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Abstract (145 words): Leukemias are highly immunogenic but have a low mutational load, 

providing few mutated peptide targets. Thus, the identification of alternative neoantigens is a 

pressing need. Here, we identify 36 MHC class I–associated peptide antigens with O-linked 

β-N-acetylglucosamine (O-GlcNAc) modifications as candidate neoantigens, using three 

experimental approaches. Thirteen of these peptides were also detected with disaccharide 

units on the same residues and two contain either mono- and/or di-methylated arginine 

residues. A subset were linked with key cancer pathways, and these peptides were shared 

across all of the leukemia patient samples tested (5/5). Seven of the O-GlcNAc peptides 

were synthesized and five (71%) were shown to be associated with multifunctional memory 

T-cell responses in healthy donors. An O-GlcNAc-specific T-cell line specifically killed 

autologous cells pulsed with the modified peptide, but not the equivalent unmodified peptide. 

Therefore, these post-translationally modified neoantigens provide logical targets for cancer 

immunotherapy. 

Introduction 

The role of antitumor immunity has been an intense focus of research for many decades (1-

4).  Although it is clear from strong correlative clinical data, combined with definitive 

experimental evidence from mouse cancer models, that T cells mediate this protection, the 

nature of the antigens targeted remains poorly characterized.  Over the past decade the role 

of altered-self antigens, termed neoantigens, has become clear (5-9).  Tumor-specific 

neoantigens act as targets for spontaneously arising adaptive immunity to cancer and 

thereby determine the ultimate fate of developing tumors (7). Nonsynonymous mutations in 

coding regions of expressed proteins are termed mutational neoantigens and, perhaps 

critically, are not subject to central tolerance.  In patients with cancers that have high 

mutational loads, such as non-small cell lung cancer and melanoma, CD8+ T cells can be 

identified within the tumor that are specific for MHC class I–restricted neoantigens in 

response to immunotherapy (10, 11).  However, tumor-resident immunity against mutational 

neoantigens occurs at very low frequencies and it would be surprising if this magnitude of 
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immunity could be responsible for the dramatic reductions in tumor volume seen (7, 12).  

Additionally, some of the tumors with the best clinical responses to immunotherapy have 

some of the lowest mutational loads, for example, renal cell carcinomas and leukemias (12-

14).  Hematological malignancies, in particular, are known to be among the most 

immunogenic cancers (15).  Therefore, it is likely that the antigens in these malignancies 

derive from other classes of antigens.   

An alternative source of neoantigens may be the posttranslational modifications (PTMs) that 

occur in malignant and not healthy cells, particularly as dysregulated signaling is a hallmark 

of cancer (16). Indeed, a number of phosphorylated peptides have been identified as potent 

cancer antigens(17). Immunity to these antigens was seen in healthy donors, but lost in a 

subset of leukemia patients with poor clinical outcome and restored after stem cell 

transplant, suggesting a role for these antigens in the graft-versus-leukemia response. 

Dysregulation of cell signaling pathways in cancer is also caused by another PTM, β O-

linked N-acetylglucosamine (O-GlcNAc), which is involved in cross-talk with phosphorylation 

(18-20). As such, aberrant O-GlcNAcylation can correlate with augmented cancer cell 

proliferation, survival, invasion, and metastasis (21). Synthetic O-GlcNAc–modified peptides 

can bind MHC class I complexes, and elicit glycopeptide-specific T-cell responses in mice, 

with X-ray structures confirming that the O-GlcNAc group was solvent exposed and 

accessible to the T-cell receptor (22-25). However, up until recently, limitations in proteomic 

technology made it impossible to characterize O-GlcNAcylated peptides from biological 

samples.  

Here, we report three experimental approaches that allowed the detection and sequencing of 

O-GlcNAcylated peptides from a complex mixture of peptides presented by HLA-B*07:02 

molecules on various primary leukemia samples. These methods allowed for the 

identification of 36 unique glycopeptides in several different states of glycosylation and, 

surprisingly, methylation. We go on to show that healthy donors have heterologous immunity 

to a number of these complex neoantigens and that T cells from these donors can 
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specifically target and kill cells displaying only the modified peptide. Ultimately, we believe 

that these glycopeptide antigens will prove pivotal in the design of novel cancer 

immunotherapeutics. 

Materials and Methods 

Leukemia samples and cell lines. Leukemia samples were the same as those used 

previously (Supplementary Table S1)(17). All cell lines were grown at 37ºC with 5% CO2 in 

medium consisting of RPMI 1640 supplemented with 10% fetal bovine serum (all from 

Sigma-Aldrich, St. Louis, MO). The JY cell line (ECACC – 94022533) was grown continually 

between 2006 and 2008 with its authenticity verified by HLA-typing and also in-house 

peptide profile. 

Isolation of HLA-associated peptides. Class I MHC molecules were immunoaffinity-

purified from cell lines or tumors and their associated peptides were extracted as described 

previously(17). Cells (108-109) were lysed in 10 mL of CHAPS buffer (Sigma-Aldrich, St. 

Louis, MO) and the lysate was centrifuged at 100,000 x g for 1 hour at 4°C. Supernatants 

were passed over protein A-sepharose preloaded with HLA-B7 specific antibody (ME1). 

