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Current models invoke subduction initiation at a mid-oceanic ridge 

located sufficiently close to the Arabian passive margin to allow 

initiation of continental subduction below the ophiolite within ~10-15 

Myr after the 96-95 Ma age of formation of supra-subduction zone crust. 

Here, we perform an extensive paleomagnetic analysis of sheeted dyke 

sections across the Semail ophiolite to restore the orientation of the 

supra-subduction zone ridge during spreading. Our results consistently 

indicate that the ridge was oriented NNE-SSW, and we infer that the 

associated trench, close to the modern obduction front, had the same 

orientation. Our data are consistent with a previously documented ~150° 

clockwise rotation of the ophiolite, and we reconstruct that the original 

subduction zone was WNW-ward dipping and NNE-SSW striking. Initial 

subduction likely occurred in the ocean adjacent and parallel to the 

Arabian transform margin that formed the original underpinnings of rocks 

in the Zagros fold-thrust belt, now underthrust below Iran. Subduction 

thus likely initiated along an ancient, continental margin-parallel 

fracture zone, as also recently inferred from near-coeval ophiolites from 

the eastern Mediterranean and NW Arabian regions. Subduction initiation 

was therefore likely induced by (WN)W-(ES)E contraction, and this 

constraint may help the future identification of the dynamic triggers of 

Neotethyan subduction initiation in the Late Cretaceous. 

 

Suggested Reviewers: Tony Morris 

A.Morris@plymouth.ac.uk 

Paleomagnetism, specialist on ophiolite paleomagnetism 

 

Mathieu Soret 

mathieu.soret@ubc.ca 

Specialist on Oman ophiolite geology 

 

Stephane Guillot 



stephane.guillot@ujf-grenoble.fr 

Specialist on structural geology and ophiolite geology 

 

Laurent Jolivet 

laurent.jolivet@univ-orleans.fr 

Specilialist on tectonics and geodynamics 

 

Bob Stern 

rjstern@utdallas.edu 

Specialist on subduction initiation and ophiolite geology 

 

 

Opposed Reviewers:  

 

Research Data Related to this Submission 

-------------------------------------------------- 

Title: Data for: Kinematic and paleomagnetic restoration of the Semail 

Ophiolite (Oman) reveals subduction initiation along an ancient 

Neotethyan fracture zone 

Repository: Mendeley Data 

https://data.mendeley.com/datasets/35g6bmk6d3/draft?a=f0f49b1c-85d0-4623-

b8f1-a6e3190ff254 

 

 



Utrecht, January 2, 2019 
 
Dear editor, dear An, 
 
Hereby we resubmit our paper entitled ‘Kinematic and paleomagnetic restoration of the 
Semail Ophiolite (Oman) reveals subduction initiation along an ancient Neotethyan fracture 
zone’. 
 
Given the three negative reviews you received on this paper, we understand that you had 
no choice but to reject our paper. We welcome your kind invitation to resubmit after 
revision, and provide a detailed rebuttal to the reviews below. 
 
Our paper received three reviews. The third reviewer is the only one who discusses the data 
we present and some of the kinematic interpretations based on those. This reviewer 
provided several detailed comments on the paleomagnetic data section that we have 
addressed in the revised version. This reviewer also argued that a very different 
interpretation is permitted – the counterclockwise net rotations which would yield more E-
W trending dykes – and asked us for data allowing to discern between these. We will show 
below that those data were already provided, and that both modern structure as well as a 
large, previously published, and already cited paleomagnetic analysis on vertical axis 
rotations conclusively excludes the alternative perceived by the reviewer. This was already 
included in the original paper, and further clarified here. 
 
The reviewer also speculates that the major rotations obtained here and previously could be 
explained by ‘local deformation’. As we will explain below, and in more detail in the revised 
manuscript, the Oman ophiolite is extremely well preserved and the different massifs it is 
made of are so structurally coherent that along-strike paleo-ridge systems have been 
mapped out over 100’s of kms, and across-strike detailed dating of sheeted dyke complexes 
allowed for detailed restoration of spreading rates. The obduction-related deformation of 
the Oman ophiolite led to minor folding and occasional thrusting, but not even a single 
major repetition of the ophiolite is found, let alone the massive wrench zone the reviewer 
would need to come with a plausible alternative. Our interpretations are fully consistent 
with the structure – regional and detailed – of the Oman ophiolite. And even if there would 
be local rotations, those would by no means affect the paleospreading directions that we 
reconstruct – the main strength of the net tectonic rotation analysis. As a result, the 
revisions necessary to fully account for the third reviewer’s comments are relatively minor. 
 
The first and second reviewer barely address the contents, but mainly focus on the major 
implications that our data and kinematic restoration have for the dynamics of subduction 
initiation in general, and in the Tethys in particular. Their reviews illustrate the high impact 
of our work. But instead of welcoming the new data, that for the first time actually constrain 
the initial conditions that pertained to Oman subduction initiation, they reject the data in 
favor of their dynamic models and require us to demonstrate through dynamic modeling 
that the data can be correct.  
This is philosophically flawed. Data can falsify models. Models cannot falsify data. Both 
reviews are highly passive aggressive in the sense that they provide no alternative 
interpretation of our data, and simply discard the evidence. Of course we have 
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interpretations of the dynamics of this system – in fact, we are preparing papers in which 
we will offer our interpretations of the dynamic drivers of E-W subduction initiation in the 
Neotethys – but including those in the current paper would be a disservice to the paper, and 
to the audience. In the philosophy of incremental science, here we present robust data that 
is highly relevant at the regional scale, but that is also challenging paradigms in generic 
subduction initiation. This is a first brick that needs to be laid clean and clear, so that the 
whole community is free to build on it and this is the purpose of the current paper. 
We have now added a final paragraph to the paper in which we explicitly address some key 
questions for future dynamic analyses raised by the reviewers. 
The few remarks on the kinematics of both reviewers – on Turkey, or on the Permian 
spreading of the Neotethys – come out of thin air and are simply incorrect or entirely 
unconstrained. 
 
We were pleased to see that you have not taken their arguments into account in your 
decision to reject our paper. In the rebuttal below we will briefly respond to all requests, 
and attempted to address as many of the relevant ones as possible into an upgrade of our 
paper. 
 
We hope you will find this revised version of our paper acceptable for publication in EPSL. 
 
With best regards, 
 
Douwe 
Marco 
Louise 
Carl 
 
 



Dear Dr. Douwe J.J. van Hinsbergen, 
 
I finally received comments from three reviewers. Two of the referees recommend rejection 
and one suggests major revision. As you can see from their comments, they feel that (1) the 
interpretation of the newly obtained paleomagnetic data does not consider the alternative 
solution/interpretations, (2) a lack of integrating paleomagnetic data with other geologic 
constraints particularly those already documented in the literature and those at the 
sampling sites, and (3) the tectonic model is too crude to account what is already known 
about the region. Although your work may have the potential to make a great impact on the 
evolution of the Neo-Tethys, it appears that addressing all the concerns will either require 
the work to be sent to a specialty journal or a complete face-lift in its organization and data 
integration. Based on this judgement, I recommend that you either send the work to other 
journal to revise the work completely according to the referees' comments and send 
back to EPSL as a new paper. I will ask at least one of the original reviewers to assess your 
new paper and mostly will also involve new referees. If you do decide to resubmit a new 
manuscript, please make a detailed list of your response to the reviewers' comments. For 
your guidance, I append the reviewers' comments below. Thank you for giving us the 
opportunity to consider your work. 
 
Yours sincerely, 
 
An Yin, PhD 
Editor 
Earth and Planetary Science Letters 
 
Reviewers' comments: 
 
 
Reviewer #1: Review of the manuscript "Kinematic and paleomagnetic restoration of the 
Semail Ophiolite (Oman) reveals subduction initiation along an ancient Neotethyan fracture 
zone", van Hinsbergen et al. 
 
This is a detailed and informative paper, which aims to kinematically restore the orientation 
of the Oman SSZ spreading ridge during subduction zone infancy. Authors present the first 
paleomagnetic dataset from the sheeted dykes sections of the Oman ophiolite. 
 
Since I am not a specialist of paleomagnetism,  I cannot provide any judgement on the 
quality of this novel dataset. However, the dataset is precisely described in the text and 
consistent with the literature, and the figures are very useful. I have therefore based my 
review on the paleogeodynamic interpretations made by the authors, which I think are the 
main purpose of the submission of the manuscript in EPSL. 
 

We make no geodynamic interpretation in our paper. We only constrain the 
orientation and location of the trench at the moment of inception of subduction. 
Then based on this, we infer from regional kinematic context that this subduction 
zone was parallel to fracture zones, including the one along the Oman margin, and 
our interpretation only concerns the likely structure along which subduction 
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initiated. We have addressed most comments of the reviewer below by adding a last 
paragraph to the discussion section: 
 
“Our results, and those of Maffione et al. (2017) for the Mediterranean region, raise 
several first-order new questions for understanding subduction initiation dynamics. 
Our results show that Cretaceous subduction initiation within the Neotethys ocean 
formed a new plate (the Anadolu plate of Gürer et al. (2016) separated from Eurasia 
and Africa-Arabia by trenches (Figure 8). This plate must have moved westward 
relative to Africa/Arabia (and Eurasia, given overall N-S Africa-Eurasia convergence) 
to drive subduction initiation along N-S striking trenches. Gaina et al. (2015) showed 
based on Indian Ocean reconstructions that prior to the end of the Cretaceous 
superchron, India rotated counterclockwise relative to Arabia that requires such 
convergence. Did the driver of this rotation also spark subduction initiation farther 
westwards? And what processes cause the hot conditions recorded in the Oman 
metamorphic sole 8 Myr of upper plate spreading (Guilmette et al., 2018) with 
subduction initiating in old, cold lithosphere? We refrain from speculating on these 
questions, but leave these for future study and debate.” 
  
 

 
 
The authors easily convince the reader that the Semail ridge was oriented N(NE)-S(SW) and 
therefore the subduction zone nucleated along the same orientation. As mentioned by the 
authors, this orientation is orthogonal to that of the NeoTethyan mid-ocean ridge, which 
was anyway likely subducted below Eurasia at the time of the Oman subduction initiation. 
The model presented by the authors of an intra-oceanic subduction initiation taking place 
along a fracture zone is very interesting and deserve to be published as it is consistent with 
their dataset. However, this model does not integrate sufficient constraints to be published 
in EPSL. That is why I recommend major revision before publication or rejection. 
 

The reviewer does not list any constraints below, only models. 
 
 
In the authors' model, the subduction zone nucleates along a fracture zone which has an 
orientation roughly parallel to the general convergence between Eurasia and Arabia, and 
completely orthogonal to the Zagros subduction. This subduction initiation dynamics is 
therefore not straightforward to understand and the authors do not propose sufficient 
details about the potential mechanisms driving this subduction and the associated ophiolite 
accretion. 
 

The orientation of the initial trench is constrained by observations and 
measurements and does not require an understanding of what would drive this 
subduction initiation.  

 
 
The authors briefly mention a potential E-W contraction as the driver of the subduction 



initiation. E-W contraction is possible but a priori quite odd in the NeoTethys Ocean. This 
point needs to be further argued.  
 

As we now mention and cite in the manuscript, it has been shown based on 
magnetic anomalies that the late Cretaceous break-up of India from Madagascar is 
associated with a counterclockwise rotation of India relative to Africa/Arabia about a 
pole in the NW Indian Ocean. This rotation demonstrates that there must have been 
E-W convergence in the Neotethys at this time (Gaina et al 2015). This has been 
known for well over a decade, and assuming the convergence in the Neotethys was 
only N-S is inconsistent with the facts. We have added this question to the final part 
of the discussion. 

 
 
Moreover, the authors consider that the N-S striking fracture zone was a significant 
weakness zone within the NeoTethys ocean and may have localized subduction initiation. 
This fracture zone is located by the authors within a ~170 My old oceanic lithosphere which 
was therefore mechanically very strong (i.e., large effective elastic thickness). 
 

The reasoning of the reviewer here is based on the current preferences in the 
modeling community, while our conclusions are based on unequivocal data, and 
these data strongly suggest that a new subduction zone formed within a ~170 Ma 
old lithosphere. Unless the reviewer finds flaws in our data, or has reasons to 
assume there was an active ridge in the Cretaceous within a Permian passive margin 
and adjacent ocean basin of which sediments are preserved below the ophiolite, 
then this conclusion remains. See new final paragraph of the discussion. 

 
The tectonic stress must have been really large to overcome the resistance of a very old 
oceanic lithosphere, in several places (not only triggering the Oman ophiolite obduction but 
also that in the westernmost belt) and along not-preferentially oriented fracture zones. In 
absence of more details on this contraction event (i.e., considering the regional dynamics), 
the E-W contraction and the position of a N-S striking fracture zone are too speculative. 
 

We have to disagree. As now explicitly mentioned in the paper, data from the Indian 
Ocean case (Gaina et al., 2015) unequivocally demonstrate that E-W convergence 
must have occurred somewhere in the Neotethys north (and west) of India. The 
latter has previously been identified in Afghanistan and Pakistan, and we show 
further evidence here. Dynamics are interesting, but we need no understanding of 
the dynamics driving the system to demonstrate that the system existed, and in 
which orientation. See new last paragraph of the discussion. 

 
 
The authors suggest that the arabian margin might have been associated with 
hyperextension as observed in Guinée (Guillard et al., 2017) that could have facilitated the 
rupture. However, the Guinean margin is associated with the opening of the Atlantic ocean, 
and therefore corresponds to a complete different setting. It is very likely that the 
NeoTethys opening was associated with a higher magmatic activity, making very unlikely the 
presence of hyperextension margins. Moreover, such hyperextension would essentially 



affects the continental lithosphere and not the intra-oceanic lithosphere located along the 
fracture zone (at several hundred km of the margin). 
 

The points raised here by the reviewer are quite debatable. First, to our knowledge 
there are no data indicating the style and intensity of the magmatic activity during 
the opening of the Neotethys in the Permian. If such data existed, we exhort the 
reviewer to cite the relevant papers and will take them into account. In the absence 
of such data, our suggestion remains a logical possibility that fits well with our data. 
Second, our last Figure, as well as the text, quite explicitly indicates that because old 
oceanic lithosphere is so stiff, we presume that subduction actually started around 
the ocean-continent transition, not in the middle of the ocean. That is, admittedly, a 
suggestion that any reader is free to agree or disagree with. Our data constrain an 
initial orientation, a paleolatitude, and combined with previous data in Morris et al. 
(2016), a rotation. Our reconstruction is consistent with our suggestion, but we do 
not exclude that other alternatives are also possible if the reviewer, or any reader, 
would provide one. See new last paragraph of the discussion. 

 
 
While the authors state in the introduction that the thermal conditions of the metamorphic 
sole formation require an extremely warm environment during subduction initiation, the 
proposed model is not consistent with such constraint. The onset of the subduction takes 
place in a very old oceanic lithosphere too cold to provide the heat required to form the 
metamorphic sole.  
 

Again, this is philosophically flawed. We demonstrate an initial NE-SW dyke and 
trench orientation in a Permian ocean, and the temperature of the sole below the 
Oman ophiolite is demonstrably high. So, our data suggest that to explain the 
records of ophiolites, a reason has to be found for high temperatures, not discard 
this evidence because we’re not clever enough to come up with a solution. But our 
data are not requiring providing such a solution at this stage, since it will not change 
the orientation or location of the subduction zone, nor the angular relationship with 
the Arabian passive margin. We have added this problem to the list of implications of 
the paper, but we will not offer a solution, for our data and interpretation do not 
require one. We believe our paper will stimulate more research in many fields, a 
hallmark of impactfull papers. This includes research on metamorphic soles  

 
Moreover, it means that the metamorphic sole at 105 Ma was metamorphosed and 
accreted to an oceanic lithosphere formed at 170 Ma ago. Nowadays, the metamorphic sole 
is found welded below the Oman ophiolite (96 Ma old). How is this mechanically and 
structurally possible? 
 

First, these comments do not address the orientation of the initial trench or the age 
of the Neotethys ocean, and are thus very interesting, but not relevant for this 
paper. The answer to this problem, moreover, was explained extensively in van 
Hinsbergen et al G-Cubed 2015 and Guilmette et al., 2018. the sole is welded to 
mantle. The crust of an ophiolite is generated in a given time interval, and that of 
Oman was formed at 96 Ma. The mantle is the mantle. We might be able to date 



chemical modifications, but physically it’s been mantle for over 4 Ga. Accretion of 
the sole predates extension in the upper plate and formation of the ophiolitic crust 
(Guilmette et al. 2018). 

 
 
Another issue is the accommodation of the slab roll back in the upper plate (future 
ophiolite). Since the rotation of the ophiolite postdates its magmatic accretion, the whole 
ophiolite (and the metamorphic sole already accreted) must have undergone significant 
tectonic extension and this must have happened in a relatively cold environment. Is there 
any field evidence to support this hypothesis?  
 

We do not understand why extension must have happened in a cold environment, 
nor what this actually means. The Oman ophiolite preserves a 50 km wide strip of 
ocean floor formed until 95.5 Ma. This doesn’t imply that this was the only SSZ crust 
formed at that time. All oceanic crust that formed after this time must be located to 
the north and east of the ophiolite, offshore Oman. During SSZ spreading orthogonal 
to a trench, the ridge in the upper plate migrates away from the trench at half 
spreading rate. The narrow age range of ophiolites does not show that spreading 
was short lived. Ophiolites simply only preserve a narrow strip of the original upper 
plate, as we already explained in the paper. So magmatic accretion may have 
continued for tens of Myr to facilitate roll-back, and the environment at that back-
arc ridge may have been very hot – which we had already explained in the original 
paper.  

 
 
Moreover, I imagine that the roll back is partly accommodated by a large transform fault on 
the eastern flank of the subduction zone. Is there any evidence for such a structure in the 
gulf of Oman? 
 

