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Abstract 

The contribution of prostaglandins (PGs) to exercise hyperaemia is controversial.  In this 

review, we argue this is partly explained by differences between studies in exercise intensity.  

The effects of cyclooxygenase (COX) inhibition and PG assays, PGs contribute more at 

moderate to heavy, than light workloads and are mainly released by low tissue O2.  But, the 

release and actions of PGs also depend on other O2-dependent dilators including ATP, 

adenosine and NO.  K
+
 may inhibit the action of PGs and other mediators by causing 

hyperpolarization, but contributes to the hyperaemia.  Thus, at lighter loads, the influence of 

PGs may be blunted by K
+
, while COX inhibition leads to compensatory increases in other 

O2-dependent dilators.  In addition, we show that other sources of variability are sex and 

ethnicity.  Our findings indicate that exercise hyperaemia following rhythmic contractions at 

60% maximum voluntary contraction, is smaller in young Black African (BA) men and 

women than in their white European (WE) counterparts, but larger in men than women in 

both ethnicities.  We propose the larger absolute force in men causes greater vascular 

occlusion and accumulation of dilators, while blunted hyperaemia in BAs may reflect lower 

oxidative capacity and O2 requirement.  Nevertheless, COX inhibition attenuated peak 

hyperaemia by ~30% in WE, BA men and WE women, indicating PGs make a substantial 

contribution in all 3 groups.  There was no effect in BA women.  Lack of PG involvement 

may provide early evidence of endothelial dysfunction, consistent in BA women, with their 

greater risk of cardiovascular disease.    
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Prostaglandins (PGs) have been implicated in exercise hyperaemia since the 1970s. Despite 

this long association, the extent to which PGs contribute to exercise hyperaemia remains 

unclear.   Review of the literature suggests the uncertainty arises, at least in part, from 

differences between experimental studies in the intensity of exercise, the sex, age range, 

ethnicity of the subjects or even in the techniques used to measure muscle blood flow.  In this 

review we consider these issues, using them as a setting for our studies on the contributions of 

PGs to exercise hyperaemia in young men and women of White European (WE) and Black 

African (BA) ethnicities.  

 

Evidence for and against PG involvement.  

PGs were first reported to contribute to exercise hyperaemia by Kilbom and Wennmalm 

(1976), who used venous occlusion plethysmography (VOP) to record forearm blood flow 

(FBF).  In men and women, post-contraction hyperaemia following rhythmic, or isometric 

forearm contractions at moderate-heavy load was attenuated by 30-50% after inhibition of 

cyclooxygenase (COX), which synthesizes PGs from arachidonic acid. Subsequently, Nowak 

and Wennmalm (1978) showed that cycling at 75% maximal workload increased venous 

efflux of PGE.  Similarly, post-exercise hyperaemia recorded by VOP in the leg of young 

men following treadmill exercise at ~50% maximum workload, was attenuated by ~50% after 

COX inhibition (Cowley et al., 1985).  Further, (Duffy et al., 1999) showed with VOP that 

post-exercise hyperaemia evoked by rhythmic forearm contractions at medium load in young 

men and women, was attenuated by ~20% by COX inhibition. In addition, we showed by 

using VOP that COX inhibition attenuated post-exercise hyperaemia evoked by isometric 

exercise at 60% MVC by ~40% (Win & Marshall, 2005). 
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The first attempt to determine the contribution of PGs during exercise was made by Wilson 

and Kapoor (1993).  Since VOP cannot be applied reliably when muscles are contracted, FBF 

was measured during 4-5s breaks in 5 min periods of graded rhythmic contractions.  In young 

men and women, COX inhibition attenuated increases in FBF evoked during contractions at 

light and medium workload by ~20% and abolished the 2-3 fold increases PGE2 and PGI2 

efflux (Wilson & Kapoor, 1993).   

 

By contrast, Shoemaker et al. (1996), who used Doppler ultrasound recordings of brachial 

artery diameter and blood velocity to assess FBF in young men, found that COX inhibition 

had no effect on hyperaemia evoked during rhythmic forearm contractions at 10% MVC. 

Thus, they concluded PGs do not play an essential role in hyperaemia during exercise.  A 

similar conclusion was drawn by Mortensen et al. (2007), who measured blood flow by 

thermodilution in young men performing knee extensor exercise at 20% maximum.   In some 

contrast, Schrage et al (2004) who used Doppler ultrasound in a group of men and women, 

found that infusion of COX inhibitor when hyperaemia evoked by rhythmic forearm 

contractions at 10%MVC was already established caused a short-lasting, 12% reduction in 

FBF. They proposed PGs do contribute to exercise hyperaemia, but when their influence is 

removed, other dilator/s compensate (Schrage et al., 2004).   

 

Resolving the discrepancies.  The simplest explanation for these discrepancies is that PGs are 

more likely to be released and contribute to exercise hyperaemia associated with medium to 

strenuous exercise, than light exercise.  Certainly, microdialysis samples showed PGE2 

concentration in the interstitium was unchanged during light knee extensor exercise, but 

increased during moderate workloads (Boushel et al., 2002). Further, graded cycling exercise 
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in young men was accompanied by graded increases in interstitial PGE2 and PGI2 

(Karamouzis et al., 2001).   

