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Calcium/calmodulin-dependent kinase II and nitric oxide
synthase 1-dependent modulation of ryanodine receptors
during β-adrenergic stimulation is restricted to the dyadic
cleft

Eef Dries, Demetrio J. Santiago, Daniel M. Johnson, Guillaume Gilbert, Patricia Holemans,
Sanne M. Korte, H. Llewelyn Roderick and Karin R. Sipido

Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Belgium

Key points

� The dyadic cleft, where coupled ryanodine receptors (RyRs) reside, is thought to serve
as a microdomain for local signalling, as supported by distinct modulation of coupled
RyRs dependent on Ca2+/calmodulin-dependent kinase II (CaMKII) activation during
high-frequency stimulation.

� Sympathetic stimulation through β-adrenergic receptors activates an integrated signalling
cascade, enhancing Ca2+ cycling and is at least partially mediated through CaMKII.

� Here we report that CaMKII activation during β-adrenergic signalling is restricted to the dyadic
cleft, where it enhances activity of coupled RyRs thereby contributing to the increase in diastolic
events. Nitric oxide synthase 1 equally participates in the local modulation of coupled RyRs.

� In contrast, the increase in the Ca2+ content of the sarcoplasmic reticulum and related increase
in the amplitude of the Ca2+ transient are primarily protein kinase A-dependent.

� The present data extend the concept of microdomain signalling in the dyadic cleft and give
perspectives for selective modulation of RyR subpopulations and diastolic events.

Abstract In cardiac myocytes, β-adrenergic stimulation enhances Ca2+ cycling through an
integrated signalling cascade modulating L-type Ca2+ channels (LTCCs), phospholamban and
ryanodine receptors (RyRs). Ca2+/calmodulin-dependent kinase II (CaMKII) and nitric oxide
synthase 1 (NOS1) are proposed as prime mediators for increasing RyR open probability. We
investigate whether this pathway is confined to the high Ca2+ microdomain of the dyadic cleft
and thus to coupled RyRs. Pig ventricular myocytes are studied under whole-cell voltage-clamp
and confocal line-scan imaging with Fluo-4 as a [Ca2+]i indicator. Following conditioning
depolarizing pulses, spontaneous RyR activity is recorded as Ca2+ sparks, which are assigned
to coupled and non-coupled RyR clusters. Isoproterenol (ISO) (10 nM) increases Ca2+ spark
frequency in both populations of RyRs. However, CaMKII inhibition reduces spark frequency
in coupled RyRs only; NOS1 inhibition mimics the effect of CaMKII inhibition. Moreover, ISO
induces the repetitive activation of coupled RyR clusters through CaMKII activation. Immuno-
staining shows high levels of CaMKII phosphorylation at the dyadic cleft. CaMKII inhibition
reduces ICaL and local Ca2+ transients during depolarizing steps but has only modest effects on
amplitude or relaxation of the global Ca2+ transient. In contrast, protein kinase A (PKA) inhibition
reduces spark frequency in all RyRs concurrently with a reduction of sarcoplasmic reticulum
Ca2+ content, Ca2+ transient amplitude and relaxation. In conclusion, CaMKII activation during
β-adrenergic stimulation is restricted to the dyadic cleft microdomain, enhancing LTCC-triggered
local Ca2+ release as well as spontaneous diastolic Ca2+ release whilst PKA is the major
pathway increasing global Ca2+ cycling. Selective CaMKII inhibition may reduce potentially
arrhythmogenic release without negative inotropy.
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Introduction

In the heart, inotropy, lusitropy and chronotropy
are increased by catecholamine-mediated activation of
β-adrenergic receptors (β-ARs), for example during
emotional stress or physical exercise. This results in
increased cardiac output to meet the metabolic demand,
and this adaptation is largely due to modulation
of myocyte Ca2+ handling. Upon activation, β-ARs
stimulate adenylate cyclase (AC) via G proteins to
produce cAMP. Activation of the cAMP-dependent kinase
protein kinase A (PKA) leads to the phosphorylation of
several Ca2+ handling proteins: L-type Ca2+ channels
(LTCCs), resulting in enhanced L-type Ca2+ current (ICaL);
ryanodine receptors (RyRs), facilitating Ca2+ release from
the sarcoplasmic reticulum (SR); and phospholamban
(PLN), reducing inhibition of the SR Ca2+-ATPase
(SERCA) leading to an enhancement of Ca2+ uptake
into the SR. The integrated response, larger and faster
contraction and relaxation at higher heart rates, is the
result of both frequency-dependent modulation of Ca2+
handling and direct β-receptor-mediated signalling.

β-AR-dependent RyR phosphorylation has recently
received particular attention because of the association
of RyR mutations with catecholaminergic polymorphic
ventricular tachycardia (CPVT) and sudden death
(Venetucci et al. 2012). In vitro, PKA-mediated
phosphorylation at serine 2809 in RyR2 enhances RyR
open probability (Po), with one possible mechanism being
the dissociation of the immunophilin FKBP12.6 from the
RyR (Marx et al. 2000). However, this mechanism has
been questioned and the exact mechanisms behind PKA
regulation of RyRs in the intact cell, as well as its role in
the β-AR response, remain controversial (Xiao et al., 2004,
2006; Morimoto et al. 2009; Shan et al. 2010).

