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A B S T R A C T

Callous-unemotional traits are characterized by a lack of empathy, a disregard for others' feelings and shallow or
deficient affect, such as a lack of remorse or guilt. Neuroanatomical correlates of callous-unemotional traits have
been demonstrated in clinical samples (i.e., adolescents with disruptive behavior disorders). However, it is
unknown whether callous-unemotional traits are associated with neuroanatomical correlates within normative
populations without clinical levels of aggression or antisocial behavior. Here we investigated the relationship
between callous-unemotional traits and gray matter volume using voxel-based morphometry in a large sample of
typically-developing boys and girls (N= 189). Whole-brain multiple regression analyses controlling for site,
total intracranial volume, and age were conducted in the whole sample and in boys and girls individually.
Results revealed that sex and callous-unemotional traits interacted to predict gray matter volume when con-
sidering the whole sample. This interaction was driven by a significant positive correlation between callous-
unemotional traits and bilateral anterior insula volume in boys, but not girls. Insula gray matter volume ex-
plained 19% of the variance in callous-unemotional traits for boys. Our results demonstrate that callous-un-
emotional traits are related to variations in brain structure beyond psychiatric samples. This association was
observed for boys only, underlining the importance of considering sex as a factor in future research designs.
Future longitudinal studies should determine whether these findings hold over childhood and adolescence, and
whether the neuroanatomical correlates of callous-unemotional traits are predictive of future psychiatric vul-
nerability.
General scientific summary: This study suggests that callous-unemotional traits have a neuroanatomical correlate
within typically developing boys, but not girls. Bilateral anterior insula volume explains up to 19% of the
variance in callous-unemotional traits in boys.

1. Introduction

The term callous-unemotional (CU) traits refers to a pattern of be-
haviors including a lack of empathy, guilt or remorse, shallow or de-
ficient affect, as well as a lack of concern about the person's actions or
one's own and others' feelings (i.e., limited prosocial emotions

(American Psychiatric Association, 2013)). High levels of CU-traits are
often observed in youths with severe aggression and antisocial beha-
vior. Therefore, CU-traits have mostly been studied in children and
adolescents with disruptive behavior disorders (DBDs, including op-
positional defiant and conduct disorder; (Blair, 2013; Frick et al.,
2014c)). Notably, children and adolescents with DBD form a very
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heterogeneous group in regard to etiology, associated behavioral
symptoms, developmental trajectories, future risk for impairment, or
response to treatment (Frick et al., 2014a; Frick et al., 2014c; Moffitt
et al., 2008). Devising a meaningful approach to subtyping antisocial
behavior has thus been of long-lasting clinical interest (Frick et al.,
2014b). While various approaches have been proposed, separating in-
dividuals based on levels of CU-traits is thought to delineate a beha-
viorally, genetically, and neurobiologically distinct subgroup within
antisocial populations (Barker et al., 2011; Bezdjian et al., 2011; Essau
et al., 2006b; Frick et al., 2003; Rogers and De Brito, 2016); for reviews
see (Blair, 2013; Frick et al., 2014c; Viding and McCrory, 2012). This
was likewise recognized within the latest version of the DSM by an
additional specifier to the diagnosis of conduct disorder termed ‘limited
prosocial emotions’ (American Psychiatric Association, 2013). Patients
qualifying for this specifier (i.e. those with elevated CU-traits) are at
high risk for the development of particularly severe, persistent, and
treatment-resistant forms of conduct disorder (Frick et al., 2014c).

While CU-traits have most commonly been studied in DBD popu-
lations, there is increasing evidence that CU-traits may be important in
community samples without DBDs, and that CU-traits can be elevated in
the absence of clinically-significant conduct problems (Fanti et al.,
2013; Frick et al., 2003; Herpers et al., 2012; Kumsta et al., 2012; Rowe
et al., 2010b; Viding and McCrory, 2012). CU-traits in youths without
DBDs have for example been related to subclinical variations of anti-
social behavior, impairments affecting peer relationships, quality of
life, hyperactivity and increased risk-taking (Barker et al., 2011; Frick
et al., 2003; Herpers et al., 2016; Pardini and Fite, 2010); for a review
see (Viding and McCrory, 2012). CU-traits in youths with or without
conduct problems are highly heritable and may carry independent di-
agnostic value (Barker et al., 2011; Frick et al., 2003; Herpers et al.,
2017; Kumsta et al., 2012; Rowe et al., 2010a; Viding and McCrory,
2012).

To date, studies investigating the neural correlates of CU-traits have
mostly focused on DBD samples. By doing so, functional neuroimaging
evidence revealed that among youths with DBD, high levels of CU-traits
were associated with reduced brain response during affective proces-
sing in several cortical (e.g., anterior insula, anterior cingulate cortices)
and subcortical (e.g., amygdala) regions, responsible for empathic be-
haviors in typically developing youths (Lockwood et al., 2013; Lozier
et al., 2014; Michalska et al., 2016). Prefrontal functioning in response
to punishment and rewards (e.g. in the caudate and ventromedial
prefrontal cortex) has in turn been shown to be increased in DBD, as
opposed to a reduction in prefrontal activation typically seen in healthy
children and adolescents following punishment learning ((Finger et al.,
2008); for a review see (Viding and McCrory, 2017)). Additionally,
studies have indicated that the functional connectivity between limbic
and prefrontal brain regions, commonly impacted in DBD, was further
negatively correlated with callous-unemotional traits (Marsh et al.,
2008), although not all studies were able to replicate this finding
(Finger et al., 2012).

