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Plasma levels of the n-3 polyunsaturated fatty acid eicosapentaenoic acid are 

associated with anti-TNF responsiveness in rheumatoid arthritis, and inhibit 

the etanercept driven rise in Th17 cell differentiation in vitro 

 

Louisa Jeffery, Helena L Fisk, Philip C Calder, Andrew Filer, Karim Raza, Christopher 

D Buckley, Iain McInnes, Peter C Taylor and Benjamin A Fisher 

 

ABSTRACT 

Objective 

To determine whether levels of plasma n-3 PUFAs are associated with response to 

anti-TNF agents in RA, and whether this putative effect may have its basis in 

altering anti-TNF driven Th17 cell differentiation  

Methods 

Plasma was collected at baseline and after three months of anti-TNF treatment in 

22 patients with established RA, and fatty acid composition of the 

phosphatidylcholine (PC) component measured. CD4+CD25- T cells and 

monocytes were purified from the blood of healthy donors and co-cultured in the 

presence of anti-CD3, with or without etanercept, EPA or the control fatty acid, 

linoleic acid (LA). Expression of IL-17 and IFNγ was measured by intracellular 

staining and flow cytometry.  

Results 

Plasma PC EPA levels, and the EPA/arachidonic acid ratio, correlated inversely 

with change in DAS28 scores at 3 months (-0.51; p=0.007, and -0.48; p=0.01 

respectively), indicating that higher plasma EPA was associated with a greater 

reduction in DAS28. Plasma PC EPA was positively associated with EULAR 
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response (P=0.02). An increase in Th17 cells post-therapy has been associated 

with non-response to anti-TNF. Etanercept increased Th17 frequencies in vitro. 

Physiological concentrations of EPA, but not LA, prevented this. 

Conclusion 

EPA status was associated with clinical improvements to anti-TNF therapy in vivo 

and prevented the effect of etanercept on Th17 cells in vitro. EPA supplementation 

might be a simple way to improve anti-TNF outcomes in RA patients by 

suppressing Th17 frequencies. 
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Introduction 

 

Anti-TNF agents have revolutionised the management of severe rheumatoid 

arthritis (RA), but a substantial proportion of patients either fail to respond or do 

so only partially.1 The reasons for this remain to be fully elucidated but are likely 

to include genetic, genomic and environmental factors.2 In some patients, 

inadequate response may be mediated by an anti-TNF driven rise in pro-

inflammatory Th17 cell differentiation.3 Understanding the reasons for inadequate 

response may guide choice of an alternative biological agent for some patients, or 

optimization of anti-TNF therapy for others, through alteration of environmental 

factors or selection of synergistic agents. 

 

Long-chain n-3 polyunsaturated fatty acids (PUFA), especially eicosapentaenoic 

acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), have long-been 

considered to have anti-inflammatory and immunomodulatory actions and a 

number of explanatory mechanisms have been proposed. These include 

modulation of eicosanoid metabolites by competition with arachidonic acid (AA) 

and inhibition of cyclooxygenase, alteration of lipid rafts, signaling through 

receptors such as GPR120 and PPARγ, and generation of pro-resolution 

mediators.4;5 N-3 (also known as omega 3) PUFA derive their name from having 

their first double-bond at the third carbon atom from the methyl end of their fatty 

acyl chain.6 They cannot be synthesized de novo by animals and most human 

dietary intake is in the form of plant-derived α-linolenic acid (18:3n-3).7;8 α-

linolenic acid is metabolised by a series of desaturation and elongation steps to the 

longer chain EPA and DHA. This process of conversion into longer-chain PUFA is 
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poor in humans,9 and is in direct competition with the desaturation and elongation 

of the considerably more abundant n-6 (omega 6) PUFAs. Therefore in humans, 

most EPA and DHA is of dietary origin, with marine foods being especially good 

sources but having a highly variable intake.  

