
Towards a Classification to Facilitate the Design
of Domain-Specific Visual Languages

Sándor Bácsi, Gergely Mezei

Abstract: Domain-specific visual languages (DSVLs) are specialized modeling languages that allow
the effective management of the behavior and the structure of software programs and systems in a
specific domain. Each DSVL has its specific structural and graphical characteristics depending on the
problem domain. In the recent decade, a wide range of tools and methodologies have been introduced
to support the design of DSVLs for various domains, therefore it can be a challenging task to choose
the most appropriate techniques for the design process. Our research aims to present a classification to
guide the identification of the most relevant and appropriate methodologies in the given scenario. The
classification is capable enough to provide a clear and precise understanding of the main aspects that
can facilitate the design of DSVLs.

Keywords: domain-specific visual languages, modeling, classification

Introduction

The graphical interface of domains-specific visual languages (DSVLs) provides an improved abstrac-
tion of the problem that allows the rapid development for a specific domain. Expressiveness, flexibility
and usability are the most important aspects in the effective development with a DSVL. Each problem
domain requires a different visual representation to meet the requirements of the targeted domain, thus
it is essential to choose the most appropriate representational concepts in design-time. The exactness
of the choice depends on how expressively the chosen concepts describes the DSVL and on the specific
needs of the targeted domain. To support the design process, various kinds of classifications have been
created in the last decades. There are classifications mainly based on formalism [1], while other classifi-
cations are based on metamodeling approaches [4]. On the other hand, there are existing classification
frameworks which support the design of visual languages [2]. Due to the increasing use of DSVLs, a
wide range of new tools and methodologies have been introduced recently based on completely new
ideas. Our research aims to analyze and compare the most relevant methodologies on a larger scope
which can support the design of new domain-specific visual languages.

In this paper, we present the main results of our classification methodology. The classification is
mainly based on the nature of the graphical objects that compose the visual language, the connection
types among the graphical objects and the composition rules. In our research, we have analyzed a wide
range of existing DSVL methodologies and also created several case studies for different domains to
exemplify the most relevant graphical and structural characteristic. We have used two metamodeling
frameworks (Eclipse Modelling Framework [9] and Visual Modeling and Transformation System [8])
and a visual programming editor builder (Google Blockly [7]) to examine the most applicable method-
ologies. In this paper, we provide a summary of our work focusing on the results rather than on the case
studies applied.

Towards the Classification of Visual Languages

In this section, we present the main aspects of the classification. Each subsection of this section
represents one dimension of the classification.

Methods of the abstract syntax definition

There are two key methods for the abstract syntax definition of a DSVL: metamodeling methodolo-
gies and non-metamodeling approaches.

Metamodeling methodologies provide possibilities for the definition and management of DSVLs
based on the abstract notion of visual entities and of relations among them. These frameworks are
capable of specifying the abstract syntax of a DSVL and expressing the additional semantics of existing
information. The metamodel can expressively define the structure, semantics, and constraints for a

144



family of graphical models. Hence, complex structures and relations can be flexibly described by the
usage of metamodeling concepts.

While metamodeling methodologies are based on various kinds of instantiation techniques, non-
metamodeling approaches provide a template-based structure for creating visual entities. The main
characteristic of these approaches is that they have a limited set of features which can be used on the
different abstraction levels, thus complex structures cannot be visualized flexibly and expressively. One
of the newest non-metamodeling approaches is Blockly [7]. It supports a large set of features for dif-
ferent domains. In Blockly the graphical objects are called blocks which can be customized as the basic
building elements of the language. Due to the template-based and weakly typed structure of Blockly,
type constraints cannot be applied.

Relation type

Based on the relation type, domain-specific visual languages can be grouped into two subclasses:
containment-based and connection-based subclasses.

In containment-based languages, the graphical entities can be embedded in each other to express
visual sentences of the targeted domain, therefore, no connections are needed. Beside embedding, the
graphical entities can be attached to other entities (as a method and its parameters) and chained together
(as in a call stack). A pre-defined set of containment rules or constraints have to be defined to restrict
the way of embedding, attaching and chaining. Blockly and Scratch [6] are widely used examples of
containment-based languages. Both Blockly and Scratch support building blocks that can be connected
like puzzle pieces in order to create visual sentences.

Connection-based languages consist of two different kinds of building elements: entities and con-
nections, i.e. nodes and edges. While the data is basically expressed by entities, the flow of the model
and the relations among entities are defined by connections. Connections may also have properties to
ensure the customization of the relations among entities. Beside the connection-based patterns, entities
may have containment-based nature, for example, they can be embedded in each other.

Flow type

Based on the flow type, domain-specific visual languages can be grouped into three subclasses: data
flow languages, control flow languages and languages with no flow.

Data flow visual languages visualize the flow of data focusing on the steps of data processing. Data
flow concepts are based on the idea of disconnecting computational actors into stages that can execute
concurrently. Data flow DSVLs visualize the processes that are undertaken, the data produced and
consumed by each process, and the storing graphical objects needed to hold the data. It is possible to
visualize what the system will accomplish by the flow of data.

Control flow visual languages visualize the logic of computation by describing its control flow. Con-
trol flow DSVLs graphically express the order in which instructions or statements are executed or eval-
uated. The graphical objects mainly represent the control structures and conditional expressions of the
language, thus it is possible to visualize how the system will operate by the flow of control.