In contrast to functional MRI evidence, the unique associations
between CU-traits and brain structure provides mixed findings in re-
gards to the direction and precise location of effects and further in-
vestigations in youths with and without conduct problems are needed
(Blair, 2013; Cohn et al., 2016). More specifically, elevated CU-traits
have been linked to both increases and decreases in gray matter volume
and concentration within orbitofrontal, anterior cingulate, para-/hip-
pocampal, and temporal cortices (Cohn et al., 2016; Cope et al., 2014;
De Brito et al., 2009; Fairchild et al., 2013a; Raschle et al., 2015;
Wallace et al., 2014). Amygdala alterations in correlation with CU-traits
are mostly absent (Dalwani et al., 2011; Sebastian et al., 2016; Fairchild
et al., 2013a); a modest association was identified by one study re-
porting a positive association between CU-traits and amygdala gray
matter concentration in DBD youths low on CU-traits (Cohn et al.,
2016). Furthermore, a meta-regression study analyzing across five
voxel-based morphometry studies on DBDs published to date found that

higher CU-traits were associated with a lower reduction in GMV in the
putamen and, to a lesser extent, in the right amygdala (Rogers and De
Brito, 2016).

Overall, structural and functional neuroimaging findings vary with
respect to the direction and precise location of the observed associa-
tions with CU-traits. This may be due to the choice of assessment tool
used, the use of different data analysis packages and strategies, as well
as heterogeneity (e.g. differences in demographic and clinical features/
diagnoses/comorbidities) of the groups studied. For example, the mixed
nature of previous findings may be related to the various measures
employed to assess CU-traits. Research reports have used a range of
assessments, such as the Inventory of Callous-Unemotional traits (Essau
et al., 2006a), the Youth Psychopathic traits Inventory (Andershed
et al., 2007), the Psychopathy Checklist: Youth Version (Forth et al.,
2003), or the callous-unemotional scale of the Antisocial Process
Screening Device (Frick and Hare, 2001) in order to classify partici-
pants into those with high versus low CU-traits. Variations in results to
date may thus be based on differences in the measure employed, as well
as differences between samples in levels of CU-traits which may reflect
differences in recruitment sources (e.g., incarcerated offenders versus
community samples). In order to maximize reliability of the assess-
ments used to characterize callous-unemotional traits the American
Psychiatric Association (2013) has suggested basing the assessments of
limited prosocial emotions or CU-traits on multiple sources of in-
formation. However, such comprehensive measures have rarely been
implemented in research studies to date.

While all evidence points towards the importance of considering sex
as a variable within research designs, the majority of neuroimaging
studies, particularly those on CU-traits, focus solely on males (Rogers
and De Brito, 2016). This may be due to higher levels of crimes, de-
linquency, or aggressive and antisocial behavior being reported in boys
(Loeber et al., 2013), but nevertheless limits the generalizability of the
findings. Longitudinal brain imaging studies in typically developing
youths have demonstrated sex-specific differences in brain maturation
and cortical trajectories (Giedd and Rapoport, 2010; Lenroot et al.,
2007). In fact, cortical and subcortical gray matter development has
been suggested to follow an inverted U-shaped pattern with main peaks
being reached one to two years earlier in females as compared to males
(Lenroot et al., 2007). Likewise, epidemiologic as well as longitudinal
research indicates sex-specific developmental trajectories for neu-
ropsychiatric disorders (Giedd and Rapoport, 2010; Moffitt et al., 2008;
Wilke et al., 2007).

To summarize, the majority of studies to date have only investigated
the effects of variation in CU-traits in DBD populations and are thus
limited by several factors: (1) it remains open whether effects pre-
viously attributed to CU-traits were actually driven by the presence of
DBDs (i.e., including symptoms and behaviors not associated with CU-
traits or common comorbidities such as attention deficit/hyperactivity
disorder (ADHD) or anxiety), and also whether associations between
CU-traits and brain structure only hold within DBD populations; (2)
while epidemiologic as well as longitudinal research indicate sex-spe-
cific developmental trajectories for neuropsychiatric disorders (Giedd
and Rapoport, 2010; Moffitt et al., 2008), most studies on CU-traits in
DBD groups or community samples have focused solely on males, lim-
iting the generalizability of these findings to females; and (3) the group
classification employed or the measures used to assess CU-traits have
varied widely across studies (Essau et al., 2006a; Kimonis et al., 2016;
Viding and McCrory, 2012; Viding and McCrory, 2017). These factors,
as well as the small samples that have frequently been used, possibly
explain the variability in findings reported to date and the lack of re-
plication across studies.