 

Fish oils contain EPA and DHA. Fish oils ameliorate collagen-induced arthritis,10-12 

and demonstrate modest effects on RA with a consistent reduction in tender joint 

count, morning stiffness and non-steroidal anti-inflammatory drug (NSAID) usage 

being observed in multiple small clinical trials when added to conventional 

DMARD therapy.13-25  Studies suggest that higher doses of fish oil (e.g. 3-6 g/day) 

are more effective than lower doses. Beneficial effects continue to be seen when 

fish oil is added to triple DMARD therapy with a treat-to-target approach in early 

RA.26  

 

In this study we sought to determine whether plasma levels of n-3 fatty acids 

correlated with response to anti-TNF in RA, and propose and test a mechanistic 

hypothesis for the heightened responsiveness we observed in association with 

higher EPA levels in the absence of high dose fish oil supplementation. 

 

Materials and Methods 

Patients 

Plasma was available for 22 out of 23 patients with established RA who 

participated in a comparative study of etanercept and infliximab.27 Etanercept is a 

p75 TNF receptor-Fc fusion protein and infliximab is a chimeric monoclonal 

antibody to TNF. Eligible patients were aged ≥18 years, fulfilled 1987 ACR 



EPA and anti-TNF response 5 

classification criteria for RA, were positive for rheumatoid factor or anti-CCP 

antibodies, had disease duration >6 months and DAS28 >4.0, had previously failed 

at least one DMARD and were on a stable dose of at least 7.5 mg weekly of 

methotrexate. No other DMARDs were allowed within the 4 weeks prior to 

commencing treatment. Participants were randomised to standard dosing of either 

infliximab 3 mg/kg intravenously at weeks 0, 2, 6 and 10, or subcutaneous 

etanercept 25 mg twice weekly. Therapy was kept stable for the first 3 months of 

treatment. The demographics of these patients are presented in Table 1. The study 

was conducted in compliance with the Helsinki declaration and ethical approval 

was obtained from the West Glasgow Ethics Committee (06/S0703/64). All 

subjects gave written informed consent. Clinical trial registration number is 

ISRCTN44880063. 

 

Plasma phosphatidylcholine fatty acids 

Plasma samples from baseline and 3 months were stored at -80°C prior to analysis. 

After addition of dipentadeconoyl phosphatidylcholine as an internal standard, 

total lipids were extracted with chloroform and methanol (2:1 vol/vol) and 

butylated hydroxytoluene added as an antioxidant.  Phosphatidylcholine (the 

major phospholipid in human plasma) was isolated by solid-phase extraction on 

aminopropyl silica cartridges using chloroform to elute triacylglycerol and 

cholesteryl ester fractions prior to elution of phosphatidylcholine with 

chloroform/methanol (60:40 vol:vol). Purified phosphatidylcholine was dissolved 

in toluene and fatty acid methyl esters were produced by reaction with methanol 

containing 2% (vol/vol) sulphuric acid at 50°C for two hours. After cooling and 

neutralization, fatty acid methyl esters were extracted into hexane and separated 
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on a BPX-70 column fitted to a HP6980 gas chromatograph (Hewlett-Packard, Palo 

Alto, US). Helium was used as the running gas and fatty acid methyl esters were 

detected by flame ionization, identified by comparison with previously run 

standards, and quantified using ChemStation software (Agilent Technologies, Palo 

Alto, USA). Data were expressed as absolute concentration (µg/ml plasma), which 

is related to fatty acid consumption.28 Long-chain n-3 PUFA were considered to be 

20:5n-3 (EPA), docosapentaenoic acid (DPA; 22:5n-3) and 22:6n-3 (DHA). 

Activities of desaturase enzymes, and in particular delta-6 desaturase (D6D), are 

considered to be the rate-limiting steps in the conversion of the precursor n-3 

PUFA α-linolenic acid to the longer chain EPA and DHA, as well as in the parallel 

metabolism of n-6 PUFA. Activity of desaturase enzymes can be inferred from 

product to precursor ratios29. Product to precursor ratios were used to estimate 

the activity of the delta-5 (20:4n-6/20:3n-6) and delta-6 18:3n-6/18:2n-6) 

desaturases. 

