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ABSTRACT 
 
For more than 30 years the scheme whereby bone marrow haematopoietic stem cells give rise 

to the many different types of blood and immune cells has been represented as a lineage tree 

diagram. In this model, haematopoietic stem cells follow a preferred route to each of the end 

cell types and gradually restrict their other lineage options via a series of intermediate oligo-

potent progenitors. Recent findings of lineage biases or affiliations within haematopoietic 

stem and progenitor cells that are either pluripotent or uni-potent show that a continuum of 

fate options is open to haematopoietic stem cells. These results support the view that in order 

to close down developmental options, haematopoietic stem cells can make an immediate 

lineage choice rather than become gradually committed as they progress step-wise through a 

series of intermediate progenitors. In this scenario, there is inherent versatility in that 

developing cells are still able to move sideways to adopt an alternative lineage fate. Here we 

examine the information that is leading towards this very different viewpoint of blood cell 

development. 

 

  



INTRODUCTION 

A textbook account of haematopoiesis has been in existence since the early 1980s.  The 

model, often referred to as the ‘classic model’, is hierarchical, with self-renewing pluripotent 

haematopoietic stem cells (HSC) at the apex. These cells give rise to haematopoietic 

progenitor cells (HPC) and a tree lineage map depicts the progressive restriction of their 

developmental options via a series of bifurcations.1 The first such bifurcation is when the 

progeny of HSC become either common lymphoid progenitors (CLP), that generate lymphoid 

cells, including  T and B lymphocytes and natural killer cells, or common myeloid 

progenitors (CMP), that become myeloid cells including all other cell lineages. A plethora of 

variants of the ‘classic model’ have been proposed,2 some of which challenge its cardinal 

properties. In 2008, Graf emphasised the need to re-wire our ideas of haematopoiesis.3 

In 2009, we argued that a continuum of fates is available to HSC2,4 and our view of the 

architecture of haematopoiesis was the pair-wise model, shown in Figure 1. In contrast to 

tree-like models, this model envisages HSC as being able to commit directly to a lineage 

option without the need to sequentially restrict alternative fates (see later). Another aspect of  

this model is its emphasis on close relationships between cell lineages. The lineage options 

available to bi-potent cell populations, as revealed by colony-forming assays of bone marrow 

cells using semi-solid medium, and the incomplete sets of options available to other 

progenitor populations were assumed to indicate close relationships between pathways. Sets 

of potencies that overlapped were combined and shown in our model.2,5 The shared cell usage 

of transcription factors and responsiveness to promiscuous cytokines6 accord with the 

particular close relationships between cell lineages. Transcription factors can promote the 

development of a group of adjacent cell types, can suppress the development of cells lying on 

either side of a fate or set of fates and can divert the development of a progenitor that has 

provisionally adopted a fate to an adjacent fate.2 As a result, the concerted action of multiple 



transcriptions factors might narrow fate trajectories in a centrifugal manner until only one 

option remains.2 

Haematopoietic stem cells and various progenitors are heterogeneous population of cells 

Conventionally, HSC and populations of HPC are shown to be phenotypically homogeneous, 

or ‘ring-fenced’, by the use of a panel of antibodies to cell surface markers [Figure 2]. Mouse 

HSC lie within a very small fraction of bone marrow cells that lack expression of cell lineage 

markers (Lin-) but express the Sca-1 antigen and the receptor for the stem cell factor CD117 

or c-kit; they are thus called LSK. Further analysis with additional markers shows that LSK 

include the following: CD150+ CD48- HSC;  CD150- CD48- multipotent progenitors (MPP); 

CD150- CD48+ HPC1; CD150+ CD48+ HPC2 and CD48+ CD135+ (Flt3+) lymphoid-primed 

multipotent progenitors (LMPP). Furthermore, on the basis of CD34 expression, HSC are 

subdivided into a) CD150+ CD48- CD34- cells capable of reconstituting the blood cell system 

of a lethally irradiated mouse long-term (LT-HSC); and b) CD150+ CD48- CD34+ short term 

(ST-HSC) (reviewed in 7). One difficulty with compartmentalising cells in this manner is a 

lack of knowledge about the functions of some of these surface molecules during 

developmental progression. For example, the cellular functions of CD34, CD48 and CD150, 

and of markers such as Ly6D and SiglecH that are used to subdivide HPC in the case of early 

progenitors with lymphoid and myeloid potential (EPLM), are not known.8,9 

Can HSC be described simply as either LT-HSC or ST-HSC? The first indication that this is 

not the case was the identification of HSC with lineage biases. Myeloid- and lymphoid-biased 

mouse HSC have been identified by transferring single cells into irradiated mice. Myeloid-

biased HSC express a higher level of CD150 than lymphoid-biased HSC and exclude the 

DNA-binding dye Hoechst 33342 more effectively. The surface markers CD41 and CD86, 

respectively, have also been used to denote myeloid- versus lymphoid-biased HSC.10,11 

Myeloid-biased HSC predominate in aged mice, in which the supply of lymphoid-biased 



HSC appear to have been exhausted as a result of more extensive proliferation.12 Using 

reconstitution experiments, the Jacobsen group described a mouse HSC that was biased 

towards platelets and myeloid cells, expressing von Willebrand factor and requiring 

thrombopoietin for its maintenance. Cells that did not express von-Willebrand factor were 

lymphoid-biased.13 

Mouse HSC express the receptors for macrophage colony-stimulating factor (M-CSF) and 

erythropoietin (Epo) and the fms-like tyrosine kinase 3 (Flt3), which binds the 

lympho/myeloid-affiliated Flt3 ligand (Flt3L).14-17 The receptors for M-CSF (CD115) and 

Epo (Epo-R) are expressed by HSC; some HSC co-express the M-CSF receptor and Flt3 and 

co-expression of the Epo-R and Flt3 mRNAs was rarely seen.15  Figure 3 therefore shows 

HSC as a mixed population of cells. As discussed later, M-CSF, Epo and Flt3L have been 

shown to instruct lineage choice and therefore expression of the receptors by HSC is 

indicative of lineage affiliation and/or commitment. 