We agree with the reviewer: there must have been a large transform fault 
accommodating the roll-back and clockwise rotation of the ophiolite, which is 
indicated in Figure 8. The plate boundary between the Arabian plate and India is a 
transform, currently represented by the Owen fracture zone. This boundary has a 
long and dynamic history, and post-90 Ma motion has undoubtedly obliterated the 
original boundary. But the crust to the west of this boundary in the Gulf of Oman is 
of normal polarity with no reversals, consistent with formation during the 
Cretaceous normal superchron as in our reconstruction. 

 
 
I have also some concerns with the drawing presented in figure 8.  
Figure 8b: What is the significance of the dash line? Is it a transform fault linking two 
fracture zones? Was such a structure already reported?  
 

No, it is located in lithosphere now lost to subduction and collision in the Zagros, so 
this structure was not reported. But there is a N-S trending trench in eastern 
Anatolia, and one in Oman, and simple plate kinematics requires a transform fault in 



between. Not drawing it violates the basic rules of plate tectonics. We explained in 
the figure caption:  
“Basic plate kinematics requires that the N-S subduction segments were connected 
with a transform fault parallel to (and here dotted along) the Arabian passive 
margin.” 
 
 

Figure 8d: the ridge axis is drawn offshore, while it should be inland (i.e., obducted). What 
happened to the large oceanic lithosphere between the ridge and the trench? This area is 
much larger than that of the present-day obducted ophiolite. 

 
Yes, of course the area is much larger than the obducted ophiolite. There is no 
reason whatsoever to assume that Cretaceous spreading stopped where the modern 
ophiolite reaches a late Holocene coast. Rioux et al shows that we have only one half 
of a spreading record in Oman, one with a coast-ward younging dyke complex. 
Previous interpretations have suggested that there may be symmetric, short-lived 
ridge systems within the ophiolite that jumped, but we see no reason to assume that 
the spreading of the crust ceased after 50 km of ultra-fast spreading. There is at least 
100 km of obducted ophiolite on Arabia’s passive margin offshore northern Oman, 
and lithosphere without magnetic anomalies, consistent with formation in the 
Cretaceous superchron as in our model, all the way to the trench of the Makran, so 
there is no reason to discard our scenario with spreading until Maastrichtian 
obduction. This point was already explicitly discussed in the paper. 

 
 
 
-------------------------------------------------------------- 
 
 
Reviewer #2: I have read this manuscript carefully several times over in order to understand 
the inferences made by the authors based on their palaeomagnetic data from the sheeted 
dykes and lava sequences in the Oman ophiolite and their model of subuction initiation and 
SSZ formation / emplacement of this ophiolite. The manuscript has two main parts: the first 
part involves the presentation of new palaeomagnetic data from the sheeted dykes and 
lavas in the Oman ophiolite. The palaeomagntic data and the related discussions follow the 
scientifically established methods, although there are hardly any structural observations and 
data from the sheeted dykes and the extrusive sequence in the ophiolite that may explain 
some of the reported rotational deformation (no horizontal rotation due to intra-oceanic 
faulting?).   
 

The net tectonic rotation analysis (Allerton and Vine, 1987) used in this study 
requires two input data: (i) the in-situ site mean remanence direction, and (ii) the 
current strike and dip of the dykes. We obtained both these data and no further 
structural constraints are required to compute the net rotation at each sampling 
site. The net tectonic rotation analysis calculates the net rotation (no matter how 
many phases of rotation occurred and along which axis) about an inclined axis. This 
means that when the returned rotation axis is shallow the tilt component is 



predominant over the vertical-axis rotation component and vice versa. Since our 
data show rotation axes that are not vertical but steeply dipping, this implies that 
some tilt must have occurred during the deformation history (as observed at the two 
pillow lava sites MA01 and MA02). This can either be related to intra-oceanic faulting 
or to any other recent faulting, it doesn’t really matter. That being said, the other 
result of the net tectonic rotation analysis is the initial strike of the dyke. This is 
totally independent on the number and kinematics of rotational phases. So, no 
matter what the deformation was, the initial dyke orientation will always be the 
same, and this is the main constraint that we use in this study to determine the 
geometry of the subduction zone in the Neotethys. Finally, regional vertical axis 
rotation of the entire ophiolite has extensively been documented by Morris et al. 
2016, and the regional coherence of the ophiolite have been demonstrated for 
decades by Adolphe Nicolas and many others. So we do not understand what 
additional structural observations we should have taken into account that the 
reviewer considers as relevant? 

 
The second part deals with where and how the Neotethyan subduction that was responsible 
for the SSZ evolution of the Oman ophiolite might have started. This second 
part, which the authors claim as the main purpose of this paper, presents some problems, 
which I explain below.   
 
(1) The authors state that the subduction within the Neotethyan realm started along a 
continental margin parallel fracture zone, and the Oman ophiolite evolved above this 
subduction zone as a SSZ oceanic lithosphere. The eastern margin of the Arabian continent 
was then in the upper plate of this subduction zone for nearly 10-15 million years. However, 
there is no record of subduction-related Cenomanian magmatism on the Arabian plate that 
would have been expected from such an Andean-type continental margin evolution. A weak 
point in the model. 
 

There is indeed no record of upper plate magmatism on Arabia, but this may be 
straightforwardly explained. The reviewer does not consider that upper plate 
magmatism only starts when the slab has reached some depth sufficient to trigger 
melting. Numerical models suggest some ~100-150 km or so. At the same time, 
upper plate extension and ophiolite spreading started when the slab became long 
enough to exert slab pull. Numerical modeling previously suggested that this 
happens when a slab reaches 100 km length (e.g. Leng & Gurnis). Between 105 and 
95 Ma, convergence may well have been (and probably was) very slow and therefore 
roll-back started before the slab was able to generate the magmatic arc. Once that 
depth was reached, magmatism was accommodated close to the trench forming an 
SSZ ophiolite. 

 
 
(2) The authors propose, based on their palaeomagnetic data, a nearly 150° CW rotation of 
this subduction zone and the seafloor spreading system above the slab in order to explain 
the SW emplacement of the Oman ophiolite in the latest Cretaceous. Yet, there is no 
explanation in the entire model as to what caused this significant rotation of the subduction 
- seafloor spreading system. I cannot see any geodynamic forcing in the model figure (Fig 



8b) that would even hint a reasonable mechanism for such a large-magnitude rotation in 
intra-oceanic conditions. Another major weakness in the model. 
 

The rotation follows from a very large number of paleomagnetic studies (see Morris 
et al., 2016 for a comprehensive review) and is widely accepted amongst the 
scientific community. Not providing a dynamic explanation for such rotation is not a 
weakness to constrain the original orientation and position of the subduction zone – 
in fact, it’s completely irrelevant. 
The mechanisms to produce even larger intra-oceanic rotations (~200°) have been 
discussed for example by Chertova et al., JGR 2014. The answer is probably the 
interaction of the southern (now northern) tip of the trench with the Oman margin. 
This is intra-oceanic rotations occur almost everywhere – Banda, Northern 
Caribbean, Gibraltar, Cyprus. So, this mechanism is actually quite simple and 
irrelevant to our conclusions. 
 
We added to the discussion, where we calculate the long-term roll-back rate: “This 
gives an average long-term drift rate of ~4 cm/yr, which is well within the ranges of 
similar strongly rotating trenches that roll back along and obduct passive margins 
(e.g., Chertova et al., 2014).” 

 
 
(3) The tectonic model presented in Figure 8 is highly crude in terms of the shapes, 
geometries and regional extents of the continental and oceanic domains. This is a problem 
because the model then becomes a whimsical cartoon, which falls apart when we look at 
the Cretaceous palaeogeography of the Neotethyan oceanic realm and the surrounding 
continents. I presume that the eastern extension of the Greater Adria in Figure 8B is the 
Tauride-Armenian Platform, although it is not labelled appropriately. But, the sharp 
termination of this platform (?) by a NNE-SSW - oriented fracture zone on the east is 
fictional, and there is no geological evidence for its existence in the past. In reality, this 
platform extended all the way to the NE, near the Eurasian margin longitudes, as we can 
now observe in the South Armenian Platform. 
 

We have added labeling of Greater Adria. We show the Tauride platform (and the 
Bey Daglari foreland in the west), and the Kirsehir-Tavsanli blocks. This is a 
simplified, but accurate reconstruction of eastern Mediterranean paleotectonic map, 
based on the most detailed tectonic (GPlates) restoration of the Mediterranean 
region that exists to date (van Hinsbergen et al., Gondwana Research, invited paper 
in prep). Contrary to popular view in the literature on the South Armenian Block, this 
block was not part of the Tauride platform, but was separated from it by an oceanic 
branch that emplaced Cretaceous ophiolites southward onto the Taurides even 
before the South Armenian block became obducted by Eurasian margin (Jurassic) 
ophiolites. South Armenia is included in the reconstruction, but lies off the maps of 
the figure, to the north.  
But in any case, the NNE-SSW fracture zone is unequivocally demonstrated by the 
South Armenian block and easternmost Taurides, which disappear abruptly 
eastwards, where they give way to the much older Iranian Cimmerides. Moreover, 
the orientation of the subduction system in eastern Anatolia also followed from 



paleomagnetic constraints from sheeted dykes from a large number of eastern 
Mediterranean ophiolites (Maffione et al., 2017). The detailed paleogeography of 
the Mediterranean region is beyond the scope of our paper, and the reader can find 
the details in Maffione et al 2017. 

 
(4) The purported E(SE) - W(NW) - directed contraction within the Neotethyan realm that 
led to subduction initiation, followed by ophiolite emplacement, has no valid explanation 
from the point of the regional geodynamics. What caused this inferred E-W contraction 
within Neotethys? There is no explanation in the manuscript for the cause of this major 
contractional episode. Yet, there are plenty well-documented and explained models in 
support of a SSW to NNE directed contraction in this region (nearly 90° different from the 
authors' proposed direction) that was induced by the relatively fast motion of Afro-Arabia in 
the same direction, caused by the opening of the South Atlantic Ocean during the 
Cretaceous (see all the reconstructions by A.G. Smith et al., etc.).  The authors should have 
at least discussed some of these previously published models and explanations for the 
direction(s) and mechanisms of the closure of Neotethys. 
 

Nowhere in our paper do we contest that the convergence direction between 
Arabia/Africa and Eurasia was N-S. We show in our reconstruction that this 
convergence was accommodated at a well-documented trench along the Eurasian 
margin, from the Pontides to Tibet. So we don’t need to address the reconstructions 
of Smith, or anybody else, because they’re fine where it comes to the convergence 
direction between Arabia and Eurasia. But the plate that formed by initiating 
subduction within the Neotethys around 105 Myr was not Eurasia, and not Arabia, 
and the motion of this plate was unconstrained in previous models, but simply 
assumed to partition Africa-Eurasia convergence, of any kinematics were ascribed to 
it in the first place. Our analysis strongly suggests that this ‘Anadolu plate’ as defined 
by Gürer et al. (2016) moved westward, at least for the short duration of subduction 
initiation, relative to both. This does not violate any of the Atlantic models – in fact, 
those models are incorporated in the reconstructions of Figure 8.  
To make this explicit, we have added this to the final paragraph of the discussion. 
 

 
 (5) Large-magnitude CW or CCW post-magmatic rotations (90° and more) have not been 
reported from the Cretaceous ophiolites exposed in Southern Turkey, particularly from the 
north and south of the Tauride carbonate platform, and thus the ophiolite emplacement 
mechanisms depicted in Figure 8D do not work. 
 

These rotations have actually been documented recently by Maffione et al., JGR 
2017 and Morris et al EPSL 2017, and previously by Inwood et al., 2009 EPSL for 
ophiolites that were emplaced both northward and southward onto the Taurides. In 
particular, the ophiolites of Troodos (Cyprus) and Hatay and Baer-Bassit in Syria 
underwent a widely documented ~90° of intra-oceanic rotation, according to a 
mechanism similar to that we have proposed in this study and that is fully consistent 
with our reconstruction.  

 
 



------------------------- 
 
 
Reviewer #3: Based on a palaeomagnetic investigation of sheeted dykes from the Oman 
ophiolites, the authors determined the net rotation history of 7 out of 10 sampled ophiolite 
sections from which they restored the dykes' original orientations using the method of 
Allerton & Vine (1987). According to authors' preferred solution, the original subduction 
zone is inferred to dip WNW. Based on this interpretation they argue that the subduction 
was likely initiated along an ancient, continental margin-parallel transform-fault fracture 
zone, induced by (WN)W-(ES)E contraction. From a paleomagnetism perspective, I feel that 
the most critical assumption of the manuscript is that the authors accepted only the first net 
tectonic rotation solution but refused an alternative rotation solution; the latter requires an 
WNW strike of the original subduction zone induced by non-uniform tectonic rotation 
pattern involving both CW and CCW rotations at different dyke sampling sections. 
Considering the direction of the original subduction zone of the alternative solution is 
almost perpendicular to the preferred solution by the authors (the alternative solution 
yields a near N-S spreading and approximately parallels to the Arabian passive-margin/the 
Neotethyan ridge), clear evidence from field and in particular structural observations is 
essential. That is, the authors need to show whether the sampled dyke sections in Oman 
experienced similar tectonic rotation patterns around near-vertical axes rather than 
different rotation patterns during the obduction. In short, the authors must incorporate the 
non-uniqueness of the paleomag data interpretations in the discussion. 
 

First, the reviewer asks for vertical axis rotation confirmation of the clockwise 
rotation scenarios. Such evidence is extensively provided from both effusive rocks, 
and gabbros, by Morris et al., 2016 (see in particular our Supplementary Figure 2, 
which summarizes the pmag data (tilt corrected) from all sites in Oman having a 
paleo-horizontal control. This dataset clearly indicates an overall large CW rotation 
of the whole ophiolite, with minor local rotations that produce the observed scatter 
between ~70°CW and ~160°CW around an average of ~120°CW. So, based on this, 
counterclockwise solutions can certainly been discarded. The only difference in 
rotations are in the southernmost part of the ophiolite, which, according to Morris et 
al. (2016) and Feinberg et al (1999), has been remagnetized during the late 
Cretaceous obduction. The rotations in the rest of the ophiolite are consistently CW 
and above ~100°. This already excludes the reviewer’s perceived alternative. 
 
Demanding vertical axis rotation constrains from sheeted dyke sections is impossible 
because these units do not yield a paleo-horizontal control and a classical “tilt 
correction” of vertical units has been demonstrated to lead to incorrect rotations. If 
that would have been possible, we wouldn’t have bothered to perform a net 
tectonic rotation analysis in the first place. 
 
Finally, regarding the non-uniqueness of the paleomagnetic data, we have now 
added additional explanation on the criteria used to select a preferred solution out 
of the two alternative solutions (see Methods). The main reason for rejecting one of 
the two solutions (note in the table we have sorted the preferred solution in the first 
column and the alternate in the second column, so the preferred solution wasn’t 



always the first solution of our net tectonic rotation analysis) is that the rejected 
solutions require either (i) a rotation kinematics that is not consistent with the 
regional pattern (e.g., CCW rotations are not possible considering the regional CW 
rotation of the ophiolite), or (ii) a restored orientation of the various units after 
back-rotation that is inconsistent with the mapped structure – many require that the 
ophiolite is overturned where it clearly isn’t, or strikes of unit boundaries that are far 
off the modern strikes. These constraints show that what we have selected as 
“alternative solutions” is clearly not permitted. 

  
 
Minor comments: 
Lines 247-251: interpretations of the existence of sulphides in these sites need more work. 
If the sulphides have contributed to magnetic susceptibility up to more than 50% of the 
sample, why does the cooling curve show much lower magnetic susceptibility when 
breaking down to the strong ferromagnetic magnetite above ~500 Celsius degrees? 

 
Possible occurrence of iron sulphides have only been suggested for sites DA and HA 
based on the gentle inflections of susceptibility observed in the heating curves of 
thermomagnetic experiments. This is, therefore, not a common feature observed 
everywhere within the study area and we don’t understand what kind of “more 
work” should be done on the existence of iron sulphides. Beside this, we have not 
stated anywhere in the paper that “sulphides have contributed to magnetic 
susceptibility up to more than 50% of the sample”, so we don’t understand really 
what the problem is here. 
Regarding the evidence that the cooling curve of susceptibility has lower values than 
the heating one this is simply because any reaction induced by heating in our 
experiments has not produced new magnetite because the experiments were 
carried out in argon atmosphere, hence in reducing conditions. So, the breakdown of 
ferromagnetic iron sulphides have just removed this phase from the system without 
generating new magnetite (hence the lower susceptibility). We have now 
incorporated this explanation in the main text. 

 
 
 
Line 251-252: severely distorted description shown in the plot. the susceptibility seems not 
to drop to zero at temperatures as high as ~700 C. 
 

We don’t understand why our description is distorted. We used the standard 
method of Petrovsky et al. (2006) to determine the Curie temperature at site AS 
using the thermal variation of magnetic susceptibility shown in Figure 2, and we 
obtained a value of 595°C. This value is higher than the Curie temperature of pure 
magnetite (which is 580°C) and more similar to that of maghemite (see Dunlop and 
Ozdemir, 1997). What is wrong with this? 
Regarding the second point, we do not know why susceptibility does not drop to 
zero (it gets really close to zero though). It must have something to do with the 
calibration of the instrument. However, in this kind of experiment the absolute 



values are completely trivial as only the shape of the curve is used to infer the Curie 
temperatures of the ferromagnetic minerals. 

 
 
Lines 258-260: Due to problematic descriptions/interpretations of the data mentioned 
above, this paragraph and particularly this summary needs to be rewritten. 
 

