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General quantum constraints on detector noise in continuous linear measurement

Haixing Miao1

1School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, United Kingdom

In quantum sensing and metrology, an important class of measurement is the continuous linear measurement,
in which the detector is coupled to the system of interest linearly and continuously in time. One key aspect in-
volved is the quantum noise of the detector, arising from quantum fluctuations in the detector input and output. It
determines how fast we acquire information about the system, and also influences the system evolution in terms
of measurement back action. We therefore often categorize it as the so-called imprecision noise and quantum
back action noise. There is a general Heisenberg-like uncertainty relation that constrains the magnitude of and
the correlation between these two types of quantum noise. The main result of this paper is to show that when
the detector becomes ideal, i.e., at the quantum limit with minimum uncertainty, not only does the uncertainty
relation takes the equal sign as expected, but also there are two new equalities. This general result is illustrated
by using the typical cavity QED setup with the system being either a qubit or a mechanical oscillator. Partic-
ularly, the dispersive readout of qubit state, and the measurement of mechanical motional sideband asymmetry
are considered.

I. INTRODUCTION AND SUMMARY

When we probe classical signals or quantum systems, noise
in the detector limits our ability to extract the relevant infor-
mation. If the classical noise is sufficiently suppressed, the
detector will enter the regime where intrinsic quantum fluc-
tuations in its degrees of freedom determines the statistical
property of the noise. Modern experiments are approaching
such a quantum-noise-limited regime [1, 2]. The state-of-the-
art includes, e.g., high-fidelity qubit readout [3], gravitational-
wave detection using laser interferometers [4, 5], and quantum
optomechanics in general [6, 7].

In the quantum regime, those experiments mentioned above
can be modeled as the continuous linear quantum measure-
ment, which is represented schematically in Fig. 1. The sys-
tem can be, e.g. either a qubit or a mechanical oscillator,
which can be further attached to a classical signal if acting as a
sensor. The detector is a quantum field that contains many de-
grees of freedom, e.g. the optical field in optomechanics, and
interacts with the system continuously in time. We call the
degree of freedom linearly coupled to the system variable q̂ as
the input port with its observable denoted by F̂ , which, e.g. in
optomechnaics, is the force acting on the mechanical oscilla-
tor; the output port with observable Ẑ is the one projectively
measured by a macroscopic device (e.g. the photodiode) that
produces classical data.

The determining factor behind different measurement tasks
is the quantum noise, arising from quantum fluctuations in the
detector input and output ports. Particularly, the output-port
fluctuation gives rise to the so-called imprecision noise that
quantifies how well we can probe the system in terms of mea-
surement precision and rate; the input-port fluctuation per-
turbs the system and leads to the quantum back action noise,
which, in the case of a qubit, can induce dephasing. If the
quantum noise at different times is not correlated, one can use
the master equation approach to study decoherence of the sys-
tem or quantum-trajectory approach for analyzing the system
evolution conditional on the measurement outcome (see, e.g.,
Ref. [8] or Chapter 4 in Ref. [9]).

An alternative approach that can treat general correlated
quantum noise is the linear-response theory developed by

Kubo, and is summarized in his seminal paper on the
fluctuation-dissipation theorem [10]. Averin applied it to the
dispersive quantum non-demolition measurement (QND) of
a qubit [11, 12], which has been further elaborated by Clerk
et al. [13] and also extensively reviewed in Ref. [1]. Bragin-
sky and Khalili applied this approach to study the sensitiv-
ity of quantum-limited force/displacement sensors [14]. In
this approach, different dynamical quantities are related by
the susceptibility function χ which describes the linear re-
sponse. The statistical property of the quantum noise is quan-
tified by the two-time correlation function, or equivalently,
the frequency-domain noise spectral density (spectrum) S̄ for
time-invariant (stationary) detectors.