Using in vitro culture experiments, Notta and colleagues examined the extent to which human 

HSC are already lineage-affiliated by mapping the fates of single CD34+ cells. For adult bone 

marrow, they observed that cells with uni-potent myeloid or erythroid potential predominated 

alongside some multipotent cells. There were few oligopotent progenitor intermediates in 

adult bone marrow, but foetal liver contained large numbers of HPC with 

megakaryocyte/erythroid/myeloid and megakaryocyte/erythroid fates. These findings led to 

the proposition of a ‘two-tier’ hierarchy with different routes for cell lineage development 

during foetal and adult haematopoiesis.18 In contrast, Kauts and colleagues have argued that 

HSC in the mouse embryo produce blood cells without the need for intermediate progenitors, 

and that adult blood cells are produced via intermediate progenitor populations.19 



If we accept that lineage-affiliation occurs as early as the HSC stage of haematopoiesis, then 

the HPC down-stream of HSC that have been ring-fenced as multipotent are most likely a 

mixture of cells with different lineage potentials. This has indeed been shown to be the case 

for some mouse populations. LMPP were described as primitive cells with little potential for 

megakaryocyte and erythroid development.20 LMPP have now been divided into lymphoid-, 

myeloid- and dendritic cell lineage-biased progenitors21 and their fate is determined with the 

siblings of a single cell often sharing the same fate. EPLM were described as cells lacking 

megakaryocyte and erythroid potentials and able to generate T and B lymphocytes, NK cells, 

dendritic cells and macrophages.22 Phenotypic analysis using Ly6D, SiglecH and CD11c has 

revealed that EPLM comprise four subpopulations with distinct lineage developmental 

biases; the population of cells retaining the most lineage options as a whole expresses none of 

the above markers and were called “triple negative” EPLM. RNA sequencing of single triple 

negative EPLM subpopulation revealed that genotypically they already have either myeloid, 

dendritic cell or lymphoid signatures, with extremely few having a combined lymphoid and 

myeloid potential.8 

The CMP population is viewed as giving rise to all myeloid cells. However, the use of an 

optimised single cell in vitro assay has shown that human CMP are a mixture of cells with 

either myeloid, erythroid or megakaryocyte developmental potential.18 Hoppe and colleagues 

have analysed RNA expression data from individual murine HSC throughout their 

development towards megakaryocytic, erythroid and myeloid cells and concluded that CMP 

are a mixture of bipotent granulocyte/monocyte (GMP) and megakaryocyte/erythroid (MEP) 

progenitors.23 Paul and colleagues have examined, at the single cell level, the transcriptional 

heterogeneity and lineage commitment of myeloid progenitors from normal as well as mice 

in which myelopoiesis had been perturbed by knocking out the myeloid regulator Cebpα. 

Single bone marrow progenitors were sorted into 7 clusters with the transcriptional properties 



of neutrophils, basophils, eosinophils, monocytes, dendritic cells, erythrocytes and 

megakaryocytes.  In total, 18 different populations were identified with variable degrees of 

specification towards these pathways. Normally, cells with mixed gene expression profiles 

were not observed but were present when Cebpα had been knocked out, revealing that mixed 

states are possible.24 These studies using recently-developed single cell genomic analysis 

highlight the fact that phenotypically ring-fenced populations can nevertheless be 

genotypically and developmentally heterogeneous.  

From all of the above there is the need to move away from a tree-like depiction of 

haematopoiesis which does not envisage the direct commitment of HSC to a cell type. 

Another conclusion from all of the the above is that the distinction between HSC and HPC 

has become somewhat blurred, and perhaps redundant. HSC can no longer be defined strictly 

by their lack of a lineage affiliation coupled invariably to a capacity to self-renew. 

Additionally, Hofer and colleagues have highlighted that the hallmarks used to delineate HSC 

and HPC, namely self-renewal and the extent of multi-potency as revealed by cell 

transplantation experiments and in vitro assays, may not be features that occur naturally in 

these cells.25 The nomenclature used to describe LMPP, EPLM and CMP is misleading, 

particularly that each of these populations is a mixture of cells. Perhaps we should describe 

all cells that give rise to the haematopoietic system as progenitors that are either multipotent, 

termed HPC-MP or with a designation regarding their lineage affiliation, for example HPC-E 

as to erythroid. 

The pair-wise model has been annotated in Figure 3 to show that HPC have been sub-divided 

into cells with more restricted, including uni-potent, lineage options. The new sub-divisions 

combine data from studies of human and mouse cells and also the various means of 

identifying individual cell populations, including global transcriptome analyses, 



transplantation experiments to measure lineage biases and single cell culture experiments. 

Uni-lineage biases or affiliations that are evident at the HSC stage lead to threads of 

development pathways that are commensurate with cells not having to progress to an end-cell 

type via a series of intermediate and oligopotent progenitor states. In essence, cell lineage 

commitment can occur at the level of HSC which is in keeping with the spectrum of options 

that is available in the pair-wise model. Both these matters have important implications for 

how HSC determine their fate. There are two possibilities. First, that lineage fate is 

determined in a cell-autonomous manner and therefore set by the genetic/epigenetic nature of 

the cell. The second is that fate is influenced by environmental factors such as cytokines or 

the cell’s interactions with stromal cells. In favour of the second argument, discussed later, is 

the fact that cells do not have a ‘mind’ of their own and are not capable of “making 

decisions”. They are essentially ‘social’,  responsive to nurturing and functioning for the 

benefit to the whole organism. 

Why might experimental approaches have misled mapping haematopoiesis? 