Peptides were eluted from the purified MHC class I molecules with 10% acetic acid and 

separated by ultrafiltration (Ultrafree-MC, Millipore, Billerica, MA). 

Enrichment of HLA-associated peptides. POROS20 AL beads (Applied Biosystems, 

Carlsbad, CA) were derivatized with amino-phenyl boronic acid (APBA; Thermo Fisher 

Scientific, Waltham, MA).  Briefly, POROS20 beads (7 mg) were dispersed into 200 µL of 

PBS (pH 6-7) containing 40 µmol of APBA. Following the addition of NaCNBH3 (1.3 µmol in 

1 µL of PBS), the reaction was allowed to proceed with agitation for 2 hr at RT and then 

quenched by washing the beads with water on a spin column (pore size < 20 µm). Water 

was removed under vacuum and the dried beads were stored at 4°C.  

Class I MHC peptides from 2 x108–5 x108 cells in 0.1% acetic acid were desalted by loading 

the solution onto a fused-silica column (360 µm o.d. x 150 µm i.d.) packed in-house with 5 
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cm of irregular C18 (5–20 μm diameter) particles at a flow rate of 0.5 µl/min. After washing 

the column with 25 µL of 0.1% acetic acid, peptides were eluted into Eppendorf tubes with a 

40 min gradient (0-80%) solvent B (A: 0.1M acetic acid, B: 70% acetonitrile, 0.1M acetic 

acid).  Fractions were screened by MS and those that contained peptides, but not CHAPS 

detergent, were combined, taken to dryness and stored at -35°C. 

APBA-beads were washed 3x with 100 µl of anhydrous DMF and then allowed to react with 

desalted peptides in 20 µl of anhydrous DMF for 1 hour with agitation.  Solvent was removed 

by centrifugation and the beads were washed 2x with 100 µL of anhydrous acetonitrile. 

Bound peptides were released by agitating the beads in 20 µL of 0.1 M acetic acid for 30 

min.  Supernatant was collected, taken to dryness, and reconstituted in 10 μL of 0.1M acetic 

acid for loading onto an in-house packed C18 column for MS analysis. 

RP-HPLC-MS. In-house, packed C18 columns were prepared as previously described(26). 

Peptides were eluted by a 2 hour 0-60% B gradient (A: 0.1M acetic acid, B: 70% ACN, 0.1M 

acetic acid). Without enrichment, samples were loaded directly onto the C18 column. The 

RP-HPLC elution was electrospray-ionized into an Orbitrap Velos, or Orbitrap Fusion Tribrid 

mass spectrometer (Thermo Scientific, San Jose, CA), the former equipped with an in-house 

front-end ETD ion source. On the Orbitrap Velos, the instrument method was a top-10 CAD 

with ETD only when loss of dehydro-GlcNAc neutral loss of [203]+2 or [203]+3 was detected. 

On the Fusion, instrument method was a top speed HCD triggered ETD when three of six O-

GlcNAc fingerprint ions (m/z 204, 186, 168, 144, 138, and 126) were detected at >5% 

relative abundance. Peptide sequences were determined by manual interpretation of HCD, 

CAD, and ETD mass spectra. 

Synthetic Peptides. O-GlcNAc- and O-GalNAc-peptides were synthesized using Fmoc 

chemistry and purified by HPLC to >90% purity by Pierce Biotechnology, Rockford, Il.  

Sequences and purity for all synthetic peptides were confirmed by on-line HPLC MS/MS and 

manual interpretation of the resulting spectra. Immunodominant HLA-B*0702 restricted 

antigens from human cytomegalovirus (pp65417–426, TPRVTGGGAM); Epstein-Barr virus 
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(EBNA-3A247-255, RPPIFIRRL) and Influenza A virus (PB1329-337, QPEWFRNVL) were 

synthesized at >90% purity by Genscript, Piscataway, NJ. 

Selective transfer of N-azidoacetylgalactosamine (GalNAz) to O-GlcNAcylated 

peptides. A solution of the modified β1-4-galactosyltransferase, GalT1 (Invitrogen, 

Carlsbad, CA), was dried to 5 μL in a vacuum concentrator at 40°C. Excess synthetic 

glycopeptides or tumor peptides (3e8 cell equivalents) were taken to dryness, redissolved in 

a mixture containing 1 μL MnCl2, 5 μL uridinediphosphate N-azidoacetylgalactosamine, 

UDP-GalNAz (Invitrogen, Carlsbad, CA), and 5 μL enzyme and allowed to react for 5 hours 

at RT. After the reaction was quenched by addition of 0.2 μL glacial acetic acid, the solution 

volume was increased to 15 μL with 0.1% acetic acid, and then loaded directly onto an 

HPLC column for analysis by LC-MS/MS.  