Therefore, the current study aimed at bridging this gap in knowl-
edge resulting from a narrow focus on clinical populations by in-
vestigating relationships between CU-traits and brain structure in ty-
pically-developing boys and girls without DBDs using whole brain
multiple regression analyses. Secondly, we aimed to test whether the
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association between CU-traits and brain structure differs across boys
and girls by including an interaction term for sex and callous-unemo-
tional traits within our multiple regression analysis. Finally, we aimed
to implement a comprehensive measure of CU-traits by developing a
composite score based on two sources of information (self and others'
rating) in order to obtain a robust index for testing for variability in
brain structure related to CU-traits. Based on previous evidence in DBD
and youths with conduct problems, we expected to find correlations
between CU-traits and brain structure in typically-developing youths
within limbic and prefrontal brain regions including amygdala, insula,
and prefrontal cortex. On the basis of previous findings showing an
interaction effect of sex and CU-traits in DBD (Smaragdi et al., 2017),
we expected to observe distinct associations between CU-traits and
brain structure in boys and girls.

2. Material and methods

2.1. Participants

For the present analyses, we included 223 typically-developing
adolescents (9–18 years), who were a subset of participants from an
ongoing European multi-center study investigating female conduct
disorder (FemNAT-CD). All adolescents included in the present analyses
were explicitly screened to be free of any psychiatric disorder, including
DBDs and substance abuse. Participants underwent standardized clin-
ical interviews and psychometric testing and took part in a neuroima-
ging session. On average, the two sessions took place within
8.2 ± 7.7 weeks of each other. Data were acquired at five different
sites, including the Universities of Frankfurt #01 and Aachen #02 in
Germany; the Psychiatric University Hospital in Basel, Switzerland
#05; and the Universities of Birmingham #07 and Southampton #04,
England (only site numbers will consequently be reported within the
text). All participants and their caretakers provided verbal and written
informed consent to take part in the study, and the study was approved
by all local ethics committees.

2.2. Clinical and psychometric testing

Based on the Schedule for Affective Disorders and Schizophrenia for
School-Age Children-Present and Lifetime version (K-SADS-PL
(Kaufman et al., 1997)) diagnostic interview, we ascertained that none
of the youths included in the present analyses had a current clinical
diagnosis or a past history of DBDs according to DSM-5 (American
Psychiatric Association, 2013). Behavioral and emotional problems
within the past 6 months were assessed using the Child Behavior
Checklist (CBCL: 120 items, answered using a three-point Likert scale
(Achenbach, 1991)). Since we explicitly aimed to study CU-traits in
non-aggressive individuals, participants scoring T≥ 70 on the aggres-
sion and/or the delinquency subscales of the CBCL were excluded from
our analyses (see Fig. S1). However, to be even stricter, we also re-ran
our analysis with a more stringent criterion (all individuals with a T-
score ≤ 65 on either the delinquency or aggression subscale of the
CBCL) and did not observe a change in our main findings. IQ was as-
sessed using the short-form of the Wechsler Abbreviated Scale of In-
telligence (WASI (Wechsler, 1999)) at English speaking sites (#04,
#07) or the German version of the Wechsler Intelligence Scale for
Children< 17 years (WISC-IV, (Petermann and Petermann, 2011)) and
the Wechsler Adult Intelligence Scale (WAIS-III, (Wechsler, 1997)) for
sites #01, #02 and #05. All t- and standard scores were first z-trans-
formed prior to any analysis. Empathy scores were measured using the
parental report of the Griffith Empathy Measure (GEM: 23 items, an-
swered using a nine-point Likert scale; (Dadds et al., 2008)).

CU-traits were measured using parent ratings on the Inventory of
Callous-Unemotional traits (ICU (Essau et al., 2006a)) and self-ratings
on the Youth Psychopathic traits Inventory (YPI (Andershed et al.,
2007)). The ICU (a 24-item parental report) has three subscales:

callousness, uncaring, and unemotional, as well as a total score. Re-
liability values for the ICU lie within the range of acceptable to good
(Cronbach alpha range: 0.77–0.89) (Essau et al., 2006a). The YPI (a 50-
item self-report) comprises ten subscales, which generate the following
three dimensions: callous-unemotional, grandiose-manipulative and
impulsive-irresponsible (Andershed et al., 2007). Previous reliability
scores of the YPI dimensions range from moderate to good (Cronbach's
alphas of 0.36–0.71). While there is a validated short form of the YPI
available for children aged 9–12 years, we used the original YPI for all
ages because these versions differ only minimally and only the original
YPI is available in all languages represented here (Andershed et al.,
2007; van Baardewijk et al., 2008). A Cronbach's alpha for the ICU total
score of 0.79 (confidence interval: 0.74–0.83) and a Cronbach's alpha
for the YPI callous-unemotional dimension of 0.79 (confidence interval:
0.74–0.83) was found in the present sample. We based CU-traits on
multiple sources of information in order to maximize reliability, in line
with suggestions by the American Psychiatric Association (2013).
However, it is worth noting that we computed a composite score based
on parent and child-ratings from two different instruments. Specifically,
mean scores representing the YPI callous-unemotional dimension and
the ICU total were z-transformed and a new composite score for ‘CU-
traits’ was built by calculating the mean of the two resulting z-scores.
The usefulness of this new composite score was verified by: (1) Running
a reliability analysis including all respective items (Cronbach's alpha of
0.83; CI: 0.79–0.87); (2) Investigating correlations between ICU total,
YPI callous-unemotional scale and composite CU-traits score and brain
structure in separate analyses; and (3) Testing for significant differences
between the Cronbach alphas for the old and new CU-traits measures
(see Supplement 2). The new composite score showed significantly
higher internal reliability as compared to the ICU total score or the YPI
callous-unemotional dimension. The composite scores were normally
distributed and showed sufficient variance to justify a dimensional
approach (Supplement 3).