 

Th17 cell differentiation 

Human CD4+CD25- T cells and autologous monocytes were isolated from 

peripheral blood mononuclear cells obtained from fresh leukocyte reduction 

system cones (National Blood Service, Birmingham UK) by ficoll gradient 

centrifugation. Negative selection reagents (StemCell technologies) were used for 

the enrichment of monocytes and CD4+CD25- T cells and greater than 95% cell 

purity attained as confirmed by flow cytometry using antibodies against CD3, CD4 

and CD14 (BD). CD25 expression on T cells could not be assessed due to 

interference of the anti-CD25-TAC reagent used for the cell selection. Efficient 

depletion of regulatory T cells was therefore determined by staining for FoxP3 and 
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CD127.  

To assess Th17 differentiation, T cells and monocytes were cultured at a ratio of 

one monocyte to five T cells in the presence of anti-CD3 (OKT3 clone) (0.5 μg/ml). 

The cultures were prepared in RPMI 1640 medium supplemented with 50 U/ml 

Penicillin and Streptomycin and 2 mM L-Glutamine (Gibco, Life Technologies) and 

incubated at 37°C, 95% humidity and 5% CO2. After seven days, T cell expression 

of IL-17 and IFNγ was assessed by intracellular cytokine staining and flow 

cytometry. In brief, T cells were re-stimulated for five hours with PMA (50 ng/ml) 

and ionomycin (1 μM). Brefeldin A (10 μg/ml) was added during the final four 

hours to promote cytokine accumulation. Cells were washed with PBS and dead 

cells labeled with a fixable live/dead discrimination dye (Life technologies) before 

fixation for 12 minutes in 3% paraformaldehye. Following one wash with PBS, cells 

were permeabilised with 0.1% saponin-PBS and labeled with antibodies against 

CD3 (BD), IL-17 (ebiosciences) and IFNγ (BD). To assess the effect of etanercept, 

EPA and the control n-6 fatty acid, LA, upon Th17 differentiation, the cultures were 

also supplemented with EPA or LA at 5 ug/ml, with or without etanercept.  

 

Statistical analysis 

Comparison of baseline data between subjects randomized to infliximab versus 

etancercept used the Mann Whitney U test or the independent samples T test 

depending on distribution of data. Subsequent analyses pooled both groups for a 

population size of 22. Comparison of fatty acid levels and product/precursor ratios 

between baseline and week 12 were undertaken using the Wilcoxon Signed Rank 

test. Correlations of plasma fatty acid levels at baseline, week 12 and the mean of 

these time points (mean value considered the primary dependent variable of 
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interest) with change in DAS28 were analysed using Spearman’s rho. The 

relationship of EULAR outcomes to EPA levels, and of EPA tertiles with change in 

DAS28 and its constituents, was tested by one-way ANOVA. Analyses of the clinical 

and in vitro data were undertaken using SPSS 20 and Graphpad Prism 5 

respectively. 

 

Results 

Baseline and 12 weeks 

Baseline demographics are shown in Table 1 and the two treatment groups were 

not statistically different. In order to determine the effect of anti-TNF on 

desaturase activity, we compared fatty acid profiles from baseline and week 12 of 

treatment, with a view to using mean values across time points to give a more 

robust biomarker of PUFA status over the time course of the study. Interestingly 

there was a trend towards a reduction in the 18:3n-6/18:2n-6 ratio following 

treatment with anti-TNF (p=0.05) which might indicate a reduction in D6D activity 

after 12 weeks, being accompanied by a lower mean 18:3n-6 (p=0.08) product, 

0.60 g/ml (IQR 0.52, 1.15) versus 0.51 (IQR 0.47, 0.62), and a higher level of 

22:4n-6 (adrenic acid; p=0.039); 0.15 μg/ml (IQR 0.11, 0.21) versus 0.19 (IQR 0.12, 

0.27). Adrenic acid was the last measurable n-6 PUFA prior to the second delta-6 

desaturase catalysed step. However no significant differences were observed in 

any other fatty acid after anti-TNF treatment, including all the longer chain n-3 

fatty acids (data not shown), and therefore subsequent analyses used the average 

of baseline and week 12 measurements.  