 

An alternative explanation (see Shoemaker et al. (1996)) is that PGs contribute to muscle 

vasodilatation during recovery from exercise rather than during exercise per se, and that VOP 

reveals this contribution even when used during breaks between rhythmic contractions 

(Wilson & Kapoor, 1993) because the technique essentially measures “recovery flow”.  

However, Doppler ultrasound recordings during graded rhythmic calf contractions showed 

that only during weak contractions of 6-15% MVC did blood flow increase slightly during 

contraction and even then, blood flow increased further on relaxation.  At intensities ≥ 15% 

MVC, blood flow during the contractions was progressively impaired and during relaxation 

phases, i.e, during “recovery”, blood flow increased to extents that were graded with 

contraction intensity (Green et al., 2011).  Indeed, calf blood flow measured with VOP during 

the relaxation phases compared closely with that estimated by ultrasound (Green et al., 2011).  

 

On this basis, it seems probable PGs do contribute to hyperaemia between contractions in 

rhythmic exercise, as well as during post-contraction hyperaemia following contractions, 

providing the PG concentrations reached during the period of contraction are sufficiently 

raised. Nevertheless, the possibility still remains the influences of PGs may be difficult to 

reveal during light to medium exercise due to interaction with other factors; this is considered 

below (Interactions between PGs and other factors). 

 

Origin and stimuli for PG release during exercise.   

The PGs associated with exercise hyperaemia are PGI2 and PGE2. Endothelial cells 

predominantly release PGI2 (Feletou et al., 2011).  Microvessels of skeletal muscle were 
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reported to release relatively more PGE2 judging from assays performed on homogenates of 

rat cremaster muscle with main artery and vein removed: the ratio of PGI2: PGE2 was 1:2 

(Myers et al., 1985).  However, the homogenates contain a high proportion of skeletal muscle 

fibres.  Skeletal muscle fibres do not express PGI2 synthase (McLennan & Macdonald, 1991), 

but they express COX, PGE2 synthase and PGF2 synthase, and release PGE2 and PGF2 in 

response to arachidonic acid and muscle contraction, PGE2being dominant (Testa et al., 

2007; Trappe & Liu, 2013). Thus, it seems most likely the PGI2 released into the interstitium 

and venous efflux of exercising skeletal muscle originates mainly from endothelial cells, 

whereas PGE2 arises largely from skeletal muscle fibres (see Figure 1).   

 

In vitro, increased intraluminal shear rate, or graded fall in PO2 dilated feed arteries and small 

resistance arteries of skeletal muscle by releasing PGI2 (Hecker et al., 1993; Frisbee et al., 

2002).  Similarly, isolated muscle arterioles showed endothelium-dependent dilator responses 

to hypoxia and increased shear rate that were abolished by COX inhibition (Koller & Kaley, 

1990; Messina et al., 1992).  Shear-stress induced release of PGI2 was attributed to 

phospholipase C activation (Berthiaume & Frangos, 1992), while hypoxia-induced PGI2 

release has been associated with influx of Ca
2+

, activation of phospholipase A2 (PLA2) and 

mobilization of arachidonic acid (Berna et al., 2001).  In skeletal muscle fibres, mechanical 

stretch and the increase in intracellular Ca
2+

 lead to PLA2 activation and PGE2 synthesis 

(Burkholder, 2007).  The PG transporter (PGT) is inhibited by extracellular lactate, so 

augmenting net PG release (Chan et al., 2002), providing a mechanism by which reduced PO2 

could augment interstitial PGE2 accumulation (Figure 1).  

 

Considering shear stress as a stimulus for PG release during exercise; Doppler ultrasound 

recordings of blood velocity and brachial artery diameter indicated that although COX 
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inhibition did not affect the rate of increase in FBF evoked by rhythmic contractions at 10% 

MVC, the increase in brachial artery shear rate was exaggerated with a trend for the diameter 

to be smaller (Shoemaker et al., 1996).  This suggested that endothelial release of PGs in 

downstream arterioles contributed to their dilatation so limiting further increases in brachial 

artery shear rate.  

 

Turning to PO2, arteriolar dilatation during muscle contractions was attenuated when tissue 

PO2 was maintained by raising superfusate PO2 (Gorczynski & Duling, 1978).  Further, when 

young men breathed 40%O2 during isometric contraction at 60% MVC to limit the fall in 

tissue PO2, post-contraction hyperaemia was attenuated to the same extent as with COX 

inhibition, while 40%O2 and COX inhibition applied together had no greater effect (Win & 

Marshall, 2005).  Moreover, 40%O2 restricted to the period of contraction, blunted post-

contraction hyperaemia, whereas 40%O2 given immediately contraction ceased had no effect 

(Fordy & Marshall, 2012).  These results suggest the PGs that contribute to post-contraction 

hyperaemia following isometric contraction, accumulate as a consequence of the fall in tissue 

PO2.   

