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Abstract: 25 

The green marine macroalgae of the class Ulvophyceae (Ulvophytes) are common algae 26 

distributed worldwide particularly in intertidal areas, which play a key role in aquatic 27 

ecosystems. They are potentially valuable resources for food, animal feed and fuel but can also 28 

cause massive nuisance blooms. Members of Ulvaceae, like many other seaweeds, harbour a rich 29 

diversity of epiphytic bacteria with functions related to host growth and morphological 30 

development. In the absence of appropriate bacterially-derived signals, germ cells of the genus 31 

Ulva develop into “atypical” colonies consisting of undifferentiated cells with abnormal cell 32 

walls. This paper examines the specificity of bacteria-induced morphogenesis in Ulva, by cross-33 

testing bacteria isolated from several Ulva species on two Ulva species, the emerging model 34 

system Ulva mutabilis and the prominent biofouler species Ulva intestinalis. We show that pairs 35 

of bacterial strains isolated from species other than U. mutabilis and U. intestinalis can fully 36 

rescue axenic plantlets generated either from U. mutabilis or U. intestinalis gametes. This 37 

laboratory-based study demonstrates that different compositions of microbial communities with 38 

similar functional characteristics can enable complete algal morphogenesis and thus supports the 39 

“competitive lottery” theory for how symbiotic bacteria drive algal development. 40 

 41 

  42 
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Introduction: 43 

Macroscopic marine algae (seaweeds) are significant primary producers in the oceans, which 44 

cover about 71% of earth’s surface. Seaweeds are known as ‘ecosystem engineers’ due to their 45 

critical roles in marine environments, where they modulate the supply of resources to other 46 

species and alter the physical state of the surrounding environment, including sediments and 47 

water flow (Jones et al., 1994; Alongi 1998). Seaweeds are important for maintaining local 48 

biodiversity (Schiel et al., 2007), create a protective environment for numerous invertebrate 49 

species (Wilson et al., 1990; Bulleri et al., 2002) and provide an essential habitat for a range of 50 

epibionts, from microscopic organisms to macroinvertebrates (Fraschetti et al., 2006). However, 51 

seaweeds can also cause significant nuisance blooms due to eutrophication in shallow coastal 52 

areas, which are detrimental to the environment and can harm ecosystems (Smetacek et al., 53 

2013). In a commercial context, there is increasing interest in the use of marine biomass 54 

worldwide with multiple traditional and novel applications in food, fuel, high-value chemical and 55 

pharmaceutical industries and also in aquaculture, which is one of the promising market sectors 56 

(Kraan 2013). 57 

There is growing interest in defining macroalgae-associated bacterial communities and 58 

macroalgal development and morphogenesis (Charrier et al., 2017). A number of studies have 59 

shown that different species of seaweeds growing in the same ecosystem are associated with 60 

species-specific bacterial strains (Lachnit et al., 2009; Barott et al., 2011; Lachnit et al., 2011), 61 

leading to the hypothesis that the association between microorganisms and algae is host-specific. 62 

This assumption is supported by observations that a significantly different phylum composition 63 

of bacteria was associated with each of three co-existing algae sampled at regular intervals over 64 

two years (Lachnit et al., 2011). Moreover, the same species of seaweeds growing in different 65 

ecological habitats can associate with similar bacterial species (Lachnit et al., 2009). Although it 66 

has been suggested that the bacterial-algal association is determined by the algal host (Longford 67 

et al., 2007), bacterial isolates from seaweeds can vary with season and host life-cycle stage 68 

(Lachnit et al., 2011) and even different tidal pools in close proximity (Burke et al., 2011a). It 69 

was also reported by Cray et al., (2013) that the pre-eminence of some species e.g. 70 

Proteobacteria and Firmicutes is the result of their ability to compete with other species due to 71 
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(i) high resistance to various stress factors (ii) existence of different pathways for generating 72 

energy. 73 

In contrast, based on a large-scale sequencing analysis, Burke et al. (2011b) suggested “the 74 

competitive lottery model” for algal microbiomes, originally developed by Sale (1976) for 75 

explaining the coexistence of reef fish species in the same niche. They propose that different 76 

microbial communities with similar functional characteristics (defined by the genes present in 77 

the microbial genomes) can occupy the same algal species. Different microbiomes were isolated 78 

from different Ulva australis Areschoug samples in the same niche space and at different times 79 

in the year. The “competitive lottery” model states that the structuring of microbial communities 80 

on the surface of host algae is controlled by the presence of particular microbial functional genes 81 

rather than microbial taxonomic entities (Burke et al., 2011b). It is suggested that these functions 82 

are related to the ecophysiological roles of alga-associated microbial communities in general, i.e. 83 

detecting and moving towards the host, followed by attaching to the host and forming a biofilm, 84 

then responding to host environmental factors (Burke et al., 2011a; Friedrich 2012). This 85 

functional assistance would result in formation of a holobiont, an entity composed of an alga 86 

with its associated functionally important bacteria (Egan et al., 2011). 87 

Growth and morphogenesis of various species of the green macroalaga Ulva such as U. 88 

mutabilis, U. pertusa, U. linza and U. fasciata can be controlled by a variety of marine bacterial 89 

species including members of the Proteobacteria, Bacteroidetes, and Firmicutes (Provasoli, 90 