ICU and YPI scores, as well as the new composite scores are pre-
sented in Table 1. Overall, scores observed in the present sample are
comparable to those reported in community samples or control groups
in previous neuroimaging studies (Essau et al., 2006a; Fairchild et al.,
2013a). Boys scored significantly higher than girls on several subscales
of the YPI, ICU or the composite measure as analyzed using two-sample
t-tests as implemented in SPSSv23 (IBM Corp., Armonk, N.Y., USA).

2.3. Structural image acquisition

Participants completed between one and three functional neuroi-
maging tasks and/or diffusion tensor imaging scans in addition to
structural T1-weighted magnetization prepared rapid gradient echo
imaging (MPRAGE) on Siemens 3 T (#01/#04: Trio; #02/#05: Prisma)
or Philips 3T (#07: Achieva) scanners. Each site underwent a site
qualification procedure prior to starting data collection in which a
radiological (ACR) phantom and healthy volunteers were scanned using
multiple sequences (Chen et al., 2004). The resulting data were re-
viewed by an MR physicist, and scanning parameters were adjusted
until the protocols were comparable (see acquisition parameters in
Table S4).

2.4. Voxel-based morphometry (VBM) analysis and statistics

We utilized the computational anatomy toolbox (CAT12; http://
www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf) as implemented in
SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) and executed in MATLAB
(Mathworks, Natick, MA). To account for the young age of the parti-
cipants, we employed an adapted VBM-workflow that implemented
customized tissue probability maps (TPM) as created through the
template-o-matic toolbox (TOM8; https://irc.cchmc.org/software/tom/
downloads.php) and a customized DARTEL template based on the gray
and white matter tissue segments of all participants. Analysis steps
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included:

2.4.1. Quality control
Prior to preprocessing, all images passed a first visual quality check

targeting motion, gross anatomical artifacts and assuring whole-brain
coverage. After preprocessing, additional information about data-
quality (resolution, noise and bias) was provided by CAT12. We assured
that all data had a weighted average quality of B or higher, representing
very good image quality (http://www.neuro.uni-jena.de/cat12/CAT12-
Manual.pdf). Finally, prior to statistical analysis we conducted another
quality assessment by displaying the sample homogeneity using stan-
dard deviations through the CAT12 toolbox. Of the 223 scans reviewed,
14 had to be excluded due to motion artifacts and 2 individuals were
excluded from the analysis due to significantly enlarged ventricles,
resulting in N = 207.

2.4.2. Customized tissue probability maps (TPMs) and Dartel template
creation

Customized TPMs were created using an average approach within
TOM8 including vectors for age and sex, representing each of the 207
participants with useable T1 data based on the previous step (Wilke
et al., 2008). All images were segmented into gray matter, white matter
and cerebrospinal fluid (whereas customized TPMs were inputted
during affine registration) and the affine registered tissue segments
were used to construct a customized DARTEL template representing the
entire study sample. Finally, the template was normalized to MNI and
registered to MNI (ICBM) space.

2.4.3. Preprocessing and calculation of total intracranial volume (TIV)
Preprocessing was achieved through segmentation of all data using

the custom template/TPMs and a Gaussian smoothing kernel of 8 mm.
Total intracranial volume (TIV) was calculated for each participant
through CAT12. Since we were interested in group-based variations in
the absolute tissue (gray matter volume), TIV was consequently in-
corporated in the statistical analysis to account for differences in brain
size.

2.4.4. Statistical analysis
Prior to analysis, we excluded two participants with high scores on

the aggression and delinquency subscales of the CBCL (≥70; see
methods section for further explanation). Additionally, YPI or ICU
subscale data were missing for 16 individuals which were consequently
excluded from subsequent analysis. The total N entering statistical
analysis was therefore 189 participants (108 female, 81 male). The
DARTEL-normalized gray matter volumes entered multiple regression
models linking CU-traits with brain structure. An interaction term for
CU-traits and sex was computed by multiplying the z-standardized CU-
traits with the dichotomous sex variable. The interaction term between
CU-traits and sex was then entered as a covariate within the multiple
regression model. Scanning site, age and TIV were added as covariates
of no interest and statistics were conducted for gray matter volume
only. F-tests were used to assess the main effect of CU-traits and the
interaction between CU-traits and sex. Multiple regression analyses in
each sex individually were subsequently used to further specify the
direction of the results observed. The implemented t-tests were masked
for the regions identified through the main analysis. Whole brain results
are reported with a p < 0.05, family-wise error (FWE) correction,
using the Threshold-Free Cluster Enhancement technique (TFCE ac-
cording to (Smith and Nichols, 2009) with 10,000 permutations).