At thermal equilibrium, the spectral density and suscepti-
bility are connected by the famous fluctuation-dissipation the-
orem [10, 15]. In contrast, the measurement process consid-
ered here is far away from the thermal equilibrium. Never-
theless, there is a general Heisenberg-like uncertainty relation
connecting them, which constrains the imprecision noise and
quantum back action noise of the detector, even without know-
ing details of the system. According to Ref. [14], such a rela-
tion can be written explicitly as‡:

S̄ZZ(ω)S̄FF(ω)−|S̄ZF(ω)|2 ≥ (h̄2/4)|χZF(ω)|2+
h̄
∣∣ℑ[S̄∗ZF(ω)χZF(ω)−χFF(ω)S̄ZZ(ω)]

∣∣ . (1)

Here the spectral densities S̄ZZ(ω) and S̄FF(ω) quantifies the
magnitude of the imprecision noise and the back action noise
at frequency ω , respectively; S̄ZF quantifies the cross corre-
lation; the susceptibility χZF describes the response of the

detectorsystem macro-
device data

input output

FIG. 1. A schematics for the continuous linear measurement.

‡ there is a minor typo in [14] concerning the sign in front of χFF .
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detector output to the system variable; the input susceptibil-
ity χFF quantifies the dynamical back action that modifies
the system dynamics, which will be illustrated later using a
concrete example; ℑ[·] means taking the imaginary part. The
mathematical definitions for χ and S̄ will be given in Eqs. (10)
and (13). Note that an uncertainty relation similar to Eq. (1)
is also presented in Ref. [1]; however, χFF has not been in-
cluded, and this makes the resulting uncertainty relation less
tight, especially when S̄ZF/χZF becomes imaginary.

Applying the above uncertainty relation to measurements
of different systems, one can arrive at some general principles,
regardless of the specific detector used. For example, in the
QND measurement of a qubit, S̄ZZ determines the measure-
ment rate Γmeas for acquiring information of the qubit state,
and S̄FF sets the dephasing rate Γφ . Eq. (1) leads to a funda-
mental quantum limit to the measurement rate: Γmeas ≤ Γφ —
we can measure the qubit at most as fast as we dephase
it [1, 11–13, 16]. In the classical force/displacement sensing
with a quantum mechanical oscillator, Eq. (1) implies a trade-
off between the imprecision noise and the back-action noise,
which gives rise to the famous Standard Quantum Limit [14].
Achieving the quantum limit requires the detector to be ideal,
i.e., having minimum uncertainty—the thermal excitation of
the detector degrees of freedom and other decoherence effects
become negligible. There are ongoing experimental efforts
towards this goal, e.g., the most recent results with optome-
chanical devices presented in Refs. [17–20].

The main result presented in this paper is to show that when
the detector is at the quantum limit with minimum uncertainty,
not only do we have Eq. (1) attain the equal sign, but also ob-
tain two new equalities shown in Eqs. (24) and (25). By in-
troducing ẑ≡ Ẑ/χZF normalized by the output response, they
can be putted into the following more suggestive form:

S̄zz(ω)S̄FF(ω)−|S̄zF(ω)|2 = h̄2

4
, (2)

ℑ[S̄zF(ω)] =−ℑ[χFF(ω)]S̄zz(ω) . (3)

The first equality constraints the strength of the imprecision
noise and the back-action noise, while the second one relates
the cross correlation S̄zF to the dynamical back action quanti-
fied by χFF . The details will be provided in section III.

To illustrate implications of Eqs. (2) and (3), in section IV,
they will be applied to the typical cavity QED setup, in which
a cavity mode is coupled to either a qubit or a mechanical
oscillator. The key messages are summarized as follows. In
the case of dispersive QND qubit readout, there is an optimal
output observable such that S̄zF = 0, which leads to

Γmeas = Γφ . (4)

In the case of measuring a mechanical oscillator, the motional
sideband asymmetry reported in several experiments [21–25]
is considered. One interpretation behind the observed asym-
metry is attributing it to the imprecision-back-action noise
correlation S̄zF [22, 26]. In particular, near the mechanical res-
onant frequency ωm, S̄zF is purely imaginary and

S̄zF(ωm)≈±i h̄/2 , (5)

where ± depends on the detuning frequency of the laser with
respect to the cavity resonance. From Eqs. (2) and (3), such a
correlation implies

ℑ[χFF(ωm)]≈∓S̄FF(ωm)/h̄ . (6)

Firstly, this indicates that the noise spectra for the positive
and negative frequencies are highly unbalanced, cf., Eq. (15),
which is the case in these experiments. Secondly, since χFF
quantifies the dynamical back action to the mechanical oscil-
lator [27–29], the sideband asymmetry observed with the lin-
ear measurement is always accompanied by additional heating
or damping of the mechanical motion.