Intracellular cytokine staining. PBMCs were isolated from healthy donors and 

resuspended (106 cells/ml) in AIM-V medium (Invitrogen, Carlsbad, CA).  Synthetic peptide 

antigens were added to the wells (10 μg/mL) and cells were expanded for 6 days. The 

positive control was stimulated with PHA (1 μg/ml).  On day 6, cells were washed and re-

stimulated with peptide antigen overnight or, for the positive control, with PMA/Ionomycin (4 

ng/ml and 500 ng/ml respectively), in the presence of anti-CD107a–FITC. Cells were 

harvested, washed with PBS, and stained with fixable viability dye (APC-Cy7) and surface 

antibodies: anti-CD3and anti-CD8 . Cells were fixed using 2% formaldehyde, permeablized 

using 0.5% saponin, and stained with anti-IFNγ–PE, anti-IL2–Pacific blue, and anti-TNFα–

PE-Cy5.5 for 30 minutes at RT. Cells were washed, lightly fixed, and analyzed on the 

LSRFortessa X20 flow cytometer (BD Bioscience, Oxford, UK). A list of antibodies used in 

the study is shown in Table S2 

Establishment of a peptide-specific T-cell line. PBMCs (107) were stimulated with 

synthetic peptide and cultured for a week. They were subsequently restimulated overnight, in 

the presence of anti-CD107a–FITC and washed and labelled with anti-CD137–PE (Miltenyi 
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Biotech, Bergisch Gladbach, Germany) and counterstained with anti-CD8–APC (Biolegend). 

Cells were sorted using a FACS Aria cell sorter (BD Bioscience), collected and expanded 

using the rapid expansion protocol previously described(27). The T-cell line was 

subsequently reassessed, using a similar protocol.  

Europium Release Killing Assay. The Delfia EuTDA cytotoxicity assay (Perkin Elmer, 

Coventry, UK) was used according to the manufacturer’s instructions.  Briefly, autologous 

transformed B-cell lines were used as target cells. These were washed and resuspended at 

106 cells/ml in RPMI 10% FCS and, the relevant peptide antigen was added at 10 µg/ml and 

the mixture was incubated at 37°C, 5% CO2 in a humidified environment for 40 min.  

Subsequently, 2.5 μL/ml of the BATDA fluorescence enhancing ligand was added and the 

cells were incubated for a further 20 min. Cells were then washed 5x in excess medium.  

Target cells (104) were added to each well of a V-bottomed 96-well plate. T cells at varying 

effector to target (E:T) ratios were added to the test wells. All well volumes were made up to 

200 μL. The plate was incubated for 2 hr at 37°C, 20 µl of each supernatant was transferred 

to a flat bottomed, white, 96 well plate and 200 μL of Europium solution was added, 

incubated for 15 min, with shaking, at room temperature.  Fluorescence was measured with 

a time-resolved fluorometer (Tecan Infinite 200 PRO, Tecan, Switzerland). 

Results 

Experimental approaches that allow identification of O-GlcNAcylated peptide antigens 

Three different experimental approaches were used to identify peptides with O-GlcNAc 

modifications from leukemia patient samples. The first approach used higher energy 

collision–induced dissociation (HCD) mass spectrometry (MS) to visualize the loss of a 

dehydro-N-acetyl-glucosamine moiety (203Th) from fragment ions. The HCD mass spectrum 

of the first O-GlcNAcylated class I MHC peptide, XPVsSHNSX (where X=I or L), detected 

during analysis of HLA B*07:02 peptides presented on ALL, is shown in Fig.  1A. The amino 

acid sequence, XPVsSHNSX, is uniquely present as IPVSSHNSL in a single human protein, 
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myocyte-specific enhancer factor 2C. This approach is limited by the ability of 

nonglycosylated peptides to suppress electrospray ionization of co-eluting O-GlcNAcylated 

peptides(28).  

The second approach overcomes this limitation and allows detection and characterization of 

O-GlcNAcylated peptides from attomole quantities, using an enrichment procedure to 

selectively pull down the glycosylated peptides from the pool of unmodified peptides. The 

enrichment allowed selective esterification of glycosylated peptides, linking them to 

aminophenylboronic acid–derivatized POROS AL 20 beads. This O-GlcNAc enrichment 

procedure allowed us to achieve quantitative yields from femtomoles of starting material, and 

may be critical for efficient identification of these antigens from patient samples. This 

methodology was used in combination with an instrument method that selectively recorded 

electron transfer dissociation (ETD) when the collision-activated dissociation (CAD) 

spectrum contained a doubly charged ion corresponding to the loss of dehydro-N-acetyl-

glucosamine (203Th)(29).  

The third experimental approach extended the sensitivity of the method and allowed the user 

to obtain spectral information from extremely low-level peptide species. This was achieved 

using an instrument method that triggered an ETD spectrum whenever three of six O-

GlcNAc fingerprint ions (m/z 204, 186, 168, 144, 138, and 126) were detected at >5% 

relative abundance in a particular HCD spectrum when the Orbitrap Fusion Tribrid was set to 

record HCD spectra at top speed. All of thefingerprint ions in Fig.  1B were the result of the 

O-GlcNAc oxonium ion at m/z 204 undergoing further fragmentation as a result of multiple 

collisions with the background nitrogen gas in the collision chamber. The use of multiple 

fingerprint fragments created a reliable trigger that minimized false positives. 