 

Relationship of plasma phosphatidylcholine fatty acids with change in DAS28  
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Table 2 shows the correlations between individual fatty acids, total n-3, n-3/n-6 

and EPA/AA ratios, and desaturase product/precursor ratios with change in 

DAS28 after 3 months of anti-TNF therapy. The most significant correlations with 

time-averaged levels were seen with EPA (-0.51; p=0.007) and the EPA/AA (20:4n-

6) ratio (-0.48; p=0.01) indicating that higher plasma levels of EPA were associated 

with a greater reduction in DAS28 at 3 months after anti-TNF. This association 

with EPA was still statistically significant when restricting the analysis to subjects 

treated with etanercept (r=-0.54; p=0.04), with a trend seen in the infliximab 

group (r=-0.42; p=0.10). 

 

Relationship of plasma phosphatidylcholine EPA levels with EULAR response 

and components of DA28 

At 12 weeks, 6 subjects were EULAR non-responders,30 and 13 and 3 were 

moderate and good responders, respectively. Median EPA levels in these groups 

were 14.8, 19.1 and 29.4 µg/ml respectively (p=0.02; Figure 1). EPA levels were 

next divided into tertiles and the highest tertile was associated with a larger fall in 

DAS28 scores at 12 weeks (p=0.03; Figure 1). Figure 1 also shows the four 

components that comprise the DAS28 score, in relation to tertiles of EPA, with 

trends being observed for ESR (p=0.07) and tender joint count (p=0.15).  

 

Effect of etanercept and EPA on Th17 differentiation 

Poor responses to anti TNF therapy have been associated with increased IL-17 

production and the frequency of Th17 cells.3;31 Therefore, using our established 

monocyte-driven T cell stimulation system to study Th17 differentiation in vitro,32 

we investigated the effect of anti-TNF upon Th17 differentiation. At 
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pharmacologically-relevant concentrations, etanercept promoted a significant, 1.6 

fold increase in the frequency of cells expressing IL-17 (Figure 2A and B). This 

increase in frequency included cells that expressed IL-17 alone, as well as those 

that expressed IL-17 together with IFNγ. By contrast the frequency of cells that 

expressed IFNγ alone was not affected (figure 2B). Treatment with infliximab did 

not significantly increase Th17 frequencies in this assay (data not shown). Given 

that elevated levels of EPA were associated with improved responses to anti-TNF, 

we were interested to see if this could involve downregulation of IL-17 by EPA. 

Thus we repeated monocyte-driven T cell stimulations in the presence of EPA or 

the control n-6 fatty acid, LA.  Neither EPA nor LA affected the frequency of Th17 

cells relative to ethanol carrier control. Importantly, EPA but not LA prevented the 

etanercept induced increase in Th17 frequency (figure 3).  

 

Discussion 

 

In this cohort of RA patients receiving either etanercept or infliximab, higher 

plasma levels of EPA were associated with a greater reduction in DAS28 scores 

following treatment compared to patients with lower plasma EPA. These 

differences were more significant in patients receiving etanercept, and it is 

possible that differences in construct, avidity and immunogenicity may influence 

these findings33. Our observed association may relate to the modest benefits 

previously seen with n-3 PUFA supplementation in RA patients, although a key 

difference is that there was no n-3 PUFA supplementation in our study.13-15 We 

therefore hypothesized that higher levels of EPA may have additional mechanisms 

relevant to anti-TNF treatment. One potentially detrimental effect of anti-TNF 
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therapy is a variable increase in Th17 cells. This is thought to result from the 

reversal of TNF-mediated p40-suppresion, p40 being a subunit of IL-23 which is 

important in Th17 cell differentiation.34 Higher production of IL-17 has been 

associated with non-response to anti-TNF.3;31 and there is currently great interest 

in dual targeting of TNF and IL-17, to optimize biological responses in the face of 

cytokine compensation.35 Were EPA to suppress Th17 differentiation in the 

context of anti-TNF therapy, supplementation with fish oil might present an 

alternative, and potentially safer, combination approach.  