The outline of this paper goes as follows: in section II,
a brief introduction to the continuous linear measurement is
provided. Additionally, the formal definitions for the suscep-
tibility function and the noise spectral density are given; in
section III, the derivation of the general quantum constraints
on detector noise—Eqs. (2) and (3) is presented; in section IV,
these constraints are illustrated with the examples of quantum
measurements in the cavity QED setup; in section V, there
will be some discussions about extending the result to more
general cases.

II. CONTINUOUS LINEAR MEASUREMENT

We now go through the mathematical description of the
continuous linear measurement, and define relevant quantities,
which follows Refs. [1, 14, 27]. Specifically, the free Hamil-
tonian Ĥdet of the detector only involves linear or quadratic
functions of canonical coordinates of which the commutators
are classical numbers. The system-detector interaction Ĥint is
in the bilinear form:

Ĥint =−q̂ F̂ . (7)

Solving the Heisenberg equation of motion leads to the fol-
lowing solution to the detector observables:

Ẑ(t) = Ẑ(0)(t)+
∫ +∞

−∞

dt ′χZF(t− t ′) q̂(t ′) , (8)

F̂(t) = F̂(0)(t)+
∫ +∞

−∞

dt ′χFF(t− t ′) q̂(t ′) , (9)

where superscript (0) denotes evolution under the free Hamil-
tonian Ĥdet. The susceptibility χAB, quantifying the detector
response to the system variable q̂, is defined as

χAB(t− t ′)≡ (i/h̄)[Â(0)(t), B̂(0)(t ′)]Θ(t− t ′) , (10)

where Θ is the Heaviside function and Ĥdet is assumed to be
time-independent (time-invariant) so that χAB is a function of
the time difference t− t ′. Note that χAB is not an operator but
a classical number, and it only depends on the free evolution
of the detector; both features are attributable to the detector
being linear. Moving into the frequency domain, we can relate
the susceptibility to the spectral density [1]:

χAB(ω)−χ
∗
BA(ω) = (i/h̄)[SAB(ω)−SBA(−ω)] . (11)
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Here SAB is unsymmetrized spectral density defined through

Tr[ρ̂det Â(0)(ω)B̂(0)(ω ′)]≡ 2π SAB(ω)δ (ω−ω
′) , (12)

where ρ̂det is the density matrix of the detector initial state, the
Fourier transform f (ω) ≡

∫ +∞

−∞
dt eiωt f (t), and Tr[ρ̂detÂ(0)] =

Tr[ρ̂detB̂(0)] = 0 is assumed without loss of generality. The
symmetrized version of SAB, quantifying the fluctuation, is

S̄AB(ω)≡ [SAB(ω)+SBA(−ω)]/2 . (13)

One special case is when Â and B̂ are identical, which leads to
Kubo’s formula, using Â = B̂ = F̂ as an example:

ℑ[χFF(ω)] = [SFF(ω)−SFF(−ω)]/(2h̄) , (14)

which quantifies the dissipation. In the thermal equilibrium,
SFF(ω) and SFF(−ω) differ from each other by the Boltz-
mann factor eh̄ω/(kBT ) with T being temperature, and S̄FF(ω)
is thus related to ℑ[χFF(ω)] by the fluctuation-dissipation the-
orem. For the measurement process far from thermal equilib-
rium, we generally have

S̄FF(ω)≥ h̄|ℑ[χFF(ω)]| , (15)

in which the equal sign is achieved when either SFF(ω) or
SFF(−ω) vanishes [14]. This relation constraints the quan-
tum fluctuation in either Ẑ or F̂ individually; the uncertainty
relation Eq. (1) connects both together.

