
Full-stack FHIR-based MBaaS with Server- and Client-side Caching
Capable WebDAO

Zoltán Richárd Jánki, Vilmos Bilicki

Abstract: In healthcare systems, it is essential to have applications that are robust responsive and have
a good performance. It is also advisable to store data in some standardized way so it can be integrated
with other systems. However, in the 21st century an application may be doubtful of use if the user-
experience is at a low level. Several studies inform us about how tolerant the users are when they
visit a website or wait to retrieve some data. Based on these studies, we will construct a system that is
capable of working offline and can also unburden the server-side. This will be achieved by establishing
a so-called Web Data Access Object (WebDAO), which has a maintainable offline capability and also
performs better in most given circumstances. Our measurements were evaluated in the context of how
users tolerate a delay and slow responses.

Keywords: full-stack, caching, FHIR, WebDAO

Introduction

In the healthcare sector, more and more information about patients has to be processed quickly and
efficiently. As a consequence, the healthcare records must be handled in a digitized format. These elec-
tronic healthcare records (EHR) must be available, discoverable and understandable. For these require-
ments a standardized and structured storage is essential. The Health Level Seven (HL7) organization [6]
solved these challenges by creating the so-called Fast Healthcare Interoperability Resources (FHIR) stan-
dards. With its well-defined resources, this standard is suitable for modelling any areas of healthcare
field.

Using the FHIR in Web applications, it is not obvious which implementation would be the best in
terms of availability and performance. Full-stack development is one of the most popular approaches
today. In a full-stack environment the code base can be shared between the client and the server because
they are written in the same programming language. There are open-source implementations of FHIR,
but none of them supports client-side object modelling in JavaScript. Hence, we had to create our own
Mobile Backend as a Service (MBaaS) following the Representational State Transfer (REST) paradigm [2].
This paradigm asserts that neither the server, nor the client knows anything about the other’s state. This
stateless system allows both participants to handle the messages received from the other one without
seeing any messages that arrived earlier.

To improve the performance, we decided to pursue the idea of polyglot persistence where we use
different database systems, but each of them is used for what they are best at. In order to achieve the
highest availability we have to exploit the offline capabilities of the client-side and the server-side and
create offline-first applications. The framework called Hibernate applies the Data Access Object (DAO)
Pattern to separate low-level operations from high-level business services. It uses its own caching model
where the queries are forwarded to the different levels of the cache first instead of communicating with
the backend. The Hibernate Query Language (HQL) is first forwarded to the Second-Level (L2) Cache
and it searches for the queried objects in it. If the required objects are not in the L2 Cache, the request
is forwarded to the database. By doing this, the waiting time for an application can be significantly
reduced [3][4].

There are several studies available concerning the correlation betweeen users’ patience and speed of
the Web. As Daniel An from Google said in his article, mobile pages can display content to users within
3 seconds on average and the average time to first byte is under 1.3 seconds [5].

Xiaming Chen and et al. showed that if the time between the emission time of the request and the
arrival of the response is more than 4 seconds, the interruption ratio rises rapidly from 18%. If a waiting
time of 10 seconds is reached, the ratio of interruption is already at 40% [6]. We use these thresholds to
provide a solution that is quite effective.

Below, we are going to review the different offline-first solutions in a full-stack environment and then
we would like to present our solution. We will describe the novel features of our system, present the
results of our measurements, then draw some conclusions about our prototype systems.

179

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Szeged

https://core.ac.uk/display/267306868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


State of the art

FHIR and full-stack development

Over time, FHIR has become widely acknowledged. Several organizations use this standard and
some of them are so big that they are present in many countries. For instance, the InterSystems HealthShare
[7] is a healthcare informatics platform for hospitals, integrated delivery networks and regional and na-
tional health information exchange. It is now present in more than 20 countries. Another well-known
project is the so-called Substitutable Medical Applications and Reusable Technologies (SMART) [9].
Since it uses the FHIR standard, the platform was renamed to SMART on FHIR. These systems are
widely spread, but none of them uses a full-stack environment.

However, today JavaScript is the only programming language that is supported by every major
browser. As we review the history of JavaScript, we see that over time it underwent numerous changes
and we can say that JavaScript is a language that is suitable for any general-purpose computing task.
[9].

Offline Capabilities

When we talk about Web applications, everybody thinks of online applications but what if there
is simply no Internet connection or it is Lie-Fi. Such situations can also occur in mobile applications
that require a network connection. In all of the applications, the developers have to take into account
network issues. In healthcare systems, availability and performance are two key factors. Can we have
an observation that is interrupted because of a bad network connection or is it necessary to query all the
records of a patient again after a refresh? The answer is of course no. This is why the offline capabilities
of Web applications are very important for us. The basic methodology of caching in Web applications
follows the idea of Hypertext Transfer Protocol (HTTP) Caching, but using a framework, this layer is
totally hidden. Nowadays, on the client-side the recommended solutions are the use of Service Workers
and IndexedDB. These tools guarantee convenient solutions for using the cache storage of a browser.

