − 210

n2/3 2n > w(G). By definition 
of w(G), I cannot be an independent set of G. Therefore there exist ij ∈ E(G) with 
i, j ∈ I. Now note that Lemma 2.2(i) guarantees that Ci and Cj are in A. We will show 
that regardless of the value of xij we can find sets in A(i) and A(j) which violate the 
(G, x)-Sperner condition.

Case I: xij ∈ [0, n1/3].

Starting with D0 as in Lemma 2.2(iv), we will construct a sequence of sets 
D0, D1, . . . , Dxij

∈ Di such that each consecutive pair Dl and Dl+1 are neighbours 
and |Dl+1\D0| = |Dl\D0| + 1 for all l ∈ [0, xij − 1]. This will then give that 
(Ci \D0) ∪Dxij

∈ A(i) and Cj ∈ A(j). But since Ci ⊂ Cj and Ci ∩ T = Cj ∩ T = D0∣∣((Ci \D0) ∪Dxij

)
\ Cj

∣∣ = |Dxij
\D0| = xij

which contradicts the (G, x)-Sperner condition.
Suppose we have so far found sets D0, . . . , Dk with k < xij and now wish to pick Dk+1. 

A neighbour E of Dk belonging to Di can be taken as Dk+1 so long as E \Dk �⊂ D0 and 
Dk \ E ⊂ D0. But there are at most |D0 \Dk|t/2 neighbours of Dk in Di which fail to 
satisfy the first condition and at most |Dk∩ (T \D0)|t/2 which fail to satisfy the second. 
Now

|D0 \Dk|t
2 + |Dk ∩ (T \D0)|t

2 = kt

2 + kt

2 < xijn ≤ n4/3.

Now as Dk ∈ Di, by Lemma 2.2(v) Dk has at least n4/3 neighbours in Di and therefore 
there is a suitable choice for Dk+1, as required.

Case II: xij ∈ [n1/3, n3/5].
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Since i, j ∈ I, by Lemma 2.2(iii) we have Ci∩S = Cj ∩S = F0. By the (G, x)-Sperner 
condition, we must have |A \ B| �= xij for all A ∈ A(i) and B ∈ A(j). However, also by 
Lemma 2.2(iii), (Ci \F0) ∪F ∈ A(i) and (Cj \F0) ∪F ′ ∈ A(j) for all F ∈ Fi and F ′ ∈ Fj . 
This gives that

∣∣F ∩
(
S \ F ′)∣∣ =

∣∣F \ F ′∣∣ =
∣∣((Ci \ F0) ∪ F

)
\
(
(Cj \ F0) ∪ F ′)∣∣ �= xij (2.8)

and also by Lemma 2.2(iii), Fi and Fj satisfy

|Fi|, |Fj | ≥
1
n

(
s

s/2

)
≥ 1

n2 2s. (2.9)

We now show that the Frankl–Rödl theorem contradicts (2.9).
Let F∗

j denote the set {S \F : F ∈ Fj} ⊂ S(s/2). Now Fi, F∗
j ⊂ P(S) and by (2.8) we 

have |F ∩ F ′| �= xij for all F ∈ Fi and F ′ ∈ F∗
j . As xij ∈ [0, n3/5] = [0, |S|/4], by (2.7)

|Fi||Fj | = |Fi||F∗
j | ≤ max

{
(1 − 1/1600)s, e−xij

2/16s}4s

≤ max
{
(1 − 1/1600)s, e−n2/3/64n3/5}

4s

= max
{
(1 − 1/1600)4n

3/5
, e−n1/15/64}4s

<
1
n4 4s.

The second inequality here holds since xij ≥ n1/3 and the final inequality holds for 
n ≥ 2300. However, this contradicts (2.9).

Case IIIa: xij ∈ [n3/5, n/4].