III. THE GENERAL QUANTUM CONSTRAINTS

After defining key quantities, we come to the derivation of
Eq. (1) and the main result Eqs. (2) and (3)—the general quan-
tum constraints on detector noise. It follows the standard ap-
proach outlined in Ref. [14], but uses unsymmetrized spectral
density as the starting point, which allows directly showing
the condition for achieving the quantum limit. Define the fol-
lowing auxiliary operator:

Q̂≡
∫ +∞

−∞

dω[α∗(ω)Ẑ(0)(ω)+β
∗(ω)F̂(0)(ω)] , (16)

where α,β are some functions. The norm of Q̂ is positive
definite, i.e., ||Q̂||2 ≡ Tr[ρ̂detQ̂ Q̂†]≥ 0, which, in terms of un-
symmetrized spectral density, reads∫ +∞

−∞

dω [α∗, β
∗]

[
SZZ(ω) SZF(ω)
S∗ZF(ω) SFF(ω)

][
α

β

]
≥ 0 . (17)

It needs to be satisfied for arbitrary α and β , which implies

SZZ(ω)SFF(ω)−|SZF(ω)|2 ≥ 0 . (18)

Using Eqs. (11) and (13), we can rewrite it as

{S̄ZZ(ω)± h̄ℑ[χZZ(ω)]}{S̄FF(ω)± h̄ℑ[χFF(ω)]} ≥∣∣S̄ZF(ω)± h̄
2i
[χZF(ω)−χ

∗
FZ(ω)]

∣∣2 . (19)

Here± comes from that Eq. (18) needs to be satisfied for both
positive and negative frequencies.

In order for F̂ and Ẑ to be the input and output observables
of the detector, the susceptibilities cannot take arbitrary value.
Because the macroscopic device, illustrated in Fig. 1, needs
to make projective measurement of Ẑ continuously in time,
which produces a classical data stream. This means the final
Ẑ after interacting with the system, shown in Eq. (8), can be
precisely measured at different times, which happens only if

[Ẑ(t), Ẑ(t ′)] = 0 ∀ t, t ′. (20)

In Ref. [27], the authors called this as the condition of si-
multaneous measurability, and further showed that it implies
[Ẑ(0)(t), Ẑ(0)(t ′)] = [F̂(0)(t), Ẑ(0)(t ′)]Θ(t− t ′) = 0, i.e.,

χZZ(ω) = χFZ(ω) = 0 . (21)

Taking this into account, Eq. (19) leads to

S̄ZZ(ω)S̄FF(ω)−|S̄ZF(ω)|2 ≥ h̄2

4
|χZF(ω)|2±

h̄ℑ[S̄∗ZF(ω)χZF(ω)−χFF(ω)S̄ZZ(ω)] . (22)

Since the inequality has to be valid for both plus sign and mi-
nus sign in front of h̄ℑ[·], it becomes equivalent to the uncer-
tainty relation Eq. (1).

When the detector is at the quantum limit, Eq. (18) takes
the minimum, i.e.,{

SZZ(ω)SFF(ω)−|SZF(ω)|2
}

quantumlimit = 0 . (23)

Equivalently, this gives rise to two equalities for either plus
sign or minus sign in Eq. (22). Taking their sum and differ-
ence, we obtain

S̄ZZ(ω)S̄FF(ω)−|S̄ZF(ω)|2 = h̄2

4
|χZF(ω)|2 , (24)

ℑ[S̄∗ZF(ω)χZF(ω)−χFF(ω)S̄ZZ(ω)] = 0 , (25)

which are reduced to Eqs. (2) and (3) after normalizing Ẑ by
the susceptibility χZF .

One can show explicitly that the quantum limit is achieved
when the detector is in the pure, stationary, Gaussian state—
the multi-mode squeezed state (see, e.g., Ref. [30]):

|ξ 〉 ≡ exp
{∫ +∞

0

dω

2π
[ξ (ω)d̂†(ω)d̂†(−ω)−h.c.]

