
Keeping P4 switches fast and fault-free
through automatic verification

Dániel Lukács, Gergely Pongrácz, Máté Tejfel

Abstract: The SDN dataplane is going through a paradigm shift, as softwarization of switches sees an
increased pull from the market. Yet, software tooling to support development with these new technolo-
gies is still in its infancy.

In this work, we introduce a framework for verifying data plane protocols defined in the P4 lan-
guage. Using symbolic execution, the framework checks crash-freedom and bounded execution properties
of P4 protocols, and verifies performance requirements by estimating lower and upper bounds of packet
processing time. This paper explains related terminology, and briefly describes the methodologies used
to reach this goal.

Keywords: programmable switches, P4, SDN, performance modeling, symbolic, execution

Introduction

Currently in the networking industry, network devices are being commoditised fast and software
gets more and more market share, as consumers want scalable and easily replaceable devices, while ven-
dors want to keep development costs low. Software-defined networking (SDN) [1] technologies address
this need by allowing network administrators to dynamically control network topology, configurations,
and protocols.

New languages are emerging, aiming to assist network engineers to define the functioning of switches
in the SDN forwarding plane. Among them, P4 intends to keep the best aspects of both hardware and
software by enabling network engineers to communicate their intent in a general high-level language,
while the task of compiling high-level protocol description to low-level target architectures is delegated
to the backend software. The hybrid approach is highly effective, but burdens backends, static analyz-
ers, and verification frameworks, as now these also have to take into account low-level targets.

The framework presented in this paper intends to verify functional requirements (e.g. execution is
bounded and error-free) and non-functional requirements (e.g. performance goals are reached) of network
protocols in P4, in order to support new users of the language, and to provide insights and dynamic
feedback to developers of the language ecosystem.

ethernet.dstAddr Action Parameters
192.168.1.1 forward port=245
192.168.1.2 forward port=177
192.168.1.3 drop

P4 switch pipeline
Receive packets on ingress ports
Parse packet headers
Apply match-action tables
Construct outgoing packet
Forward packet to egress ports

Data plane

Control plane

P4 switch P4 switch

P4 switch

SDN Controller

Incoming packets, eg.
110010011001111

Outgoing packets, eg.
10110111011111

Match+action table instances, eg.

Figure 1: Application context of P4 pipelines

52

About P41.1 About P4

include <core . p4>
include <v1model . p4>

header e t h e r n e t _ t {
b i t <48> dstAddr ;
b i t <48> srcAddr ;
b i t <16> etherType ;

}
e t h e r n e t _ t e t h e r n e t ;

parser ParserImpl (packet_ in packet ,
out headers hdr ,
inout metadata meta ,
inout standard_metadata_t smeta) {

s t a t e s t a r t {
packet . e x t r a c t (hdr . e t h e r n e t) ;
t r a n s i t i o n accept ;

}
}

c o n t r o l Ing re s s (inout headers hdr ,
inout metadata meta ,
inout standard_metadata_t smeta) {

a c t i o n forward (b i t <9> port) {
standard_metadata . egress_spec = port ;

}

t a b l e dmac {
a c t i o n s = { forward ; }
key = { hdr . e t h e r n e t . dstAddr : exac t ; }
s i z e = 5 1 2 ;

}
apply { dmac . apply () ; }

}

c o n t r o l DeparserImpl (packet_out packet ,
in headers hdr) {

apply { packet . emit (hdr . e t h e r n e t) ; }
}

SwitchImpl (ParserImpl () In g r ess () , DeparserImpl ())
main ;

Figure 2: A simple L2 routing protocol in P4 that
forwards packets based on their destination address
according to the current content of the routing table.