In addition to PKA, Ca2+/calmodulin-dependent kinase
II (CaMKII) is activated downstream of β-AR and also
increases RyR Po when measured as SR Ca2+ leak. This was
shown in small rodents, guinea pigs and rabbits (Curran
et al. 2007; Ferrero et al. 2007; Ogrodnik & Niggli, 2010).
CaMKII activation was at first ascribed to PKA-dependent
increases in [Ca2+]i. However, CaMKII activity can also
be increased via mechanisms distinct from PKA during

β-adrenergic stimulation (Pereira et al. 2007; Gutierrez
et al. 2013; Curran et al. 2014). These findings have
shifted the paradigm and CaMKII is viewed as a primary
integrator of both frequency-dependent signalling and
β-adrenergic signalling (rather than a secondary player,
dependent on PKA).

At the molecular level, the exchange protein activated
by cAMP (Epac) is a pathway for cAMP signalling
that is independent of PKA (Ruiz-Hurtado et al.
2013). Stimulation of Epac, using the specific activator
8-CPT, led to an increased diastolic SR Ca2+ leak via
CaMKII-dependent phosphorylation of serine 2814 in
RyR2 (RyR-S2814) in myocytes from rat and mice hearts
(Pereira et al., 2007, 2013). Additionally, direct activation
of CaMKII by nitric oxide (NO) during β-adrenergic
stimulation has been reported to occur in non-paced cells,
i.e. in the absence of increased Ca2+ transients (Gutierrez
et al. 2013; Curran et al. 2014).

Other proteins that contribute to the overall
β-adrenergic-mediated increase in Ca2+ cycling are
PLN and sarcolemmal LTCCs. These proteins are
phosphorylated in a PKA-dependent manner, which can
be mimicked by forskolin, a direct activator of AC (Curran
et al. 2007). Nevertheless, these proteins can also be
modulated by CaMKII as part of the frequency-dependent
modulation (Wu et al. 2012).

Recent studies have emphasized that β-adrenergic
signalling is not necessarily homogeneous through the
cardiac myocyte. Using fluorescence resonance energy
transfer-based sensors, localized cAMP signalling in sub-
cellular compartments was demonstrated (Zaccolo &
Pozzan, 2002; Nikolaev et al. 2006; Agarwal et al. 2014).
Such compartmentalized cAMP (and cGMP) signalling
is associated with subcellular localization of different
phosphodiesterases (PDEs) that restrict cAMP diffusion
and the dimension of the cAMP microdomain (Leroy et al.
2008; Mika et al. 2014). In addition, different β-AR iso-
forms have specific subcellular locations and downstream
targets (Gorelik et al. 2013). Local β-adrenergic signalling
compartments are reported to be localized to T-tubules
(TTs) and caveolae, where key components of the β-AR
cascade are also found (e.g. Gs proteins, AC, PDE3/4 and
AKAPs).

C© 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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We recently reported on the role of CaMKII micro-
domains around RyRs in the response to increased
stimulation frequency in the absence of β-AR stimulation
(Dries et al. 2013). CaMKII-dependent potentiation of
RyR activity was restricted to RyRs in the dyadic cleft
(coupled RyRs), where there is a distinct Ca2+ micro-
domain, and absent in the RyRs not coupled to the
sarcolemmal membrane (non-coupled RyRs) despite the
fact that CaMKII was present in both locations.

The primary aim of the present study is to investigate
whether modulation of RyRs through activation of the
β-adrenergic receptor is restricted to the coupled RyRs in
the microdomain of the dyadic cleft. Second, we examine
the mechanisms underlying the regulation of RyRs during
β-adrenergic stimulation. Finally, we investigate how
microdomain CaMKII activation integrates with PKA
signalling and global Ca2+ cycling. For our studies, we
use pig ventricular myocytes that have a less dense TT
network than rodents, more similar to that found in
human ventricular myocytes (Heinzel et al. 2002; Louch
et al. 2004; Jayasinghe et al. 2012).

Methods

Animal care

Healthy pigs (40-45 kg) were housed and treated according
to the European Directive 2010/63/EU. Experimental
protocols were approved by the in-house ethical
committee (Ethische Commissie Dierproeven, KU Leuven),
with permit numbers P10139 and P14176.

Cell isolation

Animals were killed via an overdose of pentobarbital
(100 mg kg−1) under full anaesthesia (absence of deep
reflexes), after which the heart was quickly excised. Single
cardiomyocytes were enzymatically isolated from the
mid-myocardial layer of the left ventricle (LV) as described
before (Heinzel et al. 2002). A large wedge with the
perfusing artery was prepared and the coronary artery was
cannulated and perfused with a constant flow (4 ml min−1)
at 37 °C. To washout the remaining blood, the tissue was
initially perfused with normal Tyrode (in mmol l–1: NaCl
137, KCl 5.4, MgCl2 0.5, CaCl2 1.8, Na-HEPES 11.8 and
glucose 10; pH 7.4). Next, the tissue was perfused with a
Ca2+-free Tyrode (in mmol l–1: NaCl 130, KCl 5.4, KH2PO4

1.2, MgSO4 1.2, Na-HEPES 6, glucose 20; pH 7.2) followed
by the enzymatic solution [collagenase A (Roche, Basel,
Switzerland) and protease XIV (Sigma-Aldrich, St Louis,
MO, USA) added to Ca2+-free Tyrode] and after digestion,
perfused with low Ca2+ Tyrode (0.18 mM CaCl2 added
to Ca2+-free Tyrode). The digested tissue was minced,
after which the suspension was filtered and the isolated

myocytes were resuspended in normal Tyrode. Cells were
allowed to recover for 1 h after isolation before starting
experiments.