Again, we don’t understand why our description is distorted. For each site described 
in this section we applied the standard method of Petrovsky to determine the Curie 
temperatures and based on this, the occurrence of titanomagnetite at e.g. sites 
MA01 is unequivocal. These Curie temperatures are further supported by the 
thermal demagnetization experiments, as we already state in the main text. We have 
slightly reworded this paragraph to make it perhaps a bit clearer, but the values and 
our interpretation is correct and has not been modified. 

 
 
Lines 261-266: this part needs supporting references and/or additional analyses to reinforce 
the interpretations. 
 

Thanks for the suggestion, indeed this was missing. The link between the shape of 
the hysteresis loops and the grain size is discussed in the book Dunlop and Özdemir 
(1997), which has now been cited in this paragraph. 

 
 
lines 281-284: need supporting references. 
 

We have deleted this sentence as it was redundant based on what we state in the 
previous sentence. 

 
 
Lines 303-305: What about the remanence borne by the maghemite? Is there any evidence 
from the SEM observation for the representative samples that provide constraints on this 
maghemization? 
 

No, we don’t have clear evidence for the occurrence of maghemite based on the thin 
section observations. We have now stated this in this section. However, 
maghemitization may only affect a thin portion of the outer rim of magnetite, 
forming a thin coating of maghemite, which is difficult to identify at the SEM (cracks 
are typically the evidence suggesting the occurrence of maghemite). 

 
 
Lines 326-336: Due to the difficulty in interpreting the abnormal directions and even the 
reversed directions from site BB, the authors excluded this observation from further 
analysis. Given that you have done some rock magnetic experiments and SEM observations 
for the representative samples from each sampling site, do you have any robust evidence to 
support this action? In other words, I have a great difficulty to see the difference in rock 
magnetism and SEM observations within the significantly remagnetized sites (AA and MU), 



and possibly remagnetized site BB, and all the accepted sites. 
 

We thank the reviewer for raising this important point. We have now adopted a 
different approach to discuss the potential remagnetization of those sites, and have 
substantially rewritten this part. First, we have now initially considered the 
remanence from sites BB, AA, and MU, and have used them for the net tectonic 
rotation analysis. Then, we have discussed the results from the net tectonic rotation 
analysis for these site, and have concluded based on this additional evidence that 
sites BB and MU must have been remagnetized. Site AA gave actually quite reliable 
results and an initial dyke orientation consistent with the other sites (i.e., ~N-S). 
However, as discussed now in the main text, we have decided to discard this site 
from further discussion as the potential for error associated to the rotation 
parameters is very high. 
 

 
Lines 344-348: Inconsistent statement and self-contradictory conclusion. According to the 
discussion of the palaeomagnetic data (lines 315-336), three (i.e. AA, MU, and BB) out of 9 
sites were interpreted as being remagnetized, why are they concluded as primary records? 
On the other hand, according to this discussion, the site HA, which has a A95 significantly 
less than the A95min (Table 1), might fail to effectively average out the PSV. Hence, it 
should have precluded a significant tectonic rotation. However, this is not discussed.  
 

We have now significantly expanded this discussion and partially rewritten this 
section. All points raised by the reviewer here have been addressed and clarified. 

 
 
Lines 357-361: This is the most important part of the manuscript. Due to the very 
complicated deformation history during the obduction of the ophiolite carrying sheeted 
dykes, serious and very possibly heterogeneous deformations associated with vertical-axis 
rotation might have occurred at the sampled dyke sections. The authors' preferred solution 
was based upon the hypothesis that the sheeted dykes experienced only large near-vertical 
clockwise rotations during the deformation. This might be the case according to previous 
palaeomagnetic studies. However, field observations at each sampling site is needed to 
support this interpetation. Otherwise, the authors should at least mention and discuss this 
alternate possibility. 
 

The reviewer’s comment ‘Due to the very complicated deformation history during 
the obduction of the ophiolite carrying sheeted dykes, serious and very possibly 
heterogeneous deformations associated with vertical-axis rotation might have 
occurred at the sampled dyke sections’ is entirely unsupported by evidence. This is, 
in fact, a complete speculation. Of course there is some local deformation in the 
ophiolite, particularly extensional related to the original spreading, and there are 
large, open folds and an occasional thrust. But there is nothing ‘very complicated’. 
Nowhere are regionally important duplications within the ophiolite reported, there 
are no tens of km wide completely chaotic strike-slip faults or former fracture zones, 
etc etc. In fact, the ophiolite is so extremely coherent that for decades people have 
mapped out complex ridge systems and spreading rates. The regional clockwise 



rotation was extensively documented by Morris et al and is consistent with our 
findings, and that of others. So our choice of the preferred solutions based on the 
expected rotation pattern (i.e. large CW vertical-axis rotations) is quite solid and 
reliable. We have now clarified the three criteria adopted for the choice of the 
preferred net tectonic rotation solutions. It is now possible to note that the regional 
CW vertical axis rotation is not the only criterion used to select our preferred 
solutions. Furthermore, we have now expanded the discussion of the preferred and 
alternate net tectonic rotation solutions, and have clarified better how and why we 
selected those particular solutions as preferred. So, in conclusion, the claim of the 
reviewer that everything is chaotic is incorrect and fails to explain the structural and 
paleomagnetic coherence.  

 
 
Figure 6: please indicate the meanings of different symbols/lines in the diagram. As many 
great circles are used in the calculation of the ChRMs, adding a few representative 
orthogonal and stereographic plots may help clarify the demagnetization trajectories. 
 

We have now added additional explanations of the symbols in the relative figure 
caption. Representative Zijderveld plots have already been presented in Figure 5 and 
Figure 6 is already too large to add more Zijderveld plots there. 

 
 
Table 1: Please correct the clerical mistakes or inconsistent numbers in the "ChRM interpr." 
and "n/N" columns, such as those for site DA, MA01, and MA01/02. 
 

We have corrected the numbers for site DA, although those of sites Ma01 and MA02 
are correct, as the n/N values are different for in situ and tilt corrected data. 

 
 
Table 2: Please following the work of Allerton & Vine (1987) and use the "Rotation vector" 
rather than "Rotation axis". 
 

Although both terms are correct, we prefer the term “rotation axis” as it will be 
more clear to a non specialized reader. 
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Abstract 

 The archetypal Semail ophiolite of Oman has inspired much thought on the 

dynamics of initiation of intra-oceanic subduction zones. Current models invoke 

subduction initiation at a mid-oceanic ridge located sufficiently close to the Arabian 

passive margin to allow initiation of continental subduction below the ophiolite 

within ~10-15 Myr after the 96-95 Ma age of formation of supra-subduction zone 

crust. Here, we perform an extensive paleomagnetic analysis of sheeted dyke 

sections across the Semail ophiolite to restore the orientation of the supra-

subduction zone ridge during spreading. Our results consistently indicate that the 

ridge was oriented NNE-SSW, and we infer that the associated trench, close to the 

modern obduction front, had the same orientation. Our data are consistent with a 

previously documented ~150° clockwise rotation of the ophiolite, and we 

reconstruct that the original subduction zone was WNW-ward dipping and NNE-

SSW striking. Initial subduction likely occurred in the ocean adjacent and parallel to 

the Arabian transform margin that formed the original underpinnings of rocks in the 

Zagros fold-thrust belt, now underthrust below Iran. Subduction thus likely initiated 

along an ancient, continental margin-parallel fracture zone, as also recently inferred 

from near-coeval ophiolites from the eastern Mediterranean and NW Arabian 

regions. Subduction initiation was therefore likely induced by (WN)W-(ES)E 

contraction, and this constraint may help the future identification of the dynamic 

triggers of Neotethyan subduction initiation in the Late Cretaceous. 
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1. Introduction 

Subduction initiation is a critical step in the plate tectonic cycle, and how and 

where subduction zones form has therefore been at the forefront of geodynamic 

research for decades (e.g., Guilmette et al., 2018; Hall et al., 2003; Stern and Gerya, 

2017). Ophiolites, i.e. exposed fragments of oceanic lithosphere that are often found 

thrust upon continental margins, have played a central role in the development of 

concepts of subduction initiation (Pearce et al., 1984; Stern et al., 2012). First, 

Pearce et al. (1984), among others, recognized that most ophiolites contain 

geochemical evidence that indicate formation at a spreading center located above a 

subduction zone (for this reason called supra-subduction zone (SSZ) ophiolites). 

Second, many SSZ ophiolites are associated with metamorphic soles - typically high-

temperature, low to high-pressure metabasalts and metasediments that are found 

below the ophiolite's mantle section, thought to have been derived from the top of 

now-subducted oceanic lithosphere. Their high metamorphic temperatures are 

atypical for mature, cool subduction zones and metamorphic soles are therefore 

thought to form at the plate contact during subduction zone infancy (e.g., Agard et 

al., 2016; Boudier et al., 1988; Guilmette et al., 2018; Hacker and Gnos, 1997; 

Pourteau et al., 2018; Soret et al., 2017; van Hinsbergen et al., 2015; Wakabayashi 

and Dilek, 2003). Because both the upper plate - the ophiolite - as well as the down-

going plate in these systems are oceanic, as deduced from oceanic lithologies in the 

metamorphic soles and underlying subduction mélanges, SSZ ophiolites are thought 

to result from intra-oceanic subduction initiation (Agard et al., 2007; Stern et al., 

2012; van Hinsbergen et al., 2015; Wakabayashi and Dilek, 2003). 
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Models of intra-oceanic subduction initiation logically point at pre-existing 

weakness zones within oceanic lithosphere as locations where subduction zones 

may form, either spontaneously or induced (e.g., Agard et al., 2007 ; Guilmette et al., 

2018; Stern et al., 2012), at or near active intra-oceanic plate boundaries: transform 

faults or young fracture zones, ridges, or ridge-parallel detachment faults (Agard et 

al., 2007; Boudier et al., 1988; Duretz et al., 2016; Hall et al., 2003; Maffione et al., 

2015a; Stern et al., 2012; van Hinsbergen et al., 2015). 

Along the northern margin of Arabia, and as the highest structural unit in a 

microcontinent-derived fold-thrust belt in the eastern Mediterranean region, a 

discontinuous, ~4000 km-long belt of SSZ ophiolites is found with well-constrained 

crustal ages of ~96-90 Ma (Maffione et al., 2017; Rioux et al., 2016). The best-

exposed and most complete of these is the Semail ophiolite of Oman, and has 

allowed mapping out 100’s of km long, coherent fossil ocean floor (e.g., Nicolas et al., 

2000). This ophiolite has inspired much thought on the process of subduction 

initiation and is widely considered to have formed in the incipient stages of an intra-

oceanic subduction zone. 

Given the overall N-S long-term Arabia-Eurasia plate convergence, 

subduction is widely considered to have formed along an ~(WN)W-(ES)E striking 

mid-ocean ridge within the Neotethys (e.g., Duretz et al., 2016). As drivers for 

subduction initiation, for instance a far-field driven Arabia-Eurasia convergence rate 

increase of 2-3 cm/yr (Agard et al., 2007) was proposed. However, paleomagnetic 

constraints from sediments and igneous rocks of the ophiolite indicate that the 

Oman ophiolite underwent a major, clockwise vertical axis rotation of as much as 
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150° (e.g., Perrin et al., 2000; Morris et al., 2016). Back-rotating the present-day 

obduction front (as a proxy for the intra-oceanic trench location) according to these 

data suggests that the spreading center at which the Oman crust was formed had a 

NE-SW orientation, hence almost orthogonal to the Arabian passive-margin, not 

parallel to it. Second, the earliest metamorphism of Arabian passive continental 

margin rocks found below the Oman ophiolite is dated at ~80-85 Ma old (Warren et 

al., 2005), i.e. the Arabian passive margin was already buried at the trench only ~10 

Myr after supra-subduction zone ophiolite formation. This suggests that subduction 

initiated close to the Arabian passive margin, as also indicated by paleomagnetic 

paleolatitudes (Perrin et al., 2000) and incorporated in various numerical and 

analogue models (Duretz et al., 2016). Opening of the Neotethys ocean and 

formation of the Arabian passive margin, however, was Permian in age, and thus 

occurred as much as ~170 Myr prior to Cretaceous subduction initiation (e.g., 

Béchennec et al., 1990; Stampfli and Borel, 2002). The presence of a Cretaceous mid-

ocean ridge close to a Permian passive margin is unlikely, particularly since the 

original Neotethyan mid-oceanic ridge must have already subducted below the 

Eurasian margin in Jurassic time (Maffione et al., 2017; Stampfli and Borel, 2002). 

In this paper, we provide the first paleomagnetic dataset from the sheeted 

dyke sections of the Oman ophiolite to kinematically restore the orientation of its 

SSZ spreading ridge during subduction zone infancy. To this end, we collected a 

large paleomagnetic data set from ten localities in sheeted dyke sections along the 

strike of the Oman ophiolite to determine the net rotation history of the ophiolite 

and restore the dykes to their original orientation. We then place the Oman ophiolite 



 6 

in plate kinematic context using the configuration of the Arabian passive margin 

restored for continental subduction in the Zagros mountains (McQuarrie and van 

Hinsbergen, 2013), cast in a paleomagnetic frame of reference (Torsvik et al., 2012). 

Finally, we discuss the implications for the tectonic setting and nature of the 

weakness zone that facilitated Oman’s subduction initiation, and search for settings 

in today's snapshot of plate tectonic history that may provide an analogue. 

 

2. Geological setting 

The Semail ophiolite in Oman consists of a large, well-preserved oceanic 

lithosphere thrust slice containing a 4-7 km thick crustal sequence, and a 8-12 km 

thick mantle sequence (e.g., Nicolas et al., 2000). The ophiolitic sequence displays a 

Penrose pseudostratigraphy composed from top to bottom of a sedimentary cover 

(radiolarian cherts), volcanics (pillow lavas and lava flows), sheeted dykes, isotropic 

and layered gabbros, peridotites (harzurgites and dunites), and a 300-500 m thick 

metamorphic sole with an inverted metamorphic grading (e.g., Cowan et al., 2014; 

Hacker, 1991; Nicolas et al., 2000; Searle and Cox, 1999; Soret et al., 2017). The 

ophiolite overlies a sequence of deep-marine, Permian to Cretaceous sediments 

interpreted to be derived from the distal Arabian margin or the adjacent oceanic 

crust – the Hawasina nappes – and underlying Arabian margin-derived nappes 

(Béchennec et al., 1990).  

In the northern part of the ophiolite, the extrusive sequence is geochemically 

layered (Ernewein et al., 1988; Nicolas et al., 2000). Basalts with a geochemistry 
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similar to mid-ocean ridge basalts (N-MORB) dominate in the lower part of the 

volcanic sequence, called Geotimes Unit or Unit V1 by Ernewein et al. (1988). Above 

this unit are the Lasail and Alley volcanic suites, collectively termed Unit V2 by 

Ernewein et al. (1988), which consist of depleted arc tholeiites and boninites 

interpreted as products of hydrous melting of a previously depleted mantle source 

(e.g., Godard et al., 2006). This geochemical pattern in the crustal sequence of the 

Oman ophiolite led to the formulation of different tectono-magmatic models 

invoking formation either in an open ocean (e.g., Nicolas, 1989) or above an active 

subduction zone (e.g., Pearce et al., 1984). A more recent study, however, suggested 

that the Geotimes MORBs may have been produced under high water content, hence 

more likely above an incipient subduction zone (MacLeod et al., 2013). 

Paleomagnetic data from the extrusive sequence of the Semail ophiolite 

indicate a rigid block clockwise (CW) rotation up to ~150° in the northwestern 

segment of the ophiolite (north of the Hawasina tectonic window), and only minor 

counterclockwise (CCW) rotations up to ~20° in the southeastern portion of the 

ophiolite (Feinberg et al., 1999; Perrin et al., 2000; Weiler, 2000). This was 

originally interpreted as the result of major relative rotations between the northern 

and southern part of the ophiolite (Nicolas et al., 2000; Perrin et al., 2000), until 

Feinberg et al. (1999) and Morris et al. (2016) documented the occurrence of a 

pervasive remagnetization of the ophiolite in the southern segment, which occurred 

during or soon after the Late Cretaceous emplacement of the ophiolite above the 

Arabian continental margin (e.g., Nicolas et al., 2000; Searle and Cox, 1999; Searle et 
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al., 2004). In particular, Morris et al. (2016) suggested that the minor CCW rotation 

of the southern block occurred after the remagnetization event. 

Zircon U-Pb dating of the plutonic section of the Semail ophiolite indicates 

that the ophiolitic crust formed at a fast spreading ridge in less than ~1 Ma in the 

Late Cretaceous (~96-95 Ma; Rioux et al., 2016), only just preceding other Neo-

Tethyan ophiolites from Turkey and Cyprus with 94-90 Ma ages (e.g., Maffione et al., 

2017). Zircon U-Pb and hornblende and mica Ar-Ar ages from garnet-bearing 

metamorphic sole rocks are similar or slightly younger than the magmatic sequence 

(96.2-92.6 Ma; Hacker et al., 1996; Rioux et al., 2016; Warren et al., 2005), indicating 

cooling and exhumation of the sole synchronous with upper plate spreading and 

formation of the ophiolitic crust (e.g., van Hinsbergen et al., 2015). More recently, 

garnet Lu-Hf ages from the uppermost, garnet-bearing layer of the metamorphic 

sole in Oman have constrained subduction-related prograde metamorphism at 104 

Ma (Guilmette et al., 2018) and a nearly identical Lu/Hf age was reported from 

Turkey (Pourteau et al., 2018), indicating near-synchronous timing of subduction 

initiation. According to these new results, upper plate spreading (and ophiolite 

formation) postdated the initiation of subduction by ~8-12 Ma. Because 

spontaneous subduction initiation requires initial slab roll-back and simultaneous 

upper plate extension (Stern et al., 2012), this delay demonstrates that subduction 

initiation must have been induced (Guilmette et al., 2018), i.e. triggered by a far-field 

tectonic stress. 
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3. Sampling and methods 

A total of 380 standard paleomagnetic samples were collected from 12 

localities within the sheeted dyke section (10 sites) and the extrusive sequence (2 

sites) (Figure 1). All samples were drilled in the field using a water-cooled portable 

rock drill, and were oriented in situ using both magnetic and sun compasses. Mean 

paleomagnetic directions for each sampling site were calculated by averaging 

characteristic remanent magnetizations (ChRMs) interpreted from typically 20-50 

samples collected from six to eleven adjacent chilled margin-bearing dykes. 