1958; Fries 1975; Nakanishi et al. 1996; Matsuo et al. 2003; Marshall et al. 2006; Sing et al. 91 

2011; Spoerner et al. 2012; Wichard 2015). Marshall et al., (2006) assessed the effects of 38 92 

unique bacterial strains, isolated from three species of Ulva, on the growth rate and 93 

morphological development of U. linza axenic plantlets (treated with antibiotics) for 28 days. 94 

However, no single bacterium was able to completely restore normal morphology to axenic U. 95 

linza, in contrast to a recent observation in U. mutabilis applying bacteria isolated from U. rigida 96 

(Grueneberg et al., 2016). Grueneberg et al. (2016) also demonstrated that Ulva can benefit from 97 

bacterial sources other than its own epiphytes, as diffusible waterborne morphogens can also 98 

affect Ulva development. This raises the question of specificity of the morphogen-producing 99 

bacteria. 100 
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To study microbial-algal interactions in the laboratory, strictly sterile (axenic) cultures of 101 

macroalgae pave the way for comparative research. Unlike other seaweeds, Ulva can be stably 102 

cultivated under laboratory conditions starting with axenic germ cells purified via their 103 

phototactic movement towards light, without applying antibiotics (Spoerner et al., 2012; 104 

Wichard, 2015; Vesty et al., 2015; Weiss et al., 2017). The emerging model species Ulva 105 

mutabilis is routinely cultured in the laboratory with two bacteria, Roseovarius sp. strain MS2 106 

(GenBank EU359909) and Maribacter sp. strain MS6 (GenBank EU359911), which confer 107 

proper morphogenesis. The U. mutabilis used in laboratory experiments is a fast growing and 108 

naturally occurring developmental mutant ´slender´ of U. mutabilis was used (Alsufyani et al, 109 

2017). It shows only traces of the sea lettuce-like wildtype morphology and develops only 110 

primary rhizoids (Løvlie 1968; Wichard 2015). Axenic U. mutabilis cultures have an atypical 111 

“pincushion” morphotype, in which a lack of holdfast and exterior cell wall distortions are the 112 

main characteristics. Bacterially-derived substances govern rhizoid, cell wall and blade 113 

development (Spoerner et al., 2012). Co-cultivation experiments using axenic gametes and MS2 114 

revealed that this bacterium promotes cell division and algal blade cell growth, analogous to 115 

cytokinin function in land plants. A similar experiment using MS6 showed that MS6 induces 116 

formation of a proper cell wall and a primary rhizoid, analogously to auxin in land plants 117 

(Spoerner et al., 2012; Wichard, 2015). Overall these morphogenesis-inducing bacteria secreted 118 

a variety (i.e. MS6- and MS2-like factors) of still uncharacterised morphogenesis-inducing 119 

factors (= morphogens) into the culture medium of U. mutabilis (Spoerner et al., 2012, Weiss et 120 

al., 2017). The U. mutabilis-Roseovarius-Maribacter tripartite community established in the 121 

laboratory is an ideal model system with which to have controlled, repeatable conditions for 122 

further investigation of the interaction between a macroalga and its associated microbiome 123 

(Wichard et al., 2015; Grueneberg et al., 2016).  124 

Very few studies have systematically addressed the still unanswered question of the species-125 

specificity of epiphytic bacteria involved in the Ulva–bacterial interaction (Vesty et al., 2015, 126 

Grueneberg et al., 2016, Weiss et al., 2017) and defined the microbiome, starting from purely 127 

axenic cultures, which could affect various morphogenetic traits (Spoerner et al., 2012, Vesty et 128 

al., 2015). This study reports on a cross-testing of potentially morphogenesis-inducing bacteria, 129 

isolated from various Ulva species, between the model system U. mutabilis and U. intestinalis. 130 

Phylogenetic analysis suggested a very close relationship between U. intestinalis and U. 131 
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compressa (Blomster et al., 1998, Hayden et al., 2003) and also, in spite of the variation in 132 

morphologies and life cycles, between U. mutabilis and U. compressa (Løvlie 1964; Tan et al., 133 

1999; Wichard and Oertel, 2010). Phylogenetically well-characterized bacterial strains, 134 

originally isolated by Marshall et al., (2006), were tested in a complementary bioassay, where 135 

test-strains replaced first one, and then the other, bacterium in the tripartite U. mutabilis-136 

Roseovarius-Maribacter community (Spoerner et al., 2012; Wichard 2015).  137 

 138 

Materials and Methods  139 

Algal Samples  140 

Vegetative and fertile U. intestinalis blades were collected three times between March 2015 and 141 

April 2016 from Llantwit Major beach, South Wales, UK (51°40’ N; 3°48’ W). The sampling 142 

site was composed predominantly of Ulva species of a uniform morphology, mixed with brown 143 

algae in places. Excess water and epiphytic species were removed at the site by blotting the 144 

sample’s surface before storage on ice for transport back to the laboratory. This species cannot 145 

be reliably identified solely using morphological characteristics, and thus plastid-encoded rbcL 146 

(large unit ribulose bisphosphate carboxylase) and tufA (plastid elongation factor) markers were 147 

used for identification (see below). Haploid gametophytes from the fast-growing tubular mutant 148 

of U. mutabilis named slender (sl-G(mt+)) (Føyn, 1959, Løvlie, 1964) were used for all cross-149 

testing and comparative investigations with U. intestinalis. 150 

 151 

Genomic DNA extraction from Ulva, amplification and sequence analysis of rbcL and tufA 152 

genes.  153 

Genomic DNA was extracted from 25 mg seaweed samples using an ISOLATE II Genomic 154 