This is similar to the previous case. Since i, j ∈ I, by Lemma 2.2(iv) we have Ci∩T =
Cj ∩ T = D0. By the (G, x)-Sperner condition, we must have |A \ B| �= xij for all 
A ∈ A(i) and B ∈ A(j). However, also by Lemma 2.2(iv), (Ci \ D0) ∪ D ∈ A(i) and 
(Cj \D0) ∪D′ ∈ A(j) for all D ∈ Di and D′ ∈ Dj . This gives that

∣∣D ∩
(
T \D′)∣∣ =

∣∣D \D′∣∣ =
∣∣((Ci \D0) ∪D

)
\
(
(Cj \D0) ∪D′)∣∣ �= xij (2.10)

and also by Lemma 2.2(iv), Di and Dj satisfy

|Di|, |Dj | ≥
1
n

(
t

t/2

)
>

1
n2 2t. (2.11)

Let D∗
j denote the set {T \D : D ∈ Dj} ⊂ T (t/2). Now Di, D∗

j ⊂ P(T ) and by (2.10)
we have |D ∩ D′| �= xij for all D ∈ Di and D′ ∈ D∗

j . As xij ∈ [0, n/4] ⊂ [0, |T |/3], by 
(2.7)
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|Di||Dj | = |Di|
∣∣D∗

j

∣∣ ≤ max
{
(1 − 1/1600)t, e−xij

2/16t}4t

≤ max
{
(1 − 1/1600)t, e−n6/5/64n}4t

= max
{
(1 − 1/1600)t, e−n1/5/64}4t

<
1
n4 4t.

The second inequality here holds since xij ≥ n3/5 and the final inequality holds for 
n ≥ 2300. However, this contradicts (2.11).

Case IIIb: xij ∈ [n/4, n/2 − 9(n logn)1/2].

This case can be argued in the same way as Case IIIa by noting that in (2.10), we 
have |D \D′| �= xij for all D ∈ Di and D′ ∈ Dj if and only if |D ∩D′| �= t/2 − xij . We 
also have t/2 − xij ∈ [8(n log n)1/2, n/4] ⊂ [8(n logn)1/2, |T |/3]. By (2.7) we therefore 
have

|Di||Dj | ≤ max
{
(1 − 1/1600)t, e−xij

2/16t}4t

≤ max
{
(1 − 1/1600)t, e−64n log n/16n}4t

= max
{
(1 − 1/1600)n−2(n log n)1/2

, n−4}4t

≤ 1
n4 4t.

But this again contradicts (2.11).
As Cases I–IIIb above cover the range of possibilities for the values of xij, this com-

pletes the proof to the theorem. �
Remark. While we have not pursued this here, we note that with a more involved version 
of Lemma 2.2 we can replace the term C

n2/3 2n term appearing in Theorem 1.2 with a 
term of the form C log n

n 2n.

We now show that some restriction on the values of xij as in the statement of Theo-
rem 1.2 is necessary. Indeed, take G = Kn+1 and let xij ∈ [n/2 − βn1/2, min(i, n − j)]
for all i < j. This gives w(G) = (1 + o(1))

(
n

n/2
)

= O( 2n

n1/2 ).
Now take A ⊂ P[n] to be the family

A =
{
A ⊂ [n] : |A| ≤ n/2 and

∣∣A ∩ [n/2]
∣∣ > n/4 + βn1/2/2

}
.

Clearly we have |A ∩ B| > βn1/2 for all A ∈ A(i), B ∈ A(j). Therefore |A \ B| ≤
i − βn1/2 ≤ n/2 − βn1/2. This shows that A is a (G, x)-Sperner family. But it can be 
shown that for β > 1, |A| ≥ C−β22n for some fixed C > 1. Now taking β < c(logn)1/2
for a small enough c > 0 gives a (G, x)-Sperner family of size significantly bigger than 
w(G).
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3. Forbidding patterns between layers

As mentioned in the Introduction, our first proof of Theorem 1.3 is based on Fursten-
berg and Katznelson’s density Hales–Jewett theorem [6] (see also [12]). A set L ⊂ [k]n
is said to be a combinatorial line if there exists a partition of [n] = X1 ∪ · · · ∪Xk ∪ A

with A �= ∅ such that

L =
{
(x1, . . . , xn) : xi = l if i ∈ Xl and xj = xk for all j, k ∈ A

}
.

The set A is called the active coordinate set.

Theorem 3.1 (Density Hales–Jewett). For any α > 0 and k ∈ N there exists n0(α, k) ∈ N

such that if n ≥ n0(α, k) every set A ⊂ [k]n with |A| ≥ αkn contains a combinatorial 
line.