36 O-GlcNAcylated peptides identified on HLA B*07:02 leukemia samples 

In total, using the three experimental approaches outlined, 36 O-GlcNAcylated peptides 

were identified from leukemia samples (Table 1). 92% (33/36) of the O-GlcNAcs identified 
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were only found on the leukemia samples tested and not the healthy tissue samples, making 

them potential leukemia neoantigens (Table 1, Fig. 1C, Supplementary Fig. S1). Just 

under a quarter (7/32) of the proteins that the O-GlcNAcylated peptides derived from were 

associated with key cancer pathways (as defined by the NCI pathway interaction database, 

which is now accessible via the NDEx database at http://www.ndexbio.org/#/). These pathways 

included many classical cancer signaling pathways, involving genes such as p38, p53, c-

Myc, Notch, Wnt, Rb, ErbB1, and MAPK. Of note, IPVsSHNSL, which derives from Mef2c, a 

transcription factor implicated in leukemogenesis(30), was identified on nearly all of the 

leukemia samples tested (1/1 ALL, 3/3 CLL, 1/1 AML) and although it could be detected on 

healthy B cells, it was present in far lower amounts (Fig.  1D). An incidental, but significant, 

finding was that one of the O-GlcNAcylated peptides detected, RPPItQSSL, contained 

another PTM – a methylated Arg residue at P1 and was also found with an asymmetrically 

dimethylated Arg residue (Supplementary Fig. S2).  

Distinguishing O-GlcNAc from O-GalNAc 

Because O-GlcNAc and O-GalNAc are isobaric, but have different biological properties, it 

was important to confirm that the peptides we identified indeed contained O-GlcNAc 

modifications, and not O-GalNAc. Furthermore, some MHC class I peptides we observed 

contained disaccharide units (see footnotes for Table 1), so they might have been derived 

from degradation of O- and N-linked glycans synthesized in the Golgi and ER, rather than 

true cancer neoantigens. To validate that the peptide antigens we had tested were O-

GlcNAcylated, an in vitro enzyme reaction was used. β1-4-galactosyltransferase (GalT1) 

was shown to transfer N-azidoacetylgalactosamine (GalNAz) to four peptides (IPVsSHNSL 

and (me-)RPPItQSSL) in the ALL sample. Additionally, we found that synthetic O-

GlcNAcylated vs. O-GalNAcylated peptides could be differentiated based on the relative ion 

abundances observed for fragments derived from the oxonium ion at m/z 204 in the 

corresponding fingerprint region of the HCD mass spectra (Fig.  1D)(29). All of the peptides 
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observed (Table 1) produced HCD spectra with the necessary fingerprint region to confirm 

their identity as O-GlcNAc peptides.  

Ten of the peptides detected were also found with disaccharide units attached to the same 

residues that were O-GlcNAcylated. It was determined that these correspond to a hexose 

bound to a HexNAc, because the oxonium ion observed for all of these peptides occurred at 

m/z 366 (204 +162). This was likely the result of the transfer of galactose to the O-

GlcNAcylated peptide by a β-N-acetylglucosamine β1-4 galactosyltransferase; however, the 

remote possibility that this instead could involve the O-glycan synthetic pathway, in which 

the first residue to be added is a GalNAc and the second is either galactose or GlcNAc, 

needed to be excluded. Again, using synthetic peptides (IPVsSHNSL modified with Gal-

GalNAc and Gal-GlcNAc) the fingerprint patterns for fragmentation of the oxonium ion at m/z 

204 in HCD mass spectra could be distinguished, confirming that none of the disaccharide- 

modified peptides in Table 1 were derived from the O-glycan synthetic pathway.  

Two of the glycosylated peptides in Table 1, APRGnVTSL and KPTLLYnVSL, have 

disaccharide units, Hexose-HexNAc, attached to Asn residues. Both peptides have 

consensus sequences, NX(S/T), for attachment of N-linked oligosaccharides. We conclude, 

therefore, that the observed Hexose-GlcNAc disaccharide units attached to Asn in these 

peptides probably result from degradation of the N-linked oligosaccharide structures to a 

single N-linked GlcNAc that then accepts a hexose such as galactose (from a β-N-

acetylglucosamine β1-4 galactosyl- transferase).  This is a novel finding, as the enzyme N-

glycanase1 is responsible for removing all N-linked glycosylation prior to loading onto MHC 

class I molecules, potentially suggesting a new source of neoantigens in leukemia(31). 

Leukemic glycopeptides elicited potent memory T-cell responses in healthy donors 

Previous studies have highlighted how post-translationally modified antigens can be 

immunogenic, with immunity against leukemia-associated MHC class I phosphopeptides 

having been shown to be present in healthy individuals. Immunity against naturally 
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processed MHC class-I O-GlcNAc or methylated peptides has not been studied, but we 

hypothesized that it may exist in healthy individuals. Immunogenicity in healthy donors was 

assessed using seven of the O-GlcNAcylated peptides discovered on leukemic cells (Fig.  

2A-E and Supplementary Figs. S2-S5). Five of the seven (71%) HLA-B*0702 

glycopeptides were immunogenic—heterogeneous responses were seen, with both intra- 

and inter-donor variation (Fig.  2B and C). The responses were further validated using IFNγ 

ELISpot (Supplementary Fig. S5). All healthy donors had immunity to at least one of the 

glycopeptides and two had strong responses, similar to the magnitude of responses against 

chronic viral antigens. Degranulation was assessed as a proxy for killing (Fig.  2C) and 

despite some background staining, degranulation significantly correlated with multifunctional 

cytokine responses (Fig.  2D), suggesting that these T cells targeting O-GlcNAcylated 

peptide antigens have a cytotoxic phenotype. Furthermore, these T cells appeared to be 

largely the memory phenotypes (Fig.  2E).    