DNA Kit (Bioline, London, UK) according to the manufacturer’s recommendations. DNA 155 

fragments of the rbcL and tufA genes were amplified by PCR using 30 ng DNA and 1 µl 156 

VELOCITY DNA Polymerase (2 units / µl) (Bioline Ltd, UK) in a final volume of 50 µl per 157 

reaction according to the manufacturer’s protocol. Two primer pairs were used for rbcL marker: 158 

(i) Forward - rbcLStart 5'-ATGGCTCCAAAAACTGAAAC-3', Reverse - 750 5'-159 

GCTGTTGCATTTAAGTAATG-3' and (ii) Forward - F650 5'- 160 

GAAAACGTAAACTCACAACC-3', Reverse -  rbcLEnd 5'-TTCTTTCCAAACTTCACA-3'. 161 
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The primers tested for tufA marker were tufA F 5'-GGNGCNGCNCAAATGGAYGG-3', tufA R 162 

5'-CCTTCNCGAATMGCRAAWCGC-3' (Fama et al. 2002).  163 

The PCR conditions were as follows: rbcl- an initial denaturation step at 94°C for 2 min, 29 164 

cycles of 94°C for 45 s, 55°C annealing for 45 s and 90◦C extension for 45 s. The cycles were 165 

succeeded by a final elongation step at 72°C for 7 min; tufA- an initial 4 min denaturation at 94 166 

°C, 38 cycles of 94°C for 1 min, 45°C annealing for 30 s, 72°C extension for 1 min, followed by 167 

72°C final extension for 7 min (Saunders et al., 2010). PCR products were cleaned using the 168 

Thermo Fisher Scientific GeneJET™ PCR Purification Kit and sequenced on a capillary 169 

sequencer (ABI 3730, Applied Biosystems, USA) at the Functional Genomics Laboratory of the 170 

University of Birmingham.  171 

The two primer pairs amplified two PCR products from the rbcL gene, 1-750 and 650-1430 (the 172 

3’ end) that overlapped, meaning a sequence for almost the entire gene could be obtained by 173 

sequencing and aligning the PCR products. PCR products were fully sequenced from both ends 174 

using the primers used to amplify them. The resulting sequences were aligned manually (there 175 

were no mismatches in the double reads for each PCR product) using the overlapping central 176 

100bp (650-750) to generate a consensus rbcL sequence for submitting to GenBank (accession 177 

numbers MF038885). A single PCR product was generated for tufA, which was sequenced from 178 

both ends. Alignment of the forward and reverse tufA sequences demonstrated that they were 179 

identical, and a final consensus sequence of 772 bp was submitted to Genbank (MF162336).  180 

The consensus sequences enabled the Ulva sample to be identified to species level by comparing 181 

the acquired sequence data with already-available sequence data in GenBank by using a Basic 182 

Local Alignment Search Tool (BLASTN; Johnson et al. 2008). Our sequences each had 100% 183 

match to only Ulva intestinalis samples. 184 

Cultivation Conditions 185 

The mutant slender (sl-G(mt+)) strain of U. mutabilis was propagated from unmated gametes 186 

derived from lab-grown parthenogenetic gametophytes. U. intestinalis was propagated from 187 

gametes derived from beach-collected gametophytes. All gametophytes were cultured in sterile 188 

culture flasks with gas-permeable screw caps (Nunc Int., Denmark) containing 100 mL Ulva 189 

Culture Medium (UCM; Stratmann et. al., 1996) under the standard growth conditions including 190 

7 
 



a 17:7 h light/dark regime at 18 °C with an illumination of about 60 μmol photons m-2 s-1 191 

provided by 50 % GroLux, 50% day-light fluorescent tubes (Stratmann et al., 1996). 192 

 193 

Axenic Cultures 194 

Briefly, for preparation of axenic cultures, gametophytes of U. mutabilis and U. intestinalis were 195 

artificially induced to form gametangia by removal of at least two sporulation inhibitors 196 

(Stratmann et al., 1996; Vesty et al., 2015). Afterwards, on the third morning in daylight, 197 

gametes were released from the gametangia by an additional medium change and removing the 198 

swarming inhibitor (SWI) (Wichard and Oertel, 2010). Freshly-released gametes were purified 199 

from their accompanying bacteria by taking advantage of the gametes’ fast movement towards 200 

light through a narrow horizontal capillary under strictly sterile conditions in a laminar flow 201 

hood. This method was repeated at least three times to obtain axenic gametes. As final step, 202 

bacterial contamination was checked by plating a drop of the ‘gamete solution’ on Marine Agar 203 

plates (Roth, Karlsruhe, Germany, supplemented with 1 % agar) and by PCR amplifications of 204 

the 16S rDNA (Spoerner et al., 2012; Wichard, 2015). 205 

 206 

Bacterial Strains  207 

By using axenic gametes in a standardized bioassay, it is possible to determine which microbes 208 

induce the algal morphogenesis through morphogenetically active substances (morphogens) 209 