 

Since muscle blood flow is limited throughout isometric contraction (Kagaya & Homma, 

1997), it was possible isometric contraction accentuates O2-dependent release of PGs.  

However, post-contraction hyperaemia evoked by rhythmic, or isometric contraction at 60% 

MVC were similarly attenuated by breathing 40%O2, COX inhibition or their combination.  

Moreover, 40%O2 greatly reduced venous efflux of PGI2 and PGE2:  post-exercise efflux of 

PGI2 was released by 75±8.5% (mean ± SEM) and 70±8.9% following rhythmic and isometric 

contraction respectively, while PGE2 efflux was reduced by 64±10.0% and 67±9.2% 

respectively (Junejo (2017); Junejo, Ray & Marshall, unpublished observation).   Thus, it 
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seems reasonable to propose that the release of PGI2 and PGE2 are largely dependent on the 

fall in tissue PO2 during both rhythmic and isometric contractions. 

 

Peri-arteriolar PO2 falls transiently during muscle contraction, whereas PO2 shows a sustained 

fall around capillaries and post-capillary venules (Lash & Bohlen, 1987).  PO2 close to 

skeletal muscle fibres falls gradually with increasing exercise intensity, to ~3mmHg during 

rhythmic contractions at 50-60%MVC (Richardson et al., 2001).  Thus, the most likely sites 

for O2-dependent release of PGs during exercise are terminal arterioles, capillaries, post-

capillary venules and skeletal muscle fibres (Figure 1).  The increase in arterial PO2 achieved 

with 40%O2 must steepen the PO2 gradients along the vascular tree and to the muscle fibres, 

raising PO2 at these crucial sites; it certainly reduces lactate efflux (Fordy & Marshall, 2012).  

 

Interactions between PGs and other factors.  

PGs released during muscle contraction can cause dilatation by a direct action on vascular 

smooth muscle (Murrant et al., 2014), PGI2 and PGE2 acting on IP and EP receptors 

respectively (Feletou et al., 2011; Figure 1).  However, the release and actions of PGs also 

depend on other dilator factors whose release is O2-dependent (see Marshall and Ray (2012)).  

 

PGs, ATP and adenosine. PGs released from post-capillary venules during muscle contraction 

cause dilatation of adjacent arterioles (McKay et al., 1998).  This mechanism can be triggered 

by ATP (Hammer et al., 2001), which is released from red blood cells in proportion to O2 

unloading from haemoglobin; PGI2 also releases ATP from red blood cells (Ellsworth et al., 

2016).   Further, a fall in PO2 causes endothelial cells to release ATP by exocytosis (Lim To 

et al., 2015), and to release adenosine, by changing the balance between O2 and NO, which 

compete for the same binding site on cytochrome oxidase (Edmunds et al., 2003).   Both 
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intra-arterially infused ATP, and adenosine were shown to evoke muscle vasodilatation, 

which was attenuated by COX or NO synthase inhibition and accompanied by release of PGI2 

and NO into the interstitium (Ray et al., 2002; Mortensen et al., 2009; Nyberg et al., 2010). 

Since ATP and adenosine do not readily cross endothelium (Mo & Ballard, 2001), they can 

presumably act on adluminal P2 and P1 receptors respectively, to release NO and PGI2 from 

the abluminal surface of capillaries (see Figure 1).    

 

Skeletal muscle fibres also release ATP during contraction (Hellsten & Frandsen, 1997; 

Hellsten, 1999) by a mechanism dependent on lactic acid and indirectly, on O2 availability 

(Tu et al., 2010; Marshall & Ray, 2012).  ATP is metabolized to adenosine by 

ectonucleotidases and 5’nucleotidase whose activity is increased by hypoxia: both ATP and 

adenosine accumulate in interstitium in proportion to the level of exercise (Hellsten & 

Frandsen, 1997; Hellsten et al., 1998)(see Figure 1). When delivered into interstitum by 

microdialysis, both ATP and adenosine increased interstitial PGI2 and NO, while abluminal 

application of ATP caused dilatation of arterioles that was attenuated by inhibition of COX or 

NOS.  Moreover, in vitro ATP and adenosine released NO from skeletal myocytes, and PGI2 

and NO from microvascular endothelial cells (Nyberg et al., 2010; Nyberg et al., 2013).  

 

These results indicate the contributions of PGs to exercise hyperemia must be partly mediated 

by PGs synthesized by ATP released from red blood cells, and/or by ATP or adenosine 

released from endothelium and skeletal muscle fibres (Figure 1).   

 

COX and NOS interactions.  In vitro studies indicate that NO facilitates COX activity while 

products of the COX pathway may stimulate, or inhibit the NOS pathway (Salvemini et al., 

2013).  Further, PGs and NO interact synergistically in vascular smooth muscle via 



 10 

interaction between their 2
nd

 messengers: cAMP and cGMP respectively.  Thus, cGMP 

inhibits the catabolism of cAMP by phosphodiesterase, such that dilator responses evoked by 

mediators that act via cAMP, including PGI2, are facilitated by tonic NO synthesis, but 

attenuated by NOS inhibition (de Wit et al., 1994). 