Modifications of a methylated glycopeptide specifically targeted by cytotoxic T cells 

As responses were seen against the intriguing methylated glycopeptide ((me-R)PPI(GlcNAc-

T)QSSL) in 4/5 (80%) of healthy donors tested, two being potent, these responses were 

further analyzed using peptides that were either methylated or glycosylated. Whereas no T-

cell responses were seen against the unmodified peptide, responses in different individuals 

were seen targeting either the glycosylated or the methylated peptide (Fig.  3A and S6). In 

the two donors with potent responses to the methylated glycopeptides, \fewer T cells 

recognized the glycopeptide alone, suggesting that the methylation may somehow increase 

immunogenicity. To assess this further, a T-cell line was initiated using the methylated 

glycopeptide. After culture, around 18% of T cells were shown to be specific for the 

methylated glycopeptide (Fig.  3B and Supplementary Fig. S6). Autologous transformed B 

cells were pulsed with modified and unmodified peptides and killing by the T-cell line 

assessed. Specific killing was seen of the B cells pulsed with methylated, O-GlcNAcylated 

and doubly modified peptide, but not with the unmodified peptide (Fig.  3C). These results 
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suggest that we may have identified modified peptides targeted by the endogenous anti-

leukemia T-cell response, which may lead to fruitful targets for novel immunotherapeutics. 

Discussion 

We outline here three methodologies for the identification of MHC class I peptides containing 

a little-known PTM, O-GlcNAc, a potential class of cancer neoantigens. Utilizing these 

methods, we identified 36 GlcNAcylated peptides from primary leukemia samples, and 

showed that a memory T-cell response against a subset of these antigens could be found in 

healthy donors. We also have identified peptides that contained other moieties—not 

previously seen on MHC class I peptides from cancer samples—namely methyl, 

disaccharide, and N-linked GlcNAc groups. Peptides containing these PTMs offer a hitherto 

untapped source of neoantigens in leukemia. 

These neoantigens created by PTMs may be found on leukemic cells because of their 

aberrant cell signaling. This has been reported for phosphopeptide leukemia antigens and 

O-GlcNAcylation sites are usually identical, or in close proximity, to those that get 

phosphorylated(17, 20). Aberrant O-GlcNAcylation has been shown to correlate with 

augmented cancer cell proliferation, survival, invasion, and metastasis (21). The essential 

nature of these pathways to the leukemic cells suggests that these PTM neoantigens may 

not be patient-specific, as seen with the mutated neoantigens, but common across patients 

of the same HLA-type (7, 8). Indeed, we identified many of them on multiple samples from 

leukemia patients, even those with different clinical types. Around a quarter (7/32) of the 

proteins that the PTM peptides derived from are associated with key cancer pathways (as 

defined by the NCI pathway interaction database). Antigens from these key signaling 

pathways are ideal targets for immunotherapies since the leukemic cell is unlikely to be able 

to survive without these pathways, reducing the risk of immune escape. Although further 

work is required to ensure that these PTM peptides are truly cancer neoantigens and not 

found in healthy tissues, they may provide an attractive new avenue for immunotherapeutic 

targeting. 
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Not only are these neoantigens present on leukemia samples, but positional analysis 

indicates that the GlcNAc residues may be optimally positioned for T-cell recognition. The 

GlcNAc group is in the middle of the peptide (up to 34/36; 62% P4, 18% P5, 21% equivocal 

P4/P5; Supplementary Fig. S7), identical to the preferred position of phosphate groups in 

phosphopeptides, and where structural studies have revealed that the CDR3 regions of the 

TCR loops around the center of the peptide(32). Indeed, previous structural studies in mouse 

of TCR binding have demonstrated that GlcNAc modified antigens are recognized in this 

manner (22). 

We saw potent multifunctional memory T-cell responses against these O-GlcNAcylated 

leukemia antigens in healthy donors, suggesting that these neoantigens may reflect an 

endogenous immunosurveillance system against leukemia). Not only did healthy donor T 

cells recognize the PTM neoantigen, but we also showed that they could specifically kill cells 

presenting modified peptides. Therefore, we would not expect targeting of these antigens to 

be compromised by self-tolerance, as may be seen with overexpressed antigens. What is 

more, if healthy donors have cytotoxic memory T cells targeting these PTM neoantigens 

without autoimmunity, targeted therapies against these neoantigens may have low toxicity. 

The most immunogenic peptide identified was me-RPPItQSSL, containing both a methylated 

arginine and O-GlcNAcylated serine.  It is tempting to speculate that combined modifications 

lead to the most dramatic structural change and, therefore, peptides more antigenically 

distinct from self. We showed that T cells may recognize and kill cells presenting this peptide 

with either the methylation, or the O-GlcNAc modification, but not the unmodified peptide. 