(Grueneberg et al., 2016). A large collection of Ulva-associated bacteria was available, isolated 210 

by the Callow laboratory (Marshall et al., 2006; Marshall, 2004). These bacterial strains isolated 211 

from multiple Ulva species (including U. linza, U. lactuca, U. compressa and Enteromorpha sp.) 212 

have been maintained at -80 °C in glycerol as source cultures since collection: not all have been 213 

previously assigned a genus (Marshall et al., 2006; Marshall 2004; J. Callow unpublished; Table 214 

1). UL19, EC19, UL16, EC34, E1, UL2 were selected, which induced a wide range of degrees of 215 

growth of axenic Ulva plantlets (based on (Marshall et al., 2006) or our preliminary tests; Tables 216 

1 and 2).  217 

 218 

Phylogenetic Characterization of Bacteria 219 
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Ten µL of each of bacterial isolate was cultivated in 10 mL Marine Broth (MB; Roth, Karlsruhe, 220 

Germany) and then directly streaked onto Marine Agar plates to obtain single colonies. The 221 

plates were incubated at 20 °C for 5 days, then distinct colonies were picked off and transferred 222 

with a sterile loop into new bottles containing 10 mL MB. Bacterial DNA was extracted 223 

according manufacturer’s instructions using a DNeasy Blood and Tissue kit (Qiagen, Hilden, 224 

Germany). To identify, or re-classify, the identity of the 6 bacterial strains using to up-to-date 225 

classifications, partial 16S rDNA sequences (approx. 1500 bp) were amplified from these strains 226 

using the primer pair 27f (GGG TTT GAT CCT GGC TCA G) and 1390r (ACG GGC GGT 227 

GTG TRC AA) (Burggraf et al., 1992; Olsen et al., 1986). The reaction master mix contained 228 

2.5 µL of PCR buffer 10% (100 mmol L−1 Tris/HCl pH 8.3, 500 mmol L−1 KCl, 15 mmol L−1 229 

MgCl2), 1.25 µL of BSA (20 mg/ml), 1µL each of forward and reverse primer (20 mM), 0.5 µL 230 

dNTPs 100 mM (dATP, dCTP, dGTP, dTTP), 0.15 µL Taq polymerase (5 units / µl), and ~100 231 

ng of template DNA. The PCR protocol included a 5-min initial denaturation at 95°C, followed 232 

by 31 cycles at 95°C for 30 s, 58 °C for 30 s, 72 °C for 90 s, finally 1 cycle of 7 min at 72 °C and 233 

storage at 4 °C. PCR products then were subjected to forward primer sequencing using the chain 234 

termination method (GATC, Göttingen, Germany). The closest homologous sequences in the 235 

GenBank database were recorded in Table 2. Two isolates belonged to the phylum 236 

Proteobacteria (Alphaproteobacteria class), two to the phylum Actinobacteria, one to the 237 

phylum Bacteroidetes and one belonged to the phylum Firmicutes (Table 2). 238 

 239 

Bioassay-Guided Testing of Algal Morphogenesis Inducing Bacteria Associated with Ulva  240 

To survey the activity of potentially morphogenesis-inducing bacteria, the ‘Ulva bioassay array’ 241 

based on a multiwell plate format was used (Spoerner et al., 2012; Grueneberg et al., 2016). 242 

To avoid any bias and thus minimize variation between several experimental set ups that would 243 

make the results ambiguous, positive and negative controls were run on identically prepared 96-244 

well plates at the same time. As positive controls, U. mutabilis axenic gametes were incubated 245 

with the well-characterised Roseovarius sp. strain MS2 alone, Maribacter sp. strain MS6 alone 246 

and MS2+MS6 (triplicates of each) (as in (Spoerner et al., 2012; the taxonomy of MS2 and MS6 247 

were recently reclassified by Grueneberg et al., (2016)). 248 

The same treatments were also carried out with axenic gametes of U. intestinalis. As a negative 249 

(axenic) control, 12 wells in one row were left without any bacterial inoculation in each plate. 250 
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For further comparison and evaluation, U. intestinalis was grown in flasks with the normal 251 

complement of U. intestinalis-associated bacteria by using non-purified gametes. Three 252 

biological replicates were conducted in parallel for each experiment. 253 

The stock solution of freshly prepared axenic gametes was diluted with UCM to obtain the 254 

optimum concentration of gametes (about 300 gametes / mL). The density of gametes in the 255 

axenic stock solution was measured by flow cytometry (BD Accuri® C6) by comparing gamete 256 

samples to standards provided by the manufacturer (BD Biosciences, New Jersey, USA). The 257 

gamete solution was distributed in 96-well multiwell plates, 100 μL in each well. After 258 

incubation of plates overnight at room temperature in darkness, gametes homogenously settled 259 

down to the bottom of plates. 260 

To observe the morphogenetic effects of Ulva-associated bacteria, U. intestinalis and U. 261 

mutabilis (slender, gametophyte, mt[+]) axenic gametes were inoculated with the bacteria 262 

isolated from three different Ulva species and U. mutabilis, individually and in combinations 263 

(triplicates of each) (Figs. 1, 2 and 3) as recently established by Weiss et al., (2017). Bacterial 264 

strains were grown in marine broth for 3-7 days depending on the strain. The OD of the bacteria 265 

was measured and each strain was diluted in UCM to an OD of 1.0 and then serially diluted in 266 

additional UCM to a concentration of 10-4 cells ml-1. Ten µl of this “stock” solution was then 267 

added to 100 µl of UCM containing Ulva gametes in a multiwell plate, giving a final 268 

concentration of 10-5 bacterial cells ml-1. The same “pattern” of bacterial strains was used on 269 

each plate, with plates growing under homogeneous light conditions and controlled temperature 270 