We were able to replicate this anti-TNF-mediated effect on Th17 frequencies in 

vitro, using a co-culture assay of CD4+CD25- T cells stimulated with autologous 

monocytes. Addition of etanercept, a TNF-receptor fusion protein, resulted in 

increased frequencies of IL-17+ cells in a dose-dependent manner. Addition of EPA, 

but not the n-6 LA control, prevented this etanercept-driven increase in Th17 

frequency. 

 

The mechanism behind this observation has not been established, but eicosanoid 

metabolites of the n-6 fatty acid AA have also been associated with promotion of 

Th17 generation. Prostaglandin E2 (PGE2) stimulates IL-23 and IL-1β production 

by macrophages and dendritic cells whilst inhibiting IL-12, and it also increases 

the expression of IL-23 and IL-1β receptors on T cells, so regulating Th17 

differentiation.36 EPA competes with AA for the prostaglandin-generating COX 

enzymes, has an inhibitory effect on this enzyme, and yields the generally less pro-

inflammatory PGE3.37 If alteration of eicosanoid metabolites does influence 

response to anti-TNF therapy, then one might also expect synergism between anti-

TNF drugs and non-steroidal anti-inflammatory drugs (NSAIDs). Notably, some 
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registry studies have indeed found the use of NSAIDs to predict better response to 

anti-TNF,38;39 although this association was not considered at the time to be causal, 

and other studies have not confirmed this.40 Against this eicosanoid hypothesis, 

might be the observation that inhibition of PGE2 production by monocytes ex vivo 

required a relatively high intake of EPA in a dose-response study, although this 

was conducted in healthy volunteers rather than patients with RA41 

Other mechanisms may also be important. In mouse models of colitis, n-3 fatty 

acids have recently been demonstrated to reduce Th17 cell numbers,42;43 thought 

in part to reflect reduced membrane-raft responsiveness to the Th17 polarising 

cytokine IL-6.44 Indeed, it is possible that the ability of Methotrexate to reduce IL-6 

levels may in part explain the benefits of combining this drug with anti-TNF45. 

 

Plasma phosphatidylcholine fatty acids are a better indicator of dietary intake in 

comparison with dietary questionnaires due to the measurement error inherent in 

the latter46, but only reflect dietary intake over the preceding few days or weeks47-

50. We therefore used the average of baseline and week 12 measurements in order 

to obtain a more robust biomarker of PUFA status. It should be noted that an 

individual’s long-chain n-3 PUFA status may be influenced not just by dietary n-3 

intake, but also by the amount of n-6 PUFA in the diet, as these compete for the 

same desaturase and elongase enzymes, and by polymorphisms in the desaturase 

enzymes29. Although our primary analysis focused on time-averaged plasma fatty 

acids, it is of interest that week 12 levels of docosapentaenoic acid (DPA) were also 

negatively correlated with DAS28 levels. The effect of DPA on inflammation is 

relatively under investigated compared with EPA and DHA, but a recent study of 

complete Freund’s adjuvant-induced arthritis in rats found that monoglyceride 
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EPA or DPA, but not DHA, reduced paw swelling, arthritis score and levels of pro-

inflammatory cytokines51. Further investigation of DPA anti-inflammatory effects 

would be warranted. 

 

D6D is considered a rate-limiting step in long-chain PUFA metabolism. The 

transcription and therefore activity of D6D may be upregulated by insulin and 

statins52 and downregulated by long-chain PUFA,53 glucagon, adrenaline, steroids 

and smoking.54;55 Interestingly, there is a recognized association of D6D activity 

and later development of type 2 diabetes, independent of disturbances in glucose 

metabolism.56 The reason for this is not clear, but inflammation is a risk factor for 

insulin resistance57 and our data implies that inflammation may also increase D6D 

activity, providing a possible explanation for this association. Our findings are 