3. Results

3.1. Voxel-based morphometry results

Total intracranial volume was calculated for use as a covariate
within the multiple regression analysis of absolute brain volume (TIV:
[girls/boys] = [1414.4 ± 112.9 / 1580.6 ± 126.2]), white (WM:
[girls/boys] = [470.3 ± 49.8 / 529.3 ± 48.5]) and gray matter vo-
lume (GM: [girls/boys] = [702.3 ± 57.8 / 790.1 ± 71.3]). In line
with previous findings (e.g. (Giedd and Rapoport, 2010)), girls and boys
significantly differed in total intracranial volume (for TIV, GM and WM;
all p < 0.001).

3.1.1. Multiple regression analyses
Across all girls and boys (N = 189), there were no significant po-

sitive or negative correlations between CU-traits and gray matter vo-
lume. However, there was a significant interaction effect for sex and
CU-traits in bilateral clusters encompassing anterior insula, claustrum
and inferior frontal gyrus (p < 0.05; FWE TFCE corrected; see Fig. 1).
In order to assess the direction of this interaction effect further, we
performed follow-up analyses in boys and girls individually, with a
restricted analysis mask for left and right anterior insula based on the
significant clusters identified through the interaction effects across the
whole sample.

3.1.2. Multiple regression analysis in boys
For boys, CU-traits were significantly positively correlated with gray

matter volume of the previously identified bilateral anterior insular
cortices (p < 0.05; FWE TFCE corrected; see Table 2 and Fig. 1).

3.1.3. Multiple regression analysis in girls
Within females, there were no significant positive or negative cor-

relations between CU-traits and gray matter volume when restricting
the multiple regression model to the bilateral anterior insula as iden-
tified by our interaction analysis.

The robustness of the here observed significant interaction effect

Table 1
Group characteristics – psychometrics and clinical testing.

Girls (N = 108) Boys (N = 81) p-value

Mean (± SD) Mean (± SD) Two-sample
T

Age in years 13.9 (± 2.9) 13.2 (± 2.5) 0.850
IQ 105.5 (± 10.4) 106.6 (± 11.4) 0.486
Psychopathic traits

(YPI)
Psychopathy (YPI
total)

87.6 (± 17.0) 96.1 (± 18.0) 0.001 ⁎⁎⁎

Grandiose,
manipulative

32.0 (± 8.4) 35.1 (± 9.4) 0.020 ⁎

Callous, unemotional 25.3 (± 5.7) 29.4 (± 5.8) < 0.001 ⁎⁎⁎

Impulsive,
irresponsible

30.2 (± 6.1) 31.7 (± 6.5) 0.115

CU-Traits (ICU)
ICU total 15.3 (± 7.2) 18.3 (± 7.5) 0.006 ⁎⁎

Uncaring 7.2 (± 4.1) 8.6 (± 4.2) 0.024 ⁎

Unemotional 4.2 (± 2.5) 5.1(± 2.6) 0.019 ⁎

Callousness 3.9 (± 3.0) 4.6 (± 2.5) 0.080
Callous-unemotional

traits
Composite score −0.2 (± 0.8) 0.3 (± 0.7) 0.001 ⁎⁎⁎

CBCL
Anxiety/depression 55.5 (± 6.2) 54.1 (± 5.9) 0.121
Attention problems 53.4 (± 4.9) 53.1 (± 5.0) 0.677
Delinquency 52.3 (± 5.1) 52.3 (± 3.9) 0.999
Aggression 52.7 (± 4.4) 51.7 (± 5.4) 0.160
Internal problems 49.7 (± 10.0) 49.7 (± 10.0) 0.868
External problems 47.7 (± 8.5) 46.6 (± 8.1) 0.385
Total problems 48.4 (± 9.6) 47.4 (± 9.3) 0.472

IQ = intelligence quotient (Z-scores); YPI = youth psychopathic traits inventory (mean
scores); ICU = inventory of callous-unemotional traits (mean scores); CBCL = child be-
havior checklist (T-scores).

⁎⁎⁎ Significant at p ≤ 0.001.
⁎⁎ Significant at p ≤ 0.01.
⁎ Significant at p≤ 0.05.
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between CU-traits and sex within bilateral anterior insula across the
whole group was further tested by accounting for aggressive behavior.
Our results remained significant when a covariate based on scores from
the CBCL aggression subscale were added into our multiple regression
analysis. Additionally, we assessed a sex-matched group (81:81), ex-
cluding participants from center #5 (only female participants). The
analysis resulted in a similar outcome of an interaction effect in bi-
lateral anterior insula at an uncorrected p < 0.001 (only left anterior
insula remained significant for this group at p < 0.05; FWE TFCE
corrected).