Orientation of the volcanic sequence at two sites was determined using the primary 

layering of pillow lavas and an intercalated lava flow unit. 

 The nature of the magnetic carriers was characterized through rock magnetic 

experiments and thin section analysis carried out at the paleomagnetic laboratory 

‘Fort Hoofddijk’ at Utrecht University (Netherlands). High-temperature thermal 

variation of the magnetic susceptibility was investigated via heating-cooling cycles 

from room temperature to 700°C in argon atmosphere using a KLY-3 Kappabridge 

(AGICO) coupled with a CS3 apparatus. The Curie temperatures were determined 

from the thermal demagnetization results. Hysteresis parameters were calculated 

through hysteresis loops with peak fields of 0.6-1.5 T, using an alternating gradient 

magnetometer (Micromag AGM, Princeton). Mineralogical assemblages and the 

nature and distribution of the ferromagnetic minerals were determined by analizing 

polished thin sections under both transmitted light and scanning electron 

microscope (JEOL JCM-6000), and by carrying out elemental analysis with an 

energy-dispersive X-ray (EDX) analyzer coupled with the SEM. 
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Remanence components were analyzed using mainly stepwise alternating 

field (AF) demagnetization with variable increment steps from 5 to 100 mT. About 

10% of the samples were also demagnetized thermally in a magnetically shielded 

furnace (ASC, TD48-SC) using variable increment steps from 100° to 580°C (or until 

complete demagnetization). AF demagnetization and measurement of the 

remanence after each demagnetization step were conducted using a robotized 

superconducting (SQUID) cryogenic magnetometer (Mullender et al., 2016) located in 

a magnetically shielded room. Demagnetization data were plotted on orthogonal 

diagrams (Zijderveld, 1967) and the remanence components were isolated via 

standard principal component analysis (Kirschvink, 1980) using  the online 

software package www.paleomagnetism.org (Koymans et al., 2016). ChRM 

components with maximum angular deviation (MAD) larger than 10° were 

discarded from further analysis. Site mean ChRM directions were computed using 

Fisherian statistics (Fisher, 1953) on virtual geomagnetic poles (VGPs) associated to 

the isolated ChRMs, and after having applied a fixed 45° cutoff to the VGPs. 

 The computed site mean directions were then used to calculate the tectonic 

rotations at each site using a net tectonic rotation approach (Allerton and Vine, 

1987). This technique prevents possible biases associated with classic tilt correction 

in units lacking paleohorizontal constraints, like sheeted dykes, and has been 

successfully applied to other ophiolites (e.g., Maffione et al., 2017; Morris et al., 

1998). Rather than decomposing the deformation into a tilt and a vertical axis 

rotation component, a net tectonic rotation analysis computes the single rotation 

around an inclined axis that to restores both the rock unit to its original orientation 
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(i.e., vertical for sheeted dykes), and the measured in situ remanence to a selected 

reference direction. The reference direction is the direction of the magnetic field at 

the time and latitude at which the remanence was acquired. The reference direction 

for this study has been calculated using the mean remanence of the crustal sequence 

from this and previous studies. While tThe declination of the reference direction 

follows is inferred from the geocentric axial dipole (GAD) hypothesis (- i.e., the time-

averaged declination of the magnetic field points towards the geographic north 

pole) -, and is therefore D = 000°. its The inclination of the reference direction has 

been calculated by combining all the existing (not remagnetized) paleomagnetic 

data from the layered gabbros and the extrusive sequence (Perrin et al., 2000; 

Shelton, 1984; Weiler, 2000), including the results obtained from this study from the 

two pillow basalt sites in this study (Figure S1). The tilt corrected mean inclination 

calculated from this dataset, representing the inclination of the reference direction, 

is 21.5° ± 6.6° (Figure S1). Based on these data the reference direction used for the 

net tectonic rotation analysis in this study has a declination (D) of 000° and 

inclination (I) of 21.5° ± 6.6°. 

A set of net tectonic rotation solutions is expressed as (i) azimuth and plunge of the 

rotation axis, (ii) magnitude and sense of the rotation, and (iii) initial strike of the 

unit. When applied to vertical units like dykes, two permissible sets of net tectonic 

rotation solutions are obtained if the dykes can be restored to the vertical. In this 

case, three selection criteria are used to choose the preferred solution at each site: 

(1) the calculated rotation has to restore the units to their current position (e.g., a 

solution yielding overturned beds when units are just gently dipping should be 
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discarded); (2) both the rotation sense and magnitude have to be consistent with 

the known regional and/or local deformation pattern; (3) multiple sites within a 

relatively small area have to show similar net tectonic rotation parameters 

(assuming local rotations are minor). 

One set of solutions is instead obtained when dykes are not restored to vertical (e.g., 

because they did not intrude vertically). Single solutions are geologically 

meaningless and should be discarded as both the initial dyke orientation and the 

rotation parameters will only depend on the orientation of the reference direction 

(e.g., the initial dyke orientation will always strike perpendicular to the reference 

direction, hence will always be E-W). 

Once a preferred solution has been chosen, an iterative net tectonic rotation analysis 

(Morris et al., 1998; Koymans et al., 2016) is then used to model the uncertainties on 

the reference direction (only its inclination), the site mean direction, and the dyke 

orientation. This routine within the net tectonic rotation analysis package is 

available at www.paleomagnetism.org and produces at each site 75 permissible 

solutions per set of solutions (hence 150 when dykes are restored to vertical). 

 

4. Results 

4.1 Magnetic carrier analysis 
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Temperature variation of the magnetic susceptibility (Figure 2) is irreversible, with 

susceptibility values being commonly lower after heating, hence showing 

mineralogical transformations induced by the experiments. These transformations 

do not seem todid not produce new mineralogical phases, as the Curie temperatures 

for the heating and cooling curve are the same. On the other hand, in the pillow lavas 

(site MA01; Figure 2) variable Curie temperatures are inferred from the heating and 

cooling paths. Curie temperatures of 570-580°C are observed within the dyke 

samples (Figure 2), indicating nearly pure magnetite as magnetic carrier (Dunlop 

and Özdemir, 1997). Sites DA and HA show additional Curie temperatures between 

300° and 330° (Figure 2), which is consistent with a minor occurrence of iron 

sulphides, likely pyrrhotite. If present, the break-down of iron sulphides expected 

during heating at ~500°C (Dunlop and Özdemir, 1997) did not produce any new 

magnetite as our experiments were conducted in argon atmosphere, hence in 

reducing conditions. This would explain the lower susceptibility values of the 

cooling curves in all sites (except site AS where new magnetite might indeed have 

formed during the experiment; Figure 2). The removal of iron sulphides This during 

the heating is further suggested supported by the absence of inflections in the 

cooling paths around 300-330° (Figure 2), as iron sulfides commonly break down to 

magnetite at about 500°C (Dunlop and Özdemir, 1997). Site AS shows a slightly 

higher Curie temperature of 595°C, revealing suggesting the occurrence of partly 

oxidized (maghemitized) magnetite or titanomagnetite, common in mafic magmatic 

rocks (Dunlop and Özdemir, 1997). Pillow lavas from site MA01 show two a primary 

Curie temperatures of of ~545°C, and a possible additional temperature of ~450°C, 
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compatible with the occurrence of both Ti-poor and Ti-rich titanomagnetite, 

respectively. , which after heating are converted into titanomaghemite (with Curie 

temperatures of 520° and 620°C, respectively). Similar blocking temperatures have 

also been observed at all sites during the thermal demagnetization experiments, 

confirming the occurrence of magnetite, titanomagnetite, and (titano)maghemite as 

main carriers of the magnetization in the samples dykes and lavas. 

Relatively narrow to more open hysteresis loops characterize all the dyke 

samples (Figure 3), indicating the predominance of pseudo-single-domain (PSD; 

0.05-3 μm) and perhaps minor single-domain (SD; < 0.05 μm) grains (Dunlop and 

Özdemir, 1997). On the other hand, pillow lava samples show very narrow 

hysteresis loops (Figure 3), which are typically observed in rocks dominated by 

multidomain (MD; >3 μm) ferromagnetic grains (Dunlop and Özdemir, 1997). 

Ten thin sections from both dykes and pillow lavas were analyzed. The main 

mineralogical assemblage in dykes is, in order of abundance, plagioclase, 

clinopyroxene, orthopyroxene, chlorite, and opaque minerals. In some dyke samples 

(sites AA and HU) opaque minerals are as large as 0.1-0.2 mm. Pillow lavas are much 

more weathered and altered than the dykes, with most of plagioclase and pyroxene 

minerals losing their original habit and forming a homogenous, fine grained 

isotropic matrix. The microscopic fabric of both dykes and pillow lavas is purely 

magmatic, with frequent euhedral plagioclase and pyroxene minerals (more 

frequently commonly observed in dykes) forming a matrix with no internal fabric. 

The opaque minerals are also randomly dispersed within this matrix. Chlorite, 

which is always present in all the samplesboth dykes and pillow lavas, occurs 
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randomly dispersed within the isotropic matrix, suggesting a static metamorphism 

likely associated to seafloor hydrothermal alteration, as frequently observed in 

other ophiolites (e.g., Maffione et al., 2017). Such metamorphism occurs at very low 

temperatures and normally does not affect the magnetic remanence recorded of by 

these rocks emplaced at a mid-ocean ridge. Furthermore, seafloor hydrothermal 

metamorphism only occurs at the spreading ridge during the magmatic phase, hence 

any potential remagnetization caused by this process would produce a 

magnetization sub-parallel to the primary remanence. 

SEM analysis and EDX characterization (Figure 4), revealed the occurrence of 

angular magnetite and titanomagnetite, sometimes with exolution lamellae, with 

grain sizes variable between 1 μm (pseudo-single-domain – PSD) and 100 μm 

(multidomain – MD). At few samples from sites FF and AS, ironFe- and titaniumTi-

rich oxides up to 1 mm in size and showing compositional bands have been 

observed and interpreted as ilmenite. This is supported by the fact that the 

magnetization of samples carrying such large ilmenite minerals (which is not 

magnetic) is comparable to that of other samples, because these do not seem to 

contribute to the remanence (which is comparable to that of other samples where 

these large crystals are not present). 

 

4.2 Paleomagnetic results 

Natural remanent magnetization (NRM) intensity from 380 analyzed samples 

varies between several 10s of mA/m and 4 A/m, suggesting substantial variations in 

ferromagnetic mineral concentration across the sampled rocks. A total of 340 
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characteristic remanent magnetizations (ChRMs) were interpreted from the 380 

analyzed samples, with the remaining 40 samples showing noisy, uninterpretable 

demagnetization diagrams, or MAD values above the chosen threshold of 10°. 

AF demagnetization diagrams show two components of magnetization: a 

low-coercivity viscous component usually removed at 10-15 mT, and a stable high-

coercivity component isolated within an interval between 20 and 100 mT (Figure 5). 

At about half of the samples, these high-coercivity components were isolated using 

great circle fitting (McFadden and McElhinny, 1988), which denoted the occurrence 

of high-coercivity phases that could not be removed at 100 mT. We suspect this 

effect mightto be associated with partial maghemitization of the original magnetite, 

which causes a slight increase of coercivity. Although this hypothesis remains a valid 

explanation for the remanence behavior, is not supported by thin section 

microscope analyses. This might be due to the fact that cracks associated with 

maghemitization of original (titano)magnetite can sometimes be difficult to identify 

in thin section.   

Overall, AF demagnetization treatment was more effective in isolating the 

ChRM components (Figure 5), and produced more stable demagnetization 

components compared to the thermal demagnetization technique (Figure 5E). 

Nevertheless, the ChRM directions determined from both AF and thermally 

demagnetized twin specimens are fully consistent (Figure 5C), showing that these 

are high-stability, likely primary remanence components suitable for tectonic 

interpretations. 
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Site mean directions (in situ coordinates) at 10 out of 12 sites (Figure 6; 

Table 1) are significantly different from the present-day GAD field direction at the 

mean latitude of the Oman ophiolite (D/I = 000°/42°), hence ruling out any recent 

remagnetization. The remaining two sites (AA and MU) show northerly mean 

directions that are very close to the expected inclination of the present-day GAD, 

suggesting possible recent remagnetization (Figure 6; Table 1). For now, this 

remagnetization cannot be confirmed based on this evidence alone and therefore we 

use all sites for the net tectonic rotation analysis. These sites were rejected due to 

possible recent remagnetization. At site HU, several ChRM directions that are close 

to the present-day GAD direction were discarded due to possible recent 

remagnetization before computing the site mean direction. 

Besides sites AA and MU with northerly directions, the other ten sites show 

The in situ site mean directions from these ten sites are consistent and varyvarying 

between southeastward, and northeastward, and northwestward directions, with 

the exception of site BB, which has a northwestward trend (Figure 6; Table 1). The 

tilt-corrected mean direction from the two combined Because the Oman ophiolite 

formed during the Cretaceous Normal Superchron (~125-83 Ma) its primary 

remanences are expected to have a normal polarity (i.e. positive inclinations). While 

moderate local tilt may account for the reverse polarity of the in situ direction 

calculated at site DA (Figure 6), the reverse polarity of site BB is more difficult to 

explain, as it would require a much larger tilt (>150°). Since such extreme 

deformation has never been documented in the Oman ophiolite, we infer a probable 

remagnetization at site BB, consistent with a well-documented remagnetization 
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event affecting the southeastern massifs of the ophiolite (in which site BB is located) 

(Feinberg et al., 1999; Morris et al., 2016). Site BB was excluded from further 

analysis. 

The pillow lava sites (MA01 and MA02) has D = 093.4° and I = 15.9°, and 

indicates yielded a vertical axis rotation of 93.4° CW in tectonic coordinates (MA01 

and MA02 combined; Table 1). This is consistent with previous results (Morris et al., 

2016; Perrin et al., 2000) indicating large CW rotation of the whole ophiolite, and 

provides a first-order approximation for of the vertical axis rotation component 

expected at the other contributing to the net rotationdyke sites. 

Fold tests to check the primary nature of the interpreted ChRMs cannot be 

performed in units lacking paleohorizontal control such as dykes. Similarly, fold 

tests could not be performed foron the two pillow lava sites, as rocks there are part 

of the same outcrop and have the same orientation. In this case VGP distribution 

may be used to assess the primary nature of the remanence based on the criteria 

suggested by Deenen et al. (2011).However, we observe that the  VGP scatters at all 

the nine sites except HA and is consistent with the expected scatter induced by 

paleosecular variation (A95min<A95<A95maxinterpreted to carry a primary 

magnetization (; Figure 6 and; Table 1). are consistent with the expected scatter 

induced by paleosecular variation (A95min<A95<A95max) The scatter of ChRMs at site 

HA is smaller than that produced by secular variation (i.e., A95 < A95min.; Table 1), yet, 

this  may be explained by the fact that the majority of the remanence directions (i.e., 

18 out of 30) at this site have been computed using great circles analysis (McFadden 

and McElhinny, 1988). Although mathematically and statistically reliable, these 
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directions do not necessarily replicate the natural scatter of the directions due to 

secular variation of the geomagnetic field. SoTherefore, based on the above evidence 

and in the absence of other constraints to assess the nature of the remanence, we 

assume for now that the remanence at all sites could be primary.Following 

reliability criteria of Deenen et al. (2011), we conclude that the isolated remanences 

at these nine sites are primary and use these for the net tectonic rotation analysis.  

 

4.3 Net Tectonic Rotation analysis 

 

Net tectonic rotation analysis of the ten of sheeted dyke sites exposed at 

seven sites succeeded in restoring both the dykes back to their original (vertical) 

orientation and the computed in situ paleomagnetic directions to the chosen 

reference direction, generating two sets of permissible solutions at each site (Table 

2). Because the Oman ophiolite underwent an overall large (up to 150°) CW vertical 

axis block rotation (see Morris et al. (2016) for a comprehensive review), preferred 

solutions were selected among those satisfying all the three criteria listed in the 

Methods section. Based on these criteria, site BB was discarded as both solutions 

indicated large CCW rotations, which are at odds with the regional CW rotation of 

the ophiolite. This might be explained by the fact that the primary remanence at site 

BB haves been overprinted, hence giving meaningless net tectonic rotation 

solutions. This hypothesis is supported by the fact that site BB is within the 

southern domain of the Oman ophiolite that has been affected by remagnetization 

during the obduction stage (Morris et al., 2016). 
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Net tectonic rotation analysis at site MU provided two solutions, one of which 

is clearly meaningless because givingfor it gives extremely large CCW rotations. The 

other set of solutions indicates a CW rotation but the vertical-axis component of 

suchthis net rotation is quite small and therefore not consistent with the regional 

large rotation of the ophiolite. Because the in situ remanence of site MU isare close 

to the present-day field (Table 1 and Figure 6), it is indeed likely that this site has 

been (totally or partially) affected by recent remagnetization. We therefore will not 

consider the result from this site for further analysis. 

Net tectonic rotation analysis at site AA provided two solutions, one 

producing a CCW rotation (hence discarded) and the other a CW rotation that is 

potentially consistent with the regional deformation pattern. The rotation pole for 

this potential preferred solution is between and similar, within error, to both the 

reference direction and the site mean remanence direction (Table 2). As pointed out 

by Allerton and Vine (1987), in this circumstance the error associated with the 

calculation of the net tectonic rotation parameters might be very high. Although all 

the parameters for this (potentially) preferred solution are consistent with the other 

sites, we prefer to adopt a conservative approach and discard this site from further 

analysis. 