First proof of Theorem 1.3. It is enough to prove the theorem when n is a multiple of 
3 since the general case follows easily from it. Let n = 3m. We will identify P[n] =
{0, 1}n with the set {0, . . . , 7}m via the map f : {0, 1}n → {0, . . . , 7}m, which sends 
x = (x1, . . . , xn) ∈ {0, 1}n to f(x) = (y1, . . . , ym) where yi = xi + 2xi+m + 4xi+2m for 
all i ∈ [m].

Suppose |A| = α2n for some constant α > 0. Then |f(A)| = α8m where f(A) =
{f(a) : a ∈ A}. By the density Hales–Jewett theorem, if n is sufficiently large, f(A)
contains a combinatorial line L with [m] = X0 ∪ . . . ∪ X7 ∪ A, where A is the active 
coordinate set. Write L = {L0, . . . , L7} where Li corresponds to the element of L in 
which elements of the active coordinate set takes the value i.

Let K be the subset of A which corresponds under f to L, i.e f(K) = L. We claim 
that K contains a forbidden pair A, B. Indeed, taking A ∈ K such that f(A) = L1

and f(B) = L6, all elements of A\B occur in [m] while all elements of B\A occur in 
[m +1, 3m]. Furthermore, for each element i ∈ [m] in i ∈ A\B if and only if i +m, i +2m ∈
B\A. Therefore |B\A| = 2|A\B|, a contradiction. �

Our second proof of Theorem 1.3 is again given by a Katona type averaging argument 
(see [9]). However this time it is more involved, owing to the fact that sets in the same 
level may forbid a different number of elements in P[n]. For example, if the set [1, n/3] ∈
A(n/3), it forbids many elements of [n](n/2) from being in A(n/2) — all sets of the form 
B∪C where B ∈ [1, n/3](n/6) and C ∈ [n/3 +1, n](n/3). However, if the set [2n/3 +1, n] ∈
A(n/3) it does not prevent any sets from [n](n/2) lying in A(n/2). To compensate for 
this imbalance, we first break the set system A into smaller pieces all of which behave 
similarly, in the sense that if two elements of A lie inside the same piece then they forbid 
roughly the same number of elements in any other piece. We then carry out a Katona 
type averaging procedure over these pieces.
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Second proof of Theorem 1.3. We will again assume that n is a multiple of 3. For 
convenience, we let α(n) = e120(log n)1/2 . We will prove that any set A ⊂ P[n] as in the 
statement of the theorem satisfies

|A| ≤ 100α(n)
n1/2 2n.

We can assume that n ≥ 104 as otherwise 100α(n) ≥ n1/2 and the result is immediate.
Given a set D ⊂ [n], let rD = |D ∩ [n/3]| − n/6 and sD = |D ∩ [n/3 + 1, n]| − n/3. 

Take B to be the subset of A with

B =
{
A ∈ A : |rA| ≤ (n log n)1/2 and |sA| ≤ (n logn)1/2

}
From Chernoff’s inequality we have |A \ B| ≤ (2n−6 + 2n−3)2n ≤ 4α(n)

n1/2 2n so it suffices 
to show that

|B| ≤ 96α(n)
n1/2 2n. (3.1)

Let L = n1/2. For all i, j ∈ [−(logn)1/2/2, (logn)1/2/2] we let

[n]i,j :=
{
D ⊂ [n] : |rD − 2iL| ≤ L and |sD − 2jL| ≤ L

}
.

Also let Bi,j = B ∩ [n]i,j . To prove (3.1) it clearly suffices to show that

|Bi,j | ≤
96α(n)
n1/2

∣∣[n]i,j
∣∣. (3.2)

We will fix i, j ∈ [−(logn)1/2/2, (logn)1/2/2] for the remainder of the theorem and 
show (3.2). Let K = n1/2/12 and pick the following:

• a set U ⊂ [n/3] of size K chosen uniformly at random,
• a random set S1 ⊂ [n/3] \U where each s ∈ [n/3] \U is included in S1 independently 

with probability p1,i = 1/2 + 6i/n1/2,
• a set V ⊂ [n/3 + 1, n] of size 2K chosen uniformly at random,
• a random set S2 ⊂ [n/3] \ V where each s ∈ [n/3 + 1, n] \ V is included in S2

independently with probability p2,j = 1/2 + 3j/n1/2.

Finally place a random ordering (u1, . . . , uK) on the elements of U and a random ordering 
(v1, . . . , v2K) on the elements of V . For all k ∈ [0, K], let Uk = {u1, . . . , uk} and Vk =
{v2K−2k+1, . . . , v2K}.