HTTP Cache

Every major browser carries an implementation of a HTTP Cache. This methodology is based on
a proxy-server - also called a Web cache - that meets HTTP requests on the behalf of an origin Web
server. The cache storage has its own disk storage that includes the copies of recently requested objects.
The HTTP headers are extended with a Cache-Control field and an ETag field [10][11]. These fields are
responsible for defining the caching policy and validating the response of the server. Service Work-
ers and IndexedDB use the notion of a HTTP Cache and are involved in developing progressive Web
applications.

Service Workers and IndexedDB

A Service Worker is a Web Worker object that is a JavaScript file running in a worker thread. Hence,
it is separated from the browser’s main thread and it can be executed asynchronously. Before Service
Workers, the recommended storing mechanism was the Application Cache – also known as AppCache.
AppCache provides a high-level API and every browser has support for it. Since it was not sufficiently
flexible, AppCache was replaced by Service Worker, with its low-level Cache API. It is more adapt-
able because it hands over the "moving parts" to the developers and the configurations are left to the
developers [12].

IndexedDB also provides a low-level API for caching data in a NoSQL storage system. It creates
a sterling database in the browser and supports transactions as well. The objects can be stored and
searched by key-value pairs. It works along similar lines to the local storage of the applications, but
IndexedDB works asynchronously. It runs in the background and the background synchronization is
also supported [13].

180



Our solution

A telemedicine application must be able to handle thousands of patients and hundreds of doctors
with their data simultaneously. It should be responsive and have a high performance if the architecture
is well defined and robust. Nowadays, full-stack development can achieve these requirements. On the
client-side we use Angular 2+ frameworks and the backend consists of a LoopBack Server and several
databases that realize the polyglot persistence. The Hadoop HDFS is used for storing huge files like
videos and images, and Apache Cassandra is responsible for the patients’ big data.

On the client-side it seems clear that Service Workers and IndexedDB have to be used. The offline
capabilities of LoopBack Server are quite limited and there are no best practices for caching in LoopBack
Framework, so we made some extensions to the basic architecture.

Firstly, we created a WebDAO that follows the classic DAO analogue. In our WebDAO layer we
defined the models of our resources and the basic methods of the models. With the help of this layer, we
were able to write queries on both the client-side and the server-side. Hence, the Cache Storage is not
just a plain cache. The programmers can maintain the offline activities and also the response time may
be better in the given circumstances. The main advantage of WebDAO is that we do not have to create
our own data structure for storage, but we can use the HTTP Cache on the client-side.

IndexedDB can be actuated by another JavaScript database called Apache PouchDB. PouchDB is
an open-source database that can synchronize with CouchDB and compatible servers. PouchDB also
has a browser version that can be readily integrated into our Angular clients. It provides the toolset
for creating an IndexedDB instance and also for modifying and synchronizing its content. With this
technology we do not have to manipulate IndexedDB directly. Hence, our idea is to store the static
objects - like images and HTML parts - in the Cache Storage by using Service Workers, and store the
dynamic parts - like records from the Cassandra database - in an IndexedDB instance. The contents of
PouchDB will be synchronized with the CouchDB instance that is also synchronized with LoopBack.
These frameworks can improve the availability and the performance as well because if our application
goes offline, the data is still available from the cache and using an offline-first strategy, we will not turn
to the server for each requests, except if the data is unavailable in the cache. With the help of PouchDB,
we can also use filters in our cached dataset, so a new request with filters will not take another request to
the server. Another good thing about PouchDB is that it can communicate with an IndexedDB instance
in the development mode, while native Service Workers and IndexedDB require a production mode for
caching the responses.

Measurements and evaluation

In our system we created a so-called Web Data Access Object (WebDAO) which defines the model
of FHIR resources, and these models have their own standardized REST endpoints. By following the
REST paradigm, our WebDAO became general and in order to unburden the backend, we entrusted the
caching to the browser. Since the REST endpoints are more general, the response is also broader, hence
more specific queries can be handled on the client-side by retrieving objects from the Cache Storage. The
exact time values can be calculated by the browser, since it can differentiate a query result received from
cache or from a server.