 

However, during knee extensor exercise at medium workload, NOS inhibition had no effect 

on PGI2 or adenosine release into interstitium (Frandsen et al., 2000).  Moreover, most studies 

report NOS inhibition decreased resting blood flow and vascular conductance, but when this 

was taken into account there was minimal effect on hyperaemia during exercise at light - 

maximal effort, although post-exercise hyperaemia was attenuated (Wilson & Kapoor, 1993; 

Endo et al., 1994; Gilligan et al., 1994; Duffy et al., 1999; Radegran & Saltin, 1999; Schrage 

et al., 2004).   Thus, it appears newly synthesised NO makes little active contribution to 

exercise hyperaemia, and that inhibition of tonic NO synthesis and consequent reduction in 

cGMP cause little attenuation of dilatation induced by PGs or adenosine, which act via cAMP 

(de Wit et al., 1994).    

 

Nevertheless, whilst exercise hyperaemia evoked by knee extensor exercise at 20% maximum 

load was not affected by COX inhibition alone, it was attenuated ~30% by dual COX and 

NOS inhibition, accompanied by an increase in O2 extraction, and increase in ATP efflux 

(Mortensen et al., 2007).  Further, dual COX and NOS inhibition had no effect on exercise 

hyperaemia evoked by forearm contractions at 15% MVC, but progressively attenuated 

hyperaemia evoked at 30-60% MVC (Boushel et al., 2002).   Moreover, hyperaemia during 

knee extensor exercise at 30% maximum load was attenuated by ~30% with dual COX and 

NOS inhibition, by ~14% with adenosine receptor inhibition alone, while triple blockade had 

no greater effect (Mortensen et al., 2009).   
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Thus, it seems likely that at light workloads, the individual dilator influences of PGs or NO 

are difficult to reveal because the greater fall in tissue PO2 arising from attenuated exercise 

hyperaemia leads to compensatory increases in the release of ATP and adenosine, (see 

Mortensen et al. (2007); Marshall and Ray (2012)).  At heavier workloads, or with both COX 

and NOS pathways blocked, the ability of adenosine or ATP, to cause dilatation and therefore 

maintain hyperaemia is limited because the mediators and 2
nd

 messengers by which they act, 

ie PGI2 and NO, cAMP and cGMP, are severely depressed.   By these arguments, interactions 

between ATP, adenosine, NO and PGs are fundamentally important in the much-discussed 

phenomenon of “redundancy” that operates during exercise hyperaemia (Joyner & Wilkins, 

2007; Murrant & Sarelius, 2015).  

 

PGs and potassium (K
+
).  Interstitial K

+
 rises rapidly at contraction onset and remains at 

levels related to workload (Vyskocil et al., 1983; Juel et al., 2000).   K
+ 

released from muscle 

fibres initiates exercise hyperaemia by inducing hyperpolarization of capillaries and terminal 

arterioles (Figure 1), which is conducted proximally to dilate arterioles and feed arteries 

(Bagher & Segal, 2011; Murrant & Sarelius, 2015).   In addition, “endothelium-dependent 

hyperpolarizing factors” (EDHFs) and specifically, EETs (epoxyeicosatrienoic acids) have 

been implicated in exercise hyperaemia (Hillig et al., 2003). EETs are released by endothelial 

cells in response to shear stress (Campbell & Fleming, 2010).   

 

Consistent with these findings, dual inhibition of inwardly rectifying potassium (KIR) 

channels and Na-K-ATPase, the mechanisms by which K
+
 hyperpolarizes vascular smooth 

muscle (Armstrong et al., 2007; Campbell & Fleming, 2010), attenuated the onset and 

maintained phase of hyperaemia evoked by light forearm exercise at only 10% MVC 
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(Crecelius et al., 2014).  Moreover, addition of dual NOS and COX inhibition further 

attenuated both phases, even though NOS or COX inhibition alone, or in combination had no 

effect during light exercise (Shoemaker et al., 1996; Radegran & Saltin, 1999; Boushel et al., 

2002; Crecelius et al., 2014). Thus, these results suggest that hyperpolarisation of endothelial 

and/or vascular smooth muscle cells blunt dilatation that might otherwise be induced by PGs 

and/or NO.  

 

Accordingly, superfusion of hamster cremaster muscle with K
+
 at 10mM, as measured in 

interstitium during high workloads (Juel et al., 2000), attenuated arteriolar dilatation induced 

by graded concentrations of adenosine or NO donor, whereas neither NO donor, nor 

adenosine affected dilatation induced by high K
+
 (Lamb & Murrant, 2015).  Given the 

mechanisms by which adenosine and NO evoke dilatation include opening of K
+
 channels 

(Edwards et al., 2010; Marshall & Ray, 2012; Murrant & Sarelius, 2015), it is probable 

hyperpolarization induced by K
+
 prevented adenosine and NO from producing their full 

effects.  Since the actions of PGI2 and PGE2 also include opening of K channels (Zhu et al., 

2002; Edwards et al., 2010), K
+
 would be expected to interfere with the dilator actions of 

PGs.   