This potent antigen, targetable by T cells from several healthy donors, is an attractive target 

for the development of immunotherapeutics. We are expanding this work to identify O-

GlcNAcylated antigens from patients with other HLA-types and cancers and in the process of 

developing methods that allow for the identification of methylated peptide antigens from 

MHC class I. 
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Overall, this work identified both glycosylated and methylated residues as potent classes of 

tumor antigens, broadening the availability of immunotherapy targets, and potentially yielding 

safe and effective therapeutics for leukemia. 

 

Acknowledgements: This work was supported by National Institutes of Health Grants 

GM037537 and AI033993 (to D.F.H.). Kay Kendall Leukaemia Research grant KKL3227 and 

Bloodwise grant 08038 (to M.C.) 

References  

1. Gillis S & Smith KA (1977) Long term culture of tumour-specific cytotoxic T cells. Nature 
268(5616):154-156. 

2. Coulie PG, et al. (1995) A mutated intron sequence codes for an antigenic peptide 
recognized by cytolytic T lymphocytes on a human melanoma. Proc Natl Acad Sci U S A 
92(17):7976-7980. 

3. Cox AL, et al. (1994) Identification of a peptide recognized by five melanoma-specific human 
cytotoxic T cell lines. Science 264(5159):716-719. 

4. Chen YT, et al. (1997) A testicular antigen aberrantly expressed in human cancers detected 
by autologous antibody screening. Proc Natl Acad Sci U S A 94(5):1914-1918. 

5. Rooney MS, Shukla SA, Wu CJ, Getz G, & Hacohen N (2015) Molecular and genetic properties 
of tumors associated with local immune cytolytic activity. Cell 160(1-2):48-61. 

6. Linnemann C, et al. (2015) High-throughput epitope discovery reveals frequent recognition 
of neo-antigens by CD4+ T cells in human melanoma. Nat Med 21(1):81-85. 

7. McGranahan N, et al. (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity 
to immune checkpoint blockade. Science 351(6280):1463-1469. 

8. Rizvi NA, et al. (2015) Cancer immunology. Mutational landscape determines sensitivity to 
PD-1 blockade in non-small cell lung cancer. Science 348(6230):124-128. 

9. Segal NH, et al. (2008) Epitope landscape in breast and colorectal cancer. Cancer Res 
68(3):889-892. 

10. Van Allen EM, et al. (2015) Genomic correlates of response to CTLA-4 blockade in metastatic 
melanoma. Science 350(6257):207-211. 

11. Snyder A, et al. (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. 
The New England journal of medicine 371(23):2189-2199. 

12. Lawrence MS, et al. (2013) Mutational heterogeneity in cancer and the search for new 
cancer-associated genes. Nature 499(7457):214-218. 

13. Ansell SM, et al. (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's 
lymphoma. N. Engl. J. Med 372(4):311-319. 

14. Motzer RJ, et al. (2015) Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N 
Engl J Med 373(19):1803-1813. 

15. Nagorsen D, Scheibenbogen C, Marincola FM, Letsch A, & Keilholz U (2003) Natural T cell 
immunity against cancer. Clin. Cancer Res 9(12):4296-4303. 

16. Hanahan D & Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646-
674. 

17. Cobbold M, et al. (2013) MHC class I-associated phosphopeptides are the targets of 
memory-like immunity in leukemia. Sci. Transl. Med 5(203):203ra125. 



15 
 

18. Hart GW (2014) Minireview series on the thirtieth anniversary of research on O-
GlcNAcylation of nuclear and cytoplasmic proteins: Nutrient regulation of cellular 
metabolism and physiology by O-GlcNAcylation. The Journal of biological chemistry 
289(50):34422-34423. 

19. Slawson C & Hart GW (2011) O-GlcNAc signalling: implications for cancer cell biology. Nature 
reviews. Cancer 11(9):678-684. 

20. Wells L, Kreppel LK, Comer FI, Wadzinski BE, & Hart GW (2004) O-GlcNAc transferase is in a 
functional complex with protein phosphatase 1 catalytic subunits. The Journal of biological 
chemistry 279(37):38466-38470. 

21. de Queiroz RM, Carvalho E, & Dias WB (2014) O-GlcNAcylation: The Sweet Side of the 
Cancer. Frontiers in oncology 4:132. 

22. Glithero A, et al. (1999) Crystal structures of two H-2Db/glycopeptide complexes suggest a 
molecular basis for CTL cross-reactivity. Immunity 10(1):63-74. 

23. Haurum JS, et al. (1995) Peptide anchor residue glycosylation: effect on class I major 
histocompatibility complex binding and cytotoxic T lymphocyte recognition. Eur. J. Immunol 
25(12):3270-3276. 

24. Haurum JS, et al. (1994) Recognition of carbohydrate by major histocompatibility complex 
class I-restricted, glycopeptide-specific cytotoxic T lymphocytes. J Exp Med 180(2):739-744. 

25. Kastrup IB, et al. (2000) Lectin purified human class I MHC-derived peptides: evidence for 
presentation of glycopeptides in vivo. Tissue Antigens 56(2):129-135. 

26. Udeshi ND, Compton PD, Shabanowitz J, Hunt DF, & Rose KL (2008) Methods for analyzing 
peptides and proteins on a chromatographic timescale by electron-transfer dissociation 
mass spectrometry. Nat Protoc 3(11):1709-1717. 