consistent with the observation that TNFα increases hepatic expression of sterol 

regulatory element binding protein-1c (SREBP-1c) in mice,58 since SRBP-1c plays a 

key role in upregulating D6D gene transcription.53 The alteration in D6D activity 

we observed does not explain the association of anti-TNF response with EPA 

levels, as this would predict an opposite relationship, baseline levels of EPA are 

also predictive of response, and D6D activity plays only a small role in the 

conversion of longer chain n-3 fatty acids,9;56 as confirmed by the comparison of 

fatty acid levels pre- and post-anti-TNF. Furthermore baseline levels of EPA were 

also predictive of response. The desaturase activity inferred from these fatty acid 

ratios generally reflects conversion in the liver,4 however monocytes also 

demonstrate D6D and D5D activity,55;59;60 and we cannot rule out the possibility 

that an alteration of desaturase activity may be more pronounced in these cells, 
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which rely on AA, a long-chain n-6 PUFA, for eicosanoid production following 

stimulation. 

 

There are some limitations in this study. The sample size is small and therefore the 

study requires replication. In view of the sample size and the pilot nature of this 

data, we did not apply a Bonferroni correction. We did not measure the fatty acid 

profile in mononuclear cell membranes, which arguably may be more 

physiologically relevant, although these correlate well with plasma levels.61 Finally, 

a causal relationship cannot be assumed from this data. The strengths are a well-

characterised population with a biomarker of fatty acid intake at more than one 

time point. 

 

In summary, we have presented an association of EPA levels with anti-TNF 

response in RA. If replicated in further studies and causality confirmed, dietary 

modulation may provide a simple method for improving outcomes with this 

therapy. 
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Figure 1. Time-averaged plasma EPA levels in patients who were EULAR non-

responders, moderate and good responders at 3 months. Relationship between 

tertiles of time-averaged plasma EPA, and change in Disease Activity Score 28 

(DAS28) and its four constituents [28 swollen and tender joint count (28SJC and 

28TJC), patient visual analogue scale for global disease activity (VAS), and 

erythrocyte sedimentation rate (ESR)], and Health Assessment Questionnaire 

(HAQ) at 3 months is also shown. 

 

Figure 2: Etanercept increases the frequency of IL-17+ T cells. CD4+CD25- T cells 

were stimulated with autologous monocytes for seven days, under increasing 

concentrations of etanercept and the frequency of cells expressing IL-17 and IFNγ 

measured by flow cytometry.    Representative data for control and 2.5μg/ml 

etanercept are shown in A and relative frequencies of IL-17+ and IFNγ+ cells 

across etanercept concentrations 0-10 μg/ml are summarised in B for five donors. 

Significance was tested by ANOVA with Bonferroni post-hoc analysis. Stars and 

crosses indicate significance with respect to minus etanercept. Stars are used for 

IL-17+IFNy- and crosses for IL-17+IFNy+ cells * P<0.05, ** P<0.01, ***P<0.001.  
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Figure 3: Eicosapentaenoic acid inhibits induction of IL-17+ T cells by Etanercept. 

CD4+CD25- T cells were stimulated with autologous monocytes for seven days in 

the presence of ethanol (carrier control), 5 μg/ml Linoleic acid (LA) (control fatty 

acid) or 5 μg/ml Eicosapentaenoic acid (EPA) with or without 2.5 μg/ml 

Etanercept (Et). The frequency of IL-17+ T cells was measured by flow cytometry. 

Bars show the mean frequencies for seven donors. Error bars indicate standard 

deviation. Significance was tested using paired T tests. 

  



EPA and anti-TNF response 22 

Figure 1 
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Figure 2 
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Figure 3 
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Table 1. Patient demographics at study entry. P-values compare the infliximab and 

etanercept arms. RF; rheumatoid factor. CCP; cyclic citrullinated peptides. DAS28; 

Disease Activity Score 28. HAQ; Health Assessment Questionnaire. ESR; 

erythrocyte sedimentation rate. 