Having made these choices, for all k ∈ [0, K] take

Ck = Uk ∪ S1 ∪ Vk ∪ S2
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and let C = {Ck : k ∈ [0, K]}. Note that any two elements of C form a forbidden pair. 
Indeed, for k < l with k, l ∈ [0, K] we have Ck \ Cl = {uk+1, . . . , ul} and Cl \ Ck =
{v2K−2l+1, . . . , v2K−2k} and u < v for all elements u ∈ U , v ∈ V . Therefore, letting Xk

be the indicator random variable which equals 1 if Ck ∈ Bi,j and 0 otherwise, for all 
choices of C we have

K∑
k=0

Xk = |Bi,j ∩ C| ≤ 1. (3.3)

Therefore taking the expectation of both sides of (3.3) and expanding we have

K∑
k=0

∑
B∈Bi,j

P(Ck = B) =
K∑

k=0

P(Ck ∈ Bi,j) =
K∑

k=0

E(Xk) ≤ 1. (3.4)

In Lemma 3.2 which follows we will show that, for all B ∈ [n]i,j we have

P(Ck = B) ≥ 1
8α(n)|[n]i,j |

. (3.5)

We claim that this proves (3.2). Indeed, by (3.4) and (3.5) we have

|Bi,j |K
8α(n)|[n]i,j |

=
K∑

k=0

∑
B∈Bi,j

1
8α(n)|[n]i,j |

≤
K∑

k=0

∑
B∈Bi,j

P(Ck = B) ≤ 1.

Using that K = n1/2/12 and rearranging, this gives (3.2). �
Lemma 3.2. Given B ∈ [n]i,j and k ∈ [0, K] we have

P(Ck = B) ≥ 1
8α(n)|[n]i,j |

.

Proof. We will show the claimed bound in two steps. In the first we show that P(Ck ∈
[n]i,j) ≥ 1/8. In the second we show that for all A, B ∈ [n]i,j we have

P(Ck = A)
P(Ck = B) ≤ α(n). (3.6)

Combined these then gives the bound claimed in the statement of the lemma since

1
8 ≤ P

(
Ck ∈ [n]i,j

)
=

∑
A∈[n]i,j

P(Ck = A)

≤
∑

α(n)P(Ck = B) = α(n)
∣∣[n]i,j

∣∣P(Ck = B).

A∈[n]i,j
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We first show the bound on P(Ck ∈ [n]i,j). Now Ck = (Uk ∪ S1) ∪ (Vk ∪ S2) ∈ [n]i,j if

|Uk ∪ S1| = k + |S1| ∈
[
n/6 + (2i− 1)L, n/6 + (2i + 1)L− 1

]
and

|Vk ∪ S2| = 2K − 2k + |S2| ∈
[
n/3 + (2j − 1)L, n/3 + (2j + 1)L− 1

]
.

Using that k ∈ [0, K] we therefore find that Ck ∈ [n]i,j if

|S1| ∈
[
n/6 + (2i− 1)L, n/6 + (2i + 1)L−K − 1

]
(3.7)

and

|S2| ∈
[
n/3 + (2j − 1)L, n/3 + (2j + 1)L− 2K − 1

]
. (3.8)

But |S1| and |S2| are binomially distributed, |S1| ∼ B(n/3 −K, 1/2 + 6i/n1/2) and 
|S2| ∼ B(2n/3 − 2K, 1/2 + 3j/n1/2) respectively. Therefore, using that |S1| and |S2|
are independent random variables and applying Chernoff’s inequality we have

P
(
Ck ∈ [n]i,j

)
≥ P

(
|S1| satisfies (3.7) and |S2| satisfies (3.8)

)
= P

(
|S1| satisfies (3.7)

)
P
(
|S2| satisfies (3.8)

)
≥

(
1 − 2e−

2(L/2)2
n/3−K

)(
1 − 2e−

2(L/2)2
2n/3−2K

)
≥

(
1 − 2e−

n/2
n/4

)(
1 − 2e−

n/2
n/2

)
≥ 1/8.

The third inequality above follows since K ≤ n/12. This gives the first bound.
We now prove (3.6). Suppose first that A, B ∈ [n]i,j with rB = rA + 1 and sA = sB . 