(Stratmann et al., 1996). Up to 5 technical repeats were carried out for each of 3 biological 271 

repeats – in each biological repeat, each plate was in a different position in the growth chamber, 272 

reducing the risk of “pseudo-replication”. To avoid any contamination, plates were covered with 273 

gas permeable sealing film (Breathe-Easy, Diversified Biotech, MA, USA) and transferred to 274 

growth chamber under standard conditions (Wichard and Oertel, 2010). Over the next three 275 

weeks, plantlets were observed under the inverted microscope (DM IL LED, Leica, Wetzlar, 276 

Germany). The qualitative features considered under microscopic observation included the 277 

presence of unusual cell wall protrusions (‘bubble-like’ structures), thallus length, and 278 

differentiated rhizoid cells (Spoerner et al., 2012). Quantification of the average blade cell 279 

number and the percentage of thalli with entirely normal cell walls were carried out. Cell 280 

numbers were compared using one-way Analysis of Variance (ANOVA), with a Dunn's multiple 281 
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comparison posteriori test using SigmaPlot 13 software (Systat Software, San Jose, CA). 282 

Comparison of the activities of MS2 and MS2-like bacteria between U. mutabilis and U. 283 

intestinalis were compared using two-way ANOVA followed by a Dunn’s multiple comparison 284 

test using SigmaPlot software. 285 

Results  286 

Bioassay-guided classification of the bacteria-induced morphogenesis of Ulva mutabilis  287 

As demonstrated by Spoerner et al., (2012), axenic U. mutabilis plants develop a characteristic 288 

morphology with a lack of holdfast and distortions of the exterior cell wall (Fig. 1). The effect of 289 

six individual bacterial species isolated from Ulva species were assessed for their ability to 290 

“rescue” the morphology of axenic U. mutabilis gametes back towards the complete non-axenic 291 

state (Fig. 1). A range of different morphotypes were stimulated by the individual bacterial 292 

strains, but none of them could solely elicit complete algal morphogenesis and normal 293 

development of U. mutabilis (Fig. 1)  294 

Various Ulva bacterial isolates were able to promote marked morphological changes in U. 295 

mutabilis. Three out of these four isolates, Paracoccus sp., strains E34 and UL2, as well as 296 

Cellulophaga lytica UL16 caused cell divisions, like the reference strain Roseovarius sp. MS2 297 

(Fig. 1). As previously observed, the release of the MS2-like factor was not genus-dependent. 298 

Although in previous studies the MS2-like factor was frequently assigned to genera from the 299 

Alphaproteobacteria, we now show that the specific morphogenetic activity of blade induction 300 

can also be carried out by Cellulophaga sp. (Fig. 1; Table 1).  301 

However, as the MS2-like factor does not drive normal cell wall development and protrusions 302 

remained visible (Fig. 1), further bacteria are necessary to complement the functional traits and 303 

to complete Ulva´s morphogenesis. We show that the Actinobacterium Microbacterium sp. EC19 304 

possesses this activity and can induce both cell differentiation and cell wall formation, but failed 305 

to induce a proper blade, which is analogous to the activity of the reference strain MS6 (Fig. 1). 306 

The two other tested bacteria Microbacterium sp. UL19, and Planococcus sp. E1, had no distinct 307 

effect on the growth and morphology of U. mutabilis and at the end of the experiment, algae 308 

cultured with these bacteria resembled axenic controls (Fig. 1). In addition, the strain E1 seems 309 

to negatively interfere with MS6, as the typical morphogenetic activities of MS6 are not visible 310 

in the presence of E1 (Figs 1 and 2). Overall, this shows that the morphogenetic activity of 311 
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bacteria towards U. mutabilis is bacterial strain-specific rather than correlating with bacterial 312 

genus. 313 

 314 

Bioassay-guided classification of the bacteria-induced morphogenesis of Ulva intestinalis 315 

To address the question of how Ulva species-specific the morphogenetic activities of bacteria 316 

are, axenic cultures of U. intestinalis were prepared through application of the methods originally 317 

developed for U. mutabilis. In the absence of epiphytic bacteria, U. intestinalis plantlets reverted 318 

to an undifferentiated callus of cells (Fig. 2, controls), similar to axenic plantlets of U. mutabilis 319 

(Spoerner et al., 2012, Vesty et al., 2015) with unusual colourless protrusions from the exterior 320 

cell wall instead of the normal tubular morphology (Fig. 2, controls). As observed for U. 321 

mutabilis, the mode of action of Paracoccus sp. E34, Cellulophaga sp. UL16 and Paracoccus sp. 322 

UL2 on U. intestinalis plantlets was indistinguishable from the activities of the control reference 323 

strain MS2 (compare Fig. 1 and 2). The same was true for the respective activity of 324 

Microbacterium sp. EC19. Under the influence of EC19 axenic gametes of the “slender” mutant 325 

develop into minute short rows of degenerated blade cells with normal cell walls and rhizoid 326 

formation. EC19 thus revealed similarity to the activity of the MS6-like factor with U. 327 

intestinalis in addition to its activity with U. mutabilis (Fig. 2, compare with the MS6-control). 328 