Commitment at the level of HSC questions the validity of information from assays in which 

HPC were dispersed in semi-solid agar or methycellulose medium and colonies observed 

containing many different cell types. The founding colony-forming cell is clearly oligo-potent 

and the nature of mature cells within the various types of colonies has underpinned tree 

lineage maps for haematopoiesis. Whilst the colony assay was the best available at the time, 

the mixtures of mature cells seen in vitro appear now to have misled us as to how progenitors 

behave in vivo. Of course, what happens in vitro might be very different to what happens in 

vivo, particularly as the in vitro experiments are performed in 5-10% CO2-in-air incubators 

with 20% oxygen; conditions very different from the niches that cells occupy in vivo. 

Moreover, single cells dispersed in agar are clearly out of their normal social environment 

with agar not a substitute for extracellular matrix. In particular, the heterogeneity within the 



in vivo microenvironment that may influence the restriction of lineage options is impossible 

to replicate in vitro. 

The transfer of bulk and purified sub-populations of HSC into an irradiated mouse and the 

variable capacity of these cells to reconsitutute blood cell lineages has also been used as an 

assay to map haematopoiesis. There are also numerous concerns regarding the use of this 

assay. The engraftment efficiency, that is the proportion of transferred cells finding a suitable 

microenvironment and repopulating hosts, is frequently low. These concerns can be 

overcome by transfers of single cells or by injecting HSC together with bone marrow stromal 

cells directly into the bone marrow cavity. Perhaps of greater concern is the fact that recipient 

mice need to be depleted of endogenous haematopoiesis, frequently by irradiation. This is a 

very stressful procedure that kills most hematopoietic cells and results in the release of 

cytokines and extracellular material and damage to the tissue niches that support 

hematopoiesis. The niches that HSC and progenitors riside in are known to be heterogenous  

and, as alluded to above, the availability of haematopoietic cytokines within niches might 

well determine the lineage bias/affiliation of HSC and HPC (see also later).  Recent studies 

have used in vivo genetic marking of HSC/HPC, thus enabling the investigation of the 

dynamics of steady-state haematopoiesis, in some cases at the single-cell level without the 

need for irradiation.26-28 Interestingly, the results obtained from these investigations suggest 

significant differences between steady-state physiological haematopoiesis and that observed 

following transplantation into irradiated animals. Thus, while reconstitution of the depleted 

haematopoietic system after transplantation occurs through the expansion and differentiation 

of a small number of donor HSC, the normal replenishment of blood cells seems to involve a 

larger number of HSC clones, which are successively recruited to regenerate mature 

haematopoietic cells.28 In addition, steady-state haematopoiesis seems to be sustained to a 

large extent through the contribution of multi- and oligo-potent HPC, rather than HSC.28,29 



These differences between physiological and transplantation-based haematopoiesis could be 

the result of the different engraftment capabilities of various HSC clones and could be 

consequences of the changes that occur in the haematopoietic niches after irradiation. 

Steady state haematopoiesis in adult mice is most often the model that is studied to provide a 

map of haematopoiesis. But, how blood cell types are produced in early life, during 

established steady state and during infection may well differ. For example, there are very few 

cells with dual lineage potential in the bone marrow of humans and adult mice whereas oligo-

potent cells are frequent in the human foetal liver.18,30 Two studies in zebrafish and mice have 

used multicolour approaches to track the clonality of HSC. The zebrafish provides an insight 

to the early life of HSC and the analysis of colour ‘bar codes’ has shown that a relatively 

small number (20-26) of HSC clones is generated. A reduced clonal diversity was observed 

in the blood pool of zebrafish during stress, indicating that further clonal selection of a small 

number of selected HSC repopulate the marrow after injury. A small number of HSC clones 

has been proposed for mammalian models. As HSC arise, perhaps the clones generated 

acquire, or evolve, the uni-potent propensities necessary to generate all the different types of 

blood and immune cells, to ‘set’ an established and complete pattern of diversity. Even so 

and as mentioned above, mixed lineage states were observed when haematopoiesis was 

perturbed in the adult mouse, by Cebpα knock-out,24 which may mean that propensities can 

be re-set in a particular circumstance. 

The nature of the trajectories available to HSC 

Affiliation of HSC/HPC to a single fate does not preclude there being particular relationships 

between lineage trajectories. As previously mentioned, the identification of cells that share 

just two particular lineage options has been a long standing feature of the outcomes from 

many experiment studies. A prime example of this is that primitive haematopoiesis is bi-



lineage in nature with megakaryocyte/erythroid progenitors emerging in the mouse yolk sac 

at embryonic day 7.25, along with megakaryocytes and primitive erythroid progenitors.31  

Holtzer argued in favour of bipotent lineage relationships from the point of view that cells 

can only make either/or type decisions32 and support for the notion of bi-potency at a 

particular developmental moment has been provided by single-cell RNA-Seq analysis of the 

lineage status of cells. Olsson and colleagues analysed the lineage states of MPP and 

observed bi-potential patterns of gene expression during myelopoiesis. In particular, GMP 

have low-level expression of the mRNAs for Gfi1 and Irf8 and increased expression of these 

genes coincides with, and appears to be necessary for, neutrophil and monocyte specification, 

respectively. Accordingly, mixed lineage cells appear to be poised for binary fate choices. 

The above investigators have proposed that bi-lineage expression states are meta-stable, due 

to bursts of alternative lineage gene expression, and are obligatory for cell-fate 

specification.33 

Velten and colleagues have constructed developmental trajectories by integrating 

transcriptomic data obtained from single-cell RNA-seq with data from single cell cultures to 

provide compelling evidence that lineage commitment of human HSC is a continuous 

process.30 Genes relating to the degree of transcriptome priming were clustered into modules 

which were then plotted against the extent of lineage-specific priming. The data fitted the 

pair-wise/continuum model of haematopoiesis2 whereby cell lineages that are closely related 

were placed in the order B cell, monocyte/dendritic cell, neutrophil, eosinophil/basophil/mast 

cell, megakaryocyte and erythrocyte. In contrast to Olsson and colleagues, Velten and 

coleagues observed very few cells with a dual-lineage transcriptomic state and concluded that 

primed MPP make a direct transition towards a uni-lineage transcriptome state. They likened 

their module to Waddington’s epigenetic landscape model34 with barriers between lineages 

that are near neighbours arising early, and the cells following valleys with the barriers 



becoming more pronounced as cells progressed towards an end-cell type. Accordingly, cells 

at early stages of development are viewed as able to cross into the adjacent valley rather than 

having to follow their primary trajectory. In other words, the transition from one stable cell 

state to another does not need to be sequential and cells can inter-convert to an adjacent fate, 

particularly at early stages of development. 