Preferred solutions could instead be selected at the remaining yielding 

clockwise rotations along steep axes, and resulting in the largest component of 

vertical axis rotation (e.g., among solutions providing equal rotation magnitudes 

those having the steeper axes were chosen as preferred). These criteria allowed us 

to identify preferred net tectonic rotation solutions at seven sites (Table 2). In 
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particular, at sites AS, HA, and GD the preferred solutions are those giving CW 

rotations (while the alternate solutions provided CCW rotastions). The net tectonic 

rotation analysis for the remaining four sites DA, FF, HD, and HU yielded CW 

rotations at both sets of solutions. At sites FF, HD, and HU, the preferred solutions 

have been selected among those giving the largest vertical-axis rotation (the 

alternative solutions have shallower axes and smaller net rotations that result in 

minimum vertical axis rotations, which are incompatible with the large rotation 

observed regionally). Both solutions at the remaining site DA produce an equal 

amount of vertical axis rotation, yet the alternate (i.e., rejected) solution together 

with vertical axis rotation produces overturned units, which is not compatible with 

the overall gentle tilt of the ophiolite (Nicolas et al., 2000). 

For these seven preferred solutionssites we have then modeled the 

uncertainties associated with the mean paleomagnetic direction, the dyke 

orientation, and the reference direction (Figure 7; Table 2). The rotation axes at 

these seven sites are moderately to steeply plunging approximately to the west 

(sites AS, FF, and GD), to the north-northeast (sites HA, HU, and HD), and to the 

southeast (site DA). The rotation magnitude is variable between ~80° and ~160°, 

consistent with the large regional rotation of the ophiolite (Morris et al., 2016). 

There seems to be no correlation between the orientation of the rotation axes or the 

magnitude of the net rotations and the location of these seven sites.  

The calculated initial dyke strike is consistently NNE to ENE (Table 2 and 

Figure 7). When the modeled initial dyke orientations from all seven sites are 

plotted together (525 directions), the main (most frequent solution) initial 
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striketrend  of the sheeted dykes at the scale of the whole ophiolite is NNE-SSW, 

striking between 020° and 030° (Figure 7). A bimodal distribution seems to appear 

in this diagram, with primary NNE-SSW and secondary ENE-WSW directions. We 

consider the predominant (more frequent) NNE-SSW trend as representative of the 

direction of the spreading ridge at which these dykes were emplaced in the 

Cretaceous. The ENE-WSW directions, if meaningful, may be related to dykes locally 

intruded at an angle to the NNE-SSW trending spreading ridge, or to an artifact of 

the modeling. 

 

5. Discussion 

Our results indicate that the oceanic crust of the Oman ophiolite accreted at a 

NNE-SSW trending spreading center, which, given the geochemical and 

geochronological evidence was located in the upper plate above an infant 

subduction zone (Guilmette et al., 2018; MacLeod et al., 2013; Rioux et al., 2016). 

Interestingly, regardless of the geochemical signature of the ophiolitic crust, the 

orientation of this spreading center already makes it quite unlikely that the crust of 

the Oman ophiolite formed at the Neotethyan mid-oceanic ridge as suggested before 

(e.g., Nicolas et al., 2000): the overall strike of the Gondwana passive margins, and 

hence of the Neotethys ridge, was NW-SE rather then ~NNE-SSW (in Cretaceous 

paleomagnetic coordinates) (Figure 8b).  

The location, in present-day coordinates, of the subduction zone above which 

the Oman ophiolite was formed is best estimated from the modern obduction front 
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in the western and southern edge of the ophiolite, although post-obduction erosion 

may have removed some of the most trench-proximal parts of the ophiolite. The 

sheeted dyke sections strike approximately sub-parallel to this obduction front, 

suggesting that the spreading occurred orthogonal to the trench. This is further 

suggested by the narrow, 96-95 Ma age range of the ophiolitic crust along the 

ophiolite’s strike (Rioux et al., 2016). Such a narrow age range is expected when a 

fast-spreading ridge is located parallel to the subduction front. Upon spreading, this 

supra-subduction zone ridge migrates away from the trench at half-spreading rate. 

With spreading rates of 5-10 cm/yr estimated for the Semail ophiolite (Rioux et al., 

2016), and an exposed width orthogonal to the obduction front of <100 km, only 1-2 

Myr worth of ophiolite spreading history can be preserved in the modern ophiolite, 

whereas all crust that accreted due to younger spreading must be located offshore 

northern Oman (Figure 8d). Had spreading occurred parallel to the trench, the 500 

km long ophiolite should have had crustal ages spanning 5-10 Myr from north to 

south (Maffione et al., 2017). We therefore conclude that the subduction zone above 

which the Oman ophiolite accreted was also striking NNE-SSW, parallel to the 

restored dyke orientation. 

A NNE-SSW original orientation of the ophiolite is fully consistent with the 

vertical axis rotations estimated from paleomagnetic data (Morris et al., 2016) 

suggesting that the ophiolite underwent up to ~150° clockwise rotation between 

the formation of its crust at ~96-95 Ma, and the end of obduction around 70 Ma 

(Morris et al., 2016). Back-rotating the ophiolite around its modern northwestern 

tip to its original NNE-SSW strike provides the minimum horizontal displacement 
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between subduction initiation and obduction. Such a rotation, along a small circle at 

the ophiolite’s southeastern tip, involves a total horizontal motion relative to Arabia 

of ~1000 km. This gives an average long-term drift rate of ~4 cm/yr, which is well 

within the ranges of similar strongly rotating trenches that roll back along and 

obduct passive margins (e.g., Chertova et al., 2014). This restoration places the 

ophiolite’s northern (i.e. modern eastern) tip at a paleolatitude of ~5°N. 

Paleolatitudes calculated from the ophiolite’s crust allow for a somewhat more 

northerly paleolatitude for ophiolite spreading, and the plate motion rates during 

ophiolite-Arabia convergence may thus have been somewhat higher. Nevertheless, 

this analysis shows that the ultra-high spreading rates inferred based on U/Pb 

crustal ages (Rioux et al., 2016) must have been short-lived, focused in the period of 

inception of upper plate spreading. 

Perrin et al. (2000) showed rapid clockwise rotations during ophiolite 

formation, from major declination differences within the effusive sequence. Whilst 

the rotation sense and magnitude of these rotations are consistent with the total 

rotation of the whole ophiolite, the short time span during which the effusive rocks 

accumulated of only a few million years makes it unlikely that these rotations 

represent the rotation of the entire ophiolite: if they were representative, these 

would require plate motion and subduction rates of up to meters per year, which is 

geodynamically unrealistic. We therefore infer that the results reported in Perrin et 

al. (2000) reflect tectonic deformation within the ophiolite, e.g. along transform 

faults, which may cause local rotation, as observed in the Troodos ophiolite of 

Cyprus (Morris and Maffione, 2016).  
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Our reconstructed initial trench orientation associated with the Semail 

ophiolite now allows assessing the nature of the weakness zone at which subduction 

initiated – the main aim of our study. A NNE-SSW original strike of the subduction 

zone is approximately orthogonal to the Arabian passive continental margin at ~95 

Ma, when corrected for plate motions in a paleomagnetic reference frame (Torsvik 

et al., 2012). Weakness zones expected in such an orientation are likely to be 

fracture zones. This conclusion for the Semail ophiolite does not come in isolation: 

coeval ophiolites from Cyprus, Syria, and Turkey all share a similar ridge and 

inferred trench orientation, and also in those settings, trenches and supra-

subduction zone ridges were striking N-S to NE-SW, orthogonally to restored 

passive margins (Maffione et al., 2017) (Figure 8b). Moreover, such a former 

fracture zone orientation is preserved in the Arabian margin today along the N-S 

striking coast of northern Oman and the UAE, connecting passive margins of 

northeast Oman, and the restored margin of the Zagros mountains in Iran (Figure 

8b). It thus appears that Cretaceous subduction initiation in the Neotethys Ocean 

was driven by (ES)E-(WN)W contraction, rather than the widely inferred ~N-S 

convergence. This may help in our search for the potential drivers of subduction 

initiation. 

When the underthrusting of the Arabian passive margin at the Zagros 

collision zone of Iran is restored (McQuarrie and van Hinsbergen, 2013), the original 

Oman-UAE fracture zone margin, of Permian age (Béchennec et al., 1990; Stampfli 

and Borel, 2002), extended several hundreds of kilometers farther to the north than 

today (Figure 8b). We restore the original orientation of the ophiolite, and of the 
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newly formed subduction zone at which the ophiolite’s sole started forming just 

before 104 Ma, adjacent to this ancient Arabian continent-parallel fracture zone. The 

initiation probably occurred sufficiently far east of the margin to be in an intra-

oceanic setting, since no continental crust relics are found in the ophiolite, but 

nevertheless close to that continental margin.   

Near-continental margin intra-oceanic subduction initiation and formation of 

supra-subduction zone ophiolites was restored for the Indus-Yarlung ophiolites of 

southern Tibet (Maffione et al., 2015b). There, it was thus already inferred that 

supra-subduction zone ophiolites are not necessarily associated with subduction 

initiation in the vicinity of a mid-ocean ridge. In this study, we propose a similar 

scenario for the Semail ophiolite, where mid-ocean ridge inversion has long been 

the preferred model (Boudier et al., 1988; Duretz et al., 2016). Our reconstruction 

places Arabian lithosphere in the upper plate, but even if subduction initiated 

farther to the northeast such that oceanic crust adjacent to the Zagros margin was 

located in the upper plate, it is quite unlikely that an active ridge was present there 

at that time. Active mid-ocean ridges are commonly not observed in the vicinity of a 

170 Myr old passive margin, and as pointed out by Maffione et al. (2017), it is 

unlikely that the Cretaceous Neotethys ocean between Arabia and Eurasia still 

contained an active mid-ocean ridge: the ridge at which the Neotethys opened 

would have long subducted below the Iranian active margin by that time (such as 

inferred by Stampfli and Borel (2002)). We may thus infer that, in absence of an 

active mid-ocean ridge in an ocean, passive margins, or fracture zone margins, may 

be the preferred locus of subduction initiation. 
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Such settings of continental margin-parallel fracture zones are today 

abundant along the west and east coast of Africa (Figure 8a). Recent studies have 

shown through seismic interpretation that the fracture zone margin of west Africa 

was associated with hyperextension and exhumation of serpentinized mantle during 

continental breakup (Gillard et al., 2017). Serpentine-rich faults along 

hyperextended margins  are weak and may localize subduction initiation upon 

forced convergence (Maffione et al., 2015a). We envisage that such a setting may 

have facilitated subduction initiation in the Oman case, although we note that the 

old age of this setting at the time of subduction initiation (~170 Myr) renders it 

likely that a thick, unbroken lithospheric mantle was present, whose strength must 

be overcome to initiate subduction. 

Our results, and those of Maffione et al. (2017) for the Mediterranean region, 

raise several first-order new questions for understanding subduction initiation 

dynamics. Our results show that Cretaceous subduction initiation within the 

Neotethys ocean formed a new plate (the Anadolu plate of Gürer et al. (2016) 

separated from Eurasia and Africa-Arabia by trenches (Figure 8). This plate must 

have moved westward relative to Africa/Arabia (and Eurasia, given overall N-S 

Africa-Eurasia convergence) to drive subduction initiation along N-S striking 

trenches. Gaina et al. (2015) showed based on Indian Ocean reconstructions that 

prior to the end of the Cretaceous superchron, India rotated counterclockwise 

relative to Arabia that requires such convergence. Did the driver of this rotation also 

spark subduction initiation farther westwards? And what processes cause the hot 

conditions recorded in the Oman metamorphic sole 8 Myr of upper plate spreading 
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(Guilmette et al., 2018) with subduction initiating in old, cold lithosphere? We 

refrain from speculating on these questions, but leave these for future study and 

debate.   

 

6. Conclusions 

The subduction zone above which the crust of the Semail ophiolite of Oman 

formed is widely thought to have initiated along, or in the vicinity of a Neotethyan 

mid-oceanic ridge. In this paper, we restored the paleo-orientation of the supra-

subduction zone ridge at which the Semail ophiolitic crust accreted around ~96-95 

Ma, through paleomagnetic analysis of its sheeted dyke sections. Our results from 

seven localities covering the entire width of the ophiolite consistently show that this 

ridge was orientated NNE-SSW. We infer that the trench orientation, marked by the 

modern obduction front, was oriented sub-parallel to this trench. Our results thus 

indicate that the trench orientation was approximately orthogonal to the Arabian 

passive margin. We infer that subduction initiated along a fracture zone that was 

located parallel to, and likely in the vicinity of, the fracture zone that connected the 

Permian Arabian passive margin of northern Oman with the margin underthrust 

below Iran at the Zagros collision zone. This places Arabian continental crust in the 

upper plate during subduction initiation. Subduction hence did not initiate in the 

vicinity of the Neotethyan ridge, which according to plate reconstructions had long 

been subducted during Cretaceous subduction initiation. We conclude that 

subduction was induced by (ES)E-(WN)W contraction, as previously also inferred 
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for ophiolite belts of the eastern Mediterranean and NW Arabian margins. This may 

help the future identification of the dynamic trigger of subduction initiation in the 

Neotethys Ocean. 
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Figure Captions 

 

Figure 1. Geological map of the Oman ophiolite. 

 

Figure 2. High-temperature variations of low-field magnetic susceptibility (k) for six 

representative samples (five from dykes and one from pillow lavas). Diagrams are 

mainly irreversible, showing mineralogical transformation during heating. Curie 

temperatures have been inferred from the heating paths. 

 

Figure 3: Hysteresis loops for six representative samples (the same as in Figure 2), 

showing predominantly narrow to slightly open loops typical of multidomain (MD) 

magnetic grains. 

  

Figure 4: Back-scattered electron (BSE) images of representative thin sections from 

sheeted dykes showing the presence of iron oxides (magnetite, titanomagnetite, and 

possibly ilmenite) with variable size from ~1 μm to ~1 mm. 

 

Figure 5: A-F - Representative orthogonal vector plots (Zijderveld diagrams) of both 

alternating field and thermal demagnetization for various sites (in situ coordinates). 

C – An example of consistent ChRM directions acquired in AF and TH demagnetized 

sister samples. NRM = natural remanent magnetization. Steps are shown in °C or 

mT. 
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Figure 6. Stereographic projections of the interpreted characteristic remanent 

magnetization directions (ChRMs) and virtual geomagnetic poles (VGPs) from all 

sites. The great circles used in the principal component analysis are shown in the 

left diagrams (dotted curve), together with the direction isolated from theseusing 

best-fit lines (small black dots). The middle ChRM plots show all the ChRM 

directions calculated from best-fit lines and great circle analysis (blue dots = normal 

polarity; open dots = reverse polarity; gray dots = discarded direction after 45° cut-

off). The red ellipse is the cone of confidence around the computed mean direction, 

while the light blue shaded area is the error on the mean declination (∆D in Table1). 

The VGP plots oin the right of each site show the accepted VGPs (blue dots) and the 

discarded VGPs (gray dots), which in fact fall outside the solid inner circle that 

represents the 45° cut-off. The Greay star in the left plots is the present-day GAD 

field direction.The poles calculated from the great circles are then shown in the 

diagrams in the middle. 

 

Figure 7. (Left) Stereographic projections of the permissible initial dyke orientations 

(rose diagram) and rotation poles calculated after modeling of the uncertainties 

associated to the input vectors of the net tectonic rotation analysis, following 

methods of Morris et al. (1998) and Koymans et al. (2016). (Right) Frequency 

distribution of the permissible rotation magnitude obtained from the same analysis. 

Summary plots showing the mean initial dyke orientation and rotation magnitude 

are shown in the bottom right corner, and have been obtained by combining all the 

permissible results from the seven sites. 
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Figure 8. Tectonic model of subduction initiation along the Arabian margin of Oman. 

Reconstruction of continents in paleomagnetic reference frame of Torsvik et al. 

(2012). Reconstruction of the Zagros margin following McQuarrie and van 

Hinsbergen (2013), and of eastern Mediterranean subduction initiation and 

obduction following Maffione et al. (2017). A) Fracture zone and passive margins of 

the modern African continent, providing a modern example of the restored Arabian-

Greater Adria continental margin, where the fracture zone margins were the locus of 

Cretaceous subduction initiation. Basic plate kinematics requires that the N-S 

subduction segments were connected with a transform fault parallel to (and here 

dotted along) the Arabian passive margin. B-D) Subduction initiation parallel and 

close to the Oman-UAE fracture zone margin around 105 Ma is followed by forearc 

extension around 96-95 Ma, and subsequent rotation of the forearc Oman ophiolite, 

followed by ~70 Ma obduction. Bey = Bey Dağları Platform; Kir = Kırşehir Massif, 

Tav = Tavşanlı Zone; for the tectonic history of the eastern Mediterranean region, 

see Gürer et al. (2016) and Maffione et al. (2017). 

 

Table 1: *Remagnetized sites. A In situ directions. B Tilt corrected directions. 

Lithologies are sheeted dykes (SD) and pillow lavas (PL). δDipDir is the 95% 

confidence around the mean pole to dyke measured in the field. (N meas.) is the 

number of dykes measured in the field to calculate the mean direction. ChRM 

interpretation has used best-fit lines (L) and great circles (GC) fitting. n/N is the 

number of specimens used in the statistics over the total number of analysed 
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samples. D, dDx, I, dIx are declination and associated error, and inclination and 

associated error. α95 = semiangle of the 95% cone of confidence around the site-

mean ChRM direction (Fisher, 1953). K is Fisher’s precision parameter relative to 

the ChRMs (Fisher, 1953). A95 is the semiangle of the 95% cone of confidence 

around the mean virtual geomagnetic pole (VGP). K is Fisher’s precision parameter 

relative to the VGPs. A95min and A95max are the minimum and maximum semiangle of 

the 95% cone of confidence expected for the given dataset by paleosecular variation. 