The strong effect on rhizoid formation was prominent, forming multiple secondary rhizoids (Fig. 329 

2). 330 

 331 

Semi-quantification of the morphogenesis inducing activity of bacteria 332 

For further evaluation, a more detailed analysis was conducted. The number of cells produced by 333 

developing Ulva plantlets (Fig. 3A, B) and the degree of formation of cell wall protrusions as a 334 

result of a lack of MS6-morphogens was determined (Fig. 3C, D). Upon the inoculation of 335 

axenic gametes of U. mutabilis with the strains E34, UL16 or UL2 the average cell numbers 336 

increased four-fold (Fig. 3A; p < 0.05) within two weeks: these strains were therefore as active 337 

as the reference strain MS2. There was no significant difference between the activity of MS2 and 338 

the MS2-like bacteria E34, UL2 and UL16 on U. mutabilis: all bacteria can rescue the cell 339 

division to the same degree (Fig. 3). However, two-way ANOVA revealed that the 340 

morphogenetic-activity of the bacteria E34, UL16 and UL2 was significantly lower on U. 341 

intestinalis (Fig. 3B; p < 0.05) than on U. mutabilis (Fig. 3A; p < 0.05) within the two-week 342 
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bioassay. Overall, we conclude that differences in growth of both algae are due to slower growth 343 

rates of U. intestinalis compared to U. mutabilis rather than the mode of action of the factors 344 

released by the respective bacteria. 345 

 346 

A new tripartite system established with U. intestinalis and U. mutabilis 347 

The applied strains have been tested in previous studies with U. linza and bacterial activities 348 

were classified according morphological scores by Marshall et al., (2006) (Table 1), but different 349 

functional traits for growth and morphogenesis were not determined at that time. Therefore, in 350 

our study, bacterial strains were selected according to their two main functional traits (Figs 1 and 351 

2) in order to define new tripartite communities with U. mutabilis (Fig. 4) or U. intestinalis (Fig. 352 

5). Importantly, there was no species-specificity between U. intestinalis and U. mutabilis, 353 

because a range of bacteria can perform their eco-physiological functions similarly in both 354 

species (Figs 1 and 2). 355 

The morphogenesis of U. intestinalis and U. mutabilis axenic germlings completely recovered in 356 

co-cultivation experiments with Microbacterium sp. EC19, the only selected strain that could 357 

phenocopy the Maribacter sp. MS6, and in combination with any one of E34, UL16 or UL2, 358 

which phenocopy the Roseovarius sp. MS2 (Figs 4 and 5). Upon inoculations, bacteria grew and 359 

formed a cluster around the rhizoid of U. intestinalis (Figure 6A) resembling the tripartite U. 360 

mutabilis-Roseovarius-Maribacter system (Spoerner et al., 2012). It is not clear whether a single, 361 

or both, bacterial species are present at the rhizoid or how they achieve this, as only some species 362 

of Microbacterium sp. EC19 and Paracoccus sp. E34 are motile (Kelly et al., 2006). Starting 363 

with this biofilm, U. intestinalis continues growing in the presence of any of the specifically 364 

designed microbiomes (Fig. 5G-I). In summary, a newly standardized U. intestinalis tripartite 365 

system has been established with various pairs of bacterial symbionts isolated from multiple 366 

Ulva species (Fig. 6). 367 

 368 

  369 
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Discussion 370 

This study, starting with axenic cultures, has shown that phylogenetically distinct bacteria 371 

isolated from Ulva species other than U. mutabilis possess morphogenetic activity and can be 372 

used in combination to set up a tripartite system in an established model and phenocopy the 373 

reference strains MS2 and MS6. We also show that that the economically important U. 374 

intestinalis can function similarly in a tripartite system. We have defined new “minimal” 375 

microbiomes that promote growth, development and morphogenesis in U. mutabilis and U. 376 

intestinalis. The morphogenetic activity of all positively tested bacterial strains was comparable 377 

with the activity found in sterile-filtered natural water samples collected from the lagoon Ria 378 

Formosa (Portugal) using the same standardized bioassay (Grueneberg et al., 2016). 379 

This is the first report demonstrating the activity of an MS2-like factor within the phylum 380 

Bacteroidetes. Although experiments with boiling extracts of the Maribacter sp. MS6 revealed 381 

that this strain produces an MS2-like factor as well, the morphogenetic compound is not released 382 

into the environment (Spoerner et al. 2012). In any case, it should be taken into account that 383 

different compounds could show similar eco-physiological activities on Ulva´s morphogenesis. 384 

Our data contrasts with Grueneberg et. al., (2016), who reported two isolates, Algoriphagus sp. 385 

and Polaribacter sp. that could each singly rescue complete morphology in U. mutabilis. This 386 

experiment reveals again that strains of the same genus, UL19 and EC19, can harbour different 387 

functional traits. 388 

Until now, only very few Actinobacteria have been tested on Ulva species for their effect on 389 

algal morphogenesis (Marshall et al. 2006) and Microbacterium sp. EC19 is the first 390 

representative of this phylum with a defined activity to U. mutabilis and U. intestinalis. 391 