Towards a unifying hypothesis for PG involvement.   

Considering the evidence discussed so far, we suggest several factors contribute to the 

controversy over whether PGs contribute to exercise hyperaemia.  There is experimental 

evidence indicating PGI2 and PGE2 are released from muscle in proportion to the level of 

exercise.  Increased shear stress and reduced PO2 are adequate stimuli for PGI2 release from 

endothelial cells, and muscle contraction releases PGE2 from skeletal muscle fibres.  

However, PGI2 and NO are also generated as intermediates in the pathways by which two 
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other O2-dependent mediators – adenosine and ATP – make their contributions to exercise 

hyperaemia.  Further, by generating cGMP, NO determines responsiveness to substances that 

act via cAMP, including PGs.  On the other hand, K
+
, which is released from the onset of 

contraction may initiate exercise hyperaemia, but attenuate the influence of several key 

dilators, probably by opening K
+
 channels.  Thus, we propose that at light workloads, lack of 

effect of COX inhibition may be explained because K
+
 attenuates the action of PGs, but also 

because there is reciprocal release of O2-dependent adenosine and ATP.  Nevertheless, single 

inhibition of PG synthesis by COX, does attenuate exercise hyperaemia by 20-40% during 

and following muscle contraction at medium-heavy workloads (Cowley et al., 1985; Wilson 

& Kapoor, 1993; Duffy et al., 1999; Schrage et al., 2004; Win & Marshall, 2005).  Thus, 

higher concentrations of PGs overcome any inhibitory effects of K
+
 and make a substantial 

direct contribution, by acting on IP and EP receptors to increase cAMP in vascular smooth 

muscle.  However, COX inhibition may well partially attenuate the contributions of adenosine 

and ATP.  Reciprocally, inhibition of their effects probably attenuates contributions of PGs. 

Ethnicity and Exercise hyperaemia.   

None of the studies discussed thus far have indicated the ethnicity of the subjects.  This is 

important given endothelium-dependent dilatation is blunted in those of Black African (BA) 

and South Asian descent relative to those of white European (WE) origin and associated with 

higher prevalence of cardiovascular disease (Hertz et al., 2005; Gupta et al., 2006).  

 

It has already been reported that young BA men and women showed blunted endothelium-

dependent dilatation compared to WEs in response to agonists (Kahn et al., 2002), reactive 

hyperaemia (Campia et al., 2002; Heffernan et al., 2008), and the forearm vasodilator 

response to mental stress (Cardillo et al., 1998).  Blunted vasodilator responsiveness to NO 

(Stein et al., 1997), reduced NO bioavailability and impaired cGMP-dependent mechanisms 
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have been implicated (Stein et al., 1997; Cardillo et al., 1999; Melikian et al., 2007).  Few 

have compared vasodilator responses to exercise between ethnicities.  In young BA and WE 

men, Doppler ultrasound recordings during rhythmic handgrip at 10 and 20% MVC, or 15-

45% MVC indicated the increases in FBF and vascular conductance were smaller in BAs 

(Kappus et al., 2017; Barbosa et al., 2018).  Further, in early middle-aged men (mean age 39 

years), NOS inhibition had greater attenuating effects in WEs than BAs on resting FBF and 

forearm vasodilator responses to rhythmic contractions at 40%MVC, whereas K
+

 channel 

inhibition had similar effects in BAs and WEs at rest, but greater attenuating effects in BAs 

during exercise.  It was therefore suggested EDHF-mediated dilatation compensates for 

impaired NO availability during exercise in BA men (Ozkor et al., 2014).  However, ageing 

may have complicated these findings: the effect of COX and NOS inhibition on exercise 

hyperaemia decreased with age (Schrage et al., 2007).  

 

Against this background, we recently compared post-exercise hyperaemia responses in young 

WE and BA men and women (in each group: n=18: 10/8, male/ female).   Inclusion criteria 

were systolic/diastolic pressure <140/90 mmHg, normal BMI, recreationally active, but not 

trained (Table 1).  Women were tested in the low oestrogen phase of the menstrual cycle.  

Subjects refrained from caffeine-containing beverages and alcohol for at least 12 hours; none 

were taking medication.  Experiments were performed in a temperature-controlled room at 

21-23
o
C.  The study was approved by the University of Birmingham Ethics Committee 

(ERN15-0714); all subjects gave informed consent.  Rhythmic handgrip contractions were 

performed at 60% MVC for 2 min with the dominant hand by using a dynamometer, 

contractions being performed at 2 s intervals (1 s contraction/ 1s relaxation).  An audio signal 

and visual display of the output of the dynamanometer were used to ensure the subject 

achieved the required workload.  FBF was recorded from the same arm by using VOP before, 
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immediately after contractions ceased and at intervals thereafter (see Figure 2).  For each 

recording of FBF, the slope of the increase in forearm circumference was computed over the 

first 1-2 heart beats following venous occlusion at 50mmHg to optimize the accuracy of the 

FBF measurement (Junejo et al, 2018).  VOP was automatically calibrated and FBF was 

expressed per 100 ml tissue.  Pulsatile arterial blood pressure (ABP) was continuously 

recorded by photoplethysmography via a finger cuff on the non-dominant hand: forearm 

vascular conductance (FVC) was calculated as FBF/ABP.   