 

Table 2: Results of the net tectonic rotation analysis (Allerton and Vine, 1987) 

showing the calculated values for the azimuth and plunge of the rotation axis, 

rotation magnitude and sense, and restored dyke strike and plunge. Reference 

direction used: D = 000°, I = 21.5° ± 6.6°. In situ dyke orientations and associated 

uncertainties used for the analysis are in Table 1. Two sets of solutions have been 

obtained at each site and identified as “preferred” (the one used for the tectonic 

interpretation) and “alternate” (the one discarded). 

 

Supplementary files: Data (.dir) and statistical interpretation (.pmag) files of the 

paleomagnetic data that lie at the basis of this paper. Data can be viewed and 

analyzed at www.paleomagnetism.org (Koymans et al., 2016). 

http://www.paleomagnetism.org/
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 The Semail ophiolite formed along a NNE-SSW striking ridge above a parallel, 
incipient subduction zone. 

 The nascent Semail subduction zone formed orthogonal and close to the Arabian 
passive margin 

 Subduction initiation likely occurred along an ancient, Permian Neotethyan fracture 
zone. 
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Abstract 

 The archetypal Semail ophiolite of Oman has inspired much thought on the 

dynamics of initiation of intra-oceanic subduction zones. Current models invoke 

subduction initiation at a mid-oceanic ridge located sufficiently close to the Arabian 

passive margin to allow initiation of continental subduction below the ophiolite 

within ~10-15 Myr after the 96-95 Ma age of formation of supra-subduction zone 

crust. Here, we perform an extensive paleomagnetic analysis of sheeted dyke 

sections across the Semail ophiolite to restore the orientation of the supra-

subduction zone ridge during spreading. Our results consistently indicate that the 

ridge was oriented NNE-SSW, and we infer that the associated trench, close to the 

modern obduction front, had the same orientation. Our data are consistent with a 

previously documented ~150° clockwise rotation of the ophiolite, and we 

reconstruct that the original subduction zone was WNW-ward dipping and NNE-

SSW striking. Initial subduction likely occurred in the ocean adjacent and parallel to 

the Arabian transform margin that formed the original underpinnings of rocks in the 

Zagros fold-thrust belt, now underthrust below Iran. Subduction thus likely initiated 

along an ancient, continental margin-parallel fracture zone, as also recently inferred 

from near-coeval ophiolites from the eastern Mediterranean and NW Arabian 

regions. Subduction initiation was therefore likely induced by (WN)W-(ES)E 

contraction, and this constraint may help the future identification of the dynamic 

triggers of Neotethyan subduction initiation in the Late Cretaceous. 
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1. Introduction 

Subduction initiation is a critical step in the plate tectonic cycle, and how and 

where subduction zones form has therefore been at the forefront of geodynamic 

research for decades (e.g., Guilmette et al., 2018; Hall et al., 2003; Stern and Gerya, 

2017). Ophiolites, i.e. exposed fragments of oceanic lithosphere that are often found 

thrust upon continental margins, have played a central role in the development of 

concepts of subduction initiation (Pearce et al., 1984; Stern et al., 2012). First, 

Pearce et al. (1984), among others, recognized that most ophiolites contain 

geochemical evidence that indicate formation at a spreading center located above a 

subduction zone (for this reason called supra-subduction zone (SSZ) ophiolites). 

Second, many SSZ ophiolites are associated with metamorphic soles - typically high-

temperature, low to high-pressure metabasalts and metasediments that are found 

below the ophiolite's mantle section, thought to have been derived from the top of 

now-subducted oceanic lithosphere. Their high metamorphic temperatures are 

atypical for mature, cool subduction zones and metamorphic soles are therefore 

thought to form at the plate contact during subduction zone infancy (e.g., Agard et 

al., 2016; Boudier et al., 1988; Guilmette et al., 2018; Hacker and Gnos, 1997; 

Pourteau et al., 2018; Soret et al., 2017; van Hinsbergen et al., 2015; Wakabayashi 

and Dilek, 2003). Because both the upper plate - the ophiolite - as well as the down-

going plate in these systems are oceanic, as deduced from oceanic lithologies in the 

metamorphic soles and underlying subduction mélanges, SSZ ophiolites are thought 

to result from intra-oceanic subduction initiation (Agard et al., 2007; Stern et al., 

2012; van Hinsbergen et al., 2015; Wakabayashi and Dilek, 2003). 
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Models of intra-oceanic subduction initiation logically point at pre-existing 

weakness zones within oceanic lithosphere as locations where subduction zones 

may form, either spontaneously or induced (e.g., Agard et al., 2007 ; Guilmette et al., 

2018; Stern et al., 2012), at or near active intra-oceanic plate boundaries: transform 

faults or young fracture zones, ridges, or ridge-parallel detachment faults (Agard et 

al., 2007; Boudier et al., 1988; Duretz et al., 2016; Hall et al., 2003; Maffione et al., 

2015a; Stern et al., 2012; van Hinsbergen et al., 2015). 

Along the northern margin of Arabia, and as the highest structural unit in a 

microcontinent-derived fold-thrust belt in the eastern Mediterranean region, a 

discontinuous, ~4000 km-long belt of SSZ ophiolites is found with well-constrained 

crustal ages of ~96-90 Ma (Maffione et al., 2017; Rioux et al., 2016). The best-

exposed and most complete of these is the Semail ophiolite of Oman, and has 

allowed mapping out 100’s of km long, coherent fossil ocean floor (e.g., Nicolas et al., 

2000). This ophiolite has inspired much thought on the process of subduction 

initiation and is widely considered to have formed in the incipient stages of an intra-

oceanic subduction zone. 

Given the overall N-S long-term Arabia-Eurasia plate convergence, 

subduction is widely considered to have formed along an ~(WN)W-(ES)E striking 

mid-ocean ridge within the Neotethys (e.g., Duretz et al., 2016). As drivers for 

subduction initiation, for instance a far-field driven Arabia-Eurasia convergence rate 

increase of 2-3 cm/yr (Agard et al., 2007) was proposed. However, paleomagnetic 

constraints from sediments and igneous rocks of the ophiolite indicate that the 

Oman ophiolite underwent a major, clockwise vertical axis rotation of as much as 
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150° (e.g., Perrin et al., 2000; Morris et al., 2016). Back-rotating the present-day 

obduction front (as a proxy for the intra-oceanic trench location) according to these 

data suggests that the spreading center at which the Oman crust was formed had a 

NE-SW orientation, hence almost orthogonal to the Arabian passive-margin, not 

parallel to it. Second, the earliest metamorphism of Arabian passive continental 

margin rocks found below the Oman ophiolite is dated at ~80-85 Ma old (Warren et 

al., 2005), i.e. the Arabian passive margin was already buried at the trench only ~10 

Myr after supra-subduction zone ophiolite formation. This suggests that subduction 

initiated close to the Arabian passive margin, as also indicated by paleomagnetic 

paleolatitudes (Perrin et al., 2000) and incorporated in various numerical and 

analogue models (Duretz et al., 2016). Opening of the Neotethys ocean and 

formation of the Arabian passive margin, however, was Permian in age, and thus 

occurred as much as ~170 Myr prior to Cretaceous subduction initiation (e.g., 

Béchennec et al., 1990; Stampfli and Borel, 2002). The presence of a Cretaceous mid-

ocean ridge close to a Permian passive margin is unlikely, particularly since the 

original Neotethyan mid-oceanic ridge must have already subducted below the 

Eurasian margin in Jurassic time (Maffione et al., 2017; Stampfli and Borel, 2002). 

In this paper, we provide the first paleomagnetic dataset from the sheeted 

dyke sections of the Oman ophiolite to kinematically restore the orientation of its 

SSZ spreading ridge during subduction zone infancy. To this end, we collected a 

large paleomagnetic data set from ten localities in sheeted dyke sections along the 

strike of the Oman ophiolite to determine the net rotation history of the ophiolite 

and restore the dykes to their original orientation. We then place the Oman ophiolite 



 6 

in plate kinematic context using the configuration of the Arabian passive margin 

restored for continental subduction in the Zagros mountains (McQuarrie and van 

Hinsbergen, 2013), cast in a paleomagnetic frame of reference (Torsvik et al., 2012). 

Finally, we discuss the implications for the tectonic setting and nature of the 

weakness zone that facilitated Oman’s subduction initiation, and search for settings 

in today's snapshot of plate tectonic history that may provide an analogue. 

 

2. Geological setting 

The Semail ophiolite in Oman consists of a large, well-preserved oceanic 

lithosphere thrust slice containing a 4-7 km thick crustal sequence, and a 8-12 km 

thick mantle sequence (e.g., Nicolas et al., 2000). The ophiolitic sequence displays a 

Penrose pseudostratigraphy composed from top to bottom of a sedimentary cover 

(radiolarian cherts), volcanics (pillow lavas and lava flows), sheeted dykes, isotropic 

and layered gabbros, peridotites (harzurgites and dunites), and a 300-500 m thick 

metamorphic sole with an inverted metamorphic grading (e.g., Cowan et al., 2014; 

Hacker, 1991; Nicolas et al., 2000; Searle and Cox, 1999; Soret et al., 2017). The 

ophiolite overlies a sequence of deep-marine, Permian to Cretaceous sediments 

interpreted to be derived from the distal Arabian margin or the adjacent oceanic 

crust – the Hawasina nappes – and underlying Arabian margin-derived nappes 

(Béchennec et al., 1990).  

In the northern part of the ophiolite, the extrusive sequence is geochemically 

layered (Ernewein et al., 1988; Nicolas et al., 2000). Basalts with a geochemistry 
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similar to mid-ocean ridge basalts (N-MORB) dominate in the lower part of the 

volcanic sequence, called Geotimes Unit or Unit V1 by Ernewein et al. (1988). Above 

this unit are the Lasail and Alley volcanic suites, collectively termed Unit V2 by 

Ernewein et al. (1988), which consist of depleted arc tholeiites and boninites 

interpreted as products of hydrous melting of a previously depleted mantle source 

(e.g., Godard et al., 2006). This geochemical pattern in the crustal sequence of the 

Oman ophiolite led to the formulation of different tectono-magmatic models 

invoking formation either in an open ocean (e.g., Nicolas, 1989) or above an active 

subduction zone (e.g., Pearce et al., 1984). A more recent study, however, suggested 

that the Geotimes MORBs may have been produced under high water content, hence 

more likely above an incipient subduction zone (MacLeod et al., 2013). 

Paleomagnetic data from the extrusive sequence of the Semail ophiolite 

indicate a rigid block clockwise (CW) rotation up to ~150° in the northwestern 

segment of the ophiolite (north of the Hawasina tectonic window), and only minor 

counterclockwise (CCW) rotations up to ~20° in the southeastern portion of the 

ophiolite (Feinberg et al., 1999; Perrin et al., 2000; Weiler, 2000). This was 

originally interpreted as the result of major relative rotations between the northern 

and southern part of the ophiolite (Nicolas et al., 2000; Perrin et al., 2000), until 

Feinberg et al. (1999) and Morris et al. (2016) documented the occurrence of a 

pervasive remagnetization of the ophiolite in the southern segment, which occurred 

during or soon after the Late Cretaceous emplacement of the ophiolite above the 

Arabian continental margin (e.g., Nicolas et al., 2000; Searle and Cox, 1999; Searle et 
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al., 2004). In particular, Morris et al. (2016) suggested that the minor CCW rotation 

of the southern block occurred after the remagnetization event. 

Zircon U-Pb dating of the plutonic section of the Semail ophiolite indicates 

that the ophiolitic crust formed at a fast spreading ridge in less than ~1 Ma in the 

Late Cretaceous (~96-95 Ma; Rioux et al., 2016), only just preceding other Neo-

Tethyan ophiolites from Turkey and Cyprus with 94-90 Ma ages (e.g., Maffione et al., 

2017). Zircon U-Pb and hornblende and mica Ar-Ar ages from garnet-bearing 

metamorphic sole rocks are similar or slightly younger than the magmatic sequence 

(96.2-92.6 Ma; Hacker et al., 1996; Rioux et al., 2016; Warren et al., 2005), indicating 

cooling and exhumation of the sole synchronous with upper plate spreading and 

formation of the ophiolitic crust (e.g., van Hinsbergen et al., 2015). More recently, 

garnet Lu-Hf ages from the uppermost, garnet-bearing layer of the metamorphic 

sole in Oman have constrained subduction-related prograde metamorphism at 104 

Ma (Guilmette et al., 2018) and a nearly identical Lu/Hf age was reported from 

Turkey (Pourteau et al., 2018), indicating near-synchronous timing of subduction 

initiation. According to these new results, upper plate spreading (and ophiolite 

formation) postdated the initiation of subduction by ~8-12 Ma. Because 

spontaneous subduction initiation requires initial slab roll-back and simultaneous 

upper plate extension (Stern et al., 2012), this delay demonstrates that subduction 

initiation must have been induced (Guilmette et al., 2018), i.e. triggered by a far-field 

tectonic stress. 

 



 9 

3. Sampling and methods 

A total of 380 standard paleomagnetic samples were collected from 12 

localities within the sheeted dyke section (10 sites) and the extrusive sequence (2 

sites) (Figure 1). All samples were drilled in the field using a water-cooled portable 

rock drill, and were oriented in situ using both magnetic and sun compasses. Mean 

paleomagnetic directions for each sampling site were calculated by averaging 

characteristic remanent magnetizations (ChRMs) interpreted from typically 20-50 

samples collected from six to eleven adjacent chilled margin-bearing dykes. 

Orientation of the volcanic sequence at two sites was determined using the primary 

layering of pillow lavas and an intercalated lava flow unit. 

 The nature of the magnetic carriers was characterized through rock magnetic 

experiments and thin section analysis carried out at the paleomagnetic laboratory 

‘Fort Hoofddijk’ at Utrecht University (Netherlands). High-temperature thermal 

variation of the magnetic susceptibility was investigated via heating-cooling cycles 

from room temperature to 700°C in argon atmosphere using a KLY-3 Kappabridge 

(AGICO) coupled with a CS3 apparatus. The Curie temperatures were determined 

from the thermal demagnetization results. Hysteresis parameters were calculated 

through hysteresis loops with peak fields of 0.6-1.5 T, using an alternating gradient 

magnetometer (Micromag AGM, Princeton). Mineralogical assemblages and the 

nature and distribution of the ferromagnetic minerals were determined by analizing 

polished thin sections under both transmitted light and scanning electron 

microscope (JEOL JCM-6000), and by carrying out elemental analysis with an 

energy-dispersive X-ray (EDX) analyzer coupled with the SEM. 
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Remanence components were analyzed using mainly stepwise alternating 

field (AF) demagnetization with variable increment steps from 5 to 100 mT. About 

10% of the samples were also demagnetized thermally in a magnetically shielded 

furnace (ASC, TD48-SC) using variable increment steps from 100° to 580°C (or until 

complete demagnetization). AF demagnetization and measurement of the 

remanence after each demagnetization step were conducted using a robotized 

superconducting (SQUID) cryogenic magnetometer (Mullender et al., 2016) located in 

a magnetically shielded room. Demagnetization data were plotted on orthogonal 

diagrams (Zijderveld, 1967) and the remanence components were isolated via 

standard principal component analysis (Kirschvink, 1980) using  the online 

software package www.paleomagnetism.org (Koymans et al., 2016). ChRM 

components with maximum angular deviation (MAD) larger than 10° were 

discarded from further analysis. Site mean ChRM directions were computed using 

Fisherian statistics (Fisher, 1953) on virtual geomagnetic poles (VGPs) associated to 

the isolated ChRMs, and after having applied a fixed 45° cutoff to the VGPs. 

 The computed site mean directions were then used to calculate the tectonic 

rotations at each site using a net tectonic rotation approach (Allerton and Vine, 

1987). This technique prevents possible biases associated with classic tilt correction 

in units lacking paleohorizontal constraints, like sheeted dykes, and has been 

successfully applied to other ophiolites (e.g., Maffione et al., 2017; Morris et al., 

1998). Rather than decomposing the deformation into a tilt and a vertical axis 

rotation component, a net tectonic rotation analysis computes the single rotation 

around an inclined axis that restores both the rock unit to its original orientation 
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(i.e., vertical for sheeted dykes) and the measured in situ remanence to a selected 

reference direction. The reference direction is the direction of the magnetic field at 

the time and latitude at which the remanence was acquired. The declination of the 

reference direction is inferred from the geocentric axial dipole (GAD) hypothesis 

(i.e., the time-averaged declination of the magnetic field points towards the 

geographic north pole), and is therefore D = 000°. The inclination of the reference 

direction has been calculated by combining all the existing (not remagnetized) 

paleomagnetic data from the layered gabbros and the extrusive sequence (Perrin et 

al., 2000; Shelton, 1984; Weiler, 2000), including the results from the two pillow 

basalt sites in this study. The tilt corrected mean inclination calculated from this 

dataset, representing the inclination of the reference direction, is 21.5° ± 6.6° 

(Figure S1).  

A set of net tectonic rotation solutions is expressed as (i) azimuth and plunge of the 

rotation axis, (ii) magnitude and sense of the rotation, and (iii) initial strike of the 

unit. When applied to vertical units like dykes, two permissible sets of net tectonic 

rotation solutions are obtained if the dykes can be restored to the vertical. In this 

case, three selection criteria are used to choose the preferred solution at each site: 

(1) the calculated rotation has to restore the units to their current position (e.g., a 

solution yielding overturned beds when units are just gently dipping should be 

discarded); (2) both the rotation sense and magnitude have to be consistent with 

the known regional and/or local deformation pattern; (3) multiple sites within a 

relatively small area have to show similar net tectonic rotation parameters 

(assuming local rotations are minor). 
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One set of solutions is instead obtained when dykes are not restored to vertical (e.g., 

because they did not intrude vertically). Single solutions are geologically 

meaningless and should be discarded as both the initial dyke orientation and the 

rotation parameters will only depend on the orientation of the reference direction 

(e.g., the initial dyke orientation will always strike perpendicular to the reference 

direction, hence will always be E-W). 