The availability of lineage options to either the left or right of a developmental trajectory is 

supported by the studies of Nestorowa and colleagues.35 By single-cell RNA sequencing, they 

profiled more than 1600 single haematopoietic stem and progenitor cells (HSPC), and then 

built expression maps to reveal the changes relating to the early stages of differentiation 

along the erythroid, granulocyte/macrophage and lymphoid pathways. Nestorowa opted to 

construct broad trajectories for the progression of HSC to lineage restricted progenitors with 

immature cells having the option of moving sideways.  This sideways plasticity adds further 

to the debate about whether cells do just follow a single, preferred and shortest trajectory to 

an end cell type.  

An interesting question is whether there is a hierarchy to the availability of options of HSC.  

As early as 1981, Nicola and Johnson argued that commitment to megakaryocyte and 

erythroid differentiation was an obligatory step during the development of HSC and that 

erythroid cells were invariably present in mixed colonies of bone marrow-derived cells plated 

in semi-solid medium.36 Sanjuan-Pla and colleagues have argued that a platelet-biased stem 

cell resides at the apex of the haematopoietic hierarchy13 and in particular that 

megakaryocytes and HSC share key transcription factors.37 The myeloid-based model of 

haematopoiesis proposed by Kawamoto and Katsura  postulates that myeloid cells are 

prototypic and the myeloid activities are modified or switched-off to give rise to the more 

specialised B and T lymphocytes and erythroid cells.38 That ontogeny might recapitulate 

phylogeny supports this viewpoint whereby the hemostatic function of platelets may be part 



of the angiogenesis program in development and macrophages evolved as a primordial 

mechanism for the elimination of apoptotic cells generated as part of development. This 

function of macrophages would precede their phagocytic function as part of natural 

immunity. Specific immunity associated with lymphocytes clearly appeared later in ontogeny 

and phylogeny than the phagocytic capacity of macrophages. However, evolution might 

merely have added to the spectrum of options open to HSC as opposed to instilling a genomic 

hierarchy. 

To add to the debate about trajectories, some investigators have argued that the ability of 

HSC/HPC to choose a particular cell fate varies during the cell cycle.39 In this case, noise 

relating to random variations in the levels of transcription factors has been postulated to 

control lineage choice. Additionally, cell fate decisions in model organisms such as 

Drosophila and C. elegans are controlled by asymmetric cell divisions; and these may also 

play a role in T cell fate and haematopoiesis.40 In a more general sense, cells are inherently 

dynamic, as double negative (DN) 1 and DN2 cells that have developed some way towards 

becoming mature T cells can still give rise to natural killer and myeloid cells.22,41 

The role of the epigenome 

One piece of evidence that a continuum of options is open to HSC is that just after cell 

division the chromatin of human CD34+ HPC is completely devoid of the repressive histone 

mark H3K27me3. In terms of the timing of the recruitment of the transcription factors that 

play a key role in regulating myeloid (C/EBPα, PU.1) versus erythroid (GATA-1) 

differentiation42 [Figure 4] this aspect of chromatin structure is important for lineage 

specification. Arinobu and colleagues have argued that activation of PU.1 and GATA-1 

within HSC specifies myeloid/lymphoid versus myeloid/erythroid fates, respectively.43 The 

use of PU.1-GFP mice has shown that M-CSF stimulates expression of PU.1 in some LT-



HSC thereby eliciting myeloid lineage specification.16 As considered later, G-CSF/M-CSF 

and Epo are reported to be instructive to the myeloid and erythroid pathways, respectively 

(14,16,44 and see below). Upon treatment of CD34+ HPC with G-CSF/M-CSF and Epo, the 

appropriate lineage-affiliated transcription factors (see above) are recruited to DNA just after 

DNA replication. Cytokine-driven differentiation was suppressed by increasing H3K27me3 

levels or blocking DNA replication.42  A caveat to the above is that by demonstrating that 

random PU.1 to GATA-1 protein ratios do not initiate lineage choice, Hoppe and colleagues 

have argued that PU.1 and GATA-1 merely reinforce a choice that has already been made.23 

Even so, there is a “pecking-order” to events, and the accessibility of appropriate 

transcription factors to DNA is clearly a pre-requisite of whether transcription factors instruct 

or reinforce lineage choices (Figure 4).  

The findings of Roy and Sridharan45 support the importance of chromatin marks. They 

examined the epigenome to model the relationship between haematopoietic cell types and 

chromatin-level decision points for diversification. They captured the dynamics of the state of 

chromatin by using a clustering approach, identifying chromatin modules as a set of gene loci 

with the same chromatin activating and repressive histone modifications.45 Four chromatin 

marks, including enhancer-enriched (H3K27ac, H3K4me1 and H3K4me2) and promotor- 

enriched (H3K4me3) marks, were examined for 15 types of haematopoietic cells. Closely 

related cell types had modules that were more similar than those for distantly related cell 

types. For example, each of the following groups of cell types - immature erythroid 

cells/mature erythroid cells, GMP/macrophages/monocytes and CD4/CD8 T lymphocytes - 

have marks that are more similar to one another that to any other cell types.  For the future, 

more details of the dynamic interaction between chromatin marks may well reveal that the 

erasure of repressive marks and addition of activating marks leads either to the expression of 



genes encoding transcription factors or to recruitment of these factors to DNA which, in turn, 

affect lineage specification. 