3.1.4. Post-hoc region of interest analyses
Post-hoc region of interest and partial correlation analyses were

conducted using the marsbar toolbox (http://marsbar.sourceforge.net/)
to extract gray matter volume and SPSS v-23 to run statistical analyses.
Bilateral anterior insula regions of interest were created using 5 mm-
radius spheres around the MNI coordinates (x = −32, y = 22,
z = −2) and (x = 36, y = 22, z = −6) as derived from a coordinate-
based meta-analysis (Rottschy et al., 2012). The average mean gray
matter volume indices for these regions of interest were extracted and
scaled by each individual's TIV, in order to avoid multicollinearity and
adjust for unmodulated scores. Resulting values were used to address
three post-hoc aims, namely: (1) Investigate the specific CU-traits-

bilateral insula associations for boys and girls separately; (2) Investigate
the amount of variance in CU-traits accounted for by variations in bi-
lateral insula volume in boys, as was done previously in adult studies
(Cope et al., 2014; Ermer et al., 2013); and (3) Investigate potential age
effects on the bilateral insula findings in boys. Post-hoc results revealed
significant positive correlations between left and right insula volumes
and CU-traits in boys (Fig. 1d–e). Although no significant correlations
between CU-traits and anterior insula volumes were observed in our
whole brain analysis in girls, additional post-hoc region of interest-
based analysis were conducted for anatomically defined bilateral
anterior insula in order to further evaluate and confirm this null re-
lationship. These findings indicated a trend towards an opposite (ne-
gative) association between insular volume and CU-traits in girls, which
did not reach formal levels of statistical significance. Additionally, we
statistically examined whether the regressions (correlation between CU-
traits and left and right anterior insula for boys and girls) significantly
differed from each other by calculating Fisher's z (Diedenhofen and
Musch, 2015). For both left (z = −3.54, p = 0.0004) and right
(z = −4.38, p < 0.0001) anterior insula, the slopes significantly dif-
fered across boys and girls. Secondly, the scaled mean gray matter bi-
lateral insula volumes were entered as predictors into a multiple re-
gression model with CU-traits scores as the dependent variable. The
resulting model for boys, excluding the influence of the covariates,

Fig. 1. Statistical parametric maps showing a significant positive correlation between callous-unemotional traits and bilateral anterior insula volume in boys (in blue; displayed a = axial,
b = sagittal, c = coronal views using the Multi-image Analysis GUI, available at http://ric.uthscsa.edu/mango/mango.html; p < 0.05; FWE TFCE corrected) and correlations between
callous-unemotional traits and gray matter volume in independent left (d) and right (e) anterior insula regions of interest for boys (blue) and girls (green).
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reached significance (p < 0.001) and indicated that variations in bi-
lateral anterior volume explained 19.4% of the variance in CU-traits.
Finally, within our multiple regression model, we showed that age did
not explain any additional variance in bilateral insula volume findings
in boys (significant F-change = 0.148). This effect was further in-
vestigated using an F-test within the multiple regression model in SPM,
plotting positive and/or negative effects of age on bilateral anterior
insula volume shown to be associated with CU-traits in boys. No sig-
nificant effects of age on associations between CU-traits and anterior
insula volume were observed.

4. Discussion

In a sample of typically-developing community boys and girls, we
show for the first time that callous-unemotional (CU) traits were cor-
related with the volume of the anterior insula, independent of dis-
ruptive behavior disorders (DBDs). This association was sex-specific,
with CU-traits showing a significant positive correlation with bilateral
anterior insula volume in boys alone. Overall, anterior insula volume
accounted for 19.1% of the variance in CU-traits among boys; this is
comparable to the informative value of structural associations in adult
psychopathy (Cope et al., 2014; Ermer et al., 2013). The present study
generated a composite CU-trait score based on multiple sources of in-
formation (i.e. self and parent-report). In line with previous authors
before and according to psychometric evaluations (American
Psychiatric Association, 2013; Essau et al., 2006a), we consider this a
potential strength. However, we acknowledge that comparability with
previous findings may be impacted as a result of using a newly gener-
ated measure of CU-traits.

4.1. Callous-unemotional traits and brain structure in boys

Our analysis identified the bilateral anterior insula as a structural
correlate of CU-traits in typically-developing boys, but not girls.
Previous studies point towards a functionally plausible parcellation of
the insula into at least three distinct sub-regions, subserving chemo-
sensory and socioemotional processing (ventro-anterior), higher

cognitive processing (dorso-anterior) and pain or sensorimotor pro-
cessing (posterior) (Chang et al., 2013). The correlation between CU-
traits and brain structure observed here was strongest in bilateral
anterior insula extending to the inferior frontal gyrus. The anterior
insula has consistently been linked to emotion processing and empathy,
and is activated in fMRI studies tapping these domains; it has ad-
ditionally been associated with cognitive control mechanisms (Fan
et al., 2011; Phan et al., 2002; Sundermann and Pfleiderer, 2012).