}
|0〉 . (26)

Here we have used the fact that the detector is linear with its
canonical coordinates having classical-number commutators,
and thus it can be modelled as a collection of bosonic modes
(bosonic field); d̂(ω) is the corresponding annihilation opera-
tor of the detector mode at frequency ω; ξ (ω) describes the
squeezing factor at different frequencies; h.c. denotes Her-
mitian conjugate; |0〉 is the vacuum state. In quantum optics,
the zero frequency in Eq. (26) coincides with one half of the
pump frequency of the optical parametric oscillator that pro-
duces the squeezed state.
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Using the fact that Ẑ(0)(t) and F̂(0)(t) are Hermitian, we can
rewrite their Fourier transform in terms of d̂(ω) and d̂†(−ω):

Ẑ(0)(ω) = Z (ω)d̂(ω)+Z ∗(−ω)d̂†(−ω) , (27)

F̂(0)(ω) = F (ω)d̂(ω)+F ∗(−ω)d̂†(−ω) , (28)

with some coefficients Z and F . One can then find that

det
[
〈ξ |Ẑ(ω)Ẑ†(ω ′)|ξ 〉 〈ξ |Ẑ(ω)F̂†(ω ′)|ξ 〉
〈ξ |F̂(ω)Ẑ†(ω ′)|ξ 〉 〈ξ |F̂(ω)F̂†(ω ′)|ξ 〉

]
= 0 , (29)

where the superscript (0) is omitted. This is equivalent to
Eq. (23) according to the definition of the spectral density
shown in Eq. (12).

IV. APPLICATION TO CAVITY QED

To illustrate the above result, let us look at the cavity QED
setup shown schematically in Fig. 2. The system can either
be a qubit or a mechanical oscillator. The detector consists of
a single cavity mode â and external continuum field ĉx with
the central frequency defined by the laser frequency ωl which
can be detuned from the cavity resonant frequency ωr. Its
Hamiltonian in the rotating frame of the laser frequency is
given by (see, e.g., section 2 in [6])

Ĥdet = h̄(ωr−ωl)â†â− ih̄
∫ +∞

−∞

dx ĉ†
x

∂ ĉx

∂x

+ ih̄
√

2γ (â†ĉx=0− â ĉ†
x=0) . (30)

FIG. 2. Schematics for the dispersive qubit readout (left) in which the
state-dependent phase shift is inferred by probing the phase quadra-
ture Ŷ of the cavity mode, and the sideband asymmetry measurement
(right) in which we tune the laser frequency to selectively measure
the Stokes and anti-Stokes sidebands scattered by the mechanical
motion. In both cases, the cavity mode â is continuously driven by
the external field ĉx, which contains both the coherent amplitude and
quantum fluctuation. We use ĉx=0− (ĉx=0+) to denote the ingoing
(outgoing) field right before (after) interacting with the cavity mode.
The outgoing part is monitored by a photodiode using homodyne de-
tection.

Here subscript x in ĉx labels the field degree of freedom at
different locations; ĉx=0 denotes the one directly coupled to
the cavity mode at a rate γ . This is the same Hamiltonian for a
one-sided cavity in the standard input-output (has a different
meaning from the one used here) formalism [31].

The interaction Hamiltonian in two cases, with the system
to be a qubit (dispersive-coupling regime [32, 33]) and a me-
chanical oscillator (optomechanical coupling [6, 7]), are

Ĥqubit
int =−h̄

g2
0

ωl−ω01
σ̂zâ†â , Ĥmech

int =−h̄
ωr

L
q̂mâ†â , (31)

where g0 is the cavity-qubit coupling rate in the Jaynes-
Cummings model, ω01 is the transition frequency between
two energy levels, σ̂z is the Pauli operator, L is the cavity
length, and q̂m is the position of the mechanical oscillator.

For both cases, the input observable F̂ is proportional to the
cavity photon number n̂cav = â†â by comparing with Eq. (7),
and thus in general we can write F̂ = h̄gn̂cav with g depend-
ing on the specific system. Due to pumping from the laser,
the mean cavity photon number n̄cav is much larger than one.
The standard approach is linearizing n̂cav and keeping the per-
turbed part that is proportional to the amplitude quadrature
X̂ ≡ (â+ â†)/

√
2. The resulting linearized F̂ reads

F̂ = h̄g
√

2n̄cav X̂ ≡ h̄ḡX̂ . (32)

Additionally, given homodyne detection of the outgoing field
ĉx=0+, the output observable Ẑ can be written as

Ẑ = cosθ X̂out + sinθ Ŷout , (33)

where θ depends on the phase of the local oscillator in
the homodyne detection, X̂out ≡ (ĉx=0+ + ĉ†

x=0+)/
√

2 and
Ŷout ≡ (ĉx=0+ − ĉ†

x=0+)/(
√

2i) are the amplitude quadrature
and phase quadrature of the outgoing field.