There are DSVLs which are neither data flow nor control flow because they target a static domain
problem. These languages can visually represent the structure of a system or a program, therefore no
flow has to be described. A widely used example of no-flow graphical modeling languages is the UML
class diagram, in which the structure of the system is described by the classes and the connections
among them.

The way of the problem description

Based on the way of the problem description, domain-specific visual languages can be grouped into
two subclasses: imperative and declarative languages.

Declarative visual languages describe the logic of computation. For example, SparqlBlocks [5] is a
declarative DSVL developed in Blockly. Declarative languages visualize sets of declarations or declar-
ative statements. Each of these visual declarations has a meaning depending on the targeted domain
and may be understood independently. A declarative style of visualization helps to understand the
problems of the targeted domain and the approach that the system takes towards the solution of the
problem, but is less expressive on the matter of mechanics which describe the flow of the system.

145



Imperative visual languages consist of visual statements that change the state of a program or a
system. For example, Scratch is an imperative visual programming language. The visualized statements
express the way of execution of which results in a decision being made as to which of two or more
visualized paths to follow. In imperative languages, the visual sentences can be created by sequences
of commands, each of which performs some action. These actions may or may not have a dedicated
meaning in the targeted problem domain.

Visual representation

DSVLs have a visual concrete syntax used for the representation of graphical elements and connec-
tions. Based on the visual representation, there are two key design aspects: iconic and diagrammatic
visual representation.

Entities are visualized by icons in iconic languages. For example, Lego Wedo 2.0 Software [13] pro-
vides an iconic visual language for educational purposes. The iconic language is a structured set of the
related icons. An icon can be composed of other icons or can be attached to another one, thus expressing
a more complex visual concept. Some icons can be immanently deceptive, some can only be interpreted
within a certain domain context, thus iconic visual languages may have their disadvantages.

Diagrammatic languages mainly composed of elements with a pre-defined symbolic representation
of information. The building blocks of diagrammatic languages such as geometric shapes are often
connected by lines, arrows, or other visual links. Chart-like, schematic-like and graph-based visual
languages are the most widely used examples.

Conclusions

In this paper we have presented several aspects of the classification for domain-specific visual lan-
guages. We believe that this classification can be used as a guide while designing DSVLs. Hence, with
the help of these guidelines it is now possible to analyze the characteristics of the language, and to
associate it to an appropriate class or dimension.

On the other hand, we have analyzed the features of EMF, VMTS and Blockly based on different case
studies that we have created for our classification methodology. We realized that due to the limitations
of Blockly, many complex problems cannot be described expressively because aggregations, references
and composition rules are missing from its developer framework. Despite the limitations of Blockly,
it provides a flexible and easy way to learn to design imperative and control flow DSVLs based on
containment-based aspects. Unlike Blockly, both EMF and VMTS provide a large feature set for the
abstract syntax definition, but they are not as effective as Blockly in definition of containment-based
languages. Based on EMF, Sirius [10] provides useful features for the customization of concrete syntax.

In the future, we aim to create a framework to support the design of visual-domain specific languages
based on a questionnaire built upon the classification presented. We plan to create a framework to
support an intuitively usable way of designing DSVLs even for complex language constructs. We are
also working on new case studies and analyzing other existing approaches to create a more detailed
classification.

Acknowledgements

The research has been supported by the European Union, co-financed by the European Social Fund
(EFOP-3.6.2-16-2017-00013).

References

[1] K. Marriott and B. Meyer. On the classification of visual languages by grammar hierarchies. Journal
of Visual Languages and Computing, 8(4):375–402, 1997.

[2] Costagliola, G., A. Delucia, S. Orefice, and G. Polese, A Classification Framework to Support the
Design of Visual Languages. Journal of Visual Languages and Computing, 2002. 13: p. 573-600.

[3] J. Sprinkle and G. Karsai, "A Domain-Specific Visual Language For Domain Model Evolution," Jour-
nal of Visual Languages & Computing, vol. 15, no. 3, pp. 291-307, 2004

146



[4] P. Bottoni and A. Grau, "A suite of metamodels as a basis for a classification of visual languages," in
Visual Languages and Human Centric Computing, 2004 IEEE Symposium on, sept. 2004, pp. 83-90.

[5] Bottoni, P., Ceriani, M.: SPARQL playground: A block programming tool to experiment with
SPARQL. In: Proceedings of the International Workshop on Visualizations and User Interfaces for
Ontologies and Linked Data (VOILA@ISWC 2015).

[6] Scratch. Retrieved March 4, 2018, from https://scratch.mit.edu/

[7] Blockly Website. Retrieved March 8, 2018, from https://developers.google.com/blockly/

[8] VMTS Website. Retrieved March 10, 2018, from
https://www.aut.bme.hu/Pages/Research/VMTS/Introduction

[9] EMF. Retrieved March 16, 2018, from https://www.eclipse.org/modeling/emf/

[10] Sirius. Retrieved March 18, 2018, from https://www.eclipse.org/sirius/

[11] Ulrik Pagh Schultz. Graphical/Visual DSL. Retrieved March 23, 2018, from
http://websrv0a.sdu.dk/ups/SSE02/slides/lecture-10.pdf

[12] Iconic Visual Languages. Retrieved March 23, 2018, from
https://people.cs.pitt.edu/ chang/365/sk1.html

[13] Lego Wedo 2.0 Software. Retrieved March 30, 2018, from
https://education.lego.com/en-us/downloads/wedo-2/software

147