Since the whole infrastructure takes place in our local network, the server response time can be much
higher in production where we can have different network facilities and overloads. Our dataset contains
1 patient and 1,000,000 different observations belonging to this patient, but the Apache Cassandra re-
trieves at most 5,000 records in a query because of its driver setup. The first query that we executed
was very simple. We queried all of the observations that belonged to our single user. The time that
elapsed between the emission of the request and the arrival of the response can be seen in Table 1. It is
observed that pulling 5,000 records through the network takes more than 1 second and we can say that
it is worthwhile storing the objects in the cache and using an offline-first strategy. If we use more than
one filter, the Cassandra database is still fast and the set of objects is much smaller, so a response can be
obtained in 300 ms. PouchDB with IndexedDB seems to be weaker here because PouchDB is optimized
for synching first. The queries can be speeded up by using indices. If we do not use any indices, the
filtering costs more than 5 seconds. This is too much, so using indices is recommended. With indices the
request takes about 500 ms. We also tried out filtering with our own indices by creating references from
the proper keys in an array. The result was very similar and the difference was about plus or minus 10

181



ms.

Table 1: COMPARISON OF RESPONSES RECEIVED FROM SERVER AND CACHE

Request Query Source of response Number of retrieved records Average time to get response

List Patient1’s observations
user: Patient1,
date1: null, date2: null

LoopBack and Cassandra
5,000

1159 ms

IndexedDB using PouchDB
(no-filtering) 521.75 ms

List Patient1’s observations
that occured between date1 and date2

user: Patient1,
date1: 2005-09-07T01:00:00.000Z,
date2: 2006-09-07T01:00:00.000Z

LoopBack and Cassandra

8

291 ms

IndexedDB using PouchDB
filtering (without indices) 5446 ms

IndexedDB using PouchDB
filtering (with indices) 519.25 ms

Comparing these results with those that were presented in the above-mentioned studies about the
general patience of users, we see that, our system still works within the thresholds and the applications
integrated into the system can work offline as well.

Conclusions

Here, we presented a system that uses an offline-first strategy in order to achieve a higher perfor-
mance and enhance availability. We created a WebDAO that generalizes the client-server communi-
cation and makes the tool available to the programmer to maintain the Cache Storage. With polyglot
persistence our backend is now more powerful and the whole system works with a similar efficiency in
the online state as in the offline state. In the future, we intend to improve the performance of the Cache
Storage by using other indexing schemes like indices on patient data and other observation properties.

Acknowledgement

This study was supported by the EU-funded Hungarian grant EFOP-3.6.1-16-2016-00008.

References

[1] FHIR Overview, Available: https://www.hl7.org/fhir/overview.html, Accessed: 21 March 2018

[2] B. Mulloy, Web API Design: Crafting Interfaces that Developers Love, Available:
https://pages.apigee.com/rs/apigee/images/api-design-ebook-2012-03.pdf, Accessed: 28 March
2018

[3] J. P. Ottinger, D. Minter and J. Linwood Beginning Hibernate, 3rd Edition, 2014, Apress, United States

[4] J. P. Ottinger, S. Guruzu and G. Mak Hibernate Recipes: A Problem-Solution Approach, 2nd Edition,
2015, Apress, United States

[5] D. An, Find out how you stack up to new industry benchmarks for mobile page speed, Avail-
able: https://www.thinkwithgoogle.com/marketing-resources/data-measurement/mobile-page-
speed-new-industry-benchmarks, Accessed: 28 March 2018

[6] X. Chen and et al., Passive profiling of mobile engaging behaviours via user-end application performance
assessment, Pervasive and Mobile Computing, vol. 29, 2016, pp. 95–112

[7] InterSystems Health Informatics Platform, Available: www.intersystems.com/products/
healthshare/intersystems-health-informatics-platform, Accessed: 21 March 2018

[8] J. C. Mandel and et al. SMART on FHIR: a standards-based, interoperable apps platform for electronic health
records, Journal of the American Medical Informatics Association, vol. 23, no. 5, 1 September 2016,
pp. 899–908

182



[9] A. Bretz and C. J. Ihrig, Full Stack JavaScript Development with MEAN, 2014, SitePoint Pty. Ltd., 48
Cambridge Street Collingwood VIC Australia 3066

[10] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach, 7th Edition, 2017, Pearson
Education Limited, Edinburgh Gate, Harlow, Essex CM20 2JE, England

[11] I. Grigorik, HTTP Caching, Available: https://developers.google.com/web/fundamentals/
performance/optimizing-content-efficiency/http-caching, Accessed: 22 March 2018

[12] HTML Living Standard, Available: https://html.spec.whatwg.org/multipage/offline.html, Ac-
cessed: 26 March 2018

[13] P. Walton, Best Practices for Using IndexedDB, Available: https://developers.google.com/
web/fundamentals/instant-and-offline/web-storage/indexeddb-best-practices,
Accessed: 26 March 2018

183