27. Dudley ME, Wunderlich JR, Shelton TE, Even J, & Rosenberg SA (2003) Generation of tumor-
infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. 
J. Immunother. (1997. ) 26(4):332-342. 

28. Wang Z, et al. (2010) Enrichment and site mapping of O-linked N-acetylglucosamine by a 
combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer 
dissociation mass spectrometry. Mol Cell Proteomics 9(1):153-160. 

29. Zhao P, et al. (2011) Combining high-energy C-trap dissociation and electron transfer 
dissociation for protein O-GlcNAc modification site assignment. J Proteome Res 10(9):4088-
4104. 

30. Cante-Barrett K, Pieters R, & Meijerink JP (2014) Myocyte enhancer factor 2C in 
hematopoiesis and leukemia. Oncogene 33(4):403-410. 

31. Suzuki T, Huang C, & Fujihira H (2016) The cytoplasmic peptide:N-glycanase (NGLY1) - 
Structure, expression and cellular functions. Gene 577(1):1-7. 

32. Mohammed F, et al. (2008) Phosphorylation-dependent interaction between antigenic 
peptides and MHC class I: a molecular basis for the presentation of transformed self. Nat. 
Immunol 9(11):1236-1243. 

  



16 
 

Table 1.  O-GlcNAcylated peptides presented by HLA B*0702 Class I MHC molecules on leukemia
# Sequence Start - Stop UniProt Tumor Source Protein 
1

a APP(sts)AAAL 405-414 Q86TM6 ALL, CLL1 E3 Ubiquitin-protein ligase synoviolin

2
b APRGnVTSL  60-68 Q9NR96 CLL1, CLL2 Toll-like receptor 9 

3 APRtNGVAM 187-195 Q92567 ALL, CLL1, CLL2 Protein FAM168A 
4 APTsAAAL 1116-1123 Q86Z02 ALL Homeodomain-interacting protein kinase 1
5 APVsASASV 1807-1815 Q9Y520 ALL Protein PRRC2C 
6 APVsSKSSL 850-858 Q86Z02 ALL, CLL1, CLL2 Homeodomain-interacting protein kinase 1
7 EP(sst)VVSL 1076-1085 O75129 ALL Astrotactin-2

8 HPMsTASQV 345-353 Q13492 ALL Clathrin assembly lymphoid myeloid leukemia 

9
c HP(sss)AAVL 740-748 Q86XN7 ALL Proline and serine-rich protein 1 

10 HP(sst)ASTAL 3041-3050 Q96T58 ALL Msx2-interacting protein 
11 IPIsLHTSL 1959-1967 Q5JSZ5 ALL Protein PRRC2B 
12 IPTsSVLSL 710-718 O15027 ALL Protein transport protein Sec16A 
13

d IPVsKPLSL 104-112 Q16621 AML, ALL, CLL1 Leucine zipper protein 1 
14

e IPVsSHNSL 147-155 Q06413 AML, ALL, CLL1,  
JY, S, To Myocyte-specific enhancer factor 2C

15
f KPP(ts)QSSVL 411-420 Q5T6F2 ALL Ubiquitin associated protein 2 

16
g KPPVsFFSL  95-103 Q6PKC3 ALL Thioredoxin domain containing protein 11

17
h KPTLLYnVSL  373-381 P04220 CLL1, CLL2 Ig Mu heavy chain disease protein

18 LPRN(st)MM 335-342 Q9NPI6 ALL mRNA-decapping enzyme 1A 
19 LPTsLPSSL 2464-2472 P46531 ALL Neurogenic locus notch homolog protein 1

20
i MPVRPTtNTF 218-227 Q7Z3K3  ALL pogo transposable element with ZNF domain

21 NPVsLPSL 831-838 Q6VMQ6 ALL Activating transcription factor 7-interacting protein 

22
j PPS(ts)AAAL 405-414 Q86TM6 ALL E3 Ubiquitin-protein ligase synoviolin

23
k RPPItQSSL 382-390 Q9P2N5 ALL, S RNA binding protein 27 

24
l RPPQsSSVSL   937-946 O15027 ALL Protein transport protein Sec16A 

25 RPP(sss)QQL 1758-1766 Q8WYB5 ALL Histone acetyltransferase KAT6B 
26 RPPVtKASSF 341-350 Q9Y2K5 ALL, CLL1 R3H domain containing protein 2 
27 RPVtASITTM 927-936 Q9ULH7 ALL, CLL1, CLL2, S MKL/myocardin-like protein 2 
28 TPASsRAQTL 2320-2329 Q01082 CLL1 Spectrin beta chain, non-erythrocytic 1
29 TPAsSSSAL 875-883 Q9NPG3 ALL, CLL1 Ubinucleain 1
30 TPIsQAQKL 3024-3032 Q96L91 ALL E1A-binding protein p400 
31 VPAsSTSTL 576-584 Q9NYV4 ALL, CLL1 Cyclin dependent kinase 12 
32 VPTtSSSL 1284-1291 Q14004 ALL Cyclin dependent kinase 13 
33 VPVsGTQGL 93-101 P23511 ALL Nuclear transcription factor Y subunit alpha
34 VPVsNQSSL 146-154 Q14814 ALL Myocyte-specific enhancer factor 2D
35 VPVsSASEL 596-603 Q7Z2W4 ALL Zinc finger CCCH-type, antiviral 1 
36 VPVsVGPSL 1157-1164 Q86Z02 ALL Homeodomain-interacting protein kinase 1
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Figure legends 