Interest in the importance of the epigenome for lineage specification extends to microRNAs 

(miRNAs). There are many new classes of noncoding RNAs, including both enhancer and 

antisense, which are important for the regulation of haematopoiesis and disease. A single type 

of miRNA can interact simultaneously with many targets thereby influencing the 

transcriptional heterogeneity of cells and alterating various signalling pathways and cell 

functions. MiRNAs are therefore viewed as possible key triggers of cell fate. In keeping with 

miRNAs orchestrating haematopoiesis is that comprehensive profiling of miRNAs with 

regard to developmental hierarchy has been used to infer the relationships between cell 

lineages and the functional similarities of cells.46 Additionally, long non-protein-coding 

RNAs have been shown to play a role in cell plasticity in the trans-differentiation of 

osteoblasts to adipocytes (reviewed in 47). 

Do haematopoietic cytokines instruct cell lineage choice? 

The first evidence for a humoral factor that influences haematopoiesis, one that promotes 

erythropoiesis, was published more than 60 years ago. Since then, a plethora of 

haematopoietic cytokines has been characterized. Other extra-cellular factors, such as cell-

adhesion or extra-cellular matrix molecules, might also influence haematopoietic lineage 

decisions. Here we will focus on cytokines as prototypic examples of environmental signals 

that regulate the lineage outcomes of HSC/HPC. Haematopoietic cytokines have been shown 

both to regulate the survival and proliferation of HSC/HPC, and to influence their lineage 

choices. However, their roles as lineage-determining factors remain controversial. When it 

comes to regulating fate choice at the single cell level, cytokines can be either instructive or 

permissive. An instructive cytokine acts on an un-committed and oligopotent HPC to induce 



a signaling cascade and activate a genetic program that leads to the commitment of the cell to 

a particular haematopoietic lineage (Figure 5). In contrast, a permissive cytokine acts as a 

selection factor, promoting the survival and/or proliferation of some of its progeny. In this 

latter model, lineage commitment occurs in a cell-autonomous manner and independently of 

a particular cytokine. Proponents of the permissive model often refer to the commitment of 

progenitors as “stochastic”, a term that has caused some misunderstanding when used in 

developmental biology. 

The discovery of low level and promiscuous expression of lineage-specific genes in early 

HPC (lineage priming)48 led to the hypothesis that random initiation of a self-reinforcing 

lineage-specific genetic program leads to the commitment of HPC to that lineage and to the 

subsequent expression of cytokine receptors that then facilitate the permissive function of the 

corresponding cytokines (Figure 5, right panel). However, this initial lineage specification 

could be the result of other extra-cellular cues or epigenetic assymetries originating from the 

progenitor’s developmental history; factors that cannot be considered as truly random, but 

rather as deterministic. Therefore, when discussing the permissive model, we herein refer to 

the lineage commitment of HPC merely as independent of the cytokine in question.   

Whether a cytokine is instructive or permissive for a lineage, its presence or absence will 

influence the production of lineage-committed HPC in vivo or in vitro, but its exact mode of 

action is unknown in most cases. Identifying the precise role of cytokines in haematopoietic 

cell fate decisions is clinically significant, as this might lead to interventions to increase 

haematopoietic cell production, but is technically challenging.  This has led to apparently 

contradictory results and has fueled a long-standing and lively debate. Genetic deletion of 

cytokines or their receptors reduces the developmental output of haematopoietic lineages 

regulated by the corresponding cytokines, with the reductions ranging from modest to severe. 

However, deletion of a single cytokine or cytokine receptor never results in a complete 



absence of a haematopoietic lineage. This has been considered as evidence for the permissive 

action of cytokines but could also be the result of compensatory mechanisms and of some 

level of redundancy in vivo. Over-expression of anti-apoptotic genes, such as Bcl2, has 

sometimes been sufficient to rescue the differentiation of HPC to the affected lineage, as seen 

with T cell development in the absence of IL-7.49 These results identify a role for these 

cytokines as survival factors for the corresponding HPC and provide evidence for their 

permissive role. With regards to B cell development, Bcl2 over-expression is sufficient to 

rescue B cell generation in mice deficient in Stat5 expression (a crucial signaling mediator of 

IL-7 action),50 while in vivo over-expression of the cytokine Flt3L renders IL-7 signaling 

dispensable for commitment of Ly6D+ CLP and EPLM progenitors to the B cell fate.9 These 

studies have seriously challenged the hypothesis that IL-7 is the extracellular signal 

responsible for Ebf1/Pax5 transcription factor up-regulation and subsequent commitment of 

HPC to the B cell lineage, and suggest an exclusively permissive role for IL-7 in lymphoid 

development, but in vivo compensatory mechanisms cannot be excluded. 

Further transgenic approaches - by ectopically expressing cytokine receptors or through the 

generation of chimeric receptors - have attempted to investigate the role of haematopoietic 

cytokines in lineage decision of HPCs. For example, enforced expression of Epo-R in multi-

potent HPC did not result in increased erythroid production.51  And mice carrying a chimeric 

receptor comprised of the extra-cellular part of thrombopoietin receptor (mpl) and the intra-

cellular part of G-CSF receptor had normal numbers of both platelets and granulocytes, 

arguing against an instructive role of both cytokines.52 Similarly, replacement of the 

signalling domain of the G-CSF receptor with the corresponding domain of the Epo-R did not 

cause lineage skewing.53 Such experimental approaches have though provided some evidence 

for cytokine-mediated lineage instruction. Ectopic expression of M-CSF receptor in multi-

potent haematopoietic cell lines significantly changed their lineage bias.54 And, ectopic 



expression of the GM-CSF receptor in primary CLP and pro-T cells significantly increased 

their myeloid differentiation potential, although this was not the case for pro-B and MEP 

progenitors.55,56 Similarly, Flt3 over-expression in MEP led to up-regulation of the myeloid-

affiliated transcription factors Stat3 and PU.1 and differentiation of the cells towards 

granulocyte/macrophage lineages.57 Again, ubiquitous in vivo Flt3-ligand expression 

developmentally skewed LSK progenitors towards myeloid-lymphoid lineages and 

suppressed the generation of erythroid and megakaryocyte progenitors,58 indicating the 

possible instructive role of Flt3 signalling in early stages of haematopoiesis. Similarly, an 

instructive role of Epo has been shown by increasing the level of this cytokine in vivo.14 