 

Considered as mixed male/female groups, BAs showed similar increases in ABP, but smaller 

increases in post-exercise FBF and FVC than WEs (Figure 2A).  Since all subjects achieved 

the task without fatigue, BA men and women considered together achieved this workload 

with lower blood flow and less vasodilatation than WEs.       

 

Sex and exercise hyperaemia. 

So far, we have not considered how sex might affect exercise hyperaemia.  This issue is 

complicated by men generally being stronger than women, exerting stronger compressive 

force, and causing more vascular occlusion during contraction (Russ & Kent-Braun, 2003).  

In studies in which men had a 1.6 fold greater absolute MVC than women, post exercise 

hyperaemia and vasodilatation were greater in men following isometric contractions at 20-

80% MVC (Hunter et al., 2006).  By contrast, when comparisons were made between men 

and women who were matched for muscle strength, post-exercise hyperaemia and vascular 

conductance were similar. These results suggest that when differences in compressive force 

are avoided, post-exercise blood flow is similarly coupled to workload and muscle 

metabolism in both sexes (Hunter et al., 2006).       
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If the magnitude of the compressive force and extent of vascular occlusion during contraction 

is the important factor, the findings of Kelly et al. (2004) are consistent with this idea.  For, 

post-exercise hyperaemia and vascular conductance following rhythmic exercise at 15% MVC 

were similar in young men and women (Kelly et al., 2004).  Similarly, Doppler ultrasound 

recordings during ramped, light rhythmic exercise, averaged over contraction and relaxation 

phases, indicated FBF was similar in men and women when compared at the same absolute 

workloads, but greater in men at task failure (~14% MVC) when absolute load was greater in 

men (Gonzales et al., 2007).  However, other studies on light, rhythmic contractions yielded 

disparate results: FBF was similar in men and women during 15 and 30% MVC (Limberg et 

al., 2010), smaller in women than men during 10 and 20% MVC (Casey et al., 2014), but 

larger in women than men at 15% MVC (Kellawan et al., 2015).   

 

Findings at higher workloads suggest additional factors are involved.   During intense, 

rhythmic contractions (at MVC for 4 min) of forearm, Doppler ultrasound recordings in the 

relaxation phases, showed increases in FBF and vascular conductance were ~ 25% larger in 

young women than men throughout exercise (Saito et al., 2008).  Moreover, ultrasound 

recordings in young men and women during graded knee extensor exercise, showed increases 

in leg blood flow and vascular conductance were greater in women at the same absolute 

workloads whether compared as mean values over contraction and relaxation cycles, or 

during the relaxation phases. They were also greater in women when compared at the same 

relative workload, from 20-100% maximum (Parker et al., 2007). The authors suggested the 

disparity might reflect greater dependence on oxidative metabolism in women (Kent-Braun et 

al., 2002) and greater influence of O2-dependent dilators, or facilitatory effects of oestrogen.  
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In our study, men had larger forearm circumference and greater MVC than women in both 

ethnic groups; there were no differences between WE and BA men, or WE and BA women 

(Table 1).   Firstly, extending the findings of Barbosa et al. (2018) on BA and WE men at 

45% MVC, post-exercise FVC following 60% MVC was lower in BA, than WE men.  The 

trend for post-exercise FVC to be smaller in BA women than WE women did not reach 

statistical significance (Figure 2B). Secondly, within both ethnicities, women showed smaller 

post-exercise increases in FVC than men (Figure 2C).  Thus, it seems the facilitatory effects 

of being female on post-exercise vasodilatation following strenuous contractions is relatively 

weak in both ethnicities (Parker et al., 2007), at least, in the forearm.  Rather, the greater 

occlusive effects of each contraction may have dominated in men (Hunter et al., 2006), such 

that when exercise ceased, accumulated vasodilators had a greater influence, irrespective of 

BA or WE ethnicity.     

 

Oestrogen, PGs and exercise hyperaemia.  Raised levels of oestrogen increase NOS and COX 

expression in endothelial cells, while oestrogen facilitates NO and PGI2 generation by 

agonists and shear stress.  Oestrogen also relaxes vascular smooth muscle facilitating the 

cAMP pathway and increasing K channel activity (Huang & Kaley., 2004).   Thus, higher 

levels of oestrogen in premenopausal women might be expected to facilitate the component of 

exercise hyperaemia that is dependent on PGs and interactions with ATP, adenosine, K
+
 and 

NO.   