To derive the susceptibilities and spectral densities, cf.,
Eqs. (10) and (12), we only need to solve the Heisenberg equa-
tion for the cavity mode and external field under the free evo-
lution of Ĥdet, according to Ref. [31]:

˙̂a(t) =−(γ− i∆)â(t)+
√

2γ ĉx=0−(t) , (34)

ĉx=0+(t) = ĉx=0−(t)−
√

2γ â(t) , (35)

where ∆ ≡ ωl −ωr is the laser detuning frequency with re-
spect to the cavity resonance. Solving these equations in the
frequency domain, we can represent the cavity mode â and the
outgoing field ĉx=0+ in terms of the ingoing field ĉx=0−.

Without using the non-classical squeezed light, the spectral
density for ĉx=0− is simply Sĉĉ†(ω) = 1 (vacuum fluctuation)
and Sĉ† ĉ(ω) = 0, from which we obtain the relevant spectra
(double-sided):

S̄ZZ(ω) =
1
2
, (36)

S̄ZF(ω) =
h̄ḡ
√

γ[∆sinθ − (iω− γ)cosθ ]

(ω−∆+ iγ)(ω +∆+ iγ)
, (37)

S̄FF(ω) =
2h̄2ḡ2γ(γ2 +∆2 +ω2)

[(ω−∆)2 + γ2][(ω +∆)2 + γ2]
, (38)
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and the susceptibilities:

χZF(ω) =−
2ḡ
√

γ[∆cosθ +(iω− γ)sinθ ]

(ω−∆+ iγ)(ω +∆+ iγ)
, (39)

χFF(ω) =
2h̄ḡ2∆

(ω−∆+ iγ)(ω +∆+ iγ)
. (40)

One can check that they indeed satisfy the general quantum
constraints Eqs. (2) and (3).

For the qubit readout, by introducing ẑ≡ Ẑ/χZF , we have

ẑ(ω) = ẑ(0)(ω)+ σ̂zδ (ω) . (41)

Here it uses the fact that σ̂z is a QND observable and remains
constant in time. Therefore, the output responds to the signal
only near DC with ω ≈ 0. For measurement with a finite dura-
tion, the delta function δ (ω) is approximately equal to the in-
tegration time. The measurement rate is defined by the inverse
of the integration time that is required to reach signal-to-noise
ratio equal to one half, using the convention in Ref. [1]:

Γmeas ≡ 1/[2 S̄zz(0)] . (42)

The fluctuation in the cavity photon number induces a random
AC Stark shift on the energy level, which causes dephasing,
cf., Eq. (31). With measurement much longer than the cavity
storage time, only the low-frequency part of the back action
noise spectrum is relevant, and according to Ref. [1], the de-
phasing rate is

Γφ ≡ (2/h̄2)S̄FF(0) . (43)

At the quantum limit, the ratio between these two rates is
given by, cf., Eqs. (2), (37), and (39),

Γφ

Γmeas
= 1+

4S̄2
zF(0)

h̄2 = 1+
(

∆sinθ + γ cosθ

∆cosθ − γ sinθ

)2

. (44)

The optimal readout quadrature for reaching Γφ = Γmeas is
therefore the one satisfying

θopt =−arctan(γ/∆) . (45)

When the cavity is tuned with ∆= 0, θopt =±π/2 and the out-
put phase quadrature is the optimal one, cf., Eq. (33), while for
a large detuning ∆� γ , θopt ≈ 0 and we need to measure the
output amplitude quadrature. This result can be generalized
to more complicated measurement setups with, e.g., multiple
coupled cavities. Because such a measurement is near DC and
S̄zF(0) is real, we can always find the right readout quadrature
such that S̄zF(0) = 0, which makes Γmeas = Γφ at the quantum
limit.

