View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Szeged

Finding Matching Source Code Elements
in an AST Using Position Information

Gébor Szoke

To decrease software maintenance cost software development companies use static source
code analysis techniques. Static analysis tools are capable of finding potential bugs, anti-
patterns, coding rule violations and they can enforce coding style standards. To achieve this the
tools create a hierarchical representation of the source code called Abstract Syntax Tree (AST).
In this structure each node of the tree denotes a construct occurring in the source code. The
AST can be represented in various ways and most static analysis tools build their own AST
representation, typically which fits them the best for their given purpose.

Sometimes it is necessary to create a mapping between two different ASTs, e.g. finding
matching source code elements in an AST using just position information. We met this problem
in a project where we developed a refactoring tool which was meant to be able to refactor
coding issues based on source code position. In this study, we present an approach which
addresses this problem. Our solution takes source code position and type information of a node
from one AST and uses this information to reverse search the matching node on the other AST.
To make reverse searching possible, a spatial database is used, which is created by transforming
the source code into geometric space. Line numbers and column positions from the AST are
used to define areas. These areas are used to create R-trees, where area based reverse searching
is possible.

- . A T ——
Third-party bug detection tool : input input I(Refactoring tool
1

Buggy sourcep
codeplement

AST, index R-Tree search i findings
Bugpndicated |
by source code @ ot

position

To evaluate our approach we use the output of the PMD [1] source code analyzer tool and
use its bug report’s position information as the source data and then we pick the Columbus [2]
AST as target AST to find the matching source code element in the syntax tree. We used this
technique in a project, where the found element was used as input in an automated refactoring
transformation on the target AST. The transformation modified the syntax tree in a way which
fixed the bug reported by the PMD static analyzer tool. As the final step, the refactored version
of the source code got generated from the target AST and developers could review the changes.

The evaluation showed that our approach can be adapted to a real-life scenario, and it can
provide viable results. Our tool was used in a project where it assisted in more than 4,000
automated refactorings covering systems ranging from 200 to 2,500 kLOC.

: 1
I 1
I —— 1
1 P \|> e, . !
| H : .
1 AST, D o — E — !
: Sourceffode ﬁl buildp nput : :
I Coamns

1

1

1 |

I H H

1

1

1

[

1

| : :

: spatialp i Reverse- —> ———+—> output
ldetection 1

1

1

1

T

1

]

References
[1] PMD website: https://pmd.github.io/

[2] Ferenc, Rudolf and Beszédes, Arpéd and Tarkiainen, Mikko and Gyiméthy, Tibor, Columbus
— Reverse Engineering Tool and Schema for C++, Proceedings of the 18th International Confer-
ence on Software Maintenance (ICSM’02), pp. 172-181, 2002.

59

https://core.ac.uk/display/267306751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