These studies have illustrated that not only knock-out, but also over-expression of cytokines 

in vivo can provide valuable insight into their function as differentiation factors in 

haematopoiesis.17,58 The inconclusive, and in some cases conflicting results discussed, 

highlight the cell-context dependency of the response of progenitors to cytokine signalling, as 

well as the importance of investigating the role of cytokines at the single cell level in order to 

avoid misinterpretation of results due to the heterogeneity of progenitor populations. 

By separating daughter cells of bi-potent granulocyte-macrophage colony forming cells (GM-

CFC) after one division and assessing their developmental output after stimulation with G- or 

GM-CSF, Metcalf and Burgess in 1982 provided evidence for an instructive role of these two 

cytokines in the generation of granulocytes and macrophages, respectively.59 Since then, 

significant improvements in imaging technology and software have allowed the continuous in 

vitro tracing of cells and their progeny, enabling Rieger and colleagues to confirm these 

findings by unequivocally demonstrating the instructive role of G- and M-CSF cytokines on 

GMP progenitors.44 Even though these were in vitro experiments and focused exclusively on 

a bi-potent progenitor stage, they have provided proof that cytokines can instruct lineage 

choice and further highlight the importance of single-cell technology in shedding new light 



on old questions. Analyses at the single-cell level have also demonstrated M-CSF action on 

HSC can induce PU.1 and instruct their myeloid differentiation, rather than promoting 

survival or proliferation of daughter cells.16 Similarly, Epo can induce the initiation of a 

genetic program, including GATA1 expression, that commits multipotent HPC to the 

erythroid fate.14 

Identifying the instructive or permissive function of cytokines in haematopoietic lineage 

commitment is technically challenging and still remains less than conclusive for most of the 

cytokines and lineages studied. For a long time this debate has been of an “either/or” nature. 

However, experimental results indicate that the effect of cytokines on haematopoietic 

progenitors can be highly cell-context dependent. Flt3-ligand, for example, can act 

instructively on early progenitors, such as MEP or LSK,57,58 but permissively on downstream 

progenitors, such as CLP and EPLM, at least as regards their commitment to the B cell 

lineage.9 Such versatility in the activity of haematopoietic cytokines can be attributed to the 

particular genetic, epigenetic and signalling landscape of the progenitor cell on which the 

cytokine acts. This may partly explain some conflicting data on the instructive action of 

cytokines and it emphasizes the need to focus on how cytokine signals are integrated to the 

already existing transcription factor networks in haematopoietic progenitors. 

Furthermore, a particular cytokine might act in both instructive and permissive manners on 

the same HPC type, depending on its signal strength. It should be noted that most of the 

experimental results mentioned above showing a clear instructive function of cytokines are 

derived from in vitro experiments where the amount of cytokines used might have been 

above the level which an HPC experiences in vivo and in steady-state conditions. As 

previously, there is evidence that steady-state haematopoiesis differs significantly from 

haematopoiesis under stress conditions (e.g. irradiation, inflammation). Cytokine levels can 

increase significantly under stress conditions, not only locally but also systemically, which 



may expose HSC/HPC to stronger cytokine signals than they normally encounter in vivo. 

Strong signals could in turn affect the differentiation rate and/or lineage output of HPCs in a 

manner different from that occurring under normal conditions.  

Hence, it could be envisaged that during steady-state haematopoiesis, cytokines facilitate the 

continuous production of blood cells in normal ratios, mainly through their action as 

permissive factors. However, when the haematopoietic system needs to respond to an 

emergency, such as injury, bleeding, inflammation or infection, situations that require a 

prompt increase in the production of particular lineage(s), increased cytokine concentrations 

might trigger instructive actions of cytokines on the relevant HPC, inducing their 

differentiation towards the required lineage(s). This ability to alternate between instructive 

and permissive cytokine action might be one of the mechanisms that contribute to the 

immense adaptability and dynamic nature of haematopoiesis. This might help to explain 

some of the apparent discrepancies in the experimental data and their interpretations in which 

disruptions of cytokine signalling point mainly to a permissive function, whereas over-

expression of cytokines or cytokine receptors and in vitro cytokine treatments often suggest 

instructive roles. 

An interesting question arising from this interpretation is whether all haematopoietic lineages 

would require such an “emergency” instruction by cytokines. Due to the clonal nature of the 

adaptive immune response, only a very small proportion of lymphoid cells participate in the 

response to a particular immunological challenge. Therefore, cytokine-mediated instruction 

of bone marrow HSC/HPC to increase B cell output upon infection would not be 

advantageous (as is the case for erythrocytes, platelets and cells of the innate immune system 

in other stress conditions), since the vast majority of produced B cells would have an 

antigenic specificity irrelevant to the particular pathogen. A steady production of naïve B and 

T cells (which mostly occurs quite early in life) is sufficient to generate a pool of naïve 



lymphocytes able to respond to pathogens through clonal activation and subsequent 

immunologic memory. Thus, the hypothesis of stress-triggered instruction of haematopoiesis 

by cytokines would rather seem to apply to cells of the erythroid, megakaryocyte and 

myeloid lineages, and not to lymphocyte progenitors. 

Implications to the nature and origin of leukaemia 

A precise understanding of the events that establish and stabilise a cell’s differentiated status 

is essential to resolving how these become aberrantly wired to set a malignant phenotype. 