Electrophysiological recordings

Cells were studied under whole-cell voltage-clamp to
record membrane currents (Axon 200B amplifier, Axon
Instruments, Union City, CA, USA). Cells were constantly
perfused with normal Tyrode at 37 °C and patch pipettes
(2–3 M�) (GB 200-8P, Science Products, Hofheim,
Germany) were filled with (in mmol l–1): K+-aspartate
120, NaCl 10, KCl 20, K-Hepes 10, MgATP 5, and K5Fluo-4
0.05; pH 7.2. Ca2+ transients were elicited by depolarizing
steps (200 ms) from –70 to + 10 mV at 0.5 Hz for 30 s. This
low-frequency stimulation protocol was chosen to exclude
frequency-dependent potentiation (Dries et al. 2013).
Protocols were repeated in the absence and presence of iso-
proterenol (ISO; 10 nM). SR Ca2+ content was measured
by integrating the inward Na+/Ca2+ exchanger (NCX)
current during fast caffeine application (10 mmol l−1 for
8 s) after a conditioning train at 0.5 Hz stimulation. ICaL

was measured during pulses from –70 to +10 mV while
the fast Na+ current was inhibited with 5 μM TTX and
200 μM lidocaine.

The PKA inhibitor PKI (PKI myristoylated-
(14-22)-amide; Tocris Bioscience, Bristol, UK) was
used at 20 μM with incubation for 30 min and
included in the pipette solution. The PKA inhibitor
H-89 (Sigma-Aldrich, St Louis, MO, USA) was used
at 10 μM with pre-incubation for 15 min and then
included in the pipette solution. AIP (CaMKII inhibitor;
autocamtide-2-related-inhibitory-peptide; Tocris
Bioscience) was used at 10 μM with pre-incubation for 1 h
and included in the patch pipette. CE3F4 (kindly provided
by Frank Lezoualc’h, INSERM, Toulouse, France) was
used at 20 μM with pre-incubation for 30 min and
included in the patch pipette. ESI-05 (4-methylphenyl-
2, 4, 6- trimethylphenylsulfone, Biolog, Hayward, CA,
USA) was used at 10 μM with pre-incubation for 15 min
and included in the patch pipette and wash-on during the
experiments. Vinyl-L-NIO hydrochloride (L-VNIO, Santa
Cruz Biotechnology, Inc., Santa Cruz, CA, USA) was used
at 100 μM with pre-incubation for 30 min and in the patch
pipette. N-acetylcysteine (NAC, Sigma-Aldrich) was used
at 10 mM with pre-incubation for 1 h and included in the
patch pipette.

Ca2+ measurements, confocal microscopy and image
analysis

[Ca2+]i was reported by Fluo-4. Confocal line scan images
were recorded using a Zeiss LSM 510 confocal system.
Line scans were recorded at 650 Hz with a pixel size of

C© 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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0.2–0.3 μm. Following the 30 s conditioning train with
depolarizing steps at 0.5 Hz, spontaneous Ca2+ sparks were
routinely observed (15 s recording at the holding potential
of –70 mV). Sparks were detected using an automated
spark analysis program based on the Cheng algorithm
(Dries et al. 2013). Spark frequency was calculated and
normalized to line length and time as number of sparks
per 100 μm per second. When analysing spark frequency
in coupled vs. non-coupled sites, the frequency was
normalized to the line length of these sites. To define
coupled (dyadic) and non-coupled (non-dyadic) release
sites, an algorithm based on the time taken to reach
50% peak amplitude (TF50) of the Ca2+ transient was
used as described previously (Dries et al. 2013). Briefly,
five consecutive Ca2+ transients on the line scan images
were averaged and fluorescence was normalized to the
diastolic [Ca2+]i level (F/F0). From the averaged transient,
the TF50 was calculated for each pixel along the line to
establish the spatial distribution of the timing of the Ca2+
release. TF50 values were used as markers for the distance
to the membrane (Dries et al. 2013). In the averaged Ca2+
transient, pixels were categorized as a coupled release site
(< 0.5 μm) when TF50 < 18 ms and a non-coupled release
site (> 2 μm) when TF50 > 27 ms. Release sites with a TF50

between 18 and 27 ms were excluded so to have a clearly
separated population of coupled and non-coupled RyRs.
Ca2+ sparks were then assigned to coupled or non-coupled
sites to define spark properties in each type of RyR site
(Fig. 1Aa).

Phosphorylation assays

Freshly isolated myocytes were stimulated at 0.5 Hz
for 15 min using a multichannel homebuilt stimulator
controlled using Labview 6.0 (National Instruments,
Austin, TX, USA) in the presence and absence of ISO
(10 nM). After stimulation, cells were fixed with 2%
paraformaldehyde and permeabilized with 0.4% Triton
X-100 in PBS. Cells were washed three times and incubated
with blocking buffer (BSA 4%, 0.1% Triton X-100 in
PBS) for 1 h at room temperature. Primary antibodies
were incubated overnight at 4°C (mouse IgG anti-RyR
1:200, MA3-925 from Thermo Scientific, Waltham, MA,
USA; mouse IgM anti-NCX 1:200, MA3-926 from Thermo
Scientific; rabbit IgG anti-phospho-CaMKII Th286 1:200,
PA1-14076 from Thermo Scientific). Cells were washed
three times in PBS and incubated with secondary anti-
bodies (RyR: Alexa fluor 488 goat anti-mouse IgG; NCX:
Alexa fluor 647 goat anti-mouse IgM; Phospho-CaMKII
Th286: Alexa fluor 568 goat anti-rabbit IgG) diluted at
1:200 in blocking buffer for 2 h at room temperature.
Cells were washed three times in PBS before imaging
with a confocal microscope (Nikon A1R configured
on an Eclipse Ti using a 60× 1.4 NA oil immersion
objective). Fluorescence intensity was measured for

phospho-CaMKII Th286 in the whole cell and local
regions (coupled vs. non-coupled RyRs) using ImageJ.
Whole-cell fluorescence was normalized to background;
local regions are shown as ratio of fluorescence in
coupled/non-coupled regions. Identification of coupled
and non-coupled regions was performed by using a mask
of the skeletonized NCX signals < 0.5 or > 2 μm away,
respectively, as described previously (Dries et al. 2013).