 

However, BA women show earlier onset and faster increase in prevalence of hypertension 

than BA men (Hertz et al., 2005; Geronimus et al., 2007).   This was attributed to increased 

influences of psychosocial stressors amongst BA women (Geronimus et al., 2007), factors 

that may underlie the increasing prevalence of hypertension in sub-Saharan Africa with 
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progressive urbanization (Opie & Seedat, 2005).  Accordingly, endothelial dysfunction is 

particularly pronounced in BA women.  Flow-mediated dilatation, was smaller in young-early 

middle-aged BA, than WE women (Perregaux et al., 2000; Bransford et al., 2001) and 

reactive hyperaemia was smaller in young BA, than WE women (Aiku et al., 2016).  Flow- 

mediated dilatation and reactive hyperaemia are NO-dependent, but also mediated by PGs and 

EDHFs (Engelke et al., 1996; Stoner et al., 2012; Crecelius et al., 2013; Green et al., 2014).   

 

In the only study to date comparing COX inhibition on exercise hyperaemia in young men 

and women, infusion of COX inhibitor during light contractions at 15% MVC attenuated the 

vasodilatation to similar extents in men and women (Kellawan et al. (2015).  But, whereas in 

their earlier study on men and women (Schrage et al., 2004), in which COX inhibition 

transiently attenuated the increase in FVC, Kellawan et al. (2015) found COX inhibition 

augmented the increase in FVC in both sexes.  There was no obvious explanation for the 

disparity. 

  

The results described above from our own study on BAs and WEs, were performed 30 min 

after a placebo drink (orange squash in water), so that the results could be compared with 

those obtained in comparable experiments on a different day, starting 30 min after COX 

inhibition with aspirin (600 mg in orange squash, see Win & Marshall, 2005).  COX 

inhibition attenuated post-exercise vasodilatation in both WE and BA men and WE women, 

attenuating the peak FVC by ~ 30% in all 3 groups (Figure 3).  By contrast, COX inhibition 

had no effect in BA women (Figure 3).  Thus, even though post-exercise vasodilatation is 

smaller in BA than WE men, and even though BAs have smaller proportions of oxidative 

fibres (Ceaser & Hunter, 2015), the fall in tissue PO2 during contractions at 60%MVC is 
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apparently sufficient to allow PGs whose release is largely O2-dependent, to be released in 

BA men and make a substantial contribution to exercise hyperaemia.    

 

Thus, our results in WE women provide no indication that oestrogen facilitates the 

contribution of PGs to exercise hyperaemia relative to WE men as might have been expected 

from effects of oestrogen on COX (Huang & Kaley, 2004).  Moreover, comparison of peak 

increases in FVC in WE and BA women (Figure 3) suggests that absence of the PG 

contribution played a major part in blunting post-exercise dilatation in BA women.  Given 

endothelium-dependent dilatation is depressed in young BA, relative to WE women 

(Perregaux et al., 2000; Bransford et al., 2001; Aiku et al., 2016), we suspect the absence of 

PG involvement largely reflects impaired endothelial function.  Indeed, our results suggest 

that disturbed vasodilator contributions of PGs to exercise hyperaemia in young BA women 

may serve as an early functional marker of their increased risk of hypertension and 

cardiovascular disease (Hertz et al., 2005; Geronimus et al., 2007).   

 

Concluding remarks 

Seen against a background of well over a century of experimentation on exercise hyperaemia, 

mostly performed on WE men, our results demonstrate pronounced differences between 

young people of WE and BA ethnicities and between sexes, in the magnitude of exercise 

hyperaemia evoked by rhythmic contractions at 60% MVC.   The relative contribution of O2-

dependent PGs to these responses is similar in both WE and BA men and WE women, but is 

absent in BA women.  From an experimental viewpoint, these are good reasons to take 

ethnicity and sex into account in any investigation of exercise hyperaemia.  From 

physiological and clinical perspectives, it will be important to establish whether the smaller 

hyperaemic responses in BAs and especially, in BA women, reflect different 
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oxidative/glycolytic profiles and release of O2-dependent and O2-independent dilators, or 

early signs of cardiovascular disease. 
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  Male WE 

(n=10) 

Female WE 

(n=8) 

Male BA 

(n=10) 

Female BA 

(n=8) 

 

Age 

(yrs) 

 

22.1 ± 0.7 

 

22.7 ± 1.2 

 

20.7 ± 0.7 

 

24.2 ± 0.8* 

Body mass index 

(kg/m
2
) 

22.5 ± 0.7 22.7 ± 1.4 22.5 ± 0.6 20.7 ± 1.5 

Waist circumference 

(cm) 

76.8 ± 1.4 73.7 ± 1.7 77.6 ± 2.1 69.7 ± 2.4* 

Systolic blood pressure 

(mmHg) 

102.5 ± 1.9 97.1 ± 3.0 112.9 ± 3.7 95.6 ± 2.8* 

Diastolic blood pressure 

(mmHg) 

63.2 ± 1.3 62.4 ± 2.4 67.3 ± 2.4 60.7 ± 2.0 

Heart rate 

(beats/min) 