In Figure 1, the application context of
pipelines defined in the P4 language
is depicted. Being network protocols,
P4 programs describe the packet filter-
ing and forwarding activities to be per-
formed by network devices. Unpro-
cessed packets enter the pipeline on
the ingress-ports, and processed pack-
ets exit on the egress-ports. In most
pipelines, packets (bit-sequences) get
parsed (i. e. headers and payload are
identified) by a user-defined state ma-
chine, then packet headers are matched
against one or more key-value stores
(called match+action tables) as specified
by the control flow definition. When
a match is found, the corresponding
actions are performed to modify the
packet or the program state, or to trig-
ger device-dependent side-effects (e.g.
sending a message to the SDN con-
troller). Match+action tables (succes-
sors of conventional routing tables) are
received from the SDN controller at
runtime and may change repeatedly
during the operation of the switch.

Figure 2 depicts a small L2 rout-
ing protocol in P4. Here, packets get
parsed, then they are matched based on
their destination address and a suitable
egress port is selected according to the
match+action table instance. After the
processing, the now modified packet
gets forwarded to its destination.

1.2 Motivation

While software gives increased power for engineers to express their intent, the price of ris-
ing architectural complexity is the prevalence of faults and performance anomalies in shipped
products. For example, the survey of Kim et. al [2] concludes that testing correctness, and
guarantees of service quality (e.g. performance) are the most important problems in configura-
tion automatisation. Efficient development requires improved tooling for developers in order
to develop, troubleshoot and fine-tune efficient network setups proactively in development-
time instead of deployment-time. On the other hand, automatised troubleshooting can also be
utilised by the SDN controller automatically in deployment-time lessening the need for human
intervention. Apart from providing tooling support for developers, performance estimations
enable backend developers (e.g. T4P4S compiler project [3] at ELTE University, Hungary) to
compare efficiency of the compilation output against a theoretical optimum. By getting a clear
picture on the challenges of developing optimal backends for P4, developer experience can
then be used in a feedback loop to improve and extend the language itself.

Motivation

While software gives increased power for engineers to express their intent, the price of rising ar-
chitectural complexity is the prevalence of faults and performance anomalies in shipped products. For
example, the survey of Kim et. al [2] concludes that testing correctness, and guarantees of service quality
(e.g. performance) are the most important problems in configuration automatisation. Efficient develop-
ment requires improved tooling for developers in order to develop, troubleshoot and fine-tune efficient
network setups proactively in development-time instead of deployment-time. On the other hand, au-
tomatised troubleshooting can also be utilised by the SDN controller automatically in deployment-time
lessening the need for human intervention. Apart from providing tooling support for developers, per-
formance estimations enable backend developers (e.g. T4P4S compiler project [3] at ELTE University,
Hungary) to compare efficiency of the compilation output against a theoretical optimum. By getting a
clear picture on the challenges of developing optimal backends for P4, developer experience can then
be used in a feedback loop to improve and extend the language itself.

53

Static analysis

P4 source code

Hardware architecture
constraints

Functional verification

 Decomposed
P4 protocol

Action-formula mappings

 Target-agnostic
performance model

 Target-specific
performance model

Concrete performance
estimations

Verified functional properties, e.g.
bound execution, crash freedom

Configuration parameters, eg.
table sizes, packet lengths

Figure 2: Dataflow diagram depicting inputs, outputs and intermediate results of the P4 verifi-
cation framework in development

Related work

Our current work is only concerned with verification of switch behaviour in isolation. Before pro-
grammable switches, device-level verification meant model checking hardware implementations of pro-
tocols, and this was feasible as the protocols to verify were relatively simple. With arbitrarily complex
protocols in the SDN forwarding plane appeared new research challenges too. Examples of interesting
works on verification of software protocols are VigNat [4] implemented in C; verification of a data center
protocol in P4 [5]; and verification of P4 programs by first compiling them to Datalog [6]. We are yet
unaware of any approach that is able to automatically verify performance requirements on P4 protocols.

Methodology

The framework presented in this paper analyses P4 protocols accompanied by sufficient HW archi-
tecture descriptions to verify satisfaction of functional requirements (execution is bounded and crash-
free) and non-functional requirements (performance goals are reached). In this paper, we intend to
examine, synthesise, and build on two compositional methodologies in order to reach both goals.

In [7], the authors manually analyse the Ethernet protocol and a specific hardware architecture,
which are then synthesised into a sequence of primitive packet processing actions called elementary
operations (EOs) in order to quantify performance. We intend to automatise and apply the methodology
in this work to P4 pipelines, as these can also be naturally decomposed into primitive actions and extern
objects, which are dependent on the target network device.