Statistics

All data are presented as means ± SEM. Data have been
compared using a paired Student’s t test or a two-way
ANOVA with Bonferroni post hoc testing when comparing
a specific blocker in coupled versus non-coupled RyRs.
Data were considered significantly different when P < 0.05
and is represented as ∗P < 0.05, ∗∗P < 0.01 and
∗∗∗P < 0.001.

Results

During β-adrenergic stimulation sparks increase
globally but only coupled RyRs are modulated by
CaMKII

In the present study, spark frequency increased
equivalently at both coupled and non-coupled RyRs after
application of ISO (Fig. 1Ab). SR Ca2+ content was also
increased following ISO stimulation (Fig. 1Ac). These data
were somewhat unexpected as the literature suggests that
CaMKII is the pathway for ISO-dependent modulation
of RyR and we had hypothesized that CaMKII activation,
and increase of sparks, would be restricted to the dyadic
cleft and coupled RyRs. We therefore validated that the
restricted modulation of coupled RyRs by CaMKII during
high-frequency stimulation alone (cells conditioned at
2 Hz, no ISO; Dries et al. 2013) was intact (Fig. 2).
Furthermore, global Ca2+ handling during β-adrenergic
stimulation with ISO was also as previously described in
many species, with increased amplitude of the Ca2+ trans-
ient and faster relaxation, larger ICaL and greater number
of Ca2+ sparks (Fig. 3).

Having confirmed selective regulation of coupled RyRs
by high-frequency stimulation, we next examined whether
there was a specific CaMKII component to the global ISO
response. Relative to ISO-treated cells, the specific CaMKII
inhibitor AIP reduced the spark frequency in coupled RyRs
by 50%, without affecting the frequency of sparks at the
non-coupled RyRs (Fig. 1Ba) or the SR Ca2+ content
(Fig. 1Bb). When the relationship between SR Ca2+
content and spark frequency was examined, the
CaMKII-specific modulation of coupled RyRs occurred
independently of changes in the SR Ca2+ content
(Fig. 1C).

C© 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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Figure 1. After ISO the spark frequency in both coupled and non-coupled RyRs is increased, but only
coupled RyRs are modulated by CaMKII
Aa, myocytes are stimulated in the presence and absence of ISO using depolarizing steps (–70 to +10 mV; 200 ms)
for 30 s at 0.5 Hz and Ca2+ sparks are recorded during a 15 s period after stimulation. Example of a confocal line
scan image is shown. Ca2+ sparks are assigned to coupled and non-coupled using the temporal cut-off values of
the averaged Ca2+ transients. Coupled sites (< 0.5 μm) have a TF50 < 18 ms (shown in red) and non-coupled sites
(> 2 μm) have a TF50 > 27 ms (shown in green). Ab, spark frequency in coupled and non-coupled RyRs before and
after ISO (ncells = 34; Npigs = 11); and c, SR Ca2+ content before and after ISO application (ncells = 25; Npigs = 9).
Ba, example of a confocal line scan image showing Ca2+ transients and Ca2+ sparks in the presence of ISO and
ISO with AIP. Ca2+ sparks originating from coupled regions are shown in red and from non-coupled regions in
green. Ca2+ sparks from intermediate sites are not colour-coded. The effect of AIP on Ca2+ spark frequency in
coupled and non-coupled RyRs after ISO (ncells = 17; Npigs = 5); b, effect of AIP on the SR Ca2+ content during
ISO (ncells = 19; Npigs = 5). C, the relationship between SR Ca2+ load and Ca2+ sparks at baseline (ncells = 7;
Npigs = 6), ISO (ncells = 10; Npigs = 12) and ISO with AIP (ncells = 9; Npigs = 4). ∗∗∗P < 0.001.
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Repetitive activation of RyRs is restricted to coupled
RyRs and mediated by CaMKII

At the cellular level, Ca2+ waves (i.e. propagating
spontaneous Ca2+ release) contribute to potential
arrhythmogenic activity due to activation of the NCX
current. The likelihood of inducing Ca2+ waves depends
on the simultaneous activation of multiple RyR clusters in
close proximity. Thus, a higher number of sparks arising
from the same RyR cluster, and/or a higher number of
firing RyR clusters in close proximity, can increase the
likelihood of wave initiation. We examined the spark
activity of repetitively firing RyRs and how such activity
is altered during β-adrenergic stimulation. RyR clusters
were categorized as repetitive firing sites when at least
two sparks occurred within 15 s of spark recording
(Fig. 4A).
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Spark frequency in coupled and non-coupled RyRs during
high-frequency stimulation in the absence of ISO (ncells = 15;
Npigs = 5). ∗∗P < 0.01.