 

Table 1.  O-GlcNAcylated peptides presented by HLA B*0702 Class I MHC molecules 
on leukemia 

Thirty-six peptides, often with multiple forms of glycosylation, were isolated from class I MHC 

molecules on several leukemias, cell lines, and healthy tissue.  These sources are indicated 

as follows: CLL1,2; chronic lymphocytic leukemia samples 1 and 2, AML; acute myeloid 

leukemia, ALL; acute lymphoblastic leukemia, J; JY cell line, S; spleen and To; tonsil - see 

Supplementary Table S1.  Small letters, s, t, and n specify Ser, Thr and Asn residues that 

are modified by O-GlcNAc unless otherwise indicated in a footnote.  Parentheses enclose s 

and t residues that could be a site of GlcNAcylation. Samples were independently analyzed 

by MS at least 3 times. 

Footnotes are as follows: 

a) Peptide was detected in a total of five forms: single GlcNac, double GlcNAc, single 

hexose-GlcNAc, single GlcNAc (S6) + hexose- GlcNac (T5), and double hexose-

GlcNAc 

b) N5 is modified by N-linked hexose-GlcNAc 

c) Peptide was detected in two forms, GlcNAc on S4 and two GlcNAcs on S4 and S5. 

d) Peptide was detected in two forms: GlcNAc (S4) and hexose-GlcNAc (S4) 

e) Peptide was detected in four forms: GlcNAc (S4), double GlcNAc (S4, S5), single 

hexose-GlcNAc (S4), and an acetyl-GlcNAc (S4) 

f) Peptide was detected in two forms: GlcNAc and hexose-GlcNAc (T4) 

g) S5 is modified by O-linked hexose-GlcNAc 

h) N7 is modified by N-linked hexose-GlcNAc 

i) Peptide was detected in two forms: hexose-GlcNAc and asymmetric di-methyl (R4) + 

hexose-GlcNAc (T7) 

j) T4 or S5 is modified by O-linked hexose-GlcNAc 

k) Peptide was detected in four forms: GlcNAc (T5), mono-methyl (R1) + GlcNAc (T5), 

asymmetric di-methyl (R1) + GlcNAc (T5), and ), asymmetric di-methyl (R1) + acetyl-

GlcNAc (T5) 

l) S5 is modified by O-linked hexose-GlcNAc 
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Figure 1. The discovery of MHC class I–associated glycopeptides on primary leukemia 

cells 

(A) HCD mass spectrum of the first O-GlcNAcylated peptide detected in ALL, IPVsSHNSL. 

Fragment ions that define the complete amino acid sequence are labelled as b and y. Those 

that have lost the O-GlcNAc moiety are labelled with an asterisk. (B) Fingerprint ions in the 

HCD spectra of O-GlcNAcylated and O-GalNAcylated peptides. Relative abundances of 

fragment ions derived from secondary fragmentation of the oxonium ion at m/z 204 are 

substantially different for O-GlcNAcylated and O-GalNAcylated peptides. (C) Distribution of 

36 HLA-B*07:02–restricted glycopeptides among the different leukemia and healthy cells 

analysed. ALL = acute lymphoblastic leukemia. Healthy cells = healthy donor tonsil/spleen 

cells. LCL = lymphoblastoid cell line. AML = acute myeloid leukemia. CLL = chronic 

lymphocytic leukemia. (D) Number of copies per cell of the O-GlcNAcylated peptides 

identified on ALL versus healthy B cells (purified from a healthy spleen).  

Figure 2. Healthy donor immunity to leukemia-associated posttranslationally-modified 

neoantigens  

(A) Flow cytometry plots showing the gating strategy used in the ICS protocol to determine 

healthy donor immunity to the O-GlcNAcylated peptides (Fig. S4 contains additional plots). 

Immunity to viral antigens was used as an internal control, for comparison. Collated results 

of cytokine production (B) and degranulation (C) by healthy donor T cells in response to 

stimulation with posttranslationally-modified leukemia neoantigens. (D) The correlation 

between the percentage of cells producing cytokine and degranulating for HD1. (E) HD1 T 

cells that produced cytokine in response to stimulation with peptides were also stained with 

surface antibodies for phenotyping (CD27 and CD45RA; Supplementary Fig. S5). CM - 

central memory, N - naïve, EM - effector memory and TEMRA - terminal effector memory. 

Responses were independently verified at least twice. 
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Figure  3. Investigating T-cell recognition of the methylated O-GlcNAc peptide  

(A) Healthy donor immunity to the unmodified, O-GlcNAcylated, methylated and both O-

GlcNAcylated and methylated peptide, measured by cytokine production and degranulation. 

(B) A T-cell line was grown from HD5 against the methylated RPPItQSSL peptide. The 

percentage of cells recognizing the peptide were assessed by overnight stimulation with the 

peptide and detection of CD137 and CD107a surface markers. (C) This T-cell line was using 

a europium release killing assay to assess killing of autologous transformed B cells pulsed 

with different modifications of the peptide. Responses were independently verified at least 

twice. 
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