Once a preferred solution has been chosen, an iterative net tectonic rotation analysis 

(Morris et al., 1998; Koymans et al., 2016) is then used to model the uncertainties on 

the reference direction (only its inclination), the site mean direction, and the dyke 

orientation. This routine within the net tectonic rotation analysis package is 

available at www.paleomagnetism.org and produces at each site 75 permissible 

solutions per set of solutions (hence 150 when dykes are restored to vertical). 

 

4. Results 

4.1 Magnetic carrier analysis 

 

Temperature variation of the magnetic susceptibility (Figure 2) is irreversible, with 

susceptibility values being commonly lower after heating, hence showing 

mineralogical transformations induced by the experiments. These transformations 

did not produce new mineralogical phases, as the Curie temperatures for the 

heating and cooling curve are the same. On the other hand, in the pillow lavas (site 

http://www.paleomagnetism.org/
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MA01; Figure 2) variable Curie temperatures are inferred from the heating and 

cooling paths. Curie temperatures of 570-580°C are observed within the dyke 

samples (Figure 2), indicating nearly pure magnetite as magnetic carrier (Dunlop 

and Özdemir, 1997). Sites DA and HA show additional Curie temperatures between 

300° and 330° (Figure 2), which is consistent with a minor occurrence of iron 

sulphides, likely pyrrhotite. If present, the break-down of iron sulphides expected 

during heating at ~500°C (Dunlop and Özdemir, 1997) did not produce any new 

magnetite as our experiments were conducted in argon atmosphere, hence in 

reducing conditions. This would explain the lower susceptibility values of the 

cooling curves in all sites (except site AS where new magnetite might indeed have 

formed during the experiment; Figure 2). The removal of iron sulphides during the 

heating is further supported by the absence of inflections in the cooling paths 

around 300-330° (Figure 2). Site AS shows a slightly higher Curie temperature of 

595°C, suggesting the occurrence of partly oxidized (maghemitized) magnetite, 

common in mafic magmatic rocks (Dunlop and Özdemir, 1997). Pillow lavas from 

site MA01 show two Curie temperatures of ~545°C and ~450°C, compatible with 

the occurrence of both Ti-poor and Ti-rich titanomagnetite, respectively. Similar 

blocking temperatures have also been observed at all sites during the thermal 

demagnetization experiments, confirming the occurrence of magnetite, 

titanomagnetite, and (titano)maghemite as main carriers of the magnetization in the 

samples dykes and lavas. 

Relatively narrow to more open hysteresis loops characterize all the dyke 

samples (Figure 3), indicating the predominance of pseudo-single-domain (PSD; 
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0.05-3 μm) and perhaps minor single-domain (SD; < 0.05 μm) grains (Dunlop and 

Özdemir, 1997). On the other hand, pillow lava samples show very narrow 

hysteresis loops (Figure 3), which are typically observed in rocks dominated by 

multidomain (MD; >3 μm) ferromagnetic grains (Dunlop and Özdemir, 1997). 

Ten thin sections from both dykes and pillow lavas were analyzed. The main 

mineralogical assemblage in dykes is, in order of abundance, plagioclase, 

clinopyroxene, orthopyroxene, chlorite, and opaque minerals. In some dyke samples 

(sites AA and HU) opaque minerals are as large as 0.1-0.2 mm. Pillow lavas are much 

more weathered and altered than the dykes. The microscopic fabric of both dykes 

and pillow lavas is purely magmatic, with frequent euhedral plagioclase and 

pyroxene minerals (more commonly observed in dykes) forming a matrix with no 

internal fabric. The opaque minerals are also randomly dispersed within this matrix. 

Chlorite, which is always present in all the samples, occurs randomly dispersed 

within the isotropic matrix, suggesting a static metamorphism likely associated to 

seafloor hydrothermal alteration, as frequently observed in other ophiolites (e.g., 

Maffione et al., 2017). Such metamorphism occurs at very low temperatures and 

normally does not affect the magnetic remanence of rocks emplaced at a mid-ocean 

ridge. 

SEM analysis and EDX characterization (Figure 4), revealed the occurrence of 

angular magnetite and titanomagnetite, sometimes with exolution lamellae, with 

grain sizes variable between 1 μm (pseudo-single-domain – PSD) and 100 μm 

(multidomain – MD). At few samples from sites FF and AS, iron- and titanium-rich 

oxides up to 1 mm in size and showing compositional bands have been observed 
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and interpreted as ilmenite. This is supported by the fact that the magnetization of 

samples carrying such large ilmenite minerals (which is not magnetic) is 

comparable to that of other samples. 

 

4.2 Paleomagnetic results 

Natural remanent magnetization (NRM) intensity from 380 analyzed samples 

varies between several 10s of mA/m and 4 A/m, suggesting substantial variations in 

ferromagnetic mineral concentration across the sampled rocks. A total of 340 

characteristic remanent magnetizations (ChRMs) were interpreted from the 380 

analyzed samples, with the remaining 40 samples showing noisy, uninterpretable 

demagnetization diagrams, or MAD values above the chosen threshold of 10°. 

AF demagnetization diagrams show two components of magnetization: a 

low-coercivity viscous component usually removed at 10-15 mT, and a stable high-

coercivity component isolated within an interval between 20 and 100 mT (Figure 5). 

At about half of the samples, these high-coercivity components were isolated using 

great circle fitting (McFadden and McElhinny, 1988), which denoted the occurrence 

of high-coercivity phases that could not be removed at 100 mT. We suspect this 

effect might be associated with partial maghemitization of the original magnetite, 

which causes a slight increase of coercivity. Although this hypothesis remains a valid 

explanation for the remanence behavior, is not supported by thin section 

microscope analyses. This might be due to the fact that cracks associated with 

maghemitization of original (titano)magnetite can sometimes be difficult to identify 

in thin section.   
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Overall, AF demagnetization treatment was more effective in isolating the 

ChRM components (Figure 5), and produced more stable demagnetization 

components compared to the thermal demagnetization technique (Figure 5E). 

Nevertheless, the ChRM directions determined from both AF and thermally 

demagnetized twin specimens are fully consistent (Figure 5C), showing that these 

are high-stability, likely primary remanence components suitable for tectonic 

interpretations. 

Site mean directions (in situ coordinates) at 10 out of 12 sites (Figure 6; 

Table 1) are significantly different from the present-day GAD field direction at the 

mean latitude of the Oman ophiolite (D/I = 000°/42°), hence ruling out any recent 

remagnetization. The remaining two sites (AA and MU) show northerly mean 

directions that are very close to the expected inclination of the present-day GAD, 

suggesting possible recent remagnetization (Figure 6; Table 1). For now, this 

remagnetization cannot be confirmed based on this evidence alone and therefore we 

use all sites for the net tectonic rotation analysis. At site HU, several ChRM 

directions that are close to the present-day GAD direction were discarded due to 

possible recent remagnetization before computing the site mean direction. 

Besides sites AA and MU with northerly directions, the other ten sites show 

in situ site mean directions varying between southeastward, northeastward, and 

northwestward directions (Figure 6; Table 1). The tilt-corrected mean direction 

from the two combined pillow lava sites (MA01 and MA02) has D = 093.4° and I = 

15.9°, and indicates a vertical axis rotation of 93.4° CW (Table 1). This is consistent 

with previous results (Morris et al., 2016; Perrin et al., 2000) indicating large CW 
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rotation of the whole ophiolite, and provides a first-order approximation for the 

vertical axis rotation component expected at the other dyke sites. 

Fold tests to check the primary nature of the interpreted ChRMs cannot be 

performed in units lacking paleohorizontal control such as dykes. Similarly, fold 

tests could not be performed on the two pillow lava sites, as rocks there are part of 

the same outcrop and have the same orientation. In this case VGP distribution may 

be used to assess the primary nature of the remanence based on the criteria 

suggested by Deenen et al. (2011). VGP scatters at all the sites except HA and is 

consistent with the expected scatter induced by paleosecular variation 

(A95min<A95<A95max; Figure 6 and Table 1). The scatter of ChRMs at site HA is smaller 

than that produced by secular variation (i.e., A95 < A95min; Table 1), yet, this may be 

explained by the fact that the majority of the remanence directions (i.e., 18 out of 

30) at this site have been computed using great circles analysis (McFadden and 

McElhinny, 1988). Although mathematically and statistically reliable, these 

directions do not necessarily replicate the natural scatter of the directions due to 

secular variation of the geomagnetic field. Therefore, based on the above evidence 

and in the absence of other constraints to assess the nature of the remanence, we 

assume for now that the remanence at all sites could be primary. 

 

4.3 Net Tectonic Rotation analysis 

 

Net tectonic rotation analysis of the ten sheeted dyke sites succeeded in 

restoring both the dykes back to their original (vertical) orientation and the 
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computed in situ paleomagnetic directions to the chosen reference direction, 

generating two sets of permissible solutions at each site (Table 2). Because the 

Oman ophiolite underwent an overall large (up to 150°) CW vertical axis rotation 

(see Morris et al. (2016) for a comprehensive review), preferred solutions were 

selected among those satisfying all the three criteria listed in the Methods section. 

Based on these criteria, site BB was discarded as both solutions indicated large CCW 

rotations, which are at odds with the regional CW rotation of the ophiolite. This 

might be explained by the fact that the primary remanence at site BB has been 

overprinted, hence giving meaningless net tectonic rotation solutions. This 

hypothesis is supported by the fact that site BB is within the southern domain of the 

Oman ophiolite that has been affected by remagnetization during the obduction 

stage (Morris et al., 2016). 

Net tectonic rotation analysis at site MU provided two solutions, one of which 

is clearly meaningless for it gives extremely large CCW rotations. The other set of 

solutions indicates a CW rotation but the vertical-axis component of this net 

rotation is quite small and therefore not consistent with the regional large rotation 

of the ophiolite. Because the in situ remanence of site MU is close to the present-day 

field (Table 1 and Figure 6), it is indeed likely that this site has been (totally or 

partially) affected by recent remagnetization. We therefore will not consider the 

result from this site for further analysis. 

Net tectonic rotation analysis at site AA provided two solutions, one 

producing a CCW rotation (hence discarded) and the other a CW rotation that is 

potentially consistent with the regional deformation pattern. The rotation pole for 
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this potential preferred solution is between and similar, within error, to both the 

reference direction and the site mean remanence direction (Table 2). As pointed out 

by Allerton and Vine (1987), in this circumstance the error associated with the 

calculation of the net tectonic rotation parameters might be very high. Although all 

the parameters for this (potentially) preferred solution are consistent with the other 

sites, we prefer to adopt a conservative approach and discard this site from further 

analysis. 

Preferred solutions could instead be selected at the remaining seven sites 

(Table 2). In particular, at sites AS, HA, and GD the preferred solutions are those 

giving CW rotations (while the alternate solutions provided CCW rotastions). The 

net tectonic rotation analysis for the remaining four sites DA, FF, HD, and HU yielded 

CW rotations at both sets of solutions. At sites FF, HD, and HU, the preferred 

solutions have been selected among those giving the largest vertical-axis rotation 

(the alternative solutions have shallower axes and smaller net rotations that result 

in minimum vertical axis rotations, which are incompatible with the large rotation 

observed regionally). Both solutions at the remaining site DA produce an equal 

amount of vertical axis rotation, yet the alternate (i.e., rejected) solution together 

with vertical axis rotation produces overturned units, which is not compatible with 

the overall gentle tilt of the ophiolite (Nicolas et al., 2000). 

For these seven preferred solutions we have then modeled the uncertainties 

associated with the mean paleomagnetic direction, the dyke orientation, and the 

reference direction (Figure 7; Table 2). The rotation axes at these seven sites are 

moderately to steeply plunging approximately to the west (sites AS, FF, and GD), to 
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the north-northeast (sites HA, HU, and HD), and to the southeast (site DA). The 

rotation magnitude is variable between ~80° and ~160°, consistent with the large 

regional rotation of the ophiolite (Morris et al., 2016). There seems to be no 

correlation between the orientation of the rotation axes or the magnitude of the net 

rotations and the location of these seven sites.  

The calculated initial dyke strike is consistently NNE to ENE (Table 2 and 

Figure 7). When the modeled initial dyke orientations from all seven sites are 

plotted together (525 directions), the most frequent initial strike of the sheeted 

dykes at the scale of the whole ophiolite is NNE-SSW, between 020° and 030° 

(Figure 7). A bimodal distribution seems to appear in this diagram, with primary 

NNE-SSW and secondary ENE-WSW directions. We consider the predominant (more 

frequent) NNE-SSW trend as representative of the direction of the spreading ridge 

at which these dykes were emplaced in the Cretaceous. The ENE-WSW directions, if 

meaningful, may be related to dykes locally intruded at an angle to the NNE-SSW 

trending spreading ridge, or to an artifact of the modeling. 

 

5. Discussion 

Our results indicate that the oceanic crust of the Oman ophiolite accreted at a 

NNE-SSW trending spreading center, which, given the geochemical and 

geochronological evidence was located in the upper plate above an infant 

subduction zone (Guilmette et al., 2018; MacLeod et al., 2013; Rioux et al., 2016). 

Interestingly, regardless of the geochemical signature of the ophiolitic crust, the 
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orientation of this spreading center already makes it quite unlikely that the crust of 

the Oman ophiolite formed at the Neotethyan mid-oceanic ridge as suggested before 

(e.g., Nicolas et al., 2000): the overall strike of the Gondwana passive margins, and 

hence of the Neotethys ridge, was NW-SE rather then ~NNE-SSW (in Cretaceous 

paleomagnetic coordinates) (Figure 8b).  

The location, in present-day coordinates, of the subduction zone above which 

the Oman ophiolite was formed is best estimated from the modern obduction front 

in the western and southern edge of the ophiolite, although post-obduction erosion 

may have removed some of the most trench-proximal parts of the ophiolite. The 

sheeted dyke sections strike approximately sub-parallel to this obduction front, 

suggesting that the spreading occurred orthogonal to the trench. This is further 

suggested by the narrow, 96-95 Ma age range of the ophiolitic crust along the 

ophiolite’s strike (Rioux et al., 2016). Such a narrow age range is expected when a 

fast-spreading ridge is located parallel to the subduction front. Upon spreading, this 

supra-subduction zone ridge migrates away from the trench at half-spreading rate. 

With spreading rates of 5-10 cm/yr estimated for the Semail ophiolite (Rioux et al., 

2016), and an exposed width orthogonal to the obduction front of <100 km, only 1-2 

Myr worth of ophiolite spreading history can be preserved in the modern ophiolite, 

whereas all crust that accreted due to younger spreading must be located offshore 

northern Oman (Figure 8d). Had spreading occurred parallel to the trench, the 500 

km long ophiolite should have had crustal ages spanning 5-10 Myr from north to 

south (Maffione et al., 2017). We therefore conclude that the subduction zone above 
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which the Oman ophiolite accreted was also striking NNE-SSW, parallel to the 

restored dyke orientation. 

A NNE-SSW original orientation of the ophiolite is fully consistent with the 

vertical axis rotations estimated from paleomagnetic data (Morris et al., 2016) 

suggesting that the ophiolite underwent up to ~150° clockwise rotation between 

the formation of its crust at ~96-95 Ma, and the end of obduction around 70 Ma 

(Morris et al., 2016). Back-rotating the ophiolite around its modern northwestern 

tip to its original NNE-SSW strike provides the minimum horizontal displacement 

between subduction initiation and obduction. Such a rotation, along a small circle at 

the ophiolite’s southeastern tip, involves a total horizontal motion relative to Arabia 

of ~1000 km. This gives an average long-term drift rate of ~4 cm/yr, which is well 

within the ranges of similar strongly rotating trenches that roll back along and 

obduct passive margins (e.g., Chertova et al., 2014). This restoration places the 

ophiolite’s northern (i.e. modern eastern) tip at a paleolatitude of ~5°N. 

Paleolatitudes calculated from the ophiolite’s crust allow for a somewhat more 

northerly paleolatitude for ophiolite spreading, and the plate motion rates during 

ophiolite-Arabia convergence may thus have been somewhat higher. Nevertheless, 

this analysis shows that the ultra-high spreading rates inferred based on U/Pb 

crustal ages (Rioux et al., 2016) must have been short-lived, focused in the period of 

inception of upper plate spreading. 

Perrin et al. (2000) showed rapid clockwise rotations during ophiolite 

formation, from major declination differences within the effusive sequence. Whilst 

the rotation sense and magnitude of these rotations are consistent with the total 
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rotation of the whole ophiolite, the short time span during which the effusive rocks 

accumulated of only a few million years makes it unlikely that these rotations 

represent the rotation of the entire ophiolite: if they were representative, these 

would require plate motion and subduction rates of up to meters per year, which is 

geodynamically unrealistic. We therefore infer that the results reported in Perrin et 

al. (2000) reflect tectonic deformation within the ophiolite, e.g. along transform 

faults, which may cause local rotation, as observed in the Troodos ophiolite of 

Cyprus (Morris and Maffione, 2016).  