At baseline, sparks originating from repetitive firing
sites were equally prevalent in coupled versus non-coupled
RyRs (Fig. 4Ba). In the presence of ISO, sparks from
repetitive sites significantly increased for both coupled
and non-coupled RyRs. However, the effects were more
pronounced for coupled RyRs, with a tripling of the spark
frequency compared to a doubling of the spark frequency
at non-coupled regions (Fig. 4Ba). One potential cause of
this increased spark frequency is the recruitment of new
repetitive sites (Fig. 4Bb). These results mirrored those of
the spark frequency analysis; at baseline, there were no
obvious differences between coupled and non-coupled
RyRs, whereas ISO treatment more than doubled the
number of repetitive sites at coupled areas.

We further tested the role of CaMKII in control of
Ca2+ sparks using AIP. The presence of AIP abolished
the majority of the ISO-induced increases in spark
frequency at coupled sites alone, without noticeably
affecting non-coupled ones (Fig. 4Ca). Likewise, AIP
reduced the recruitment of repetitive sites at coupled areas
alone (Fig. 4Cb).

Mechanisms of CaMKII activation at coupled RyRs

Activation of CaMKII could be indirect through high
local [Ca2+]i or through other signalling pathways. Recent
studies have described a β-adrenergic signalling cascade
where CaMKII activation occurs via an NO-dependent
pathway (Gutierrez et al. 2013; Curran et al. 2014). This
was tested using the nitric oxide synthase 1 (NOS1)
inhibitor L-VNIO (Fig. 5A). L-VNIO significantly reduced
spark frequency in coupled RyRs but had no effect on
non-coupled RyRs in the presence of ISO. Furthermore,
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similar to the results obtained using AIP, SR Ca2+ content
was not affected by L-VNIO application.

Epac, a direct target for cAMP, has also been reported
to increase CaMKII activation independently of PKA
(Pereira et al. 2013; Ruiz-Hurtado et al. 2013). To test
this, we used the recently described Epac1 inhibitor
CE3F4 (Courilleau et al. 2013) and Epac2 inhibitor ESI-05
(Domı́nguez-Rodrı́guez et al. 2015) (Fig. 5B). CE3F4 and
ESI-05 did not affect spark frequency in either coupled or
non-coupled RyRs under ISO stimulation. Similarly, the
SR Ca2+ content was not altered by these agents.

Finally, we examined the role of local increases in
[Ca2+]i during the stimulation train (Fig. 5C). We

indirectly estimated differences in local [Ca2+]i by
measuring the rate of upstroke of local Ca2+ trans-
ients at selected coupled and non-coupled regions. The
rate of upstroke may be more indicative of local trans-
ient elevations of [Ca2+]i than its amplitude in the
same region. Despite a large increase in the local Ca2+
transient amplitude in non-coupled RyRs, the rate of
upstroke at those areas remained substantially below that
of coupled regions. These data therefore indicated that
increases in the local [Ca2+]i are far more pronounced
at coupled than non-coupled areas, and are consistent
with a much greater CaMKII activation at coupled RyR
clusters.
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Taken together, these data indicate that the activation of
CaMKII in coupled RyRs is likely to occur via local Ca2+
and NOS1 microdomains, and is not dependent on Epac.

CaMKII is equally distributed but has a higher level of
phosphorylation in coupled sites

We previously showed an equal distribution of CaMKII in
both coupled and non-coupled RyRs (Dries et al. 2013).
However, the above results suggest a greater CaMKII
activation near coupled RyRs after ISO stimulation.

Therefore, we investigated whether there is an increased
distribution of activated CaMKII [phospho-CaMKII
Th286 (P-CaMKII)] in coupled RyRs when myocytes
are conditioned at 0.5 Hz stimulation in the presence
of ISO. Triple immunolabelling for RyR, NCX and
P-CaMKII were performed and the fluorescence intensity
for P-CaMKII was measured in the presence and absence
of ISO in electrically paced myocytes (Fig. 6A). The total
fluorescence intensity of P-CaMKII was not changed after
ISO (Fig. 6Ba). However, local analysis of the fluorescence
intensity in coupled relative to non-coupled RyRs within
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each myocyte revealed a higher P-CaMKII in coupled
RyRs (Fig. 6Bb). These data confirm our findings at the
functional level, further supporting the hypothesis of a
local CaMKII activation near coupled RyRs.

PKA modulates spark frequency in both coupled and
non-coupled RyRs, at least partially by modulating SR
Ca2+ load

Our mechanistic dissection uncovered that coupled RyRs
are differentially regulated by ISO, in particular via local
CaMKII activation, which is dependent on high local
[Ca2+]i and NOS1. Furthermore, CaMKII-dependent
modulation occurred in the absence of changes in SR
Ca2+ content. These insights leave a number of questions
unanswered: how is spark frequency increased by ISO
at non-coupled clusters and what is the role of PKA?;
and to what extent does SR load influence spark activity
at coupled and non-coupled areas compared to RyR
phosphorylation? We therefore first examined how PKA
modulates coupled and non-coupled RyRs. Application of
the peptide-based PKA inhibitor PKI during β-adrenergic
stimulation reduced the frequency of sparks arising from
both coupled and non-coupled RyRs (Fig. 7A) and reduced
the SR Ca2+ content (Fig. 7B). Analysis of the relationship
between SR Ca2+ content and spark frequency indicated
that the reduced activity of coupled and non-coupled
RyRs by PKA occurred together with a reduction in SR

Ca2+ content (Fig. 7C). These experiments were repeated
with another PKA inhibitor, H-89, and similar results
were obtained (Fig. 8). Therefore, it is possible that
the observed RyR modulation depends on both direct
RyR modifications (i.e. phosphorylation) and indirect
regulation via changes in SR Ca2+ load.