 
 Etanercept Infliximab All p value 
N 11 11 22 
Age (y)1 53.5 (15.3) 52.5 (9.6) 53.0 (12.5) 0.85 
Disease 
duration (y)2 

12 (7,15) 10 (2,20) 10 (4, 16.3) 0.22 

Methotrexate 
dose 
(mg/week)1 

14.3 (6.0) 16.6 (4.5) 15.5 (5.3) 0.33 

RF3 9 (82) 8 (73) 17 (77) 1.00 
RF (dilution)2 160 (40,640) 80 (0,640) 120 (30, 640) 0.75 
Anti-CCP3 10 (91) 8 (73) 18 (82) 0.59 
Baseline 
DAS281 

6.38 (0.65) 6.00 (1.45) 6.19 (1.12) 0.44 

Change in 
DAS28 at 12 
weeks1 

-1.80 (1.31) -1.59 (1.12) -1.69 (1.19) 0.69 

HAQ1 1.73 (0.68) 1.61 (0.42) 1.67 (0.56) 0.12 
ESR (mm/hr)2 26 (15, 52) 31 (16, 48) 27.5 (15.8, 

49) 
0.70 

1mean (sd); 2median (IQR); 3number of subjects positive (%) 
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Table 2. Correlations (Spearman’s rho) between plasma phosphatidylcholine n-3 

and n-6 fatty acids (μg/ml) at baseline, week 12 and the averaged concentration 

from both time points, with change in DAS28 score following 12 weeks of anti-TNF 

therapy. Long-chain n-3 PUFA were considered to be 20:5n-3 (EPA), 22:5n-3 and 

22:6n-3 (DHA). Product to precursor ratios were used to estimate the activity of 

the Δ5 (20:4n-6/20:3n-6) and Δ6 (18:3n-6/18:2n-6) desaturases.  

 
Plasma fatty acids 
 

Correlation of plasma fatty acids with change in 
DAS28 (p value) 

Baseline Week 12 Mean 

18:2n-6 0.408* 
(0.03) 

-0.117 
(0.30) 

0.125 
(0.29) 

18:3n-6 0.031 
(0.45) 

0.211 
(0.17) 

0.162 
(0.24) 

18:3n-3 0.138 
(0.27) 

0.216 
(0.17) 

0.162 
(0.24) 

20:2n-6 0.181 
(0.21) 

-0.158 
(0.24) 

0.013 
(0.48) 

20:3n-6 0.072 
(0.38) 

0.034 
(0.44) 

0.067 
(0.38) 

20:4n-6 0.029 
(0.45) 

0.062 
(0.39) 

-0.001 
(0.50) 

20:4n-3 0.072 
(0.38) 

-0.303 
(0.09) 

-0.186 
(0.20) 

20:5n-3 -0.324 
(0.07) 

-0.394* 
(0.04) 

-0.513** 
(0.007) 

22:4n-6 0.132 
(0.28) 

-0.068 
(0.38) 

0.050 
(0.41) 

22:5n-3 0.043 
(0.42) 

-0.368* 
(0.046) 

-0.269 
(0.11) 

22:6n-3 -0.137 
(0.27) 

-0.113 
(0.31) 

-0.167 
(0.23) 

Total n-3 PUFA -0.187 
(0.20) 

-0.360 
(0.05) 

-0.366* 
(0.047) 

Total long-chain n-3 PUFA -0.190 
(0.20) 

-0.373* 
(0.04) 

-0.425* 
(0.02) 

Total n-6 PUFA 0.301 
(0.09) 

-0.066 
(0.39) 

0.144 
(0.26) 

n-3/n-6 PUFA -0.435* 
(0.02) 

-0.178 
(0.21) 

-0.363* 
(0.048) 
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EPA/AA -0.234 
(0.15) 

-0.535** 
(0.005) 

-0.478* 
(0.01) 

Δ5 desaturase activity 0.001 
(0.50) 

0.128 
(0.29) 

0.058 
(0.40) 

Δ6 desaturase activity -0.241 
(0.14) 

0.047 
(0.42) 

-0.125 
(0.29) 

 
 
 