Now

P(Ck = A) = P
(
A ∩ U = Uk and S1 = A ∩

(
[n/3] \ U

))
× P

(
A ∩ V = Vk and S2 = A ∩

(
[n/3 + 1, n] \ V

))
=

(
n/6+rA

k

)(
n/6−rA
K−k

)(
n/3
K

) (p1,i)n/6+rA−k(1 − p1,i)n/6−rA−K+k

×
(
n/3+sA
2K−2k

)(
n/3−sA

2k
)(2n/3

2K
) (p2,j)n/3+sA−2K+2k(1 − p2,j)n/3−sA−2k.

This gives

P(Ck = A)
P(Ck = B) =

(n6 + rA − k + 1)(n6 − rA)(1 − p1,i)
(n6 + rA + 1)(n6 − rA −K + k)p1,i

=
(

1 − k
)(

1 + K − k
)

(1 − 12i/n1/2)
1/2
n/6 + rA + 1 n/6 − rA −K + k (1 + 12i/n )
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Applying the estimates (i) 1 + x ≤ e2x valid for all x ∈ [0, 1] and (ii) e2x ≤ 1 + x

for x ∈ [−1/2, 0] together with the bounds 12|i|/n1/2 ≤ 1/2, |rA| ≤ (n logn)1/2 and 
k ≤ K = n1/2/12, this gives

P(Ck = A)
P(Ck = B) ≤ e2k/(n/6+rA+1)e2(K−k)/(n/6−rA−K+k)e24|i|/n1/2

e24|i|/n1/2

≤ e(n1/2/6)/(n/6−(n log n)1/2).e(n1/2/6)/(n/6−(n log n)1/2−n1/2/12)

× e12(log n/n)1/2
e12(log n/n)1/2

≤ e30(log n/n)1/2
. (3.9)

A similar calculation shows that

P(Ck = A)
P(Ck = B) ≥ e−30(log n/n)1/2

. (3.10)

Furthermore, an identical argument gives that (3.9) and (3.10) hold if A, B ∈ [n]i,j with 
rA = rB and sA = sB + 1. Therefore given any two sets A and B in [n]i,j , by repeatedly 
using (3.9) and (3.10) to change rA to rB and sA to sB , we find that

P(Ck = A)
P(Ck = B) ≤ e30(log n/n)1/2.(|rA−rB |+|sA−sB |)

≤ e30(log n/n)1/2.(4L) = e120(log n)1/2
= α(n).

Here we have used that |rA − rB | ≤ 2L and |sA − sB | ≤ 2L for all A, B ∈ [n]i,j . This 
gives (3.6) and therefore concludes the lemma. �
4. Concluding remarks

Let G and x be as in the statement of Theorem 1.2. Our original aim in this paper was 
to show that there exists a function f : (0, 1] → (0, 1] with f(α) → 0 as α → 0 such that 
the following holds: for n > n0 if w(G) ≤ α2n then |A| ≤ f(α)2n for all (G, x)-Sperner 
families A. Thus the layered families control the size of all allowable families. Theorem 1.2
shows that this is true in a stronger form: we can actually take f(α) = (1 + o(1))α.

A natural question is the following: what happens if we replace the graph G in 
Theorem 1.2 by a 3-uniform hypergraph H on vertex set {0, . . . , n}? Here for each 
edge e = ijk of H we would forbid a fixed ‘intersection pattern’ Pijk between sets in 
A ∈ [n](i), B ∈ [n](j) and C ∈ [n](k). This pattern would be described by the sizes of the 
intersections A ∩B∩C, A ∩B∩Cc, . . . , Ac∩Bc∩Cc. Is it true that, as in Theorem 1.2, 
the maximum size of a (H, P)-Sperner family (those families which do not contain one of 
these patterns) can again be controlled by w(H) (where w(H) is defined as before)? That 
is, does a function f as above still exist for 3-uniform hypergraphs? If this is true then it 
is easily seen that some restrictions on values of the Pijk are needed, like those on xij in 
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Theorem 1.2 – for example, such patterns must satisfy |A ∩B|, |A ∩C|, |B∩C| �α n1/2, 
|A ∩B ∩ C| �α 1 and |Ac ∪Bc ∪ Cc| �α 1.

Lastly, it would be interesting to know whether the upper bound in Theorem 1.3 can 
be replaced by |A| ≤ C

(
n

n/2
)
, for some fixed constant C > 0.
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