
Benchmarking Graph Database Backends—What Works Well with
Wikidata?

Tibor Kovács, Gábor Simon, Gergely Mezei

Abstract: Knowledge bases often utilize graphs as logical model. RDF-based knowledge bases (KB) are
prime examples, as RDF (Resource Description Framework) does use graph as logical model. Graph
databases are an emerging breed of NoSQL-type DBMSs (Database Management System), offering
graph as the logical model. Although there are specialized databases, the so-called triple stores, for
storing RDF data, graph databases can also be promising candidates for storing knowledge. In this
paper, we benchmark different graph database implementations loaded with Wikidata, a real-life, large-
scale knowledge base. Graph databases come in all shapes and sizes, offer different APIs and graph
models. Hence we used a measurement system, that can abstract away the API differences. For the
modeling aspect, we made measurements with different graph encodings previously suggested in the
literature, in order to observe the impact of the encoding aspect on the overall performance.

Keywords: Graph Database, Knowledge Base, Wikidata, Benchmark

Introduction

Representing knowledge as a graph seems to be a natural choice. People even without any spe-
cialized technical or natural science knowledge often organize concepts and relations between them as
nodes connected by edges. Some knowledge representation techniques also embraced this abstraction:
RDF [5] represents metadata as a graph. Even the concept of knowledge graph has been floating around
in the recent years, without a clear definition [6]. We use this concept aligned with [7]: an RDF graph
encoding a set of knowledge.

In the DBMS world, graph as a data model is used since the dawn of database systems. As the NoSQL
movement gained traction and as problem spaces with large-scale highly interconnected schemas—such
as network simulation and social networks demanded, a new family of NoSQL databases emerged,
replacing the key-value and document concepts with graphs. The landscape of NoSQL graph databases
is in flux even today, with various graph models [13] [4], without standardized APIs, and even without
a clear definition of a native graph database [12]. We use the graph database concept as a DBMS offering
some graph construct (property graph, RDF graph, etc.) as logical model.

While connecting the dots above, storing knowledge represented as a graph in a database specialized
to store graphs also seems a natural choice. However, one has to choose a graph database implemen-
tation first, that in turn determines the graph model and the API. Another decisive aspect is the graph
encoding method. The RDF model gives a straightforward encoding for basic knowledge structures,
however, there are different encoding models for reification [8], i.e. statements about statements, which
is extensively used in KBs with reference management, where every statement should be backed up by
external sources.

In order to help with these decisions, we selected a few graph database implementations and loaded
with the same real-life, large-scale dataset, then queried with the same set of queries randomly generated
from predefined query patterns. We run different measurements with different reification strategies.
From the timings of the query runs, we were able to construct the performance profile of each database—
encoding strategy combination.

Our research aims to determine performance characteristics of utilizing graph databases in various
problem spaces. For the field of KBs, in the early phase, we worked with an algorithm-generated graph.
Our initial results [10] showed counter-intuitive performance trends where more selective queries run
slower than queries with more unbound values. In [9] the authors also encountered similar phenomena
with a real-life dataset. Hernández et al. evaluated databases from different families, i.e. relational,
graph, triplestore, and used the publicly available and collaboratively edited knowledge base Wiki-
data [5] as dataset.

In this phase of our research, we also used Wikidata data, but we chose the databases exclusively
from the family of NoSQL graph databases.

163



Experimental Setting

As we wanted to compare our results with the ones described in [9], we chose to use the same
January 2016 dated JSON dump as they used in their survey. For the same reason, we measured the
so-called atomic-lookup queries, introduced in [9]. The basic idea behind this method is that every
reified statement has five parts: a subject, a predicate, an object, a qualifier and a qualifier value. If we
fix a subset of them while the others are kept variables, we get one of the 32 possible query pattern we
measured in this paper.

Even though [9] introduced 4+1 representation models, we did not examine all of them. In our
research, we measured three types of encoding: (i) the property graph representation which represents
the qualifiers as edge properties, (ii) the standard reification, and (iii) the n-ary relation models which
introduce a new node per each statement. The qualifiers are connected to this statement node, and the
parts of the reified statement are connected to this node as described in [9].

Next step was to select the database implementations. The Wikidata query service is built on a
customized Blazegraph [1] database engine, so we decided to select its current stable version (2.1.4).
This graph database is designed to work with large RDF datasets using the standardized SPARQL query
language. We chose Neo4j [11] as it is currently the most popular graph database [2]—specifically
version 3.3.3. It uses the property graph model to represent the graph dataset and defines an own
declarative query language, called Cypher. Our last benchmarked DBMS was the JanusGraph [3] 0.2.0.
We selected this TinkerPop-based system because it is quite popular [2] and it has an active community.
This database implements almost all of its functionalities through the integration of other technologies,
it uses BerkeleyDB as storage, Apache Tinkerpop as graph processing engine.

We investigated other DBMSs as well, such as Grakn, OrientDB and Graph API of Azure SQL
Database, but we encountered some difficulties during the modeling and loading phase in case of these
systems. The main cause of the problem was that these systems hardly support having multiple differ-
ent values of the same property in a node or we did not find any available description how to load them
into a database.

One of our first tasks was to ensure that the DBMSs have the same runtime environment. Otherwise,
the deviations in the measuring circumstances may distort the overall query timings. We achieved this
by using separate virtual machines with Azure Standard E4s v3 specification for every system, the same
as in [10]. Besides the operating system and the concrete DBMS, we installed the Java and .NET Core
runtime environments on all VMs.