Often and to variable extents, the majority of leukaemia cells are undifferentiated. However, 

it has been clear for many years that the bulk of cells of each leukaemia belong to just one 

cell lineage, and leukaemias are categorised accordingly. Similarly, molecular and genetic 

analyses have shown associations between a certain genetic lesion and a particular sub-type 

of leukaemia, and of other cancers (reviewed in 60). Hence, there is an intimate association 

between a genotypic lesion and phenotype, and, as above, the cell lineage nature of the 

leukaemia cells. The cell targeted by an event(s) that initiates the leukaemia might well be a 

differentiated cell type, and this explains the association between a lesion and the leukaemia 

cells belonging to just one lineage. However, it was clear 40 years ago that chronic myeloid 

leukaemia, a disease that presents as an expansion of relatively mature myeloid cells, arises 

from transformation of an HSC that spawns an abundance only of myeloid cells. In short, the 

offspring of the transformed HSC are dumped down the neutrophil pathway. Other examples 

include common acute lymphoblastic leukaemia and acute promyelocytic leukaemia, in 

which the bulk of the leukaemia cells belong respectively to the B lymphocyte and neutrophil 

lineage and there is evidence of transformation of a HSC (reviewed in 7).  In keeping with 

this, the “cancer stem cell” theory has recently been discussed as the probable root cause of 

cancer. In this view, the genotypic alteration occurs in the stem cell compartment and the 

aberrant cancer stem cell produces abundant malignant cells of a specific phenotype. 



As argued previously, a landscape exists for normal haematopoiesis whereby HSC are able to 

commit directly to a particular cell lineage. We might presume that these cells are equally 

competent to commit to any one of the array of pathway options, by virtue of having a high 

degree of transcriptional plasticity. Hence, HSC are versatile in their capacity to populate the 

mature cell compartments. By contrast, the leukaemia stem cell (LSC)  appears to be biased 

towards or more competent to commit to just one lineage. Estimates of the proportion of LSC 

within a leukaemia, and CSC within other cancers, vary from very few up to 25%. However, 

the important point is that, whether few or a high percentage, they all give rise to one cell 

type, that is possibly related to their characteristic genetic lesion(s). A loss of versatility 

regarding the capacity of LSC to commit to any one of a number of lineage options might 

well be a cardinal feature of leukaemia, and other cancers (see Figure 6). Another possiblilty 

is that some of the progeny of a LSC can drive the leukaemia whereas others are non-

tumorigenic and cannot: a clone that is biased or committed directly to one pathway is 

generating the bulk of the leukaemia cells. The epigenome is of interest regarding both 

possibilities as, in part, cancers are epigenetically-driven, whereby dysregulation of histone 

modifications, DNA methylation and miRNAs act in concert with genetic abnormalities. 

Concluding remarks 

New findings support a movement away from describing the haematopoietic system as a 

strictly hierarchical tree lineage with intermediate and oligo-potent progenitors for each 

mature cell type. A continuum of lineage options appears to be directly available to HSC. 

Whilst HSC can affiliate to a lineage pathway immediately, their progeny remain versatile. 

HPC are able to step sideways developmentally, to follow a route to a different end cell. 

Perhaps we have come full circle to Waddington’s postulated viewpoint of an epigenetic 

landscape and, as considered above, he may well be right (Figure 4). Much water must pass 

under the bridge before a consensus can be reached as to how to best represent 



haematopoiesis; use of single cell technologies will be essential to provide an accurate map. 

But, the techniques that are generally used to interrogate the lineage options of a single cell 

themselves destroy the cell and, therefore, can only provide information about a cell at a 

single moment in time. It is important that this is borne in mind when unravelling trajectories. 

Also, a complex network of events including gene regulation, by more than 50 transcription 

factors, over 2000 cis-regulatory enhancers and cellular signalling are clearly important for 

the establishment and stabilisation of a cell phenotype. As a result of rapid advances in global 

profiling of cellular events combined with bioinformatics, understanding how this dynamic is 

altered to give rise to diverse cell types now seems more accessible. A bifurcating lineage 

tree model has for years led us to examine how a developing cell is committed to either one 

pathway or another. This has dramatically influenced our thinking, particularly as regards the  

lymphoid versus myeloid lineage choice.  By contrast, lineage commitment might now be 

best viewed as one of understanding how HSC reduce their effective potentiality. 

Presumably, pleiotropic cues elicit cascade responses that increasingly drive cells to acquire 

the functional and morphological features of a cell type. In this case, and as cells can step 

sideways, differentiation might proceed determination of a stable fate. 
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FIGURE LEGENDS 

Figure 1 A continuum or pair-wise model for haematopoiesis 

In 2009, we proposed that a continuum of fates is available to HSC.2 The model also 

envisages simple pair wise relationships between cell fates. We inferred close relationships 

between cell lineages from the different groups of fates that are available to a number of 

known intermediary progenitor cells, represented by a partial arc for each progenitor. The 

model is in keeping with decision-making at the level of the HSC. In this case and unlike the 

‘classic model’ the partial arcs would therefore represent options that are clandestine or latent 

such that cells that have made a lineage choice still have the capacity to move sideways to 

adopt an alternative, though closely related, fate. The figure is, with permission, from 2 © 

Macmillan Magazines Ltd. HSC, haematopoietic stem cell; LMPP, lymphoid-primed 

multipotent progenitor; EPLM, early progenitor with lymphoid and myeloid potential; DC, 

dendritic cell; NK cell, natural killer cell. 