Past research has revealed structural and functional alterations in
the anterior insula of individuals with DBDs (Blair, 2013; Cohn et al.,
2013; Fahim et al., 2011; Raschle et al., 2015; Rogers and De Brito,
2016; Sterzer et al., 2007). Thereby, functional neuroimaging has
linked atypical empathic responding, emotional learning and decision-
making to the anterior insula (Blair, 2013; Lockwood et al., 2013;
Michalska et al., 2016; White et al., 2012; White et al., 2016). In DBDs
high levels of CU-traits are further positively correlated with the
amount neural reduction in limbic areas during affective processing and
are considered reflective of a diminished empathy for pain (Lockwood
et al., 2013; Michalska et al., 2016; Viding and McCrory, 2017).
However, atypical neural correlates in DBD during reinforcement
learning which also implicate insular cortex, have not identified the
same (or any) further association based on CU-traits (White et al., 2012;
White et al., 2016). This may indicate that in DBD impaired insula
functioning during affective processing (e.g., (Lockwood et al., 2013;
Michalska et al., 2016)), but not reinforcement learning is further as-
sociated with variations in CU-traits (White et al., 2012; White et al.,
2016); for a review see (Viding and McCrory, 2017). The association
between CU-traits and brain anatomy is still matter of investigations.
For example one study reported increases in insular cortex gray matter
volume in DBD youths with high CU-traits (De Brito et al., 2009), others
found a negative correlation between anterior insula volume or con-
centration and CU-traits in at-risk youths (Cohn et al., 2013) or DBD
girls (Fairchild et al., 2013a), but the association in the latter study
remained non-significant after correcting for CD symptoms (Fairchild
et al., 2013a).

Differences in reports of increased or decreased gray matter in
anterior insula in community samples of boys, or boys as compared to
girls, with elevated CU-traits may reflect maturational effects (i.e. de-
layed maturation of this region in males). Reports of an inverted U-
shaped development for the insular cortex and differences in rates of
cortical maturation between girls and boys of about 1–3 years support
this hypothesis (Giedd and Rapoport, 2010). However, comparability to
studies in DBD is complicated since the developmental trajectories be-
tween groups of children with and without psychiatric diagnosis may
likewise differ (Giedd and Rapoport, 2010). Our findings of a positive
association between CU-traits and brain structure in boys diverge from
studies in DBD that have suggested a negative association between CU-
traits and insula volume (i.e. see meta-analysis by (Rogers and De Brito,
2016)) or aggression scores and insula volume across both CD and
control participants (Sterzer et al., 2007). This could suggest that the
association between CU-traits and brain structure follows a different
trajectory in typically-developing youths as compared to those with
DBDs. However, differences may also be based on group selection
(number of participants, clinical criteria, age, sex-ratio) or construct
employed (e.g. measuring CU-traits versus empathy more specifically).

4.2. CU-traits and brain structure in girls: Sex differences?

We found no significant relationships between CU-traits and gray
matter volume in a large sample of girls (N = 108). Sex differences in
insula structure and function, as well as sex differences in gray matter
volume developmental trajectories, as mentioned above, may provide
an explanation for this finding (Giedd and Rapoport, 2010; Lenroot
et al., 2007). Furthermore, studies investigating the impact of CU-traits
in DBD populations have almost exclusively focused on males, and
therefore have not allowed a validation of the constructs employed in

Table 2
Montreal Neurological Institute neuroanatomical coordinates, cluster size and p-scores
representing the peak coordinates for significant interaction effects in all youths and
positive associations between callous-unemotional traits and gray matter volume in ty-
pically-developing boys, but not girls (p < 0.05; FWE TFCE corrected).

k MNI coordinates p
(FWE)

x y z

Interaction: callous-unemotional
traits × sex

L insula, claustrum, inferior frontal
gyrus

644 −26 22 8 0.003

R insula, claustrum, inferior frontal
gyrus

161 28 21 2 0.001

k MNI coordinates p
(FWE)

Direction x y z

Masked post-hoc analysis in
boys (N=81)

L insula, claustrum,
inferior frontal gyrus

positive 644 −28 22 3 < 0.001

R insula, claustrum,
inferior frontal gyrus

positive 161 30 21 0 < 0.001

Masked post-hoc analysis in
females (N=108)

ns – – – – –

k = cluster size; R = right; L = left; ns = no significance.
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females (Rogstad and Rogers, 2008). It is a matter of ongoing debate
whether differences in CU-traits between boys and girls represent true
sex differences or whether the instruments, which have predominantly
been developed in male samples, do not apply as well to females
(Rogstad and Rogers, 2008). We suggest that the fact that did not ob-
serve a significant association between CU traits and gray matter vo-
lume does not result from measurement issues since the variance in the
separate CU-traits subscores are similar within each sex. While the
consideration of sex-differences in brain imaging studies is a con-
troversial issue, bearing in mind the implications of incorrect conclu-
sions (Cosgrove et al., 2007), future studies should focus on including
and comparing both sexes in order to enhance our understanding of sex
differences and apply this information to the study of neurodevelop-
mental and psychiatric disorders (i.e., DBDs), even if these are more
prevalent in males. Ultimately, large-scale longitudinal studies are
needed in order to answer the question whether the neuroanatomical
differences observed here are of a developmental (e.g. through a time-
specific shift in the cortical growth curve of boys and girls) or a fun-
damental nature (e.g. present across development).