To distinguish between a direct effect of PKA on RyR
and an effect on store load, Ca2+ sparks were recorded after
reducing SR Ca2+ load in the presence of ISO (Fig. 9Aa).
To this end, we conditioned cells as described before and
applied a short caffeine pulse (400 ms, 10 mM caffeine) 6 s
before the last Ca2+ transient to induce (partial) emptying
of the SR before spark recording. The timing and duration
of the caffeine pulse ensured an RyR activity that was
not modified by caffeine at the time of spark collection.
Additionally, the time to 50% relaxation of the last Ca2+
transient prior to spark recording was not different from
the Ca2+ transient prior to caffeine application (data not
shown), indicating that this intervention did not affect
PLN phosphorylation. The intervention did, however,
reduce SR Ca2+ content as assessed in Fig. 9Ab.

The lower SR Ca2+ load was associated with a reduction
in the Ca2+ spark frequency for both coupled and
non-coupled RyRs (Fig. 9B and Fig. 9C, light blue symbols,
compared to ISO alone in light grey symbols). However,
spark frequency remained higher when compared to
the baseline spark frequency with an equal SR Ca2+
load (light blue vs. black in Fig. 9C). These findings
indicate that the increase in SR Ca2+ load only partially
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accounts for the response of coupled and non-coupled
RyRs to β-adrenergic stimulation. In addition, similar
experiments in which the SR Ca2+ load was reduced were
also performed in the presence of AIP. Here lowering of
SR Ca2+ load resulted in significant reduction of spark

frequency in non-coupled RyRs but the low frequency
in coupled RyRs was not further reduced, supporting
the importance of the regulation of coupled RyRs via
CaMKII (Fig. 9C, green symbols compared to dark blue
symbols).
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CaMKII- and PKA-dependent effects on global Ca2+

transients triggered by LTCC

We have focused thus far on the spontaneous release events
at resting membrane potential and on the SR Ca2+ content.
We next examined the contribution of CaMKII activation
in the dyadic cleft on Ca2+ handling during depolarizing
pulses.

As illustrated in Fig. 10Aa, the increase in ICaL under ISO
is sensitive to CaMKII inhibition. Despite this reduction of
ICaL, global Ca2+ transients are not significantly affected
in amplitude or kinetics of upstroke or relaxation (Fig.
10Ab). A possible factor here is that the SR Ca2+ load
was not reduced by CaMKII inhibition as shown before
in Fig. 1Bb and may be related to lack of an appreciable
effect on SERCA activity; this observation is supported by
the maintained high rate of relaxation. Nevertheless, the
effect of CaMKII inhibition on ICaL and coupled RyRs Po

can be detected in the rate of upstroke of ICaL-triggered
local Ca2+ transients in the dyadic cleft (Fig. 10Ac).

In contrast, as illustrated in Fig. 10Ba, PKI not only
reduced ICaL but also had a major effect on the global
Ca2+ transient, reducing the amplitude and kinetics of
upstroke and rate of decay (Fig. 10Bb). This is probably
due to a major reduction in SR Ca2+ content (Fig. 7B),
and concordant with a reduced SERCA activity, evidenced
by the slowing of relaxation with PKI.

These results indicate that β-adrenergic activation of
CaMKII has effects that are spatially restricted to the
dyadic cleft. In contrast, PKA has global effects on systolic
Ca2+ handling and Ca2+ transient amplitude during
β-adrenergic stimulation, at least partly indirectly, via
alterations in SR load.

Discussion

The present data show that different signalling micro-
domains underlie the integrated response to β-adrenergic
modulation of LTCCs, PLN and RyRs. CaMKII activation
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is confined to the dyadic cleft, where it enhances the
Po of RyRs and LTCCs and contributes to the increase
of the local Ca2+ release and diastolic events. Enhanced
SR Ca2+ uptake and SR Ca2+ load are PKA-dependent
and major determinants of the global increase of Ca2+
cycling.

The dyadic cleft is a microdomain for CaMKII and
NOS1-dependent modulation of RyRs

During β-adrenergic stimulation, CaMKII-dependent
modulation of RyRs exclusively occurs in the restricted
area of the dyadic cleft. These data are in line with our pre-
vious report of CaMKII activation during high-frequency
stimulation in the absence of ISO (Dries et al. 2013).
NOS1 equally participates in the local modulation of
coupled RyRs. However, the current data cannot identify
the relationship between CaMKII and NOS1 because
inhibition of either pathway reduces spark frequency
to baseline levels. This is consistent with a sequential

and interdependent activation, but the current data
cannot inform about the hierarchy of this dyad-specific
signalling.

NOS1 could enhance RyR activity directly through
nitrosylation or indirectly via nitrosylation of CaMKII,
or both. Data obtained in rabbit myocytes (Curran et al.
2014) suggest that CaMKII is activated downstream of
NO. These authors show that after pre-incubation of
purified CaMKII with Ca2+ and CaM, application of SNAP
(NO donor) resulted in a high CaMKII activity. This was
not observed when pre-incubated with EGTA, indicating
that high levels of Ca2+ are a prerequisite for CaMKII
activation by NO. Erickson et al. (2015) recently reported
that NO treatment after Ca2+/CaM binding can result in
the autonomous activation of CaMKII via S-nitrosylation.
This CaMKII activation mechanism was suggested earlier
by Guttierez et al. (2013) who furthermore showed that
CaMKII was activated independently of [Ca2+]i when ISO
was applied in quiescent cells. It should be noted, however,
that previous studies used high ISO concentrations, 1 μM
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(Gutierrez et al. 2013) and 250 nM (Curran et al. 2014) as
opposed to 10 nM used in this study.