We now switch to the case of measuring mechanical mo-
tion. In contrast to the qubit readout, the position q̂m of the
mechanical oscillator is not a QND observable, and the back-
action noise will appear in the output:

ẑ(ω) = ẑ(0)(ω)+ q̂m(ω)

= ẑ(0)(ω)+χqq(ω)[F̂(0)(ω)+ F̂th(ω)] , (46)

where it uses the fact that q̂m = χqq[F̂(0) + F̂th] with F̂th be-
ing the thermal Langevin force and χqq being the mechanical
susceptibility modified by the detector input susceptibility:

χqq(ω) = χ
(0)
qq (ω)/[1−χ

(0)
qq (ω)χFF(ω)] , (47)

in which χ
(0)
qq is the original (bare) mechanical susceptibil-

ity. Notice that χFF is often referred to as the optical spring
coefficient or dynamical back action in the literature, which
introduces additional heating or damping to the mechanical
motion. This has been utilized in the optomechanical side-
band cooling experiments [6, 7, 28, 29].

The total output spectrum reads

S̄tot
zz (ω) = S̄zz(ω)+2ℜ[χ∗qq(ω)S̄zF(ω)]+ S̄qq(ω) , (48)

where ℜ[·] means taking the real part. According to Refs. [22,
26], it is the second term, i.e., the cross correlation between
the imprecision noise and the back action noise, gives rise to
the observed asymmetry. From Eqs. (37) and (39), we have

S̄zF(ω) =− h̄
2

[
∆sinθ − (iω− γ)cosθ

∆cosθ +(iω− γ)sinθ

]
. (49)

Those experiments reported in Refs. [21–25] are operating in
the resolved sideband regime with the cavity bandwidth much
smaller than the mechanical resonant frequency, i.e., γ� ωm,
and also the detuning frequency ∆ = ±ωm. Therefore, near
the mechanical resonant frequency ωm, S̄zF is approximately
equal to the one shown in Eq. (5), which leads to

2ℜ[χ∗qq(ωm)S̄zF(ωm)]
∣∣
∆=±ωm

≈±h̄ℑ[χqq(ωm)] . (50)

Since S̄qq(ωm) = h̄(2〈n〉+1)ℑ[χqq(ωm)] with the mean occu-
pation number 〈n〉 = 1/(eh̄ωm/kBT − 1) from the fluctuation-
dissipation theorem, the above term either doubles or cancels
the contribution from the zero-point fluctuation of the me-
chanical oscillator, which induces the asymmetry. According
to Eq. (3), such an imaginary correlation is always associated
with the dynamical back action quantified by χFF :

ℑ[χFF(ωm)]∆=±ωm ≈∓h̄ḡ2/γ ≈∓S̄FF(ωm)/h̄ , (51)

as mentioned earlier in Eq. (6).
Before leaving this example, there is one comment moti-

vated by Ref. [34]. The imaginary cross correlation is only
detectable near the mechanical resonance when using the ho-
modyne readout, because χqq(ωm) is also imaginary, which
makes the second term in Eq.(48) nonzero. If measuring far
away from the resonance or the oscillator were lossless, we
will need to apply the synodyne readout scheme presented in
Ref. [34] to probe such a quantum correlation.

V. DISCUSSION

The above discussion showed the general quantum con-
straints for the detector noise in linear continuous measure-
ment. Particularly, the noise spectral densities (quantifying
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the quantum fluctuation) and susceptibilities (quantifying the
linear response/dissipation) of detectors at the quantum limit
were shown to be related by two equalities, which can be
viewed as a generalization of the fluctuation-dissipation theo-
rem to the non-equilibrium quantum measurement processes.
The result is general and can be applied to different measure-
ment setups, and we have seen two examples in cavity QED.

One last point worthy mentioning is that so far we have only
covered linear detectors with single input and single output,
which is the case for most experiments mentioned earlier. The
result can be generalized to multiple-input-multiple-output
(MIMO) detectors through the following identity, which is a
generalization of Eq. (29),

det〈ξ |Â(ω)Â†(ω ′)|ξ 〉= 0 , (52)

where Â† = (Ẑ(0)
1 , F̂(0)

1 , · · · , Ẑ(0)
N , F̂(0)

N )† with N being the num-

ber of ports, and the condition of simultaneous measurability:

[Ẑk(t), Ẑl(t ′)] = 0 ∀ t, t ′ (53)

with k, l = 1, · · · ,N. This follows the same logic as deriv-
ing the uncertainty relation for MIMO detectors and obtaining
Eq. (1) as one special case in Ref. [14].
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