4.3. Study limitations

This study had several limitations that should be considered when
interpreting the results. First, while multicenter neuroimaging studies
do offer considerable advantages in terms of increased sensitivity by
including a higher number of participants, they also introduce chal-
lenges of inter-site variability which may introduce additional noise
and potential systematic errors unless this factor is carefully controlled
for (Chen et al., 2014; Takao et al., 2014). For example, Takao et al.
(2014) demonstrate the importance of balanced case and control ratios
within structural multicenter neuroimaging analyses by discussing the
example of sex differences (Takao et al., 2014). We cannot fully exclude
the possibility that remaining site differences and/or variations in the
distribution of CU-traits across sexes have influenced our findings.
Furthermore, previous evidence suggests that volumetric brain altera-
tions derive from changes in both cortical thickness and surface area
(Panizzon et al., 2009). Investigating gray matter volume indices in
relation to CU-traits cannot indicate which factor(s) has or have con-
tributed to the results. For example, in a study comparing youth with
conduct disorder and controls, cortical thickness and folding deficits
were demonstrated to localize to different (posterior versus anterior)
brain structures (Hyatt et al., 2012). However, an advantage of using a
voxel-based morphometry approach is to increase the comparability
with past studies. It is also notable that while we assured that the
identified insula findings in boys were not influenced by age within the
range included, future studies will need to assess more complex issues
related to development, which could not be answered using the present
sample (e.g. stability of the observed associations across age). Finally,
while we have ensured that CU-traits are normally distributed within
our sample, thereby allowing us to adopt a dimensional approach, the
scores reported here are representative of a community sample and
substantially lower than mean CU-traits scores reported in youths with
conduct problems (e.g. Fairchild et al., 2013a; Marsh et al., 2008).
While we here demonstrate sex-specific effects of CU traits in typically-
developing boys and girls, we note that any comparisons between the
present study and the existing literature on DBDs are limited by not
including boys and girls with DBDs and varying levels of callous-un-
emotional traits.

4.4. CU-traits as a dimensional construct

We here demonstrate the usefulness of CU-traits as a potential
neurobiological specifier in adolescent boys beyond clinical popula-
tions. More specifically, CU-traits showed associations with brain
structure in typically-developing boys, without diagnosable levels of
antisocial behavior. Our findings thus support a dimensional approach

to understanding mental health, as implemented within the Research
Domain Criteria framework (Blair, 2015). Moving away from catego-
rical classifications, variations in traits are used to describe individual
phenotypes. Frameworks assessing such traits must be able to differ-
entiate not only across the clinical spectrum, but also within samples of
typically-developing youths (Garvey et al., 2016). While our findings of
sex-specific positive effects between insula gray matter volume and CU-
traits in typically-developing boys but not girls are somewhat surprising
given previous opposite findings in DBD boys or mixed gender samples
(Lockwood et al., 2013; Lozier et al., 2014; Marsh et al., 2008) or po-
sitive findings in DBD girls (Fairchild et al., 2013a), it is mentionable
that the direction of findings across prior studies varies (i.e. increases
versus decreases of neural functioning or gray matter volume; e.g. (De
Brito et al., 2009)). This may indicate a different relationship between
CU-traits and brain structures in typically-developing youths relative to
findings obtained in DBD youth. Interestingly, a recent voxel-based
morphometry study in at-risk adolescents demonstrated a positive
correlation between CU-traits and insular cortex volume in individuals
with low, but not high, levels of CD symptoms (Cohn et al., 2016). The
study may be interpreted in line with the present analysis in typically
developing youths who were deliberately selected to be low in or free of
conduct problems and DBD symptoms. However, it is to mention that in
the study by Cohn et al. (2016) even youths low on CU-traits were
childhood arrestees before the age of 12.

Another point to consider is that while CU-traits designate a risk
factor for the development of serious conduct problems (e.g., (Frick
et al., 2014a)), the stability of these traits over time is less clear. More
specifically, longitudinal research demonstrates that while children
high in psychopathic traits at around age 13 have a higher chance to
display high psychopathy scores in adulthood, only 9% of the variance
in adulthood was actually explained by scores at age 13 (Lynam et al.,
2007). Thus, while high levels of CU-traits may be a risk factor for
negative outcomes in some children, they may not remain high over
time, and a significant proportion of those with elevated scores will not
develop clinically relevant difficulties, such as conduct disorder. In the
present analysis, CU-traits were positively associated with bilateral
anterior insula volume in boys. While this may be indicative of a
heightened risk to develop conduct problems later in life, it is notable
that none of the boys had elevated levels of conduct problems or DBD
diagnoses at the time of assessment. It is also likely that many of them
will not go on to show such difficulties.

Assuming that the present structural variations relate to insula
functioning, our findings may be interpreted as consistent with theories
implicating atypical insula functioning in populations with CU-traits or
antisocial features. However, it remains to be investigated whether
variations in CU-traits and insula structure may serve as a potential risk
factor for the development of future clinical, social, and psychological
problems. However, alterations in brain structure alone may only be a
latent or probabilistic risk factor, which, without an environmental
trigger, may never manifest as psychopathology (see also (Fairchild
et al., 2013b)).

Future studies will need to examine the relationship between CU-
traits and brain structure, not only in typically-developing individuals,
but across the whole spectrum, which includes at-risk children or those
with DBDs. By doing so, large-scale neuroimaging studies should in-
vestigate whether the structural variations accompanying CU-traits in
boys, as identified here, are individually, or in combination with further
environmental variables, predictive of future psychiatric illness or
psychosocial maladjustment (Viding and McCrory, 2012).

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2017.12.015.
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