If NOS1 is the primary step in leading to RyR
phosphorylation, little is known regarding how β-AR
could activate NOS1. NOS1, RyRs and CaMKII are
spatially colocalized (Barouch et al. 2002; Bendall et al.
2004; Damy et al. 2004) and this could create a local NO
microdomain near coupled RyRs. Recently, Curran et al.
(2014) proposed a role for β1-AR and NOS1 activation via
AKT signalling. However, the exact mechanism of NOS1
activation upon β-adrenergic signalling remains elusive.

Although data in the present study are compatible
with a NOS1 activation of CaMKII, the data also suggest
that direct activation of CaMKII by Ca2+ is involved in
RyR regulation. Indeed, CaMKII activation required the
increased Ca2+ levels associated with the conditioning
pulses (which are PKA-dependent): when the amplitudes
of the Ca2+ transients during the conditioning pulses
were reduced with PKI (Fig. 10B), the activity of
coupled receptors also decreased. While this could imply
co-activation of PKA and CaMKII, reducing the SR Ca2+
load, even without reducing PKA activity (Fig. 9C), also
reduced sparks in coupled sites, suggesting again that the
CaMKII activation is dependent on local Ca2+. The local
Ca2+ levels in the dyadic cleft during depolarizing pulses
are indeed much higher than in the global cytosol (e.g.
Acsai et al. 2011 in a similar myocyte cell type) and analysis
of the local Ca2+ transients during the conditioning pulses
is consistent with a different local [Ca2+]i between coupled
and non-coupled RyRs (Fig. 5C).

Another pathway for CaMKII activation is through
reactive oxygen species (ROS). So far there is no
conclusive evidence indicating that ROS production
during β-adrenergic stimulation can directly activate
CaMKII. NO-dependent CaMKII modulation has been
reported to occur independently of ROS, as direct ROS
scavenging during β-adrenergic stimulation did not affect
SR Ca2+ sparks (Gutierrez et al. 2013) and NOX2
inhibition during ISO did not shift the SR load–leak
relationship (Curran et al. 2014). In line with these studies,
global ROS scavenging using NAC did not affect the
spark frequency in coupled or non-coupled sites, nor
did it affect SR Ca2+ content (Fig. 11). Likewise, Bovo
et al. (2012, 2015) showed an increased ROS production
during β-adrenergic stimulation but it was only the
direct oxidation of RyRs that changed RyR sensitivity. On
the other hand, we recently showed that enhanced RyR
activity at coupled sites during high-frequency stimulation
depends on the interdependent activation of NOX2 and
CaMKII (Dries et al. 2013), these data being consistent
with a ROS microdomain in the dyadic cleft that may
regulate CaMKII activity.

In the present study, local CaMKII activation at coupled
sites occurred independently from Epac. These data are
in line with the study of Curran et al. (2014), where

neither direct activation of Epac nor increases in cAMP
altered the SR Ca2+ load–leak relationship. Epac activation
was also not able to alter the spark frequency. Others,
however, found a clear link between Epac activation
and an increased SR Ca2+ leak via CaMKII-dependent
phosphorylation of RyR-S2814 (Pereira et al., 2007, 2013).
Pereira et al. (2015) recently showed that in different sub-
cellular regions specific Epac isoforms are present, with
Epac2 located near TTs and involved in the regulation of SR
Ca2+ leak. The difference of the aforementioned study with
the present data may be a species-dependent difference. In
addition, the specificity of both Epac inhibitors could not
be assessed in the present study.

Lastly, the signalling to CaMKII could be related to
local β-AR subtypes. In rat myocytes β2-ARs have been
shown to preferentially reside within TTs in contrast to
the β1-ARs, which are located across the entire cell surface
and may be expected to mediate a more ‘global’ response
compared to β2-ARs (Nikolaev et al. 2010).

Integrated CaMKII and PKA signalling during
β-adrenergic stimulation

CaMKII and PKA pathways both contribute to the
β-adrenergic response. CaMKII signalling appears to have
its major effects on diastolic events with more modest
impact on systolic function, whereas PKA has major
impact on systolic function through the modulation of
SR Ca2+ content.

While this opens interesting perspectives as discussed
in the next section, there are also several unanswered
questions about the interaction and relative importance
of the two pathways in modulating RyR activity.

A simultaneous requirement of CaMKII and PKA
for the enhancement of RyR activity has recently been
proposed by Polakova et al. (2015), using mouse myocytes,
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where presumably all RyRs are coupled. If we only consider
coupled RyRs, the conclusions of Polakova are consistent
with the present data (Fig. 7) showing that PKA inhibition
reduces activity of coupled RyRs. A specific explanation
here is, as stated above, that PKI inhibition reduces cellular
Ca2+ levels (because it lowers the SR Ca2+ load) and
thereby prevents CaMKII activation. Nevertheless, with
the reduced Ca2+ load in the presence of PKA, sparks from
coupled RyRs were still elevated and sensitive to CaMKII
inhibition. An alternative explanation may therefore be
that PKA has a direct co-activating effect.

Not much is known about such a potential molecular
mechanism. The role of PKA-dependent phosphorylation
at S2808/2809 in itself and in contrast to S2814 has
been debated (Wehrens et al. 2004; Xiao et al., 2006,
2007; MacDonnell et al. 2008; Morimoto et al. 2009;
Shan et al. 2010). Molecular modelling found even more
phosphorylation sites on RyR2 (Van Petegem, 2012) but
their relative functional roles remain largely unknown.
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after ISO
A, incidence of Ca2+ waves occurring in coupled vs. non-coupled
RyRs when stimulating cells at high frequency (2 Hz) and in the
presence of ISO (ncells = 33; Npigs = 8) and ISO with AIP (ncells = 20;
Npigs = 3). B, preliminary data set showing the Ca2+ waves
frequency in coupled vs. non-coupled RyRs in the presence of AIP
(ncells = 20; Npigs = 3). ∗P < 0.05.