Figure 2 Markers used to describe haematopoietic stem and progenitor cells  

Expression of CD135 (Flt3) is used to subdivide the Lineage markers-, Sca-1+, c-Kit+ (LSK) 

population of bone marrow cells into LT-HSC (Flt3-) and ST-HSC/MPP (Flt3+). Use of 

CD34 and Flt3 expression subdivides LSK cells into LT-HSC (CD34- Flt3-), ST-HSC 

(CD34+ Flt3-) and MPP (CD34+ Flt3+). HPC1 and HPC2  express the signalling lymphocyte 

activation molecules CD48 and CD150 as above.  HSC, haematopoietic stem cell; LT, long 

term reconstituting HSC; ST, short term reconstituting HSC; HPC, haematopoietic progenitor 

cell; LMPP, lymphoid-primed multipotent progenitor; EPLM, early progenitor with lymphoid 

and myeloid potential; CMP, common myeloid progenitor; GMP, granulocyte and 

macrophage progenitor; MEP, megakaryocyte and erythrocyte progenitor; CLP, common 

lymphoid progenitor. The following lineage potentials are shown: Meg, megakaryocyte; Ery, 



erythrocyte; Eos, eosinophil; Bas, basophil; Neut, neutrophil; Mono, monocyte; DC, dendritic 

cell; NK cell, natural killer cell. 

Figure 3 Haematopoietic stem and various progenitors are a heterogeneous population 
of cells 

The known sets of fates of lymphoid-primed multipotent progenitors (LMPP), early 

progenitors with lymphoid and myeloid potential (EPLM), common lymphoid progenitors 

(CLP), common myeloid progenitors (CMP) and other downstream progenitors, shown by 

the partial arcs, were used to construct the relationships between cell lineages in the pair wise 

model (see Figure 1). Cells that are marked with a red asterisk were each thought to be a 

homogeneous population of cells. They are now known to be a mixture of cells with the 

lineage affiliations B lymphocyte (B), dendritic cell (DC), monocyte (Mo), eosinophil (Eo), 

basophil (Ba), erythroid (E) and megakaryocyte (M), as shown by cells added to the arcs for 

LMPP,21 CMP18,23,24 and CLP/EPLM.8 The lineage affiliations seen regarding LMPP, EPLM 

and CMP have occurred even earlier in development, as early as at the level of the 

haematopoietic stem cell (HSC) as these cells are a heterogenous population of cells. There 

are HSCs that are lymphoid biased (Ly) and expressing the fms-like tyrosine kinase 3 

receptor (Flt3+)15, myeloid biased or committed (My)10 and expressing Flt315 and/or the 

receptor for thrombopoietin (TpoR+)13, committed to the erythroid pathway (E)18 and 

affiliated as to expression of the receptor for erythropoietin (EpoR+)14,15 and expressing the 

receptor for macrophage colony stimulating factor (M-CSFR+) and monocyte-affiliated 

(Mo)15,16. These lineage HSC biases or affiliations that are seen also for various downstream 

progenitors, from their heterogenous nature, are commensurate with HSCs not having to 

progress to an end-cell type via a series of intermediate and oligopotent progenitor states. 

Decision-making at the level of the HSC is very different from these cells and their progeny 

making a series of binary choices. A possibility is HSCs that are affiliated to/biased towards a 



particular lineage narrow fate trajectories in a progressive and centrifugal manner regarding 

adjacent options. DC/Pro-B, dendritic cell and B lymphocyte progenitor; Eo/B-CFU, 

eosinophil and basophil progenitor; GMP, granulocyte and macrophage progenitor; MEP, 

megakaryocyte and erythrocyte progenitor; Mon/B/DC?, monocyte, B lymphocyte and 

dendritic cell? progenitor; Mon/DC, monocyte and dendritic cell progenitor, NK/T, natural 

killer cell and T lymphocyte progenitor and NK/ILC, natural killer cell and inate lymphoid 

cell progenitor. 

Figure 4 Schema of some of the controls on myeloid specification 

According to the cell’s developmental stage, myeloid-specific clustering of the locus control 

region (blue circles) leads to clustering of the binding sites for transcription factors (TF) to 

allow efficient transcription of a gene(s) (shown by the arrow) that is/are associated with 

myeloid specification/development. Macrophage colony-stimulating factor (M-CSF) binding 

to its receptor (M-CSFR) stimulates expression of the master myeloid regulator PU.1 in some 

LT-HSC to effect myeloid gene expression.16 Chromatin that is globally devoid of the 

repressive histone marks (red triangle), such as H3K27me3, is essential to the recruitment of 

PU.1 as increasing H3K27me3 levels block M-CSF-induced differentiation.42 Having 

permissive histone marks (green triangle) is also important. 

Figure 5 Schematic description of the instructive and permissive models for cytokine 

function in haematopoietic lineage commitment. 

The upper part shows an un-committed haematopoietic progenitor (in grey) which has the 

potential to differentiate towards three different lineages (in colours). In the instructive model 

(lower left), the cytokine in question “instructs” the progenitor to differentiate exclusively 

towards one cell fate by inducing the initiation of the corresponding lineage-specific genetic 

program. In the permissive model (lower right), the progenitor retains its potential to generate 



all three downstream lineages and does so, either stochastically or under the influence of 

other extra-cellular cues. The cytokine acts as a selection factor, promoting the survival 

and/or proliferation of one lineage at the expense of the other lineages, which are 

nevertheless still generated from the progenitor. 

 

 

Figure 6. Schematic representation of the versatility of normal and leukaemia stem cells 

In A, a spectrum of options is available to normal HSC and they can commit directly to any 

one of the lineage options.  In B, a leukaemia stem cell, by virtue of a genetic insult, is shown 

to be restricted as to versatility and only able to commit directly, or is biased towards, a 

single or limited range of options, as shown by the green section of the arc. HSC, 

haematopoetic stem cell; LSC leukaemia stem cell;  T cell, T lymphocyte; NK cell, natural 

killer cell; B cell, B lymphocyte, DC, dendritic cell, Mon, monocyte; Neut, neutrophil; Eos, 

eosinophil, Bas/MC, basophil/mast cell; Ery, erythroid and Pl, platelets  
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