71.8 ± 2.5 73.8 ± 5.4 67.5 ± 3.4 70.9 ± 3.3 

Mean arterial pressure 

(mmHg) 

76.3 ± 1.2 74.0 ± 2.4 82.5 ± 2.6 72.4 ± 2.1** 

Forearm blood flow 

(ml/100ml/min) 

5.8 ± 0.6 5.90  ± 1.1 6.1 ± 0.6 4.6 ± 0.5 

Forearm vascular conductance 

(ml/100ml/min/mmHg) 

0.07 ± 0.01 0.07 ± 0.01 0.08 ± 0.01 0.06 ± 0.0 

Forearm circumference 

(cm) 

24.2 ± 0.3 23.5 ± 0.3 26.9 ± 0.4 22.1 ± 0.7** 

100% MVC 

(kg) 

22.9 ± 2.0 16.3 ± 1.0* 32.0 ± 2.7 15.9 ± 1.7** 

 

Table 1: Characteristics of Male and female white Europeans (WE) and Black Africans 

(BA).  Values are shown as mean ± SEM Baseline values for gender groups of White 

Europeans (WE) and Black Africans (BA).   ** , *: P<0.01, P<0.05 respectively, male vs 

female within ethnicity 
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Figure 1.  Schematic diagram showing mechanisms by which prostaglandins (PGE2 and 

PGI2) are released during exercise and mechanisms by which PGs induce dilatation.  

Contraction and increased metabolism of muscle fibres leads to increased diffusion of O2 

from arterioles, capillaries and venules leading to steeper O2 gradients from plasma to skeletal 

muscle fibres and from arterioles to venules, shown as pink to blue shading from bottom to 

top and left to right.  PGE2 is mainly released into interstitium from skeletal muscle fibres due 

to activation of arachidonic acid (AA) by raised intracellular Ca
2+

; PGE2 re-uptake occurs via 

PG transporter (PGT), which is inhibited by extracellular lactate.  PGI2 is released from 

endothelial cells into interstitum and plasma by activation of AA stimulated by increase in 

intracellular Ca
2+

 caused by the fall in intracellular O2.   PGI2 is also released by shear stress 

acting on endothelial cells.  PGE2 and PGI2 act directly on vascular smooth muscle via EP and 

IP receptors respectively, to cause vasodilatation by increasing cyclic AMP (cAMP) levels 

and opening K
+
 channels causing hyperpolarization.   PGI2 also stimulates release of nitric 

oxide (NO) from endothelial cells and ATP from red blood cells (RBCs).  In addition, muscle 

fibres release ATP, which is metabolised to adenosine by ectonuceotidases, and adenosine is 
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released by endothelial cells as a consequence of fall in PO2.  ATP is released from red blood 

cells when haemoglobin is deoxygenated, and from endothelial cells by exocytosis.   ATP and 

adenosine act via P2 receptors and P1 receptors respectively to stimulate PGI2 and NO release 

from endothelial cells.  Abbreviations: 5’N: 5’nucleotidase, cGMP; cyclic GMP, COX; 

cyclooxygenase, NOS; NO synthase, PLA2; phospholipase A2.  For further details see text.  

Adapted from Marshall & Ray (2012). 

 

Figure 2:  Effects of rhythmic contractions at 60% MVC for 2 min on forearm 

vasculature of young WE and BA men and women.  A: Comparisons between all WEs and 

all BAs for post-exercise forearm blood flow (FBF; left) and forearm vascular conductance 

(FVC; right).  B: Comparisons between WE and BA men (left) and WE and BA women 

(right) for post exercise FVC.  C: Comparisons between WE men and women (left) and BA 

men and women (right) for post-exercise FVC.  All data points are shown as mean ± SEM.   

Outcomes are provided for repeated measures ANOVA. *, ** p < 0.05, p<0.01 respectively 

from immediately contractions ceased (time 0) until 7 min.  
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Figure 3:  Effect of COX inhibition with aspirin on peak change in Forearm vascular 

conductance (FVC) following rhythmic contractions at 60% MVC for 2 min in WE and 

BA men (above) and WE and BA women (below).    Values are shown mean ± SEM.  §, 

§§: p<0.05,  p<0.01 respectively before vs after aspirin.  

 

Abstract Figure.  Muscle exercise leads to release of prostaglandins (PGs), which cause 

vasodilatation and contribute to exercise hyperaemia.  PGs also release other known 

mediators of exercise hyperaemia - ATP and adenosine, to generate NO, whose release is 

tonically regulated by shear stress.  Further, K
+
 released from the onset of contraction causes 

vasodilatation, but also inhibits dilatation induced by other mediators. The release of PGs is 

graded with contraction intensity. However, strong muscle contraction also causes vascular 

occlusion, limiting vasodilatation during contraction, but allowing greater accumulation of 

PGs such that post-contraction hyperaemia is augmented.  At the same relative force, these 
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mechanical effects are greater in young men than young women, both in those of White 

European (WE) and Black African (BA) ethnicity.  However, the dilator effects of PGs are 

deficient in BA women implying endothelial dysfunction.  

 