Our initial hypothesis was for a dual phosphorylation of
coupled RyRs at dyadic sites with cumulated stimulating
effects and highest spark frequency for coupled RyRs (PKA
and CaMKII) compared to non-coupled RyRs (PKA only).
However, the data presented in this study do not show
additive effects at coupled sites despite the fact that there
is a site-specific CaMKII effect.

The most puzzling aspect to our data is why inhibition of
CaMKII results in lower spark frequency in coupled RyRs
vs. non-coupled RyRs despite maintained PKA activation.
If the role of PKA is predominantly through increased
SR Ca2+ load, there should not be a difference between
coupled and non-coupled RyRs, assuming SR Ca2+ load is
the same throughout the SR network. We have previously
investigated whether there were standing SR gradients after
stopping the conditioning pulses and at the time of sparks
recording, but could not detect any (Dries et al. 2013). The
remaining explanation, and hypothesis, is then that PKA
modulation of RyRs at coupled sites is less predominant
than at non-coupled sites. Differences in AKAP could also
play a role and explain the differential contribution of PKA
but are presently beyond study.

Finally, the data from Fig. 9C suggest that there is
a load-independent effect of PKA presumably through
phosphorylation of RyR clusters.

Limitations

A number of potential mechanisms were not further
investigated, some due to methodological limitations. We
failed to find suitable NOS1 antibodies to work in the pig.
So far we also have not been able to measure spatially
confined signals through ROS, because of low signals.
Immunostaining is not optimal for quantification of
P-CaMKII, although the signals appear to be quite specific
(supported by KN-93 inhibition of immunostaining –
pilot data, not shown) but measuring localized CaMKII
signals in living cells requires fluorescence resonance
energy transfer probes that can only be introduced during
cell culture (Erickson et al. 2011).

There are additional hypotheses regarding micro-
domain signalling for future studies. These include the
distribution of β-ARs (Nikolaev et al. 2010) as well as
the macrocomplex properties of the RyR clusters, coupled
vs. non-coupled. So far biochemical approaches are not
feasible due to the difficulties in extracting the two RyR
populations but we are currently developing methods for
in situ characterization.

In the present study we could not resolve differences
in the total level of CaMKII phosphorylation despite
the fact that the functional evidence clearly indicates
CaMKII-dependent phosphorylation at coupled sites,
which make up about 50% of all sites. Several factors may
contribute to this. The data in Fig. 6 suggest there is a base-
line degree of phosphorylation of CaMKII. Against this
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background small changes may be difficult to detect. For
the data on total P-CaMKII, we also compare populations
of cells, introducing more variability and the inherent
variability of the assay decreases the ability to detect small
changes in fluorescence between cells. In our analysis,
a ratio of staining in coupled vs. non-coupled RyRs
within each cell is determined on a cell by cell basis and
reduces noise on these measurements. Furthermore, we
applied only a low concentration of ISO to avoid massive
stimulation and Ca2+ overload, which probably resulted
in submaximal activation of CaMKII.

Perspectives and conclusions

The increase in diastolic events with β-adrenergic
stimulation, at the level of the whole cell, is both PKA-
and CaMKII-driven. Yet, the sparks that are specifically
CaMKII-dependent, i.e. at coupled sites, probably have
the highest potential for triggering Ca2+ wave activity and
deleterious membrane depolarizations. First, as shown in
Fig. 4 these are the sites that have more repetitive sparks
and CaMKII increases the number of coupled sites being
recruited for repetitive activation, thereby facilitating
summation in space and time to form propagating Ca2+
waves. Secondly, the location at the membrane promotes
direct activation of the NCX current. Lastly, in vivo
β-adrenergic stimulation is a combination of increased
frequency (chronotropy at the SA node) and direct
β-AR-mediated effects as studied here at low frequency.
As we have previously shown that frequency by itself
specifically enhances diastolic events at coupled RyRs
(Dries et al. 2013), these two mechanisms are likely to
reinforce each other and predict wave formation from
coupled RyRs. Data on Ca2+ waves using myocytes
conditioned at a high frequency in the presence of ISO
support this concept: more Ca2+ waves originated at
coupled RyRs than at non-coupled RyRs (Fig. 12A). A pre-
liminary data set further shows that this phenomenon is
under control of CaMKII, as inhibition with AIP decreased
Ca2+ wave frequency at coupled sites only (Fig. 12B).

The present results also indicate that CaMKII activation
has limited impact on the global Ca2+ handling that
underlies the positive inotropic and lusitropic actions
of β-adrenergic stimulation. Therefore, the present data
further support the concept that CaMKII may be a
preferential target for reducing arrhythmic events as
inhibition would have minor effects on contraction and
relaxation.

Finally, although the current study has concentrated
on ventricular myocytes, there is also the possibility that
similar RyR subpopulation modulation is present in other
cell types. Previous work has shown the presence of a
large fraction of non-coupled RyRs in atrial cells of large
mammals including humans (Dibb et al. 2009; Lenaerts

et al. 2009). Whether these RyR subpopulations have
different modulation is the subject of ongoing work.

In conclusion, the present data extend the concept
of microdomain signalling in the dyadic cleft and open
perspectives for selective modulation of subpopulations
of RyRs.
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