Interestingly the phylum Actinobacteria was also one of the major beneficial bacterial phyla 392 

detected on Gracilaria vermiculophylla from the North Sea (Lachnit et al. 2011) and associated 393 

with Laminaria populations (Wiese et al., 2009; Salaün et al., 2010). 394 

 395 

Host specificity of epiphytic bacteria on Ulva species, or lottery theory? 396 

This study tested whether a consistent core community is necessary to drive complete 397 

morphogenesis of Ulva species or whether a range of bacterial isolates can phenocopy the algal 398 

phenotypes induced by the strains MS2 (Roseovarius) and MS6 (Maribacter). 399 
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Large-scale 16S rRNA gene sequencing of the bacterial populations present on various 400 

individual of U. australis demonstrated that a consistent core microbiota could not be detected, 401 

and a large number of bacterial individuals are able to colonize the algal surfaces (Burke et al., 402 

2011a,b). The temporal and spatial comparisons carried out by Tujula et al., (2010) have 403 

revealed that the microbiota on U. australis varies considerably among the individuals collected 404 

from both the same, and three different, tidal pools and also over different seasons. Despite these 405 

considerable shifts, it also has been demonstrated that a set of bacterial epiphytes belonging to 406 

Alphaproteobacteria and Bacteroidetes remained stable over space and time, implying their 407 

possible significant role in function of this bacterial community (Tujula et al., 2010). However, 408 

bacteria belonging to the less-abundant phylum Actinobacteria on Ulva´s surface (Friedrich 409 

2012), can harbour strong (morphogenetic) effects on algal growth as demonstrated in our study. 410 

Bioassays testing bacteria-induced morphogenesis, starting with axenic cultures, provide a 411 

unique approach to assess the specificity of bacterial functional traits within bacteria-macroalga-412 

interactions. Some evidence suggested that the activities of the strain MS6, promoting rhizoid 413 

growth and normal cell wall development, were rare, in contrast to the activity of strain MS2, 414 

which promotes growth and blade development. Therefore, the MS6-like factor was considered 415 

to be a genus-specific functional trait, also due to the fact that those marine bacteria are hard-to-416 

culture (Wichard 2015, Grueneberg et al 2016). With the findings of the current study, we show 417 

for the first time that both functional traits can be delivered by more than one bacterial phylum. 418 

The tripartite community of Ulva and bacteria can be established as long as certain bacteria 419 

release compounds with cytokinin-like activity, whereas others provide an auxin-like activity 420 

(Fig. 6). Overall, our data support the competitive lottery hypothesis (Sale 1976, Burke et al 421 

2011b), which implies that waterborne morphogenetic compounds are provided by various 422 

bacteria within a specific niche (algal surface). This seems to be a random process, which is 423 

based on the presence of functional genes and their functional characteristics rather than on a 424 

requirement for bacteria to belong to particular taxonomic groups. Our study shows that in the 425 

laboratory, two species of green algae can use combinations of compounds derived from multiple 426 

species of bacteria to drive their correct morphogenesis, and we hypothesise that similar 427 

situations may arise in their natural environment, where algae are exposed to multiple bacteria 428 

and waterborne compounds. 429 

 430 
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Conclusions  431 

Designed microbiomes were used to test the algal morphogenesis-inducing traits of bacteria in 432 

both the standard test strain U. mutabilis and a new algal species, U. intestinalis. By adding 433 

different bacteria singly or in pairs to Ulva gametes, our bioassays revealed that: (i) more than 434 

one Ulva species (both U. mutabilis and U. intestinalis) can respond to the same range of 435 

bacteria that affect algal growth, development and morphology via microbial morphogens; (ii) 436 

there is specificity in the bacterial signals regulating algal development, e.g. with some bacteria 437 

inducing rhizoid formation; (iii) the functions of bacteria (i.e. promoting cell elongation and 438 

division versus cell differentiation/cell wall formation) cannot be assigned to a specific genus 439 

taxonomic group. This study supports Grueneberg et al., (2016) who showed that the presence of 440 

specific (epiphytic) bacteria does not directly matter as long as U. mutabilis perceives sufficient 441 

diffusible morphogenetic compounds even from bacteria in the vicinity of other Ulva species 442 

within a shared habitat. 443 

Establishing an additional standardized tripartite community (model system) with more than one 444 

species of Ulva presents an ideal possibility for elucidating the complexity of algal-bacterial 445 

partnership. The combined use of the tripartite communities will help to increase understanding 446 

of algal growth and development, to shed light on the underlying mechanisms involved in the 447 

cross-kingdom cross-talk of algae and bacteria. As U. intestinalis is a widespread alga with 448 

biofouling properties, our research presents a new way of understanding and controlling the life 449 

cycle of an economically important alga. 450 

  451 
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Legends 467 

 468 

Figure 1. Morphogenesis assessment of U. mutabilis using the “Ulva bioassay array”. The 469 

multiwell-based testing system of morphogenetic activity using axenic gametes of Ulva 470 

mutabilis allows the fast determination of the different morphotypes induced by bacteria isolated 471 

from various Ulva species, singly and in pairwise combination with the bacteria Roseovarius sp. 472 

MS2 and Maribacter sp. MS6. Representative morphotypes are categorized by a color code: 473 