To guarantee well-foundedness of the performance models, we need to show that the verified proto-
cols always halt in an accepting program state. In [8], the authors show that crash-freedom, bounded execu-
tion and certain filtering properties can be proved by symbolically executing protocols of the Click net-
work programming language. The authors utilise the composability of Click to avoid state-space explo-
sion and to effectively linearise the cost of the search. They perform the search for problematic memory
states in small pipeline components instead of the whole pipeline. As P4 pipelines are also composi-
tional, the aforementioned idea applies to P4 similarly: to reduce the search space, we can search each
parser blocks, control blocks, and user-defined actions in isolation, and only perform checks on the
whole pipeline.

Figure 2 depicts a high-level view on the dataflow of the proposed method. The inputs of our method
(to be supplied by its users) are the P4 protocol source code, the hardware architecture description, and
specific network configuration parameters. The framework verifies correctness of the source and other
functional requirements, followed by performance analysis. The performance estimates resulting from
this analysis can then be used to verify that non-functional requirements are also satisfied. Building on
the aforementioned research also allows us to validate our framework against the results in those works.

54

Conclusions

Scalability and vendor-independence gets more and more valuable for stakeholders in networking
technologies, and at the same time vendors are required by the market to keep development costs low by
moving from hardware to software. As a result, new technologies are emerging aiming to make the SDN
data plane more programmable. Among them is P4, a language for describing switching pipelines. Our
ongoing research effort aims to develop a framework to verify functional and non-functional require-
ments of network protocols defined in P4. In this paper, we presented a methodology based on [7]
and [8] to check crash-freedom and bounded execution properties of P4 protocols, and estimate lower and
upper bounds of packet processing time in order to verify that performance goals were reached. We be-
lieve that future iterations of this technology will bring user experience and efficiency of P4 users to new
levels, and also provide deeper insights to developers of the language ecosystem.

Acknowledgements

The research has been supported by the European Union, co-financed by the European Social Fund
(EFOP-3.6.2-16-2017-00013).

References

[1] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig. Software-
Defined Networking: A Comprehensive Survey. Proceedings of the IEEE, 103(1):14–76, Jan 2015.

[2] Hyojoon Kim, Joshua Reich, Arpit Gupta, Muhammad Shahbaz, Nick Feamster, and Russ Clark.
Kinetic: Verifiable Dynamic Network Control. In Proceedings of the 12th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’15, pages 59–72, Berkeley, CA, USA, 2015. USENIX
Association.

[3] Sándor Laki, Dániel Horpácsi, Péter Vörös, Róbert Kitlei, Dániel Leskó, and Máté Tejfel. High speed
packet forwarding compiled from protocol independent data plane specifications. In Proceedings
of the 2016 ACM SIGCOMM Conference, SIGCOMM ’16, pages 629–630, New York, NY, USA, 2016.
ACM.

[4] Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Katerina Argyraki, and George Candea. A For-
mally Verified NAT. In Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication, SIGCOMM ’17, pages 141–154, New York, NY, USA, 2017. ACM.

[5] Lucas Freire, Miguel Neves, Alberto Schaeffer-Filho, and Marinho Barcellos. Poster: Finding vul-
nerabilities in p4 programs with assertion-based verification, 10 2017.

[6] Nick McKeown, Dan Talayco, George Varghese, Nuno Lopes, Nikolaj Bjorner, and Andrey Ry-
balchenko. Automatically verifying reachability and well-formedness in p4 networks. Technical
report, September 2016.

[7] A. Sapio, M. Baldi, and G. Pongrácz. Cross-Platform Estimation of Network Function Performance.
In 2015 Fourth European Workshop on Software Defined Networks, pages 73–78, Sept 2015.

[8] Mihai Dobrescu and Katerina Argyraki. Software dataplane verification. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementation, NSDI’14, pages 101–114, Berke-
ley, CA, USA, 2014. USENIX Association.

55