Our reconstructed initial trench orientation associated with the Semail 

ophiolite now allows assessing the nature of the weakness zone at which subduction 

initiated – the main aim of our study. A NNE-SSW original strike of the subduction 

zone is approximately orthogonal to the Arabian passive continental margin at ~95 

Ma, when corrected for plate motions in a paleomagnetic reference frame (Torsvik 

et al., 2012). Weakness zones expected in such an orientation are likely to be 

fracture zones. This conclusion for the Semail ophiolite does not come in isolation: 

coeval ophiolites from Cyprus, Syria, and Turkey all share a similar ridge and 

inferred trench orientation, and also in those settings, trenches and supra-

subduction zone ridges were striking N-S to NE-SW, orthogonally to restored 

passive margins (Maffione et al., 2017) (Figure 8b). Moreover, such a former 

fracture zone orientation is preserved in the Arabian margin today along the N-S 

striking coast of northern Oman and the UAE, connecting passive margins of 

northeast Oman, and the restored margin of the Zagros mountains in Iran (Figure 

8b). It thus appears that Cretaceous subduction initiation in the Neotethys Ocean 
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was driven by (ES)E-(WN)W contraction, rather than the widely inferred ~N-S 

convergence. This may help in our search for the potential drivers of subduction 

initiation. 

When the underthrusting of the Arabian passive margin at the Zagros 

collision zone of Iran is restored (McQuarrie and van Hinsbergen, 2013), the original 

Oman-UAE fracture zone margin, of Permian age (Béchennec et al., 1990; Stampfli 

and Borel, 2002), extended several hundreds of kilometers farther to the north than 

today (Figure 8b). We restore the original orientation of the ophiolite, and of the 

newly formed subduction zone at which the ophiolite’s sole started forming just 

before 104 Ma, adjacent to this ancient Arabian continent-parallel fracture zone. The 

initiation probably occurred sufficiently far east of the margin to be in an intra-

oceanic setting, since no continental crust relics are found in the ophiolite, but 

nevertheless close to that continental margin.  

Near-continental margin intra-oceanic subduction initiation and formation of 

supra-subduction zone ophiolites was restored for the Indus-Yarlung ophiolites of 

southern Tibet (Maffione et al., 2015b). There, it was thus already inferred that 

supra-subduction zone ophiolites are not necessarily associated with subduction 

initiation in the vicinity of a mid-ocean ridge. In this study, we propose a similar 

scenario for the Semail ophiolite, where mid-ocean ridge inversion has long been 

the preferred model (Boudier et al., 1988; Duretz et al., 2016). Our reconstruction 

places Arabian lithosphere in the upper plate, but even if subduction initiated 

farther to the northeast such that oceanic crust adjacent to the Zagros margin was 

located in the upper plate, it is quite unlikely that an active ridge was present there 
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at that time. Active mid-ocean ridges are commonly not observed in the vicinity of a 

170 Myr old passive margin, and as pointed out by Maffione et al. (2017), it is 

unlikely that the Cretaceous Neotethys ocean between Arabia and Eurasia still 

contained an active mid-ocean ridge: the ridge at which the Neotethys opened 

would have long subducted below the Iranian active margin by that time (such as 

inferred by Stampfli and Borel (2002)). We may thus infer that, in absence of an 

active mid-ocean ridge in an ocean, passive margins, or fracture zone margins, may 

be the preferred locus of subduction initiation. 

Such settings of continental margin-parallel fracture zones are today 

abundant along the west and east coast of Africa (Figure 8a). Recent studies have 

shown through seismic interpretation that the fracture zone margin of west Africa 

was associated with hyperextension and exhumation of serpentinized mantle during 

continental breakup (Gillard et al., 2017). Serpentine-rich faults along 

hyperextended margins  are weak and may localize subduction initiation upon 

forced convergence (Maffione et al., 2015a). We envisage that such a setting may 

have facilitated subduction initiation in the Oman case, although we note that the 

old age of this setting at the time of subduction initiation (~170 Myr) renders it 

likely that a thick, unbroken lithospheric mantle was present, whose strength must 

be overcome to initiate subduction. 

Our results, and those of Maffione et al. (2017) for the Mediterranean region, 

raise several first-order new questions for understanding subduction initiation 

dynamics. Our results show that Cretaceous subduction initiation within the 

Neotethys ocean formed a new plate (the Anadolu plate of Gürer et al. (2016) 
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separated from Eurasia and Africa-Arabia by trenches (Figure 8). This plate must 

have moved westward relative to Africa/Arabia (and Eurasia, given overall N-S 

Africa-Eurasia convergence) to drive subduction initiation along N-S striking 

trenches. Gaina et al. (2015) showed based on Indian Ocean reconstructions that 

prior to the end of the Cretaceous superchron, India rotated counterclockwise 

relative to Arabia that requires such convergence. Did the driver of this rotation also 

spark subduction initiation farther westwards? And what processes cause the hot 

conditions recorded in the Oman metamorphic sole 8 Myr of upper plate spreading 

(Guilmette et al., 2018) with subduction initiating in old, cold lithosphere? We 

refrain from speculating on these questions, but leave these for future study and 

debate.   

 

6. Conclusions 

The subduction zone above which the crust of the Semail ophiolite of Oman 

formed is widely thought to have initiated along, or in the vicinity of a Neotethyan 

mid-oceanic ridge. In this paper, we restored the paleo-orientation of the supra-

subduction zone ridge at which the Semail ophiolitic crust accreted around ~96-95 

Ma, through paleomagnetic analysis of its sheeted dyke sections. Our results from 

seven localities covering the entire width of the ophiolite consistently show that this 

ridge was orientated NNE-SSW. We infer that the trench orientation, marked by the 

modern obduction front, was oriented sub-parallel to this trench. Our results thus 

indicate that the trench orientation was approximately orthogonal to the Arabian 
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passive margin. We infer that subduction initiated along a fracture zone that was 

located parallel to, and likely in the vicinity of, the fracture zone that connected the 

Permian Arabian passive margin of northern Oman with the margin underthrust 

below Iran at the Zagros collision zone. This places Arabian continental crust in the 

upper plate during subduction initiation. Subduction hence did not initiate in the 

vicinity of the Neotethyan ridge, which according to plate reconstructions had long 

been subducted during Cretaceous subduction initiation. We conclude that 

subduction was induced by (ES)E-(WN)W contraction, as previously also inferred 

for ophiolite belts of the eastern Mediterranean and NW Arabian margins. This may 

help the future identification of the dynamic trigger of subduction initiation in the 

Neotethys Ocean. 
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Figure Captions 

 

Figure 1. Geological map of the Oman ophiolite. 

 

Figure 2. High-temperature variations of low-field magnetic susceptibility (k) for six 

representative samples (five from dykes and one from pillow lavas). Diagrams are 

mainly irreversible, showing mineralogical transformation during heating. Curie 

temperatures have been inferred from the heating paths. 

 

Figure 3: Hysteresis loops for six representative samples (the same as in Figure 2), 

showing predominantly narrow to slightly open loops typical of multidomain (MD) 

magnetic grains. 

  

Figure 4: Back-scattered electron (BSE) images of representative thin sections from 

sheeted dykes showing the presence of iron oxides (magnetite, titanomagnetite, and 

possibly ilmenite) with variable size from ~1 μm to ~1 mm. 

 

Figure 5: A-F - Representative orthogonal vector plots (Zijderveld diagrams) of both 

alternating field and thermal demagnetization for various sites (in situ coordinates). 

C – An example of consistent ChRM directions acquired in AF and TH demagnetized 

sister samples. NRM = natural remanent magnetization. Steps are shown in °C or 

mT. 
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Figure 6. Stereographic projections of the interpreted characteristic remanent 

magnetization directions (ChRMs) and virtual geomagnetic poles (VGPs) from all 

sites. The great circles used in the principal component analysis are shown in the 

left diagrams (dotted curve), together with the direction isolated from these (small 

black dots). The middle ChRM plots show all the ChRM directions calculated from 

best-fit lines and great circle analysis (blue dots = normal polarity; open dots = 

reverse polarity; gray dots = discarded direction after 45° cut-off). The red ellipse is 

the cone of confidence around the computed mean direction, while the light blue 

shaded area is the error on the mean declination (∆D in Table1). The VGP plots on 

the right of each site show the accepted VGPs (blue dots) and the discarded VGPs 

(gray dots), which in fact fall outside the solid inner circle that represents the 45° 

cut-off. The Grey star in the left plots is the present-day GAD field direction. 

 

Figure 7. (Left) Stereographic projections of the permissible initial dyke orientations 

(rose diagram) and rotation poles calculated after modeling of the uncertainties 

associated to the input vectors of the net tectonic rotation analysis, following 

methods of Morris et al. (1998) and Koymans et al. (2016). (Right) Frequency 

distribution of the permissible rotation magnitude obtained from the same analysis. 

Summary plots showing the mean initial dyke orientation and rotation magnitude 

are shown in the bottom right corner, and have been obtained by combining all the 

permissible results from the seven sites. 
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Figure 8. Tectonic model of subduction initiation along the Arabian margin of Oman. 

Reconstruction of continents in paleomagnetic reference frame of Torsvik et al. 

(2012). Reconstruction of the Zagros margin following McQuarrie and van 

Hinsbergen (2013), and of eastern Mediterranean subduction initiation and 

obduction following Maffione et al. (2017). A) Fracture zone and passive margins of 

the modern African continent, providing a modern example of the restored Arabian-

Greater Adria continental margin, where the fracture zone margins were the locus of 

Cretaceous subduction initiation. Basic plate kinematics requires that the N-S 

subduction segments were connected with a transform fault parallel to (and here 

dotted along) the Arabian passive margin. B-D) Subduction initiation parallel and 

close to the Oman-UAE fracture zone margin around 105 Ma is followed by forearc 

extension around 96-95 Ma, and subsequent rotation of the forearc Oman ophiolite, 

followed by ~70 Ma obduction. Bey = Bey Dağları Platform; Kir = Kırşehir Massif, 

Tav = Tavşanlı Zone; for the tectonic history of the eastern Mediterranean region, 

see Gürer et al. (2016) and Maffione et al. (2017). 

 

Table 1: *Remagnetized sites. A In situ directions. B Tilt corrected directions. 

Lithologies are sheeted dykes (SD) and pillow lavas (PL). δDipDir is the 95% 

confidence around the mean pole to dyke measured in the field. (N meas.) is the 

number of dykes measured in the field to calculate the mean direction. ChRM 

interpretation has used best-fit lines (L) and great circles (GC) fitting. n/N is the 

number of specimens used in the statistics over the total number of analysed 

samples. D, dDx, I, dIx are declination and associated error, and inclination and 
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associated error. α95 = semiangle of the 95% cone of confidence around the site-

mean ChRM direction (Fisher, 1953). K is Fisher’s precision parameter relative to 

the ChRMs (Fisher, 1953). A95 is the semiangle of the 95% cone of confidence 

around the mean virtual geomagnetic pole (VGP). K is Fisher’s precision parameter 

relative to the VGPs. A95min and A95max are the minimum and maximum semiangle of 

the 95% cone of confidence expected for the given dataset by paleosecular variation. 

 

Table 2: Results of the net tectonic rotation analysis (Allerton and Vine, 1987) 

showing the calculated values for the azimuth and plunge of the rotation axis, 

rotation magnitude and sense, and restored dyke strike and plunge. Reference 

direction used: D = 000°, I = 21.5° ± 6.6°. In situ dyke orientations and associated 

uncertainties used for the analysis are in Table 1. Two sets of solutions have been 

obtained at each site and identified as “preferred” (the one used for the tectonic 

interpretation) and “alternate” (the one discarded). 

 

Supplementary files: Data (.dir) and statistical interpretation (.pmag) files of the 

paleomagnetic data that lie at the basis of this paper. Data can be viewed and 

analyzed at www.paleomagnetism.org (Koymans et al., 2016). 

http://www.paleomagnetism.org/
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Table 1. Paleomagnetic results from the Oman Ophiolite. 
 
 

Site Lithology Lat (N) Long (E) Dip dir. Dip 
δDipDir 

(N meas.) 
ChRM interpr. n/N D Dx I Ix K A95 A95min A95max 

  
  

 
   

         

AS SD 24° 20' 09" 56° 28' 36" 235 41
 

5.4 (9) 12 L +12 GC 22/24 097.5 8.3 49.5 8.1 19.9 7.1 3.5 11.7 

DA SD 23° 37' 45" 56° 38' 06" 088 39
 

6.9 (8) 3 L +18 GC 18/21 131.2 5.2 -27.1 8.5 40.7 5.0 3.6 12.0 

FF SD 23° 49' 38" 56° 52' 46" 255 54
 

6.0 (6) 29 L + 6 GC 26/35 108.8 9.9 51.4 9.1 12.5 8.4 3.3 10.5 

HA SD 24° 48' 29" 56° 17' 38" 026 48
 

5.7 (11) 12 L + 18 GC 30/30 032.7 2.7 40.4 3.4 115.7 2.5 3.1 9.6 

HD SD 24° 13' 40" 56° 07' 53" 096 65
 

3.2 (11) 21 L + 7 GC 26/28 057.3 4.0 38.1 5.4 58.2 3.7 3.3 10.5 

HU SD 23° 37' 14" 57° 14' 59" 098 79 3.5 (6) 7 L + 13 GC 19/20 077.0 9.0 49.0 9.0 19.4 7.8 3.7 12.8 

GD SD 23° 59' 04" 56° 29' 52" 234 60 3.8 (9) 6 L + 11 GC 15/17 135.7 8.1 56.5 6.2 35.8 6.5 4.1 14.9 

*BB SD 23° 05' 02'' 58° 10' 39” 193 77
 

2.3 (6) 43 L + 3 GC 46/46 302.1 3.4 -15.9 6.4 39.4 3.4 2.6 7.3 

*AA SD 22° 48' 36" 58° 34' 03" 073 71
 

7.5 (10) 35 L + 18 GC 48/53 354.0 3.5 31.1 5.3 39.2 3.3 2.6 7.2 

*MU SD 24° 30' 44" 56° 21' 13" 272 43
 

12.8 (8) 24 L + 12 GC 33/36 357.5 5.7 51.6 5.2 28.2 4.8 3.0 9.1 

MA01
A
 PL 24° 20' 34" 56° 30' 27" 061 49

 
4.3 (6) 14 L + 6 GC 18/20 134.0 11.0 51.4 10.1 14.8 9.3 3.8 13.3 

MA01
B
 PL 24° 20' 34" 56° 30' 27" - 

- 
- - 20/20 098.2 6.2 18.9 11.2 29.8 6.1 3.6 12.4 

MA02
A
 PL 24° 20' 34" 56° 30' 27" 057 58 4.4 (6) 5 L + 8 GC 13/13 112.7 11.6 62.6 6.8 25.9 8.3 4.3 16.3 

MA02
B
 PL 24° 20' 34" 56° 30' 27" - - - - 13/13 086.6 5.1 11.4 9.9 66.9 5.1 4.3 16.3 

MA01/02
A
 PL 24° 20' 34" 56° 30' 27" - - - 19 L + 14 GC 32/33 124.7 9.2 56.5 7.0 13.1 7.3 3.0 9.2 

MA01/02
B
 PL 24° 20' 34" 56° 30' 27" - - - - 33/33 093.4 4.5 15.9 8.5 32.0 4.5 3.0 9.1 

                   

 
 

 Potentially remagnetized sites. 
A
 In situ directions. 

B 
Tilt corrected directions. Lithologies are sheeted dykes (SD) and pillow lavas (PL). δDipDir is the 95% confidence 

around the mean pole to dyke measured in the field. (N meas.) is the number of dykes measured in the field to calculate the mean direction. ChRM interpretation has 
used best-fit lines (L) and great circles (GC) fitting. n/N is the number of specimens used in the statistics over the total number of analysed samples. D, dDx, I, dIx are 
declination and associated error, and inclination and associated error. α95 = semiangle of the 95% cone of confidence around the site-mean ChRM direction (Fisher, 
1957). K is Fisher’s precision parameter relative to the ChRMs (Fisher, 1957). A95 is the semiangle of the 95% cone of confidence around the mean virtual 
geomagnetic pole (VGP). K is Fisher’s precision parameter relative to the VGPs. A95min and A95max are  the minimum and maximum semiangle of the 95% cone of 
confidence expected for the given dataset by paleosecular variation. 
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Table 2. Net tectonic rotation solutions from the sheeted dykes of the Oman ophiolite. 

 

Site 

Preferred Solution  Alternate Solution 

Rotation axis Rotation Initial dyke  Rotation axis Rotation Initial dyke 

Azimuth Plunge Magnitude Sense Strike Dip  Azimuth Plunge Magnitude Sense Strike Dip 
              

AS 253.8 40.4 78.5 CW 072.6 90  054.0 11.0 105.6 CCW 107.4 90 

DA 131.8 61.4 135.5 CW 055.0 90  227.8 32.5 157.3 CW 125.0 90 

FF 287.5 65.3 97.4 CW 070.8 90  246.1 11.2 089.3 CW 109.2 90 

HA 003.9 42.8 103.5 CW 007.9 90  026.8 14.5 80.9 CCW 170.6 90 

HD 023.1 39.3 153.1 CW 018.5 90  229.8 35.5 53.8 CW 161.5 90 

HU 025.2 48.4 156.7 CW 029.4 90  247.7 37.2 65.7 CW 150.6 90 

GD  309.1 67.6 123.6 CW 031.5 90  068.1 16.3 108.1 CCW 148.5 90 

AA* 356.0 25.8 155.9 CW 179.2 90  022.5 35.5 27.1 CCW 000.8 90 

MU** 324.5 29.5 57.2 CW 144.5 90  002.3 36.7 160.7 CCW 035.5 90 

BB** 207.6 49.5 70.7 CCW 164.7 90  329.0 5.3 172.3 CCW 015.3 90 
              

  

* Unreliable solution (see text). ** No preferred solution (both solutions are discarded). Results of the net tectonic rotation analysis (Allerton 

and Vine, 1987) showing the calculated values for the azimuth and plunge of the rotation axis, rotation magnitude and sense, and restored dyke 

strike and plunge. Reference direction used: D = 000°, I = 21.5° ± 6.6°. In situ dyke orientations and associated uncertainties used for the 

analysis are in Table 1. Two sets of solutions have been obtained at each site and identified as “preferred” (the one used for the tectonic 

interpretation) and “alternate” (the one discarded).  
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