Yellow circle (axenic morphotype): Callus-like cultures with typical colorless cell wall 474 

protrusions. Magenta circle (morphotype induced by the MS2-like factor): Germlings with 475 

normal cell division towards one direction but still covered by protrusions and differentiated 476 

rhizoid cells are missing. Red circle (morphotype induced by the MS6-like factor): Plantlets 477 

show a proper cell wall and rhizoid formation but the blade does not develop. Green circle 478 

(completely recovered morphotype): Characteristic usual morphotype with normal blade and 479 

rhizoid formation. Propagules are three-weeks old. Controls are shown in the bottom row. 480 

Arrows indicate the typical colourless protrusions from the exterior cell walls of axenic cultures. 481 

Scale bars = 100 µm. 482 

 483 

Figure 2. Morphogenesis assessment of U. intestinalis using the “Ulva bioassay array”. 484 

Different morphotypes of Ulva intestinalis induced by bacteria isolated from various Ulva 485 

species singly and in pairwise combination with the bacteria Roseovarius sp. MS2 and 486 

Maribacter sp. MS6. Arrows indicate the typical colourless protrusions from the exterior cell 487 

walls of axenic cultures. Representative morphotypes are categorized by the same colour code as 488 

described in Figure 1. Propagules are three weeks old. Controls are shown in the bottom row. 489 

There was no significant differences in growth and morphology between propagules grown in 490 

the presence of the strains MS2 and MS6 compared to those grown in the presence of the natural 491 

microbiome (“Natural”). Scale bars = 100 µm. 492 

 493 

Figure 3. Semi-quantitative data of bacteria-induced growth and morphogenesis derived from 494 

the “Ulva bioassay array” with axenic Ulva mutabilis (A, C) and Ulva intestinalis (B, D) 495 

gametophytes. (A) and (B): To estimate the activity of the MS2-like factor, the total cell numbers 496 

in thalli of Ulva mutabilis (A) and Ulva intestinalis (B) plantlets were counted 10 days after 497 
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inoculation with Microbacterium sp. EC19, Microbacterium sp. UL19, Planococcus sp. E1, 498 

Paracoccus sp. E34, Cellulophaga sp. UL16 or Paracoccus sp. UL2. Controls show the 499 

morphogenetic activity on gametes without bacteria, with the bacterial strain MS2, with the 500 

bacterial strain MS6 and with both MS2 and MS6 bacterial strains. (C) and (D): To determine 501 

the activity of the MS6-like factor, the proportion of thalli of Ulva mutabilis (C) and Ulva 502 

intestinalis (D) with normal cell wall development was evaluated as a percentage of total thalli 503 

10 days after inoculation with bacteria listed above. A one-way ANOVA was performed to 504 

reveal statistically significant differences, followed by a Dunn's multiple comparison test to 505 

determine which groups differ (P < 0.05), indicated by the letters a and b. Error bars represent 506 

(A, B) confidence intervals (P = 0.95; n > 30 individual algae) or (C, D) standard deviations (n > 507 

30 individual algae). 508 

 509 

Figure 4. Establishment of a tripartite community of Ulva mutabilis with novel bacteria.  Three-510 

week old U. mutabilis gametophytes are shown inoculated with bacteria isolated from different 511 

Ulva species in pairwise combination. Axenic gametes of U. mutabilis were inoculated with (A) 512 

Microbacterium sp. EC19 only, and together with (B) Microbacterium sp. UL19, (C) 513 

Planococcus sp. E1, (D) Paracoccus sp. E34, (E) Cellulophaga sp. UL16 or (F) Paracoccus sp. 514 

UL2. (D-F) Due to the complementary functional traits of the bacteria, the tripartite community 515 

can completely recover the morphogenesis of U. mutabilis, whereas the bacterial isolates UL19 516 

and E1 do not contribute to the algal development. The bioassay system was scaled up using 517 

sterile culture flasks. Scale bars = 100 µm. 518 

 519 

Figure 5. Establishment of a tripartite community of Ulva intestinalis. Three-week old U. 520 

intestinalis gametophytes are shown inoculated with bacteria isolated from different Ulva species 521 

in pairwise combination. Axenic gametes of U. mutabilis were inoculated with (A) 522 

Microbacterium sp. EC19 only, and together with (B) Microbacterium sp. UL19, (C) 523 

Planococcus sp. E1, (D) Paracoccus sp. E34, (E) Cellulophaga sp. UL16 or (F) Paracoccus sp. 524 

UL2. (D-F) Due to the complementary functional traits of the bacteria, the tripartite community 525 

can completely recover the morphogenesis of U. intestinalis. (G-I) The thallus of U. intestinalis 526 

continues growing under these conditions and increases significantly in size within one more 527 

week.  (A-F) Scale bars = 100 µm and (G-I) scale bars = 1 cm. 528 
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 529 

Figure 6. Model systems for bacteria-macroalgae interactions. (A) Bacterial biofilm formation: 530 

Upon inoculation of Ulva intestinalis axenic gametes with Microbacterium sp. EC19 and 531 

Paracoccus sp. E34 for 5 days, bacteria concentrate around the rhizoid. Scale bars = 10 µm. (B) 532 

Effects of a defined microbiome can be reliably tested using tripartite systems of Ulva mutabilis 533 

or Ulva intestinalis and multiple combinations of algal morphogenesis-inducing bacteria. Figure 534 

was adapted and changed from Grueneberg et al. (2016). Names of bacterial strains, which were 535 

tested in this study for the first time, are printed in black. 536 

 537 

538 
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