We defined a general workflow for the measurements. The 0th step was to delete all data that re-
mained after the previous run. In the 1st phase, we transformed the decompressed JSON data to the im-
port format of the concrete DBMS’s import tool. After the transformation, we loaded the newly created
dataset into the database. Finally, our tool inserted the previously random selected variable bindings
into the query templates, measured the execution times and collected the mean query times.

Results

We executed each 32 possible query patterns with ten different randomly selected variable bindings.
To avoid first-time run transient phenomena, we ran every 320 query 2 times on every DBMS-encoding
pair. We set a query time limit to 60 seconds, just like in [9] [10] to avoid it. Figure 1 shows the mean
query time results in milliseconds on the logarithmical scale. Every timeout was set to 60 seconds.

Despite its popularity, Neo4j was the slowest examined system. Every query must have been ter-
minated before it finishes due to the time limit. Considering [9] and [10], it was expected that this
system would have the slowest results, but the measured query times suggest that—despite the opti-
mization done in the new version—this system could be several orders of magnitude times slower than
its competitors on the same query, dataset and index structures.

The left diagrams of Figure 1 shows that if we used Blazegraph, there was no significant difference
between the performance of the standard and the n-ary reification models. Looking at the figure, it is
quite conspicuous that there is a significant gap between the times of queries with and without a variable
subject. One can see that the execution times continuously decreased before and after this gap as well.
This constant performance improvement can be the result of the declarative SPARQL language, whose
execution can be optimized using the up-to-date DB statistics.

The other diagrams show the mean query results of the JanusGraph, and they show some similarities

164



Mean query times in Blazegraph using stan-
dard (solid) and n-ary (dashed) encodings.

Mean query times in JanusGraph using edge
properties (solid) and n-ary (dashed) encod-
ings.

Figure 1: Mean query times of the examined DBMS-encoding pairs.

and differences to the Blazegraph’s results. The main similarity is that both system’s results have steps
on its diagram. The results show that in case of the JanusGraph this gap is located between the two
query sets, one containing the queries without any node information binding, while every other query
belongs to the other set. One can see that there is a second, smaller step at the 1 to 2 variable binding
transition. The figure shows that the n-ary encoding is much faster on the first query patterns, but it
is significantly slower on the later ones. Another interesting phenomenon is that the performance is
almost constant between the steps, which can be explained by the imperative kind of the Gremlin query
language.

Conclusions and Future Work

Regarding the mean query times, we concluded that the execution times depend heavily on both the
query pattern and the system-encoding pair. The general tendency is that the less node variable a query
has, the faster its execution is. The results show, even though the execution times slightly depend on the
selected representation model, its impact is far less than the DBMS implementation used.

Based on the measured query times, it seems to us that the best overall performance for this kind
of workload can be reached by using Blazegraph with either n-ary or standard encoding. Considering
other factors than performance, our choice would be Blazegraph with n-ary representation, as this pair
performed the smallest query times, while it required almost the least storage space.

We plan to involve other databases and reification techniques in our research, and replace the cur-
rently used atomic lookups to another query set that contains the most frequently used query patterns
provided by the Wikidata statistics, to help the selection of the best DBMS-encoding pair for more real-
life use cases.

Acknowledgments

This work was performed in the frame of FIEK_16-1-2016-0007 project, implemented with the sup-
port provided from the National Research, Development and Innovation Fund of Hungary, financed
under the FIEK_16 funding scheme. Cloud computing resources were provided by a Microsoft Azure
for Research award.

References

[1] Blazegraph products. https://www.blazegraph.com/product/. Accessed: 2018-03-13.

165



[2] Db-engines ranking of graph dbms. https://db-engines.com/en/ranking/graph+dbms. Ac-
cessed: 2018-03-13.

[3] Janusgraph. http://janusgraph.org/. Accessed: 2018-03-13.

[4] R. Angles. A comparison of current graph database models. In Proceedings of the 2012 IEEE 28th
International Conference on Data Engineering Workshops, ICDEW ’12, pages 171–177, Washington, DC,
USA, 2012. IEEE Computer Society.

[5] W. W. W. Consortium et al. Rdf 1.1 concepts and abstract syntax. 2014.

[6] L. Ehrlinger and W. Wöß. Towards a definition of knowledge graphs. In SEMANTiCS, 2016.

[7] M. Färber, F. Bartscherer, C. Menne, and A. Rettinger. Linked data quality of dbpedia, freebase,
opencyc, wikidata, and yago. Semantic Web, pages 1–53, 2016.

[8] D. Hernández, A. Hogan, and M. Krötzsch. Reifying RDF: what works well with Wikidata? In
Proceedings of the 11th International Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS
2015), volume 1457 of CEUR Workshop Proceedings. CEUR-WS.org, 2015.

[9] D. Hernández, A. Hogan, C. Riveros, C. Rojas, and E. Zerega. Querying wikidata: Comparing
sparql, relational and graph databases. In International Semantic Web Conference, pages 88–103.
Springer, 2016.

[10] T. Kovács. Nagyméretű szemantikus adathalmazok tárolási megoldásainak teljesítményközpontú
összehasonlítása. In BME-VIK TDK, 2017.

[11] I. Robinson, J. Webber, and E. Eifrem. Graph Databases. OReilly Media, 2015.

[12] M. A. Rodriguez. A letter regarding native graph databases.
https://www.datastax.com/dev/blog/a-letter-regarding-native-graph-databases, 2013.

[13] M. A. Rodriguez and P. Neubauer. Constructions from dots and lines. CoRR, abs/1006.2361, 2010.

166


